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Abstract: Network intrusion detection technology is key to cybersecurity regarding the Internet of
Things (IoT). The traditional intrusion detection system targeting Binary or Multi-Classification can
detect known attacks, but it is difficult to resist unknown attacks (such as zero-day attacks). Unknown
attacks require security experts to confirm and retrain the model, but new models do not keep up
to date. This paper proposes a Lightweight Intelligent NIDS using a One-Class Bidirectional GRU
Autoencoder and Ensemble Learning. It can not only accurately identify normal and abnormal data,
but also identify unknown attacks as the type most similar to known attacks. First, a One-Class
Classification model based on a Bidirectional GRU Autoencoder is introduced. This model is trained
with normal data, and has high prediction accuracy in the case of abnormal data and unknown attack
data. Second, a multi-classification recognition method based on ensemble learning is proposed.
It uses Soft Voting to evaluate the results of various base classifiers, and identify unknown attacks
(novelty data) as the type most similar to known attacks, so that exception classification becomes
more accurate. Experiments are conducted on WSN-DS, UNSW-NB15, and KDD CUP99 datasets,
and the recognition rates of the proposed models in the three datasets are raised to 97.91%, 98.92%,
and 98.23% respectively. The results verify the feasibility, efficiency, and portability of the algorithm
proposed in the paper.

Keywords: intrusion detection; one-class classification; bidirectional GRU autoencoder; novelty
detection; IoT

1. Introduction

In the digital era featured by the IoT, devices such as smart appliances, smart medical
devices, and driverless cars are becoming increasingly common, thereby making work and
life easier (as shown in Figure 1). However, such interconnected IoT devices have brought
new cybersecurity risks during interaction, especially attacks against the IoT. Intruders
enter the network system through inauthentic access, and then they modify and steal
information. For example, changing the frequency of cardiac pacemakers may kill patients,
remotely braking the engine and modifying instructions may cause car accidents, and
writing ransomware may generate illegal profits. Attacks against the IoT will bring huge
losses to users and even threaten their lives. Therefore, it is crucial to develop an efficient
and safe IoT intrusion detection system for network system defense.

NIDS is a major shield for the cybersecurity of the IoT; it can audit data packets in
real time and when suspicious data is found, and it serves as a network security device
that gives the alarm or takes response measures. Traditional NIDS [1–9] aim at binary
classification or multi-classification and build a model through feature engineering (PCA
“Principal Component Analysis”, LDA “Linear Discriminant Analysis”, SVD “Singular
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Value Decomposition”, etc.) and machine learning (such as the BP neural network, CNN,
RNN, SVM, etc.). Although such a model can prevent known attacks, it is not so good at
guarding against unknown attacks (such as zero-day attacks). As online data grow rapidly,
the ever-increasing bandwidth and traffic have put traditional intrusion detection under
a lot of pressure. Massive resources needed in the in-depth detection of messages tend
to overload NIDS and prolong the processing time of messages. In extreme cases, some
messages might have to be discarded. If the messages with characteristics of an attack are
discarded, security accidents are highly possible to occur. Therefore, this model no longer
meets the real-time and accuracy requirements of current intrusion detection.

Figure 1. Intelligent internet life.

In recent years, the rapid growth of hardware such as CPU, GPU, and memory enables
wider use of deep learning and ensemble learning technology in NIDS, and the recognition
rate has been significantly improved. This paper proposes a lightweight intelligent network
intrusion detection system based on the One-Class Bidirectional GRU Autoencoder and
Ensemble Learning (OC-Bi-GRUs-AE and EL) model. The innovative highlights and major
contributions of this model are as follows:

1. The OC-Bi-GRUs-AE model proposed in this paper tackles the problem of model
closure, and it is more applicable to abnormal data detection and novel data detection,
thereby enabling it to effectively deal with unknown cyberattacks.

2. The complete model with OC-Bi-GRUs-AE and EL proposed in this paper solves the
imbalance of dataset types, and it can quickly recognize whether a piece of network
data is an attack, as well as identify the type of attack efficiently.

3. The method proposed in this paper is portable and shows remarkable performance
in many intrusion detection datasets. In addition, the model is able to cope with
unknown attacks and identify them as the type most similar to existing ones.

The remainder of this article is organized as follows. Section 2 provides a review of
some related works. Section 3 elaborates on the proposed methods, Section 4 describes our
experiment and result, and Section 5 is the conclusion.
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2. Related Work

Establishing a trusted network trust system to lower network risks and guard network
security is the primary function of intrusion detection systems. Many classification algo-
rithms based on supervised learning, such as the deep neural network [10] and SVM [11],
have been widely used in IDS tasks in the past, and are able to perform binary and multi-
classification tasks satisfactorily. These algorithms are good at detecting known attack types.
For instance, Zhang [10] employed a denoising autoencoder with a weighted loss function
for feature selection and then classified the selected data by MLP for intrusion identifica-
tion. With a small feature selection ratio of 5.9%, the proposed scheme delivered great
performance according to different criteria. Safaldin [11] proposed the modified binary grey
wolf optimizer with SVM, therein aiming to increase intrusion detection accuracy, detection
rate, and to reduce processing time in the WSN environment. The results showed that the
proposed method with seven wolves greatly outperformed other comparative algorithms.

One-Class Classification is an anomaly detection algorithm. In the dataset, if the volume
of one type of data is too large, this certain type will be used for training to split from other
data. In an intrusion detection dataset, there are usually many pieces of normal network
data, but little attack data. It is efficient and fast to detect data anomalies with One-Class
Classification. The commonly used algorithms include Meta-Learning [12], the Interpolated
Gaussian Descriptor [13], the OCSVM [14–19], and the Autoencoder [20–26]. Among the
above-mentioned algorithms, the OCSVM shows a high detection rate in small sample
datasets, especially when Ghada [19] improved the performance of OCSVM anomaly-
based machine-learning-enabled intrusion detection systems by tuning hyperparameter
optimization techniques. In this case, an efficient, scalable and distributed intelligent IDS
was built to detect intrusion in the IoT, and the model was evaluated by Ensemble Learning
optimization technology. A comparative analysis was performed on the performance and
predictability of intrusion detection models in the IoT. As the number of datasets grows and
the functions of hardware and software improve, Automatic Encoder algorithms are being
more widely adopted. Song [24] designed a stacked self-encoder model with a focus on
the model capacity, depth, and the size of the middle layer that represents the compressed
latent information of the given data. The results of the experiment showed that, the larger
the model size is, the better and more stable the performance of the stacked self-encoder
model will be, and the selection of the latent size can improve performance as well.

Ensemble Learning [27–33] solves problems by training multiple learners and com-
bining them. Ensemble is better at generalization than weak learners, and can turn weak
learners that are only slightly better than random guess into strong learners with accurate
prediction. Khan [30] proposed a novel intrusion detection approach for the IoT based
on an ensemble voting classifier that combines multiple traditional classifiers as a base
learner. Saba [32] proposed a two-stage hybrid method, selected appropriate features using
the genetic algorithm, employed an ensemble classifier, and applied SVM and decision
tree to mark the attack as malicious or normal. Yao [33] proposed a two-layer soft-voting
ensemble learning model with RF, lightGBM and XGBoost as base classifiers, and used the
adversarial validate algorithm to test the consistency of the data distribution in training
and testing dataset to determine whether the dataset needs re-splitting. The results showed
that the model has a higher accuracy rate in both binary and multi-classification than other
One-Class Classification models.

To make intrusion detection systems smarter and more accurate, we propose a
lightweight intelligent network intrusion detection system using a One-Class Autoen-
coder and Ensemble Learning for the IoT (our research domain is shown in Figure 2). The
proposed approach focuses on defending against unknown zero-day attacks and identi-
fying such attacks as the type most similar to existing known attacks, thereby solving the
problem of a low recognition rate caused by the imbalance of data types in traditional
datasets. Our goal is that the proposed NIDS has the advantages of high performance, high
prediction accuracy, and portability. A comparision of our approach and related work is
shown in Table 1.
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Figure 2. NIDS model classification (our research domain is the OC-AE. Furthermore, we use the
Ensemble model).

Table 1. Comparision of our approach and related work.

Study Method Feature
Selection

Balanced
Data

Novelty
(Zero-Day)
Detection

Azizjon, M. [2];
Mahalakshmi, G. [3] CNN No No No

Yu, Y. [4] FSL No Yes No

Sms, A. [5] RNN(LSTM) No Yes No

Yuan, D. [6] GAN No Yes No

Safaldin, M. [11] SVM Yes No No

Abdelmoumin, G. [19] OCSVM Yes No No

Song, Y. [24] Stacked
self-encoder No No No

Khan [30] Voting
Ensemble No No No

Yao, W. [33] Soft-Voting
Ensemble No Yes No

Our approach OCAE +
Ensemble Yes Yes Yes

3. Proposed Methods
3.1. One-Class Bidirectional GRU Autoencoder

In this paper, we propose a One-Class model based on a Bi-GRUs-AE for anomaly
detection (as shown in Figure 3). The model builds a framework with an Autoencoder,



Sensors 2023, 23, 4141 5 of 25

and its structure includes two parts—an Encoder and a Decoder. The Encoder realizes
dimensionality reduction by transforming data from a high-dimensional space into a low-
dimensional space. The Decoder achieves dimensionality increases by transforming data
from a low-dimensional space into a high-dimensional space. With the Bi-GRUs network
and optimization method, the Autoencoder plays a supervisory role through inputting data
to guide the Bi-GRUs network in trying to learn about the map. In this way, a reconstructed
output is achieved, which ensures that the output data share the same dimension and
similar content as the input data.

Figure 3. Bi-GRUs Autoencoder.

In the case of One-Class classification, the model makes full use of the data correlation
of the Autoencoder. Since the Autoencoder model trained by normal data is related to
normal data, there will be a big loss between the output and input data in the case of
abnormal data. The range of the loss is used for data classification to determine whether
the input data fall into a certain type. During training, the following Equations (1) and (2)
are used to compare the input data with the output data:

lossmae =
N−1

∑
i=1

∣∣xi − x,
i

∣∣ (1)

lossmse =
N−1

∑
i=1

(
xi − x,

i
)2 (2)

In the above equations, xirepresents the i-th data in the input data sequence, and x
′
i

represents the i-th data in the output data sequence after Autoencoder training. The value
“mae” means “Mean Absolate Error”, and “mse” means “Mean Square Error”.

Within the Autoencoder, the Gate Recurrent Unit (GRU) is the smallest network
structure unit, as shown in Figure 4. It contains two channels of input and one channel
of output, and the internal output is mainly obtained by controlling the calculation of the
reset gate and update gate.

rt = sigmoid(Wr · [ht−1, xt]) (3)

zt = sigmoid(Wz · [ht−1, xt]) (4)

h̃t = tanh(W ∗ [rt ⊗ ht−1, xt]) (5)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t (6)

Among them, xt represents the input information at time t, ht−1 means the output
information at time t− 1; sigmoid and tanh are commonly used activation functions in
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neural networks; rt means the reset gate, zt means the update gate, h̃t means the candidate
hidden state, ⊗ means the Hadamard matrix, and ht means the output data. rt decides
how to combine the new input information with the previous memory h(t−1). The larger
the value of rt is, the larger the memory needed for the last moment. When the value
of rt approaches 1, it means the hidden state of the last moment is kept. When its value
approaches 0, it means that all the contents of the last moment need to be discarded. zt
controls the extent to which the state information of the last moment is brought into the
current state, that is, the update gate helps the model in deciding how much information
from the past is to be transmitted to the future. The closer it is to 1, the more data are
“memorized”; the closer it is to 0, the more data are “forgotten”.

Figure 4. Gate Recurrent Unit (GRU).

Given that GRU constitutes a type of Forward memory, such memory can only be
obtained from a past moment, but not the future. Therefore, in this paper, two GRUs
are combined to form Bi-GRUs, in which one GRU adopts Forward memory and the
other adopts Backward memory, and both of them are connected to an output layer. This
structure provides each point in the input sequence of the output layer with complete
context information of the past and future, as shown in Figure 5.

Figure 5. Bidirectional Gate Recurrent Units (Bi-GRUs).

To ensure that the OC Bi-GRUs-AE model can recognize unknown abnormal data, in
the process of splitting the dataset, the training set is all normal data, while the evaluating
set contains normal and abnormal data in 1:1 proportion. After the Bi-GRUs-AE is trained
with the training set to generate a stable model, the difference range between the data
generated by the model and the input data is obtained. In the testing process, the evaluating
set and the data generated by the model are used for discrimination. If the difference is
within the range of normal data, the data will be identified as normal, or abnormal. The
algorithm is as shown in Algorithm 1.
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Algorithm 1: One-Class Loss
Input : Training set, # Normal data

Evaluating set, # Normal data and Unnormal data = 1:1
Output: Normal label, Unnormal label
Process:
#step 1: Bi-GRU AE train

model = Bi-GRU AE) # init model
model.fit(TrainData, split = 0.2,batchsize,epoch)

PredictData = model.predict(TrainData)
Loss = abs(TrainData-PredictData)#absolute value
Loss = sort(Loss)
Loss_train = max(Loss)
Return Loss_train

# step 2: One-Class Classification
PredictData = model.preict(TestData)
Loss = abs(TrainData-PredictData)
Loss = sort(Loss))
Loss = max(Loss)
If Loss > Loss_train:

Output: Unnormal label
Else:

Output: Normal label

3.2. Ensemble Learning

This paper proposes a Soft-Voting Ensemble model to improve the recognition rate
of multi-classification data, in which Random Forest, XGBoost, and LightGBM are used
as base classifiers, and Soft-Voting technology is used to vote on the prediction results of
the three classifiers for optimal classification. Especially in the case of unknown attack
types, they can be identified as the type most similar to existing known attacks through
voting. Soft Voting [30,34] is an algorithm used to calculate and vote on the probability
output generated by the base classifiers. Simple Soft Voting treats the probability output of
each base classifier equally, as demonstrated in Equation (7), while weighted Soft Voting
weights the base classifiers or the types, as demonstrated in Equation (8). In the process of
Soft Voting, the individual classifier pi outputs a K-dimensional vector(p1

i (x)...pk
i (x))T to

the data X, pk
i (x) ∈ [0, 1], where wi means the weight of the classifier pi.

pj(x) =
1
T

T

∑
i=1

pj
i(x) (7)

pj(x) =
T

∑
i=1

wi p
j
i(x) (8)

In terms of the selection of base classifiers, Random Forest [35] introduces random
feature selection based on a decision tree, and its performance on generalization can
be further improved by the increased difference among individual learners. XGBoost
(Extreme Gradient Boosting) [36] adopts the level-wise strategy to grow the decision tree,
and applies a second-order Taylor polynomial to the loss function based on GBDT. In each
iteration, a strategy similar to Random Forest is adopted, which allows data sampling and
can significantly improve the speed and efficiency. LightGBM (Light Gradient Boosting
Machine) [37] adopts the leaf-wise strategy to grow the decision tree, which allows efficient
parallel training, faster training speed, lower memory consumption, and higher accuracy.

As shown in Figure 6, a lightweight intelligence NIDS includes data processing, One-
Class Classification, and multi-classification. In data processing, first the original dataset is
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standardized, so that all the data are within the range of 0 to 1. Second, since the dataset
contains some redundant features, which do not work well in model identification, we
adopt the feature extraction method. The dataset after feature extraction is better positioned
for model identification. Finally, we divide the dataset into the training set and evaluation
set. The training set contains only normal data, while the evaluation set contains both
normal and attack data in a 1:1 proportion. In the One-Class Classification, we use the
training set for the OC-Bi-GRUs Autoencoder model. After it is stabilized, the model
returns a loss in a very small range; in the case of the anomaly data, a loss in another
range is returned. Besides accurately identifying normal and abnormal data, the OC-Bi-
GRUs Autoencoder model can identify unknown attacks as abnormal. This solves the
imbalance in data types for traditional binary classification or multi-classification. In terms
of multi-classification, we apply Soft-Voting Ensemble Learning. By comprehensively
analyzing the results of various learners, we manage to improve the classification accuracy
of abnormal attacks and are able to identify them as the type most similar to known
attacks.The proposed models focus on defending against unknown zero-day attacks and
identify such attacks as the type most similar to existing known attacks, thereby solving
the problem of low recognition rate caused by the imbalance of data types in traditional
dataset. The proposed NIDS has the advantages of high performance, high prediction
accuracy, and portability.

Figure 6. Lightweight intelligent NIDS.
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4. Experiment and Result
4.1. Dataset

The WSN-DS dataset [38] is an intrusion detection dataset specially designed for
wireless sensor networks. It contains 374,661 pieces of data, and each piece consists of
19 types of feature data (18 feature labels and a One-Classification label). The classification
label contains one type of normal data and four types of DoS attacks: Grayhole, Blackhole,
TDMA, and Flooding.

The UNSW-NB15 dataset [39,40] is a comprehensive dataset for NIDS, which was
created at the Cyber Range Lab of the Australian Center of Cyber Security in 2015. It
features a hybrid of the real modern normal and the contemporary synthesized attack
activities of the network traffic by utilizing the IXIA PerfectStorm tool. This dataset contains
2,540,044 pieces of data, which include normal data and nine types of attack: Exploits,
Fuzzers, Reconnaissance, Generic, DoS, Analysis, Backdoors, Shellcode, and Worms.

The KDD CUP99 dataset is a network dataset created by the Defense Advanced
Research Projects Agency (DARPA) in the MIT Lincoln Laboratory in 1998, which was
a simulation of the local area network (LAN) of the United States Air Force. After some
processing, KDD CUP99 entered the Third International Knowledge Discovery and Data
Mining Tools Competition (KDD Cup). This dataset contains 4,898,430 pieces of data. Each
piece contains 41 feature labels and One-Classification label, and the attack falls into one of
the given types: U2R, DoS , R2L, or probing.

4.2. Feature Extraction, Dataset Split, and Metrics

In terms of the features of the original network intrusion detection dataset, there are
problems such as inconsistent standards, duplicate data, and null value data. Therefore,
such a dataset cannot be used directly for model training; instead, they need to be processed
by feature engineering. First, assign a value to the null value data in the dataset and replace
it with 0. Second, replace label features in the dataset with numbers. In the KDD99 dataset,
protocol_type contains three kinds of label data: TCP, UDP, and ICMP; service contains
70 types of label data, such as HTTP, FTP, and SMTP; and flag contains 11 types of label data,
such as REJ and RSTR. In the UNSW-NB15 dataset, proto contains 133 types of labels such
as TCP, UDP, and IPv6; service contains 13 types of labels, such as HTTP, FTP, and DNS; and
state contains 11 types of labels such as FIN, RST, and ACC. The above-mentioned types of
data were each replaced with numbers. Last, all features in the dataset were standardized.
The Min–Max normalized method was used to standardize the data, which was scaled
between 0 and 1.

xnew =
x− xmin

xmax − xmin
(9)

There tend to be redundant or irrelevant features in the feature set. Feature analysis
enables important features in the feature set to be extracted for higher speed and accuracy
of model training. Nour Moustafa [41] compared the efficiency and reliability of the
UNSW-NB15 and KDD99 in terms of features to distinguish between normal and abnormal
records, introduced an association rule mining algorithm in feature selection to generate the
strongest features, and reduced the computational time from the KDD99 and UNSW-NB15
dataset. The experimental results showed that the evaluation criteria of the replicated
UNSW-NB15 features of the KDD99 dataset were better than the original KDD99 features.
Janarthanan, T. and Zargari, S. [42] employed data mining and machine learning techniques
to explore significant features in detecting network intrusions, proposed a subset of features,
reduced resource consumption, and maintained high detection rates. Dong R H [43] applied
the information gain ratio method in selecting the feature of WSN-DS, which reduced the
computational complexity of the intrusion detection method and cut the computation and
time overhead in detection.

In this paper, the Gini index Equation (10) of Random Forest was used to determine
the importance of features. Firstly, the contribution of each feature in each decision tree was
calculated, and the difference of the Gini Index before and after the branch of the feature at
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a certain node was obtained. Then, the contribution of each feature was normalized and
sorted according to their contribution.

GI(i)q =
N

∑
c=1

p(i)qc ∗ (1− p(i)qc ) = 1−
N

∑
c=1

(1− p(i)qc )
2 (10)

In Equation (10), c represents the number of types, and pqc means the proportion of
type c in node q. The VIM (variable importance measures) of the feature xj in node q of the
i-th tree are as follows:

VIM(GI)(i)
jq = GI(i)q − GI(i)l − GI(i)r (11)

If the node of the feature xj in the decision tree is in set Q, the VIM of xj in the i-th tree
are as follows:

VIM(GI)(i)
j = ∑

q∈Q
VIM(GI)(i)

jq (12)

If the number of trees in the Random Forest is M, then:

VIM(GI)
j =

M

∑
i=1

VIM(GI)(i)
jq (13)

Finally, all the VIM are normalized:

VIM(GI)(i)
j =

VIM(GI)
j

∑N
i=1 VIM(GI)

i

(14)

The VIM of features of Random Forest are used to extract features from KDD99,
UNSW-NB15, and WSN-DS datasets, respectively. Figures 7–9 rank the VIM of the features
of the three datasets. According to the importance of features, we tried to extract the most
important N features to reduce invalid ones and improve the recognition rate of the final
model. Table 2 contains the features extracted from the WSN-DS, KDD99, and UNSW-NB15
datasets. With multiple tests, we extracted 20 features from the KDD99 and UNSW-NB15
and 14 features from the WSN-DS for subsequent model training.

Figure 7. Feature importance of WSN-DS.
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Figure 8. Feature importance of UNSW-NB15.

Figure 9. Feature importance of KDD99.

Table 2. Feature extraction.

ID WSN-DS UNSW-NB15 KDD99

1 Time dur proto

2 Is_CH sbytes services

3 who CH dbytes flags

4 Dist_To_CH sttl src_bytes

5 ADV_S dttl logged_in

6 ADV_R Sload count

7 JOIN_R Dload srv_count

8 SCH_S smeansz serror_rate

9 Rank dmeansz srv_serror_rate

10 DATA_S Sjit same_srv_rate

11 DATA_R Sintpkt diff_srv_rate

12 Data_Sent_To_BS Dintpkt dst_host_count
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Table 2. Cont.

ID WSN-DS UNSW-NB15 KDD99

13 dist_CH_To_BS tcprtt dst_host_srv_count

14 Expaned Energy synack dst_host_same_srv_rate

15 ackdat dst_host_diff_srv_rate

16 ct_state_ttl dst_host_same_src_port_rate

17 ct_srv_src dst_host_srv_diff_host_rate

18 ct_srv_dst dst_host_srv_serror_rate

19 ct_dst_src_ltm dst_host_rerror_rate

20 service dst_host_srv_rerror_rate

In terms of the dataset split, the training set contained only normal data, while the
evaluating set contained both normal and attack data in a 1:1 proportion. Table 3 shows the
data split results of the three datasets.

Table 3. Data split.

Dataset Data Split Normal Data Attack Data

WSN-DS
Training set 302,921 0

Evaluating set 29,116 29,116

UNSW-NB15
Training set 1,862,200 0

Evaluating set 75,691 75,691

KDD99
Training set 550,652 0

Evaluating set 262,152 262,152

The confusion matrix (Table 4) is a visual tool in supervised learning, which is mainly
used for comparing the classification results and the real information of instances. Each row
in the matrix represents a real category, and each column represents a predicted category of
the instance.

Table 4. Confusion matrix.

Attack_label
Predict_label

Attack Normal

True_label
Attack TP FN

Normal FP TN

True Positive (TP): Attack data predicted as an attack.
False Positive (FP): Normal data predicted as an attack.
True Negative (TN): Normal data predicted as normal.
False Negative (FN): Attack data predicted as normal.
Based on the confusion matrix, we can evaluate the performance of our proposed model.
Accuracy: For the proportion of correctly predicted samples to the total samples, the

value range is [0, 1]. The higher the value is, the better the model will perform in its
prediction in terms of accuracy. The calculation is as follows:

Accuracy =
|TP|+ |TN|

|TP|+ |TN|+ |FP|+ |FN| (15)
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Precision: For the proportion of correct predictions to all predicted “attack” samples,
the value range is [0, 1]. The higher the value is, the better the model will perform in its
prediction in terms of precision. The calculation is as follows:

Precision =
|TP|

|TP|+ |FP| (16)

Recall: The proportion range of correctly predicted “attack” samples in true attack
labels is [0, 1]. The higher the value is, the better the model will perform in its prediction in
terms of recall. The calculation is as follows:

Recall =
|TP|

|TP|+ |FN| (17)

F1_score: a weighted harmonic mean of the model precision and recall, which serves
as a derived measurement for effectiveness. The calculation is as follows:

F1_score = 2× Precision× Recall
Presion + Recall

(18)

In this chapter, we processed the dataset by feature engineering. First of all, the
Min–Max normalized method was used to standardize the original dataset so that all the
data were within the range of 0 to 1. Second, as the dataset of KDD99, UNSW-NB15 and
WSN-DS contains some redundant features, the Gini index of Random Forest was used
to extract features. With multiple tests, we extracted 20 features from the KDD99 and
UNSW-NB15 and 14 features from the WSN-DS for subsequent model training. Third, we
divided the dataset into the training set and evaluation set. The training set contained
only normal data, while the evaluating set contained both normal and attack data in a
1:1 proportion. Finally, we use some well-established standard metrics (such as Accuracy,
Precision, Recall, and F1_score) to evaluate the performance of our approach.

4.3. One-Class Classification

We ran our model on a workstation with Intel(R) Xeon(R) Silver 4210R CPU, NVIDIA
GeForce RTX 3090 GPU 24 GB, 50 GB RAM, 50 GB HD, Ubuntu 18.04.5 OS, and all the tasks
were performed using Python 3.7 with scikit-learning (version = 0.24.2)

The model of One-Class Autoencoder in this paper is shown in Figures 10 and 11,
which adopts seven Bi-GRUs, three Denses and two Dropouts. There were 20 features
in the input layers of the KDD99 and UNSW-NB15 dataset, and 14 in the input layer
of the WSN-DS dataset. Both the KDD99 and UNSW-NB15 contained 20 features after
feature extraction. These 20 features were encoded and decoded by the Autoencoder. The
encoder compressed the 20 features into 8 through three Bi-GRUs: (20,1) → (20,16) →
(20,8) → (8), and then deleted some information by Dropout to prevent overfitting. The
Decoder converted 8 features into 20 through four Bi-GRUs, (8,1) → (8,8) → (8,16) → (8,20)
→ (20), then deleted some information by Dropout to prevent overfitting, and, finally,
20 features were obtained with sigmoid. For the WSN-DS dataset, we adopted the same
network structure, and only the input and output were adjusted. The Encoder compressed
14 features into 4 through three Bi-GRUs: (14,1) → (14,7) → (14,4) → (4), then deleted some
information by Dropout to prevent overfitting, and, finally, 4 features were obtained with
sigmoid. The Decoder converted 4 features into 14 features, (4,1) → (4,4) → (4,7) → (4,14)
→ (14), then deleted some information by Dropout to prevent overfitting, and, finally,
20 features were obtained with sigmoid.

Our model introduced “adam” as the optimizer and “mae” as the loss function. Based
on the number of training sets and the system configuration, during the training of the
KDD99 and UNSW-NB15 training sets, the batch_size was set to 10,000, while that for the
WSN-DS training set was 2048. A higher value of batch_size can avoid overfitting of the
model. Table 5 shows some related information of the three datasets after training.
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Figure 10. Autoencoder model of WSN-DS.
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Figure 11. Autoencoder model of UNSW-NB15 and KDD99.
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We used the trained model to obtain the threshold value of the training set, obtain the
difference between the generated data and the training data, and take the absolute value.
Then, we calculated the maximum value, a, for each item of different data, and this value
generated from the normal data remained in a certain range (as shown in Figures 12–14).
The difference thresholds of the three datasets were acquired, which were then tested on
the evaluating set. We obtained the difference between the generated data and the test data
and took the absolute value. We then obtained the maximum value, b, for each item of
different data. If b was larger than a, it was considered as a piece of abnormal data. As
shown in Figures 15–17, the green line indicates normal data, and the red one indicates
abnormal data.

In the stage of data prediction, a reasonable threshold was selected for discrimination.
All values below the threshold were set to 0, and those above the threshold were set to 1. In
this way, the One-Class algorithm could be turned into a binary classification algorithm
and then used for evaluating the model. Tables 6–8 are the confusion matrixes of the
evaluating set.

Table 5. Loss and model size information.

Dataset Loss Model_Size

WSN-DS 0.017 338 KB

UNSW-NB15 0.012 1.1 MB

KDD99 0.008 423 KB

Figure 12. WSN-DS training set. Green indicates normal data.
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Figure 13. UNSW-NB15 training set. Green indicates normal data.

Figure 14. KDD99 training set. Green indicates normal data.
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Figure 15. WSN-DS evaluating set. Green indicates normal data and red indicates abnormal data.

Figure 16. UNSW-NB15 evaluating set. Green indicates normal data and red indicates abnormal data.
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Figure 17. KDD99 evaluating set. Green indicates normal data and red indicates abnormal data.

Table 6. Confusion matrix of WSN-DS evaluating set.

Attack_label
Predict_label

Attack Normal

True_label
Attack 28,693 423

Normal 793 28,323

Table 7. Confusion matrix of UNSW-NB15 evaluating set.

Attack_label
Predict_label

Attack Normal

True_label
Attack 74,189 1502

Normal 135 75,556

Table 8. Confusion matrix of KDD99 evaluating Set.

Attack_label
Predict_label

Attack Normal

True_label
Attack 257,505 4647

Normal 4656 257,496

Table 9 shows the accuracy of three datasets. With this model, the accuracy of WSN
was 97.91%,that of UNSW-NB15 was 98.92%,and that of the KDD99 reached 98.23%. Ex-
periments show that the One-Class Bi-GRUs AE algorithm presents an efficient way to
identify intrusion detection data, and it can also identify abnormal data of zero-day attacks.
Table 10 shows the comparison of several NIDS approaches.
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Table 9. Metrics.

Evaluating Set Accuracy Precision Recall F1_Score

WSN-DS 0.9791 0.9792 0.9854 0.9792

UNSW-NB15 0.9892 0.9893 0.9802 0.9891

KDD99 0.9823 0.9823 0.9823 0.9823

Table 10. Comparison of several NIDS.

Dataset Approach Accuracy Precision Recall F1_Score

WSN-DS

SVM [44] 0.96 - - -

CNN [45] 0.97 - - -

Software-defined [46] 0.97 - - -

Our approach 0.9791 0.9792 0.9854 0.9792

Dataset Approach Accuracy Precision Recall F1_score

UNSW-NB15

AC-GAN [6] 0.96 0.96 0.98 0.97

CAE and OC [14] 0.94 - - 0.95

Emsemble [33] 0.9523 0.9658 0.9594 0.9623

Our approach 0.9892 0.9893 0.9802 0.9891

Dataset Approach Accuracy Precision Recall F1_score

KDD99

CAE and OC [14] 0.9158 - - 0.9287

AE and SVM [25] 0.9472 - - -

Stacked AE [21] 0.9817 0.9918 0.9522 0.9715

Our approach 0.9823 0.9823 0.9823 0.9823

4.4. Zero-Day Attacks Detection

The multi-class classification model of intrusion detection aims to detect the type
of attack to provide tailor-made solutions for abnormal attacks. This paper proposes a
new method to identify unknown abnormal attacks (zero-day attacks), which divides an
abnormal dataset into a training set, an evaluating set, and a novelty set (zero-day attacks
set). The type of data in the novelty set were not included in the training set and evaluating
set. The training set is for generating a stable ensemble learning model; the evaluating
set is for evaluating the accuracy of the model in identifying existing attack types; and
the novelty set is for categorizing the attack as the type most similar to known attacks.
Although the attack can only be identified as a known type, this provides a reference for
the unknown types.

In the WSN-DS attack dataset, we took the attack data of the Flooding type as a novelty
set (zero-day attacks set), and randomly divided the attack data of Gravhole, Blackhole,
and TDMA into 80% of the training set and 20% of the evaluating set, as shown in Table 11.
In the KDD99 attack dataset, we took the attack data of the Privilege type as a novelty set,
and randomly divided the attack data of DoS, Probe, and Access into 80% of the training
set and 20% of the evaluating set. In the UNSW-NB15 dataset, we took the attack data of
the Worms type as a novelty set, and randomly divided the other eight types of attack data
into 80% of the training set and 20% of the evaluating set.
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Table 11. Attack data split.

Dataset Anomaly Data Grayhole Blackhole TDMA
Flooding

(0-Day
Attack)

WSN-DS

Training set 10,063 5393 5312 0

Evaluating set 2539 1374 1278 0

Novelty set (0-Day
Attack Set) 0 0 0 3157

Total 12,602 6767 6590 3157

Dataset Anomaly Data Dos Probe Access
Privilege

(0-Day
Attack)

KDD99

Training set 197,767 11,106 808 0

Evaluating set 49,493 2736 191 0

Novelty set (0-Day
Attack Set) 0 0 0 51

Total 247,260 13,842 999 51

Dataset Anomaly Label Training
set

Evaluating
set

Novelty
set (0-Day

Attack Set)
Total

UNSW-NB15

Exploits 20,415 4979 0 25,394

Fuzzers 14,881 3809 0 18,690

Generic 13,695 3492 0 17,187

Reconnaissance 6752 3809 0 8410

DoS 2894 723 0 3617

Shellcode 1164 282 0 1446

Analysis 352 89 0 441

Backdoor 273 74 0 347

Worms (0-day attack) 0 0 159 159

During the training of the model, three learning algorithms, namely lightGBM, XG-
Boost and Random Forest, are adopted as base classifiers, and the Soft-Voting Ensemble
Learning algorithm was used for the ensemble of the three base classifiers. For the WSN-DS
dataset, the size of the Soft-Voting Ensemble Learning model stood at 52.1 MB, and the
parameters of the lightGBM were as follows: 1000 for n_estimators, 0.02 for learning_rate,
0.8 for subsample, and 10.3 MB for the final model size; the parameters of XGBoost were 500
for n_estimators, 0.03 for learning_rate, 0.1 for gamma, 0.8 for subsample, and 9.2 MB for
the final model size; the parameters of RandomForest were 50 for n_estimators, True for the
oob_score, and 6.6 MB for the final model size. For the UNSW-NB15 dataset, the size of the
ensembled model was 76 MB. The parameters of the lightGBM were 300 for n_estimators,
0.1 for learning_rate, and 8.5 MB for the final model size; the parameters of XGBoost were
100 for n_estimators, 0.1 for learning_rate, 0.1 for gamma, 0.8 for subsample, and 12.8 MB
for the final model size; the parameters of RandomForest were 10 for n_estimators, True
for the oob_score, and 16.7 MB for the final model size. For the KDD99 dataset,the size of
Soft-Voting Ensemble Learning model tood at 21.5 MB, the parameters of the lightGBM
were 300 for n_estimators, 0.02 for learning_rate, 0.8 for subsample, and 3.2 MB for the final
model size; the parameters of XGBoost were 100 for n_estimators, 0.03 for learning_rate,
0.1 for gamma, 0.8 for subsample, and 1.5 MB for the final model size; the parameters
of RandomForest were 50 for n_estimators, True for the oob_score, and 6.1 MB for the
model size. As a result, the classification accuracy of the model from the three dataset in
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the training set and the evaluating set was between the maximum and minimum of the
accuracy of the three types of weak classification (as shown in Table 12).

Table 12. Ensemble model on training set and evaluating set.

Dataset Method Dataset_Type Accuracy Precision Recall F1_Score

WSN-DS

lightGBM
Training set 0.9971 0.9971 0.9971 0.9971

Evaluating set 0.9882 0.9884 0.9882 0.9883

XGBoost
Training set 0.9986 0.9986 0.9986 0.9986

Evaluating set 0.9909 0.991 0.9909 0.9907

RandForest
Training set 0.9998 0.9998 0.9998 0.9998

Evaluating set 0.9946 0.9946 0.9946 0.9946

Soft-Voting
Training set 0.9995 0.9995 0.9995 0.9995

Evaluating set 0.9934 0.9934 0.9934 0.9934

UNSW-NB15

lightGBM
Training set 0.9841 0.9843 0.9841 0.9836

Evaluating set 0.9063 0.904 0.9063 0.9004

XGBoost
Training set 0.9665 0.9672 0.9665 0.9657

Evaluating set 0.9081 0.908 0.9081 0.9021

RandForest
Training set 0.992 0.992 0.992 0.992

Evaluating set 0.8888 0.8859 0.8888 0.8825

Soft-Voting
Training set 0.9883 0.9884 0.9883 0.9881

Evaluating set 0.9074 0.9065 0.9073 0.9011

KDD99

lightGBM
Training set 0.9999 0.9999 0.9999 0.9999

Evaluating set 0.9999 0.9999 0.9999 0.9999

XGBoost
Training set 0.9999 0.9999 0.9999 0.9999

Evaluating set 0.9999 0.9999 0.9999 0.9999

RandForest
Training set 0.9999 0.9999 0.9999 0.9999

Evaluating set 0.9999 0.9999 0.9999 0.9999

Soft-Voting
Training set 0.9999 0.9999 0.9999 0.9999

Evaluating set 0.9999 0.9999 0.9999 0.9999

The trained model was applied to novelty detection (as shown in Tables 13 and 14).
For the novel data of the “Flooding” type assumed in the WSN-DS dataset, they could be
predicted as various types of attacks (mainly “Dos” and “Access”) by three basic classifiers,
while the prediction of the Soft-Voting model was more convincing. For the novelty data of
the “WORMS” type assumed in the UNSW-NB15 dataset, among the three basic classifiers,
most of the attack types were predicted as “Exploits”, “Fuzzers”, and “Generic”. This
means that the “WORMS” type data structure is similar to the above three structures. For
the novel data of the “Privilege” type assumed in the KDD99 dataset, they were predicted
as attack data of the “Access” type by all three base classifiers and the Ensemble model,
which indicated that this type of data was closer to the attack data of the “Access” type. By
the ensemble of the three base classifiers, the final model showed better performance in
its prediction.
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Table 13. Ensemble model on novelty set (0-Day Attack Set).

Dataset 0-Day Type Total Method Dos Probe Access

WSN-DS Flooding 3157

lightGBM 1513 31 1613

XGBoost 2739 13 405

RandomForest 2592 29 176

Soft-Voting 2591 18 548

KDD99 Privilege 51

lightGBM 0 0 51

XGBoost 0 0 51

RandomForest 0 0 51

Soft-Voting 0 0 51

Table 14. Ensemble model on novelty set (UNSW-NB15).

Novelty
Type

Recognition
Label LightGBM XGBoost RandomForest Soft-Voting

WORMS

Exploits 136 134 117 136

Fuzzers 12 12 12 12

Generic 11 12 28 11

Reconnaissance 0 0 0 0

DoS 0 1 0 0

Shellcode 0 0 2 0

Analysis 0 0 0 0

Backdoor 0 0 0 0

Total 159 159 159 159

5. Conclusions

In this paper, the Bidirectional GRU Autoencoder and Ensemble Learning method was
adopted for novelty detection in network intrusion detection systems. Traditional intrusion
detection based on binary classification was replaced by One-Class detection through
modeling known normal data, which thus avoids the imbalance of dataset type caused
by the small amount of abnormal data. In the One-Class Bidirectional GRU Autoencoder
Model, the data correlation principle of automatic encoders was applied, where only those
data similar to the training data were compressed. After the judgment was made by the
model, the normal data returned a loss in a very small range, while the abnormal data
returned a big loss. According to the value of the loss value, whether the network data
were attack data or not could be identified. To accurately determine the anomaly type of the
detected abnormal data, this paper adopted the Ensemble Learning model for Soft-Voting
classification of the anomaly type identified by various base classifiers so that the unknown
anomaly types (such as zero-day attacks) could be recognized as a known anomaly type as
accurate as possible. The model adopted in the experiment is portable, and it delivered
remarkable performance on the WSN-DS, UNSW-NB15, and KDD99 datasets. Meanwhile,
this model can deal with unknown attacks and provide better approximation and accuracy
for real unknown hypotheses. The recognition rates of the models for the WSN-DS, UNSW-
NB15, and KDD99 datasets were 97.91%, 98.92%, and 98.23% respectively, which are much
higher compared with traditional intrusion detection methods. For future work, we will
consider using this model to further improve the accuracy and evaluate its performance in
a distributed computing environment (such as Ray).
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