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Abstract: Connected and autonomous vehicles (CAVs) present exciting opportunities for the im-
provement of both the mobility of people and the efficiency of transportation systems. The small
computers in autonomous vehicles (CAVs) are referred to as electronic control units (ECUs) and are
often perceived as being a component of a broader cyber–physical system. Subsystems of ECUs are
often networked together via a variety of in-vehicle networks (IVNs) so that data may be exchanged,
and the vehicle can operate more efficiently. The purpose of this work is to explore the use of machine
learning and deep learning methods in defence against cyber threats to autonomous cars. Our
primary emphasis is on identifying erroneous information implanted in the data buses of various
automobiles. In order to categorise this type of erroneous data, the gradient boosting method is used,
providing a productive illustration of machine learning. To examine the performance of the pro-
posed model, two real datasets, namely the Car-Hacking and UNSE-NB15 datasets, were used. Real
automated vehicle network datasets were used in the verification process of the proposed security
solution. These datasets included spoofing, flooding and replay attacks, as well as benign packets.
The categorical data were transformed into numerical form via pre-processing. Machine learning and
deep learning algorithms, namely k-nearest neighbour (KNN) and decision trees, long short-term
memory (LSTM), and deep autoencoders, were employed to detect CAN attacks. According to
the findings of the experiments, using the decision tree and KNN algorithms as machine learning
approaches resulted in accuracy levels of 98.80% and 99%, respectively. On the other hand, the use of
LSTM and deep autoencoder algorithms as deep learning approaches resulted in accuracy levels of
96% and 99.98%, respectively. The maximum accuracy was achieved when using the decision tree
and deep autoencoder algorithms. Statistical analysis methods were used to analyse the results of the
classification algorithms, and the determination coefficient measurement for the deep autoencoder
was found to reach a value of R2 = 95%. The performance of all of the models that were built in this
way surpassed that of those already in use, with almost perfect levels of accuracy being achieved.
The system developed is able to overcome security issues in IVNs.

Keywords: in-vehicle networks; controller area network; security; artificial intelligence; intrusion
detection system

1. Introduction

Academics and businesspeople alike have taken an early interest in the emerging
field of connected and autonomous vehicles (CAVs) [1]. In 2015, the government of the
United Kingdom established the “Centre for Connected and Autonomous Vehicles” [2].
This organisation released a report in 2018 detailing R&D efforts in the field of CAVs. A
study titled “Connected and Autonomous Vehicles: the future” [3,4] was released by the
House of Lords in 2017. In 2017, several groups, including the British Standards Institute
(BSI) in the UK, released reports detailing their plans to develop CAV standards [5].
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Autonomous systems such as self-driving cars will be commonplace in the future,
and in preparation for their use, consumers and researchers will be able to practise using
a variety of automation features that will be included in all future AV systems. Before
being put into use, all of the features of an AV, including their functions and connections,
safety alerts and privacy concerns, should be locked down. However, these capabilities can
be compromised by cybersecurity vulnerabilities (CVs), resulting in either malfunctions
or connections that just do not work. Cyberattacks, threats, and the mechanical failure
of defective components, systems, and communication services that depend on energy
efficiency all pose serious risks to the safety of AVs. Due to the fact that vulnerabilities
in IoT devices also manifest in the context of data transmission, cybersecurity is rapidly
becoming a more pressing issue in autonomous vehicles and other data communication
systems. Figure 1 shows a smart city in which autonomous systems based on the IoT are
used, revealing the pathways through which hackers can try to access car systems.
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The high levels of in-vehicle capabilities seen in today’s intelligent automobiles are
provided by electronic control units (ECUs). Furthermore, serial buses are used to link
these components together. In today’s intelligent automobiles, the controller area network
(CAN) protocol is in charge of ensuring that all of these components are able to effectively
communicate with one another. Enhanced road safety, communication with the outside
world, the plethora of new services designed to improve the customer experience, and
so on, are just a few of the numerous benefits that contemporary in-vehicle technology
enables intelligent cars with smart connectivity and computerisation to provide. On the
other hand, hackers are able to more easily gain control of a vehicle’s systems due to the
increased vulnerability introduced by these linked smart features. Access to the electronic
components installed in today’s sophisticated automobiles might provide hackers with new
avenues of attack [6,7]. Figure 2 presents a schematic representation of a CAN network.



Sensors 2023, 23, 4086 3 of 26Sensors 2023, 23, x FOR PEER REVIEW 3 of 25 
 

 

 
Figure 2. A CAN bus: (a) system connections and (b) frame format. 

Current in-vehicle network protocols contain several holes, such as insecure ID-based 
arbitration systems for conflict resolution and the lack of message authentication or en-
cryption [8]. The security of today�s intelligent cars is a pressing concern, because there is 
a risk that attackers could exploit the flaws currently present to cause bodily harm or 
property damage on the road. Recent decades have seen the development of cutting-edge 
technology for autonomous cars, as well as other types of smart, intelligent car. There have 
been several recent successes in the automotive industry that can be directly attributed to 
the vast improvements in connectivity, as well as the proliferation of new communication 
channels and access points. On the other hand, new threats to data privacy and security 
have been made possible by these advancements [9]. As a result of these flaws in cyberse-
curity, human lives are in jeopardy. Given the increasing efficiency of the communication 
capabilities of the currently connected cars and the need for the real-time exchange of 
important safety-related information between vehicles and the surrounding infrastructure 
[10], it is clear that this is an area of rapid development. In light of this development, the 
landscape of automobile cybersecurity is changing rapidly and dynamically. Identifying 
potential security holes in network infrastructures as quickly as is feasible is crucial for 
effectively addressing cybersecurity concerns. There is unease that cybersecurity flaws 
[11,12] might compromise the safety of today�s intelligent automobiles when driving on 
the road. Those who work with unmanned aerial vehicles (UAVs), sometimes known as 
drones, face difficult challenges in terms of cybersecurity. To begin, because of the nature 
of CAV cybersecurity, it is difficult to anticipate all the different attacks that could take 
place. This presents a challenge. Everyone who creates software or uses it has a responsi-
bility to be aware of the fact that attack patterns are also evolving, thus calling for a con-
tinuous response to the unknown. Those who attack CAVs only need to find a single open-
ing through which to launch an attack. Furthermore, CAVs are assembled using a wide 
variety of components with specialised characteristics. If even a single one of these parts 
breaks, the integrity of the whole system will be compromised. Because of the linked na-
ture of the many components that make up a CAV system, performing vulnerability as-
sessments represents a challenging task. The many sensors found in CAVs produce enor-
mous amounts of data, the administration of which is made more difficult by the fact that 
the data may be present in several different forms. If the data are in a format and include 
content that is consistent with the standards of the CAV, then the processing of the data 
will be much easier. In the end, CAVs are able to interact with one another owing to the 
use of a number of wireless communication technologies. These technologies include 
Bluetooth, dedicated short-range communications (DSRC) and WiFi, among others. Be-
cause of this, it is more difficult to guard against threats to cybersecurity in CAV networks 
than in wired ones. 

Figure 2. A CAN bus: (a) system connections and (b) frame format.

Current in-vehicle network protocols contain several holes, such as insecure ID-based
arbitration systems for conflict resolution and the lack of message authentication or encryp-
tion [8]. The security of today’s intelligent cars is a pressing concern, because there is a risk
that attackers could exploit the flaws currently present to cause bodily harm or property
damage on the road. Recent decades have seen the development of cutting-edge technology
for autonomous cars, as well as other types of smart, intelligent car. There have been several
recent successes in the automotive industry that can be directly attributed to the vast im-
provements in connectivity, as well as the proliferation of new communication channels and
access points. On the other hand, new threats to data privacy and security have been made
possible by these advancements [9]. As a result of these flaws in cybersecurity, human lives
are in jeopardy. Given the increasing efficiency of the communication capabilities of the
currently connected cars and the need for the real-time exchange of important safety-related
information between vehicles and the surrounding infrastructure [10], it is clear that this is
an area of rapid development. In light of this development, the landscape of automobile
cybersecurity is changing rapidly and dynamically. Identifying potential security holes in
network infrastructures as quickly as is feasible is crucial for effectively addressing cyber-
security concerns. There is unease that cybersecurity flaws [11,12] might compromise the
safety of today’s intelligent automobiles when driving on the road. Those who work with
unmanned aerial vehicles (UAVs), sometimes known as drones, face difficult challenges in
terms of cybersecurity. To begin, because of the nature of CAV cybersecurity, it is difficult to
anticipate all the different attacks that could take place. This presents a challenge. Everyone
who creates software or uses it has a responsibility to be aware of the fact that attack
patterns are also evolving, thus calling for a continuous response to the unknown. Those
who attack CAVs only need to find a single opening through which to launch an attack.
Furthermore, CAVs are assembled using a wide variety of components with specialised
characteristics. If even a single one of these parts breaks, the integrity of the whole system
will be compromised. Because of the linked nature of the many components that make up
a CAV system, performing vulnerability assessments represents a challenging task. The
many sensors found in CAVs produce enormous amounts of data, the administration of
which is made more difficult by the fact that the data may be present in several different
forms. If the data are in a format and include content that is consistent with the standards
of the CAV, then the processing of the data will be much easier. In the end, CAVs are
able to interact with one another owing to the use of a number of wireless communication
technologies. These technologies include Bluetooth, dedicated short-range communications
(DSRC) and WiFi, among others. Because of this, it is more difficult to guard against threats
to cybersecurity in CAV networks than in wired ones.
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There are several classification methodologies that use machine learning (ML) algo-
rithms to better aid administrators in recognising network assaults, including the naive
Bayes classifier, decision trees, logistic regression (LR), support vector classifiers (SVCs),
and deep convolutional neural networks [13,14]. Algorithms like these can find application
in a wide variety of categorisation approaches. In the future, OMIDS may need to be able
to cope with a wider array of threats, including extortion, among other potential problems.
The majority of ML methods that are currently available for the identification of cyber-
attacks on OMIDS were developed on the basis of cyber threat studies in which routing
data were paired with prospective attack profiles gleaned through behavioural analysis
techniques, such as packet collection, filtering and feature comparison. In these cyber threat
studies, routing data were paired with prospective attack profiles. The routing information
provided by CAN devices can be used to classify the many possible types of attack, assess
the actual type of attack, detect which ECU has been hacked, and activate countermeasures.
As a direct consequence of this, security managers have begun to use deep convolutional
neural network techniques. The include long short-term memory (LSTM) networks [15],
convolutional neural networks (CNNs) [16], and recurrent neural networks (RNNs) [17].
Deep convolutional neural networks (CNNs) provide a novel method for enhancing threat
identification accuracy and decreasing false positives in network intrusion detection (FPR).
In high-degree-of-freedom models, however, the high levels of variance (in other models)
or large degrees of bias (in low-degree-of-freedom models) imply that it might not be
possible to fit the data distribution well using a single base classifier [18].

Almost 1.3 million people are killed in automobile accidents, annually, as reported by
the World Health Organization (WHO). Age is the single most significant determinant in
mortality rate, with young people under the age of 29 being at highest risk of mortality.
Driving under the influence of alcohol or drugs, driving while distracted, driving automo-
biles that present a high degree of risk, and driving in an unsafe environment are among
the leading contributors to traffic crashes [5]. Excessive speeding is also a principal cause of
traffic accidents. AVs support driving activities by sensing the surrounding environment,
planning the quickest and safest routes, controlling speed, and performing navigation
and parking without the input of a human driver. This helps to reduce the number of
accidents caused by human error, which, in turn, helps to reduce the overall number of
accidents. The possibilities arising from this have piqued the curiosity of a great number of
scholars and businesses in a number of countries all around the globe. We can speculate as
to the potential beneficial impacts that self-driving cars may have on both society and the
economy, despite the fact that it is unlikely that they will find extensive utilisation in the
near future. They have the ability to play a substantial role in decreasing the incidence of
traffic accidents, rate of fuel consumption, and degree of congestion on roads. They have
the capacity to do this in a number of different ways.

In addition, one of the aspects of CAVs that poses the greatest risk is their shortcomings
in terms of cybersecurity, which can be a contributing factor in automobile collisions due
to the fact that attackers are able to alter cars’ navigation systems. As a consequence of
this, we came up with a plan to protect CAVs using an artificial intelligence (AI)-based
security system that is able to recognise and repel any assaults directed at them. The stated
fundamental purpose of the system is to ease the issues associated with information security
in CAVs through the identification of possible attack messages and the implementation of
CAV cybersecurity. The issue of robust construction is one that has to be addressed in order
to combat cyber threats targeting IVN communication. In light of the fact that CAVs have
emerged as a new technology in a number nations and have become ingrained in the fabric
of everyday social life, it is vital to develop innovative methods for detecting infiltration
using IVNs. The key aim of this study was the development of deep learning algorithms
with the capacity to recognise intrusions into CAN buses located in automobiles. This
method exhibits considerably improved accuracy of detection for various types of attack
compared to the systems in place up until this point in time.
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The primary objective of the presented system is to alleviate the difficulties associated
with information security in CAVs via the detection of possible attack messages and the
implementation of CAV cybersecurity. Data in the CAN bus protocol are not encrypted;
therefore, hackers are able to perform replay attacks and inject malicious messages into
networks (sometimes referred to as executing an intrusion-based attack) by employing a
reverse-engineering technique in order to understand each CAN packet. This allows hack-
ers to perform intrusion-based attacks. Therefore, in order to identify abnormal patterns of
activity within vehicular networks, artificial intelligence technologies are necessary. In this
article, we develop a prediction model that is able to identify unusual traffic patterns in
the protocol of a vehicular network. This technology can be applied in the identification of
traffic anomalies in automotive networks.

In the course of this research, we used a variety of machine learning methods, such
the KNN, decision tree, and deep learning LSTM, and deep autoencoders approaches, in
the construction of an effective intrusion detection system that is able to identify cyber
threats to IVN communication. A deep autoencoding algorithm anomaly detection model
is proposed with the aim of strengthening the CAN bus protocol used for in-vehicle
network communication. The deep autoencoder is made up of two symmetrical deep-belief
networks, each having four or five shallow layers. One of the networks serves as the
encoding half of the net, while the other network is responsible for the decoding half;
this combination makes it possible for the proposed deep autoencoder method to achieve
efficient performance in terms of accuracy and the time cost of building the model. Finally,
we demonstrate that a deep autoencoder with significant neural network parameters is
appropriate for the detection of attacks with high accuracy on the basis of the CAN dataset,
in contrast to our previous work.

2. Background Study

In this section, the principles underlying attacks on and vulnerabilities of IVNs will be
described, as well as the cybersecurity methods utilised in their solutions. The majority
of research efforts in this domain have so far been devoted to CVs and other mitigation
measures for huge data transmission between roadside units (RSUs) and AVs. For instance,
one of the more frequent kinds of attack, known as denial of service (DoS), may be avoided
with the use of clever defensive techniques such as that which was recently reported.
This method makes use of backpropagation neural networks to examine the percentage
of overlapping scores. The proposed system safeguards external communications for
autonomous and semi-autonomous vehicles, in contrast to current systems, and it does
so without requiring the use of extra sensors, such as radar, LiDAR, computer vision or
RSUs [19].

In the United States, some states have recently established laws that allow for the
testing of CAVs on public roads [20]. The year 2009 marked the beginning of Google’s [20]
work on the development of AVs. In 2016, the company established Waymo as a wholly
owned subsidiary, and in 2018, it launched a pilot program in Phoenix in which a select
group of locals were allowed to request driverless journeys (although a safety supervisor
driver was still present in the vehicle). On the road, Tesla [21] has been developing
autonomous driving solutions for CAVs and putting them into commercial use. A large
amount of research has been published by academic institutions in the United States, one
of which is the University of Michigan [22], which is situated in close proximity to an Mcity
test area. Long-standing market leaders in Europe, including BMW, Audi and Mercedes-
Benz, have all invested substantial amounts of money into the research and development
of AVs [23].

In addition, the authors of [24] researched the flaws with respect to cybersecurity in
AVs that make them vulnerable to sensor attacks. They proposed a novel rule-based intru-
sion detection system (IDS) for CAVs that was able to identify sensor attacks and localise
their sources. The proposed inertial navigation system used a combination of a cumulative
sum (CUSUM) discriminator and an extended Kalman filter (EKF) to estimate the vehicle’s



Sensors 2023, 23, 4086 6 of 26

location. Multiple sensors were installed, offering continuous updates on the state of the
driverless car, making it safer from interventions from the outside world. In addition, a
detector was employed to check for inconsistencies in the values being reported by the
different sensors. Finally, the information gathered by the detectors was processed using a
rule-based separation system to provide information on aberrant sensors. The developed
model was presented in detail, together with the conclusions of the experiments, on the
basis of which the model’s applicability for real-world data obtained from autonomous
cars was demonstrated.

In addition, the authors of [25] investigated the classification of dangers in the context
of autonomous automobiles, especially in relation to three essential security services:
authentication, accountability and availability. In [26], the authors delved deeper into
different defensive mechanisms against assaults on autonomous cars, as well as how such
defensive mechanisms had developed during their investigation. In particular, the authors
emphasised the significance of blockchains in resolving and mitigating privacy and security
issues (for AVs). They wrapped up their investigation by discussing the actual problems
and obstacles associated with using blockchain technology in AV security solutions.

The authors of [27] recommended the use of two different forms of deep learning to
spot potential DoS attacks on electric vehicle charging stations (EVCSs). Python’s LSTM
and deep neural network (DNN) algorithms were used by the authors to achieve the
appropriate classification of distributed DoS attacks. It is thought that DoS attacks can be
carried out by means of any network connection that is sufficiently weak. The DNN and
LSTM algorithms were both trained, tested and confirmed by our team. According to the
authors, both deep learning algorithms showed very high levels of accuracy.

The outcomes of the study that was conducted in [28] demonstrated that vulnerabilities
in autonomous cars may put autonomous services in jeopardy. As a direct result of
this, research has been conducted to classify the dangers posed by autonomous cars
and to propose methods to combat these hazards. The authors proposed three unique
types of attack, categorised on the basis of their target, which could be autonomous
control systems, components of autonomous driving systems, or vehicle-to-everything
communications. In [29], the authors provided a comprehensive review of cybersecurity
as well as contemporary countermeasure strategies for the purpose of defending AVs and
the services that they supply. Furthermore, that study also covered the requirements for
CAVs, as well as the unresolved challenges that still need to be addressed. According to
the findings of yet another study [30], the security of autonomous driving can be broken
down into four distinct categories: sensors, operating systems, control systems and vehicle-
to-everything connections. ECUs, sensors, intra-vehicular connections, and inter-vehicular
linkages are all potential points of attack, and in [31], the methods of defence against such
attacks were modelled and discussed. In [32], a high-level description of security problems
related to data transmission was provided across a range of apps, including antivirus
programs, in addition to solutions for mitigating these flaws. The primary focuses in [33]
were cybersecurity for robots and the development of security solutions making use of
multi-factor cryptographic approaches in order to guarantee the safety of autonomous
systems. Multi-access edge computing (MEC), which was studied in [34], can be used
to uncover vulnerabilities in the security of 5G-based use cases (AVs may benefit from
MEC, since it can improve the performance of automated driving, augmented reality and
machine-type communications). Another study [35] provided detailed information on
the use of autonomous systems to assist in the development of upcoming autonomous
mobility services. CAVs make use of a wide array of IoT sensors in order to keep an
eye out for any dangers in their immediate environments. In [36], the authors presented
a security policy road map as a means of attaining long-term AV adoption. The policy
packages that are meant to actualise superblock vision consist of six overarching themes,
and these topics describe the measures that need to be taken in order to achieve the
changes envisioned in transportation legislation by the year 2050. The goal of [37] was to
determine how to achieve the highest possible levels of safety and security while integrating
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AVs with intelligent transportation systems (ITSs). Because the transportation systems
of the future will be very complicated and highly dependent on a wide range of distinct
technological fields, we anticipate that they will be adaptable, dynamic and open to changes
and improvements with respect to the level of safety they provide. By the year 2030, it is
anticipated that the implementation of four distinct types of AI countermeasures, namely
those that are AI-supplemented, AI-generated, AI-mediated and AI-facilitated, will assist in
the resolution of selected security concerns in autonomous transportation services, namely
CVs, and countermeasures for data transmission. As a direct consequence of this, it will be
necessary to satisfy more stringent regulations [38–43] in the planning and development of
autonomous transportation services.

There is a paucity of published material dedicated to the use of and research into CTI
on IoV; maybe this is because IoV technologies are still relatively novel and immature,
and are seldom utilised in actual practice at this stage. According to Kukkala et al. [44],
in order to effectively combat cyberattacks in CAVs and IoV systems, it is important to
employ threat intelligence to achieve enhanced cybersecurity testing and to disseminate
this knowledge across diverse industries. In a similar vein, He et al. [45] highlighted the
benefits of using AI methodologies, such as ML, to analyse CTI in IoV systems. These
benefits include the capacity to manage vast volumes of data and to automatically carry out
tasks. Honeypots were recommended by Panda et al. [46] as a method for gathering and
analysing CTI in IoV situations. These are designed to deceive attackers. Basnet et al. [47]
used deep learning algorithms as an example to illustrate how CTI may be used to detect
cyberattacks in CAVs. CTI stands for cyber threat intelligence. Ali et al. [48] proposed
the use of several ML algorithms to provide secure communication between vehicles. In
addition to safety, the preservation of the environment and maintaining stability are also
quite important. Liu et al. [49] proposed cloud-edge computing for performing IoV service
deployment and execution with privacy protection. Mohseni et al. [50] studied realistic ML
safety solutions that could potentially be used to enhance engineering safety for ML-based
software in autonomous automobiles. This is essential work, since engineering safety for
ML-based software in autonomous cars is critical. A paradigm in which CTI was modelled
and domain-specific hazard categories were defined was suggested by Kumar et al. [51]
and applied in the setting of maritime transportation systems, which is a relevant field
of study.

As a result, the gap detected in previously conducted research may be summed up
as follows: To begin with, there is no single method that can be used to systematically
evaluate the possible weaknesses of CAVs to multiple attacks. While most studies have
focused on the theoretical aspects of CAV cybersecurity, or the use of machine learning and
deep learning, the detection rate has remained low due to the complexity of CAN networks.
Therefore, we aimed to enhance these algorithms to increase the detection rate.

In this article, we will discuss some of the most recent findings regarding intrusion
detection in IoV. By observing typical traffic patterns in an intra-vehicle network, V2V
communications, and V2I networks, in [51,52], the authors introduced a DL-based IDS
for ITS. The LSTM autoencoder is the foundation of the proposed IDS, and is able to
detect abnormal events in IoV at the primary gateway. The model was tested for inter-
vehicle communications using car-hacking. The primary motivation for developing this
approach was to improve system performance while simultaneously minimising computing
requirements. We developed a system that is able to improve the detection rate to >99% in
terms of the accuracy metric.

The purpose of this article is to construct an AI-based CAV framework in order to
conduct an analysis of the potential cybersecurity risks posed to CAVs using the UK CAV
cybersecurity framework as a guide to assist in the creation of a methodological approach
for safeguarding CAV systems and the data that are transmitted among them.
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3. Materials and Methods

Figure 3 displays the framework of a CAN-based IDS using ML and deep learning
algorithms. Python was used to implement the proposed model on a PC with an Intel Core
i7 2.30 GHz processor and 8 gigabytes of random-access memory.
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3.1. Dataset
3.1.1. Car-Hacking Dataset

Our experimental datasets were generated using data from standard datasets. The
experiment employed a pair of specialised Raspberry Pi devices: one to record data from
the network and one to serve as the attack node and inject fake data. The system had a
link to the car’s internal systems. The car was connected to the network using its OBD-II
connection (which is often found under the dashboard). The bespoke nodes were able to
communicate with genuine ECU nodes across the CAN bus via the OBD-II port. Under
typical conditions, the CAN bus is able to recognise 26 unique CAN IDs. The proportions
of injected messages to total messages in each experimental dataset is detailed in Table 1.

Table 1. Total numbers of injected messages for each attack.

Attacks #Message Normal Messages Injected Messages

#Flooding_attack 3,665,771 3,078,250 587,521

#Fuzzing_attack 4,443,142 3,845,890 597,252

#Normal 4,621,702 3,966,805 654,897

#Spoofing
(gear)_attack 3,838,860 3,347,013 491,847

The datasets contain four types of attack, namely, distributed denial of service attacks,
fuzzy attacks, drive gear spoofing, and RPM meter spoofing. Each dataset was generated
by recording CAN traffic while injecting artificial messages in a lab setting. The vehicle
was left in a stationary position with the engine running while readings were taken. A total
of 300 unauthorised messages were included in each dataset. The average duration of each
incursion was 3–5 s, while the total amount of CAN traffic in each dataset was between
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30 and 40 min. Every 0.3 ms, we launched a denial-of-service attack on the CAN bus by
injecting messages with a CAN ID consisting of 29 zeroes. The goal of a denial-of-service
attack is to reduce the usability of a network. Since the arbitration phase always favours the
ECU attempting to send a message that has the most dominant CAN ID, the other ECUs
are unable to send their messages. While the CAN ID and data values of messages are
fixed in a DoS attack, they are completely unpredictable in a fuzzy assault. Every 0.5 ms,
completely random messages were injected. The goal of the fuzzy attack is to cause the car
or truck to act up. The driving gear and RPM gauge datasets were spoofed by injecting
signals with a certain CAN ID every 1 millisecond. These alerts detailed the gear ratio and
RPM readings, respectively. Spoofing attacks trick the vehicle’s original ECU into thinking
that the RPM readout and drive gear have been altered. It was decided that the best CAN
packet generator would be the open car testbed and network experiments (OCTANE).
The injection attacks on the CAN traffic are presented in Table 2. The dataset contained
806,390 instances with four attacks and normal. The variables of the dataset are presented
in Table 3.

Table 2. CAN bus attacks.

Attack Description

Flooding Attack on the CAN Delivery of a large number of messages simultaneously from the CAN to the various
ECU nodes. Attacks were injected at a rate of one every 0.3 milliseconds.

Spoofing (gear) Attack on the CAN

The network assault known as a spoofing attack occurs when cybercriminals recognise
and detect a data transmission, after which they either delay or replay the

transmission. The cyberattacker either causes the data transfer to be delayed or causes
it to be repeated.

Spoofing Attack (RPM/gear) on the CAN
Spoofing is an attack that occurs when a person impersonates a trusted contact or

brand, pretending to be someone who is trusted in order to acquire sensitive personal
information. This can be used in order to gain access to sensitive personal information.

Fuzzy Attack on the CAN
For the purpose of performing a fuzzy attack on Internet Explorer, for example, a

hacker may run Microsoft’s browser inside a debugger tool, allowing them to monitor
each command that the application really performs in the memory of the machine.

Table 3. Dataset features.

Feature

Timestamp time (s) Stamp

Time of the CAN CAN message (HEX (ex. 043f))

Data length code (DLD) of the CAN Bytes of data, from 0 to 8

DATA of the CAN [0~7] Values of data (bytes)

3.1.2. UNSW-NB15 Dataset

In a Cyber Range Lab at the University of New South Wales (UNSW), Canberra, the
IXIA PerfectStorm program was used to simulate both everyday real-world activities and
advanced persistent threats. The tcpdump program was used to record one hundred
gigabytes of unprocessed data flow, which was later evaluated (e.g., Pcap files). Fuzzers,
analysers, backdoors, denial-of-service attacks, exploits, generic reconnaissance, shellcode,
and worms were just some of the types of injection attack included in this dataset. Figure 3
demonstrates how 49 characteristics were generated using the Argus and Bro-IDS programs
with a total of 12 algorithms. Table 1 provides a summary of the attacks dataset.

3.2. Pre-Processing Method

The CAN traffic data are very complex; therefore, the pre-processing step is very
important for improving the classification algorithms. The dataset contains features such
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as DLCs, which have hexadecimal characteristics and three label classes, namely flooding,
spoofing and replay; these convert categorical variables into numeric variables to help the
proposed system to detect attacks. One-hot encoding is one of the most frequently used
methods for obtaining numerical values by converting categorical characteristics.

After the categorical variables were converted, maximum–minimum normalisation
methods were utilised in order to prevent any potential overlap in the training process
brought on by the manipulation of large datasets. During the normalisation process, we
scaled the dataset using a scaling range of 0 to 1 in order to keep everything within the
same range.

Normalisation =
y− ymin
ymax−ymin

(xmaxx − xminx ) + xminx (1)

where ymin and ymax are the minimum and maximum data values.

3.3. Machine Learning Algorithms
3.3.1. k-Nearest Neighbour (KNN)

The k-nearest neighbour (KNN) method is a basic, easy-to-implement supervised ML
technique that may be used to tackle both classification and regression problems. Its name
comes from the fact that it finds the neighbours that are closest to each data point.

The KNN algorithm is an ML method that examines the immediate neighbours of
a data point in order to discover connections between the points. The algorithm finds
groups or clusters of similar data by first computing the closest distance between each
pair of data points and then using that knowledge to find groups or clusters of similar
data. This process is repeated until the algorithm has found all such groups or clusters.
KNN can be used in a variety of applications, including for solving classification problems
(where it is widely used as an alternative to traditional linear regression techniques) and
hyperparameter optimisation problems. KNN was developed in the 1980s, and has been
improved upon significantly since then. KNN is frequently more accurate than other
algorithms when working with enormous datasets; the fact that it is so simple makes it
applicable in the context of a wide variety of issues. In this investigation, we determined
the distances between different classes of ICS network data by employing a function called
Euclidean distance (Ei). To express the Euclidean distance function mathematically, the
following formula was used:

Ei =
√
(c1 − c2) + (d1 − d2)2 (2)

where c1, c2, d1 and d2 are the input data variables.

3.3.2. Decision Trees

The decision tree (DT) component of ML approaches is a commonly used strategy for
addressing classification and regression problems. In DT models, a root node is located at
the very top, and branches that are dependent on the data’s essential characteristics are
located at the very bottom. An output branch represents the output of a feature, whereas
an output child node represents the output of a category in a tree structure. One method of
learning the classification model is by employing a classification DT, which is an illustration
of supervised learning. This method relies on sample training. In the end, the process of
classification concludes when the incoming data, which are assessed by each node, have
all been considered. There are three different types of decision tree, which are classified
according to the parameters that are used to define the attributes of the branch nodes:
ID3, C4.5 and CART. ID3 makes use of a greedy method, and which branches to take is
determined on the basis of information entropy [48].

Entropy = (S) = ∑C
i=1 pilog2 pi (3)
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entropy(S|B) = ∑j
j=1
|si|
|Si|

entropy(Si) (4)

Gain (S|B) = entropy(S)− entropy(S|B) (5)

where S is the training dataset and the class of the CAN dataset is denoted by C, which is
either attacks or normal. Pi is the probability of simple data indicating class Si, which is the
simples of subsets of a class in feature B.

3.4. Deep Learning Models
3.4.1. Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) networks are a form of RNN that can learn order
dependency. These networks are useful for solving difficulties involving sequence predic-
tion. In RNNs, the input for the current step is taken from the output of the step that came
before it [52–54]. LSTM was developed by Hochreiter and Schmidhuber. It addresses the
problem of the long-term reliance of RNN, whereby RNNs are unable to predict words
that are stored in long-term memory but are able to make more accurate predictions on the
basis of data that are available now. With increasing gap length, the RNN’s performance
degrades. Long short-term memory (LSTM) is designed to save data for a very long period.
The building blocks of an LSTM consist of four neural networks and several memory nodes
connected in a chain configuration. A typical LSTM unit consists of a cell, an input gate, an
output gate, and a forget gate. The information that enters and exits the cell is regulated
by three gates, and the cell is able to retain data for an indefinite amount of time. Figure 4
shows the structure of an LSTM model.
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The most fundamental building block of an LSTM network is referred to as a compo-
nent, the constituent parts of which are the cell, the input gate, the output gate, and the
forget gate. It is the responsibility of the cell to remember values at any given moment, and
the three gates of the cell are responsible for controlling the flow of information into and
out of the cell. What follows is a brief summary of the three different entryways: (1) One
of the gates is called the “forget” gate, and is responsible for either erasing or retaining
information, depending on the current input and the state that was concealed before. In
order to arrive at a conclusion, everything is first taken into consideration. The sigmoid
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function is used to evaluate these integers, and the results are always in the range of 0 to 1.
If the value is closer to zero, the item in question is to be forgotten, but if it is closer to
one, the item in question is to be kept. (2) Input gate: The input gate determines which
individual pieces of information will be retained as component parts of the cell state. Both
the sigmoid function and the tanh function are used in the process of bringing the data
up to date. It is the responsibility of the sigmoid and tanh functions to determine which
aspects of the data need modification. Eventually, the cell state is revised on the basis of
the values resulting from these procedures. (3) Output gate: This gate determines the final
output by using the sigmoid function to select valuable information from the current cell
state as the output, while the tanh function is used to acquire the final output. The final
output is determined by this gate. RLSTM gates can be represented mathematically, as
reported in [47,48], as shown below:

ft = σ
(

W f .Xt + W f .ht−1 + b f

)
(6)

it = σ(Wi.Xt + Wi.ht−1 + bi) (7)

St = tanh(Wc.Xt + Wc.ht−1 + bc) (8)

Ct = (it*St + ft*St−1 (9)

ot = σ(Wo + Xt + Wo.ht−1 + Vo.Ct + bo) (10)

ht = ot + tanh(Ct) (11)

where f is a forget gate, sigmoid is a function, W f is a weight between the forget gate and
the input gate, ht is the previous hidden state, it is the input at the current timestamp,
it is the input gate at time t, Wi is the weight of the respective gate, tanh is the tangent
function, Wc is a weight between the cell state and the network output, where the cell state
is represented by Ct, the output gate weight by Wo, the input and output biases by b f , bi
and bo, respectively, and the LSTM output by ht.

3.4.2. Deep Autoencoder Algorithms

Encoders and decoders are important components of the autoencoder approach. An
encoder component takes the incoming data and converts it into the most simplified form
possible. The lowest data representation from the encoder is used by the decoder to
faithfully recreate the input data. The processing of data includes encoding and decoding
steps. Autoencoders encode all data coming from the input layer, transmit it through
many layers of hidden processing, and then decode it before delivering it to the production
layer (output layer) of the network. The recognition accuracy of autoencoder-based deep
learning models for IDSs may be very sensitive to the design and hyperparameter settings
of the autoencoder model. This is due to the versatility of autoencoders in terms of their
ability to uncover many forms of assault. Therefore, it is crucial to identify the optimal
parameters of autoencoders for enhancing detection accuracy. Previous mainstream studies
have detailed methods for selecting the best model for each unique situation by testing
several configurations on specific datasets. Human-method testing for intrusion detection
is time consuming, and must be repeated whenever the data are updated. When applied
to intrusion detection systems (IDSs), the deep autoencoder (DAE) model is a two-step
process that may address IoT network security concerns. These methods also include
training and testing. In order to train a classifier, the system utilises the dataset acquired
by the selected DAE. To determine which class each sample in the test dataset falls into,
IDSs use autoencoder models. In this way, the IDS may evaluate how well the system
functions when it is put to use in a networked environment. Figure 5 shows diagram of the
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suggested DAE architecture for intrusion detection. There are three separate layers in this
architecture: the input layer, the hidden layer, and the output layer.
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The complexity of CAN messages in the dataset is considerable; this causes the dataset
to be unbalanced, thus increasing the time cost of detecting the attacks using deep leaning
and machine algorithms.

3.5. Performance Measurements

It was recommended that the high performance of the CAN security system be eval-
uated on the basis of a variety of metrics, including, precision, recall, F1 score, mean
square error (MSE), determination coefficient (R2), and root mean square error (RMSE). The
following are examples of such measurements:

MSE =
1
n∑n

i=1

(
yi,target − yi,pred

)2
(12)

RMSE =

√√√√
∑n

i=1

(
yi,target − yi,pred

)2

n
(13)

R2bn1−
∑n

i=1(yi,target − yi,pred

)2

∑n
i=1(yi,target − yavg,target

)2 (14)

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (15)

Recall =
TP

TP + FN
× 100% (16)

Precision =
TP

TP + FP
× 100% (17)

Fscore =
2 ∗ preision ∗ Sensitivity

preision + Sensitivity
× 100% (18)

where FP, FN, TP, TN are false positive, false negative, true positive and true negative, respec-
tively, yi,target represents the target values, while yi,pred corresponds to the predicted values.
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4. Experiments

Python was used to implement the proposed models in a PC with an Intel Core i7
2.30 GHz processor and 8 gigabytes of random-access memory. The experimental setup
consisted of three steps: (1) the pre-processing phase; (2) the training process for the ML
and deep learning models; and (3) the validation and evaluation step. Subsequently, each
of the pre-processed datasets was split into separate sets of training data and test data. The
pre-processed data were entered separately as components into the ML and deep learning
models, on the basis of which an accurate feature representation of the data was extracted
in accordance with their respective specialisations. The proposed deep-learning-based
system consists of input data comprising three features and five classes, a hidden layer
consisting of 520 neurons that has been trained using a deep learning model, and a hidden
layer with 256 neurons. We used a grid search strategy to determine the optimal learning
rate in order to obtain the best possible outcomes. The learning rates used were 0.01 for
the batch size of 0.001 and 20 for the larger batch size. The training consisted of a number
of epochs with a minimum value of 1 and a maximum value of 100. In order to bring the
weightings in the LSTM network up to date, an adaptive moment estimation optimiser, or
Adam, was employed. The learned traits were categorised using the SoftMax activation
function, which was also used to determine whether intrusive behaviours were typical or
unusual. Cross-entropy was used as the loss function in order to achieve higher levels of
efficiency. These parameters were selected because they produced the best results on the
basis of the preliminary experiments performed. The pseudocode of the LSTM model is
presented in Algorithm 1 for reference.

4.1. Results

Table 4 displays the results obtained by the KNN algorithm when using the Car-
Hacking and UNSW datasets, which demonstrate that the KNN method attained an overall
accuracy of 98.80% when using the Car-Hacking dataset, while it achieved an accuracy of
97.37% when using the UNSW dataset. However, KNN performed poorly when identifying
spoofing (gear) attacks in the Car-Hacking dataset, and an even lower accuracy when
identifying backdoor attacks. The effectiveness of the KNN approach for detecting breaches
can be seen in Figures 6 and 7 for both datasets.

Table 4. Results of the KNN model.

Car-Hacking Dataset

Attacks Precision % Recall % F1-score %

#Flooding_attack 100 100 100

#Fuzzing_attack 99 90 94

#Normal 99 100 99

#Spoofing (gear)_attack 81 43 56

#Spoofing Attack (RPM)_attack 100 100 100

Accuracy 98.80

Weighted average 99 99 99
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Table 4. Cont.

UNSW Dataset

Attack Precision % Recall % F1-score %

#Analysis_attack 100 100 100

#Backdoor_attack 0.00 0.00 0.00

#DoS_attack 100 100 100

#Exploits_attack 100 100 100

#Fuzzers_attack 48 52 50

#Generic_attack 99 99 99

#Normal_attack 100 100 100

#Reconnaissance_attack 55 54 55

#Worms_attacks 0.00 0.00 0.00

Accuracy 97.37

Weighted average 97 97 97
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Table 5 presents the empirical results obtained by the decision tree algorithm when
using the Car-Hacking and UNSW datasets. It can be observed that this algorithm scored a
high level of overall accuracy (99%) when using the Car-Hacking dataset, despite only hav-
ing low accuracy when detecting spoofing (gear) attacks. The performance of the decision
tree model when using the UNSW dataset was accuracy = 97.19%. The performance of the
decision tree algorithm is presented in Figures 8 and 9.

Table 5. Results of the decision tree model.

Car-Hacking Dataset

Attack Precision % Recall % F1-Score %

#Flooding_attack 100 100 100

#Fuzzing_attack 98 94 95

#Normal 99 100 99

#Spoofing (gear)_attack 72 48 58

#Spoofing Attack (RPM)_attack 100 100 100

Accuracy 99

Weighted average 99 99 99

UNSW-NB15 Dataset

Attack Precision % Recall % F1-score %

#Analysis_attack 100 100 100

#Backdoor_attack 0.08 0.06 0.07

#DoS_attack 100 100 100

#Exploits_attack 100 100 100

#Fuzzers_attack 50 39 44

#Generic_attack 98 99 99

#Normal_attack 100 100 100

#Reconnaissance_attack 54 56 55

#Worms_attacks 0.05 0.07 0.06

Accuracy 97.19

#Weighted average 97 97 97

Sensors 2023, 23, x FOR PEER REVIEW 16 of 25 
 

 

Weighted average 99 99 99 
UNSW-NB15 Dataset 

Attack Precision % Recall % F1-score % 
#Analysis_attack 100 100 100 
#Backdoor_attack  0.08 0.06 0.07 

#DoS_attack 100 100 100 
#Exploits_attack 100 100 100 
#Fuzzers_attack 50 39 44 
#Generic_attack 98 99 99 
#Normal_attack  100 100 100 

#Reconnaissance_attack 54 56 55 
#Worms_attacks 0.05 0.07 0.06 

Accuracy              97.19 
#Weighted average 97 97 97 

 
Figure 8. Performance of the decision tree algorithm (Car-Hacking dataset). 

 
Figure 9. Performance of the decision tree algorithm (UNSW dataset). 

Figure 8. Performance of the decision tree algorithm (Car-Hacking dataset).



Sensors 2023, 23, 4086 17 of 26

Sensors 2023, 23, x FOR PEER REVIEW 16 of 25 
 

 

Weighted average 99 99 99 
UNSW-NB15 Dataset 

Attack Precision % Recall % F1-score % 
#Analysis_attack 100 100 100 
#Backdoor_attack  0.08 0.06 0.07 

#DoS_attack 100 100 100 
#Exploits_attack 100 100 100 
#Fuzzers_attack 50 39 44 
#Generic_attack 98 99 99 
#Normal_attack  100 100 100 

#Reconnaissance_attack 54 56 55 
#Worms_attacks 0.05 0.07 0.06 

Accuracy              97.19 
#Weighted average 97 97 97 

 
Figure 8. Performance of the decision tree algorithm (Car-Hacking dataset). 

 
Figure 9. Performance of the decision tree algorithm (UNSW dataset). Figure 9. Performance of the decision tree algorithm (UNSW dataset).

Results of the LSTM and Deep Autoencoder

The proposed deep learning methods, including the LSTM and deep autoencoder
models, were used to identify attack signals emanating from the vehicle network. In order
to test the system, a genuine network was applied to it, consisting of flooding attacks, fuzzy
attacks, spoofing attacks, replay attacks, and regular traffic. It was decided to utilise 80% of
the dataset at random for training and the remaining 20% for testing. During the training
phase, the system database comprised 486,640 packets, and the same number of messages
were used in the database during the testing phase. The results of the deep learning models’
attempts to detect attacks are presented in Table 6. The LSTM model successfully achieved
good values in the areas of precision (96.18%), recall (96.17%) and F1-score (96.82%) when
using the Car-Hacking dataset, while when using the UNSW dataset achieved an accuracy
of 98.69. The autoencoder model achieved an overall performance of 99.98% with respect
to identifying attack messages originating from CAN busses when using the Car-Hacking
dataset. Meanwhile, it achieved an accuracy of 98.09% when using UNSW dataset.

Table 6. Results of deep learning.

Car-Hacking Dataset

Model Accuracy Precision % Recall % F1-score %

LSTM 96.03 96.18 96.17 96.82

Autoencoder 99.98 99.96 99.85 99.96

UNSW-NB15 Dataset

Model Accuracy Precision % Recall % F1-score %

LSTM 97.82 97.26 98.69 97.97

Autoencoder 98.09 98.12 98.04 98.08

Figures 10 and 11 illustrate the performance of the proposed LSTM system in terms
of its level of accuracy when using the Car-Hacking and UNSE-NB15 datasets. The per-
centages of errors that were found and fixed are shown on the y-axes. The effectiveness of
the validation mechanism is referred to as the training accuracy. In an effort to improve
accuracy over the course of 100 epochs, the system halted the optimisation procedure. The
LSTM model’s accuracy jumped from 84% to 96.03% when using the Car-Hacking dataset.
Meanwhile, the accuracy LSTM model during validation when using the UNSW-NB15
dataset increased from 85% to 97.82%. On the basis of extensive testing, it was determined
that the categorical cross-entropy function was the optimal method for gauging the training
loss of the LSTM using the Car-Hacking dataset. The LSTM loss is shown in Figure 10b.
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After 100 epochs, it was also discovered that the validation loss decreased from 1.0 to
0.2, while the training loss decreased from 0.6 to 0.2. Both of these changes occurred
simultaneously. The validation loss of the LSTM model when using UNSW-NB15 was 0.2.
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As shown in Figures 12 and 13, one of the evaluation criteria was the validation per-
formance of the autoencoder model for distinguishing CAN attacks from typical packets
on a CAN bus when using the Car-Hacking and UNSE-NB15 datasets. This constituted
one of the evaluation criteria. It was hoped that the model would be able to discriminate
between the two distinct types of packets. The accuracy of the system’s validation increased
from 98% to 99.98% over a period of 100 epochs of testing when using the Car-Hacking
dataset. Meanwhile, accuracy of the autoencoder model when using the UNSE-NB15
dataset was 98.09%. Because the overfitting of the system was extremely minor, the valida-
tion loss was quite small. Utilising cross-entropy measures helps to bring the validation
loss down to 0.1, representing a significant improvement to the autoencoder model when
using both datasets.
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tion accuracy (b) validation loss.

Dataset statistics, such as mean square and root mean square errors and the squared
metrics for the specific properties of the datasets, are shown in Table 6. The statistical
analysis revealed a substantial gap between the descriptions of the qualities and the
descriptions of their labels. We discovered that the conventional methods used to identify
attack messages in a CAN system are not suitable for use in this context.

Mean absolute error, mean square error, root mean square error, and correlation
coefficient were also used to determine the degree of discrepancy between the predicted
values and the actual values (R2). A statistical analysis of ML and deep learning is presented
in Table 7, below. The decision tree method exhibited the strongest correlations between the
target and predicted values, with an R2 value of 94.70% and a prediction output of 0.01190.

The relationships that exist among the dataset’s characteristics can be seen in Figure 14.
Because of the numerous distinguishing aspects of the network, there is a disparity between
the features. Using Pearson’s correlation coefficient, the findings of our investigation led us
to conclude that there was a significant connection between the qualities of the input and
class membership. Certain characteristics showed substantial links. We chose characteristics
that had a significant number of links with classes.
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Table 7. Statistical analysis.

Car-Hacking Dataset

Model MSE RMSE R2 %

KNN 0.01200 0.01210 94.61

Decision tree 0.01178 0.01190 94.70

LSTM 0.0279 0.0136 92

Autoencoder 0.0065 0.0106 95

UNSW-NB15 Dataset

Model MSE RMSE R2 %

KNN 0.086 0.1737 86.95

Decision tree 0.1905 0.396 86.17

LSTM 0.0059 0.076 80.87

Autoencoder 0.0052 0.069 92
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5. Discussion

Autonomous vehicles (AVs) have the potential to bring about a wide range of ad-
vantageous changes, such as an improvement in overall safety and reductions in energy
consumption, pollution and traffic congestion. If security and privacy concerns are not
addressed; however, the advantages that are anticipated to result from the use of these
engines may not be realised. Hackers will be presented with additional opportunities to
carry out destructive attacks thanks to AVs, which could pose a significant risk to the future
of mobility and data security.

Controller area networks (CANs) have not yet integrated sufficient security methods,
such as message authentication and encryption, despite their being the most extensively
used in-vehicle communication protocol. Consequently, the CAN bus is susceptible to a
wide variety of cyberattacks. It would seem that the use of the Internet of Things (IoT)
in the sphere of transportation has enormous untapped potential. Cars equipped with
intelligent vehicle systems are able to share information with one another in a smooth
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manner, helping to improve both traffic management and road safety. The dynamic archi-
tecture of this network connects a huge number of cars, making it susceptible to a variety
of attacks, including those related to authentication, data integrity and confidentiality.
These dangers put the well-being of passengers, as well as vehicles and the system as a
whole, in jeopardy. In order to protect connected and autonomous cars against potential
vulnerabilities, researchers have explored a variety of strategies.

A wide variety of intrusion detection systems (IDSs) have been created specifically
to identify and stop these kinds of attacks. AI-based IDSs, on the other hand, are an ideal
defence mechanism against cyberattacks on automotive systems due to the tremendous
generalisation capabilities of AI.

The method proposed in this research uses ML and deep learning models to detect
attacks on the CAN and to protect the network. The system was tested using a standard
dataset. The deep autoencoder scored a high accuracy level of 99.98%. Figure 15 shows
the receiver operating characteristic (ROC) curve of the LSTM model for the detection of
CAN attacks.
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Table 8 presents a comparison of the performance of the proposed machine and deep
learning models for intrusion detection in CAN networks between the Car-Hacking and
UNSW-NB15 datasets. It can be observed that that the proposed system achieved high
performance when using the Car-Hacking dataset.



Sensors 2023, 23, 4086 22 of 26

Table 8. Comparison between Car-Hacking and UNSW-NB 15.

References Car-Hacking Dataset
(Accuracy)

UNSW-NB15 Dataset
(Accuarcy)

KNN 98.82 97

Decision tree 99 97.19

LSTM 96.03 97.82

Autoencoder 99.98 98.09

In Table 9, a comparison of the accuracy of currently available deep learning algo-
rithms determined by other researchers, and which are considered to be state-of-the-art
models, with our obtained findings is the presented. The comparisons demonstrate that
our suggested model is superior in every respect, particularly with regard to the precision
of the data generation process. The accuracy of the suggested framework, which achieved a
score of 99.98%, beat all existing systems in terms of its ability to identify threats to vehicle
networks. Figure 16 shows how the suggested solution fares in terms of accuracy compared
to other setups for CAN security.

Table 9. Performance of the proposed system in comparison with that of other research on intrusion
detection systems for in-vehicle networks.

References Algorithms Model (Accuracy %) Number of Attacks

Ref. [52] CNN-LSTM 97% 4 attacks and normal

Ref. [55] LSTM model 80% 4 attacks and normal

Ref. [56] ML 90% 4 atatcks and nromal

Ref. [57] Neural network and LSTM 90% 3 atatcks and normal

Our system Deep autoencoder 99.98% 4 attacks and normal
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6. Conclusions

The rapidly advancing state of computing has had a considerable influence on the
research and development of AVs in a variety of domains. Because of the crucial roles they
play in enhancing the quality of life in established cities, autonomous cars are increasingly
being recognised as an essential component of the infrastructure required for the devel-
opment of smart cities. Despite this, driverless cars are vulnerable to a wide variety of
cyberattack vectors, which puts the lives of people in jeopardy. Therefore, the purpose
of this work was to design, create and evaluate an intelligent anomaly detection system
for autonomous cars. In this study, we propose an IDS that is able to detect anomalies
in the CAN bus in intra-vehicular networks using ML models. In this study, an in-depth
discussion of the vulnerabilities of the CAN bus was presented, along with the reasons
for which AIDS is necessary in this particular field and the different categories of attack
that CAN busses may be subjected to, as well as the effects such attacks may have on cars
and drivers.

Therefore, the purpose of this research was to investigate potential security flaws
arising from the presence of adware and malware inside autonomous car systems. In order
to identify potentially harmful activities taking place in the network in the module, the
network traffic was studied. In addition, an intrusion detection module based on ML and
deep learning was presented for the detection of malware. This module uses techniques
such as the k-nearest neighbour (KNN) and decision tree, long short-term memory (LSTM)
and deep autoencoder methods. In conclusion, an ML system was presented that, with a
high degree of precision and in a very short amount of time, is able to identify malware in
automobiles. Metrics such as mean square error (MSE), root mean square error (RMSE) and
correlation coefficient (R2) were assessed during the validation phase. This investigation
led to the identification of the errors that persist between the expected output and the target
values. The prediction errors generated when using the KNN and decision tree, LSTM and
deep autoencoder algorithms were greatly reduced when used for binary classification and
multi-class classification.

We evaluated the accuracy of the suggested system by comparing it to the accuracy
of currently available systems. In addition, we discovered that the deep autoencoder
method achieved a high level of accuracy (99.98%) when using the Car-Hacking dataset
and an accuracy of 98.09 when using the UNSW-NB15 dataset, when tested against a
variety of current systems, thus demonstrating that it is appropriate for real-time malware
identification in scenarios involving AVs. The empirical findings demonstrate that the
suggested algorithms are capable of recognising attack messages. The proposed systems
were shown to be able to effectively detect anomalous packets in order to safeguard the
CAN bus. They may also be extended to the design of various security system housed
within the complex infrastructures of networks that characterise AVs in order to provide
safe data processing. Our system will continue to evolve with the help of cutting-edge AI
in the near future.
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