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Abstract: As a new technology for reconstructing communication environments, intelligent reflecting
surfaces (IRSs) can be applied to UAV communication systems. However, some challenges exist in
IRS-assisted UAV communication system design, such as physical layer security issues, IRS design,
and power consumption issues owing to the limitation of the hardware. Therefore, a secrecy capacity
optimization scheme for an active IRS-assisted unmanned aerial vehicle (UAV) communication
system is proposed to solve multi-user security issues. In particular, controllable power amplifiers are
integrated into reflecting units to solve the problem of blocked links, and the UAV can dynamically
select the served user according to the channel quality. In order to maximize the system average
achievable secrecy capacity and ensure the power constraints of the UAV and active IRS, user
scheduling, UAV trajectory, beamforming vector, and reflection matrix are jointly optimized, and the
block coordinate descent (BCD) algorithm is applied to solve this non-convex problem. Simulation
results show that the active IRS-assisted UAV communication scheme can significantly weaken the
“multiplicative fading” effect and enhance the system secrecy capacity by 55.4% and 11.9% compared
with the schemes with passive IRS and without optimal trajectory, respectively.

Keywords: intelligent reflecting surface; unmanned aerial vehicle communication; secrecy capacity
maximization; convex optimization algorithm

1. Introduction

In wireless communication systems, electromagnetic waves experience different kinds
of unpredictable changes in propagating environments, which is difficult to explain and
is always considered to be probabilistic. Due to obstacles in the propagation environ-
ment, especially in urban areas, the signals will not only be affected by free-space path
loss but also be reflected, refracted and scattered, and so on, which will eventually re-
sult in significant effects on wireless communication performance. Thus, the controlled
meta-surfaces technique is invented to programmatically control the behavior of wireless
environments [1]. Meanwhile, it has been proved that programmable meta-surfaces can
reshape the amplitude and phase of electromagnetic waves efficiently in real time thanks
to the concept of intelligent reflecting surfaces (IRSs) [2]. However, traditional passive IRSs
can only achieve negligible gains due to the “multiplicative fading” effect [3].

Unmanned aerial vehicles (UAVs) can effectively improve wireless networks’ through-
put by making full use of the benefits of line-of-sight (LoS) link transmission and flight
flexibility. Moreover, it is anticipated to be a key component of fifth-generation mobile
networks to meet the requirement of special scenarios and ubiquitous access [4]. However,
in complicated wireless propagation environments, especially in urban areas, the LoS links
tend to experience severe deterioration due to the blockage of dense buildings and trees [5].
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Fortunately, these challenges can be overcome by deploying IRS in the system since large-
scale IRS reflecting elements can jointly beamform the signals in a desired direction by
adjusting the IRSs parameters [6–8].

In addition, the channel response of the legitimate users and the eavesdropper is
strongly correlated with the increasing number of access users, which brings a severe phys-
ical layer security problem. Saba et al. [9] investigated the secrecy rate in IRS-assisted multi-
user multiple-input multiple-output (MIMO) systems and proposed two low-complexity
iterative algorithms, namely two-tier and single-loop forms. Zhang et al. [10] studied the
energy effectiveness of an active IRS-aided multiple-input single-output (MISO) secure
system, assessed the system’s energy cost quantitatively, and developed a joint optimization
strategy to reduce the energy cost while adhering to the secrecy rate limitation.

Integrating IRS technology into UAV-enabled communication systems can provide
intelligent compensation for path loss, reduce interference and build energy-efficient,
secure, and robust air-to-ground communications [11]. Saxena et al. [12] investigated
the effects of jamming caused by a malicious UAV on the performance of a free-space
optical communication system, where a legitimate UAV served as a relay and an IRS
was designed to improve the quality of received signals and enlarge the coverage. The
overall average bit error rate and outage probability with non-Gaussian additive noise
were derived and analyzed. Han et al. [13] proposed a UAV-empowered IRS-backscatter
communications network, where a passive IRS acts as the backscatter device and uses the
received signals for backscatter communications to guarantee secure transmission. Tang
et al. [14] presented an anti-eavesdropping communication scheme to exploit aerial active
reflecting and jamming to enhance wireless security in the presence of channel uncertainties
at the eavesdroppers. Specifically, a robust optimization approach was employed to
tackle the reflecting and jamming designing problem, and the aerial deployment was
obtained through deep reinforcement learning (DRL). To increase the secrecy capacity, Pang
et al. [15] considered secure transmission issues in IRS-assisted UAV communications by
joint optimization of UAV trajectory, beamforming vector, reflecting matrix, etc. However,
this research work only took the single-user service case into account, but not for multiple
users. In [16], a secure IRS-assisted UAV wireless communication system based on multiple
users was proposed. The passive beamforming, ground user association, UAV flight
trajectory, and transmit power were jointly optimized to maximize the minimum average
secrecy rate of ground users. However, the deployment of passive IRS limited the system
security performance improvement.

Additionally, investigations in [6,17] illustrated that UAV-mounted IRS can achieve
superior performance and flexibility compared to traditional fixed IRS. A downlink multi-
user MISO flying IRS system model was considered in [18]. Additionally, a DRL algorithm
named FlyReflect was proposed to jointly optimize the flying trajectory and IRS phase-shift
matrix. Truong et al. formulated an optimization problem to maximize the achievable
system sum rate by jointly optimizing the flight trajectory and phase-shift matrix of the IRS,
and a DRL method was applied to solve it. Nguyen et al. [19] proposed an approach of low
complexity for extending network coverage in a massive MIMO communication network,
where multiple UAV-mounted IRSs were deployed. Moreover, a DRL method is adopted to
jointly optimize the power coefficients and the phase shifts of the multiple IRSs. However,
attaching IRSs to the UAV will increase the energy consumption of the UAV. Considering a
large reflecting surface, the vibration and wind resistance of the UAV cannot be neglected.

To overcome the “multiplicative fading” effect introduced by passive IRSs, the power
amplifier can be integrated into its reflecting units to amplify the reflected signals [20].
Zhang et al. [21] analyzed the performance of active IRSs and demonstrated the effective-
ness of active IRSs for the first time. However, the current fully connected architecture of the
active IRS consumes additional power, since there are abundant integrated power ampli-
fiers. In contrast to the fully connected architecture, Liu et al. [22] presented a sub-connected
architecture in which several units share a single power amplifier and individually regulate
their phase shift, considerably reducing the number of power amplifiers, and the new ar-
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chitecture can achieve improved energy efficiency. In [23], a low-complexity approximated
joint precoding algorithm based on alternating optimization was proposed to optimize the
beamforming and active reflector matrix, which further demonstrated the practicability
of active intelligent reflection in secure transmission. However, the amplification of noise
by its active IRS was neglected, which makes the optimal solution inconsistent with the
actual solution. Nguyen et al. [24] considered a novel hybrid active/passive IRS-assisted
UAV communications system. The hybrid IRS was equipped with a few active elements,
which not only reflect but also amplify the incident signals for significant performance
improvement. To maximize the minimum rate among users, the location, and power alloca-
tion of the UAV and the IRS reflecting/amplifying coefficients were jointly optimized. The
application of hybrid IRS enables improved system performance without additional power
consumption. For better comparison, the crucial parameters and optimization methods of
reviewed works [13–16,23,24] are provided in Table 1.

Table 1. Summary of references [13–16,23,24].

Reference
Density, Type, and
Mobility of UAV

Transmitter

Communication
Scenario Type of IRS Objective Optimization Methods

[13] Single UAV/Base
Staion/Mobile

Ambient Backscatter
Communication and

/Unmodulated
Backscatter Commu-

nication/Multiple
users/Multiple Eves

Passive IRS Maximizing the
average secrecy rate BCD + SDR + Q-learning

[14] Single
UAV/Relay/Fixed

UAV-Mounted IRS
and Jammer/Fixed

IRS/Single
User/Multiple Eves

Passive IRS
Maximizing the

minimum secrecy
rate

BCD + SCA + SDR +
DDPG

[15] Single UAV/Base
Staion/Mobile

Fixed IRS/Single
User/Single Eve Passive IRS Maximizing the

average secrecy rate BCD + SCA

[16] Single UAV/Base
Staion/Mobile

Fixed IRS/Multiple
Users/Multiple Eves Passive IRS

Maximizing the
minimum average

secrecy rate
BCD + SCA

[23] N/A Fixed IRS/Single
User/Single Eve Active IRS Maximizing the

secrecy rate LCAJP

[24] Multiple UAVs/Base
Station/Fixed

Multiple Fixed
IRSs/Multiple Users Hybrid IRS

Maximizing the
minimum

transmission rate
BCD + SCA

In general, there has been a fair amount of study on IRS-assisted UAV secure communi-
cation systems, but rare studies have considered both active IRS adjustment and multi-user
services at the same time. The authors of [14,24] only discuss the location of UAVs, without
considering the impact of UAV trajectory on the communication environment. In addition,
few works have considered both the use of active IRSs and relevant energy constraints.
Therefore, an active IRS-assisted UAV multi-user communication system is established,
where multiple users are deployed on the ground and time division multiple access (TDMA)
is applied as an access scheme to the network. Specifically, in urban scenarios with dense
buildings and trees, where the LoS links between the UAV and ground users are often
blocked, we deploy active IRS on building surfaces to enhance system security. With the
objective of maximizing the average secrecy capacity, which can be represented by the
average secrecy rate, user scheduling, UAV trajectory, multi-antenna beamforming, and the
amplitude and phase of IRS are jointly optimized. The main contributions of this paper are
summarized as follows:

• We present an IRS-assisted UAV multi-user communication system model, where the
UAV can dynamically select the best user for service within each time slot according to
its channel conditions. Considering the presence of passive eavesdroppers and the LoS
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link being blocked between the UAV and legitimate users, the user scheduling, UAV
trajectory, beamforming vector, and the reflecting matrix of IRS are jointly optimized
to maximize the average achievable secrecy capacity during the flight.

• The formulated non-convex optimization problem is first divided into four sub-
problems. However, the sub-problems are still challenging to solve due to fractional
and non-convex objectives. Hence, successive convex approximation (SCA) technol-
ogy is applied in this paper to transform the trajectory optimization sub-problem into
a convex form. Furthermore, the sub-problems of beam design and IRS control are
transformed into a convex problem by applying the Charnes–Cooper transformation
(CCT) method and the majorization-minimization (MM) algorithm, respectively. In
order to tackle the aforementioned sub-problems and obtain the sub-optimal solution,
we finally introduce the block coordinate descent (BCD) approach.

• Simulation results validate the effectiveness of the proposed scheme and show that
the secrecy capacity increased compared with the schemes with passive IRS and
without optimal trajectory, respectively. It is shown that the active IRS-aided UAV
scheme is efficient in reducing the impact of the “multiplicative fading” effect in secure
communication systems.

2. System Model

Figure 1 depicts a model of an active IRS-assisted UAV secure communication system.
The UAV serves multiple users as a mobile base station, but a passive eavesdropper exists
in the environment at the same time. In addition, we assume that the UAV can access the
position of both legitimate users and eavesdroppers based on infrared detection. For clarity,
the utilized notations are summarized in Table 2.
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Table 2. Summary of symbols.

Symbol Description

J number of ground legitimate users

M number of UAV antennas

K number of the elements of active IRS

N UAV flight duration

HU altitude of UAV

HI altitude of active IRS

q horizontal coordinate of UAV

wBj coordinate of legitimate users

wE coordinate of eavesdropper

wI horizontal coordinate of active IRS

Vmax maximum flight speed of UAV

δ time slot

ρ0 channel power gain

α, β path loss exponent

σ2
I , σ2

B, σ2
E noise power

Pf ly dissipated power consumed at UAV

Pirs static power of active IRS corresponding to phase-shift circuit

Pamp static power of active IRS corresponding to amplifier circuit

PU maximum power of UAV

PA maximum power of the active IRS

ζ reciprocal of energy conversion coefficient at the transmitter of UAV

ξ reciprocal of energy conversion coefficient at the active IRS

d antenna separation at UAV

d0 separation of elements at IRS

2.1. Channel Model

A three-dimensional Cartesian coordinate system is established, J ground legitimate
users and a single passive eavesdropper are distributed in a stationary area. Let the
horizontal coordinate of the j-th legitimate user Bj and active IRS be wBj =

[
xBj, yBj

]
and wI = [xI , yI ], respectively. Based on infrared detection, the UAV can obtain the
eavesdropper’s location wE = [xE, yE]. This paper adopts the access mode of TDMA and
the full cycle time T is discretized into N equal time slots, i.e., T = Nδ, where δ is the length
of the unit time slot and multiple legitimate users will occupy different time slots. Since
the time slot is small enough, the position of the UAV can be considered unchanged [25].
In addition, it is assumed that IRS has a fixed height HI and the UAV’s flight height is
fixed at HU . The horizontal position of the UAV in the n-th time slot can be stated as
q[n] = [xu[n], yu[n]]

T , n ∈ N = {1, . . . , N}. Then, the following constraints need to
be satisfied.

‖q[n + 1]− q[n]‖ ≤ Vmaxδ, 1 ≤ n ≤ N − 1, (1)

q[1] = qI , (2)

q[N] = qF, (3)
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where the constraints in (1) state that the maximum flight rate Vmax of the UAV restricts
the maximum movement of the UAV in δ. The UAV flies with the predetermined initial
position qI and final position qF. Moreover, the UAV’s vibration can be disregarded because
of its small size.

The active IRS is equipped with a uniform plane array (UPA) of K reflecting ele-
ments, a controller intelligently changing the phase shift and amplification of each ele-
ment, while the UAV is equipped with M antennas and both legitimate users and eaves-
dropper are equipped with a single omnidirectional antenna. Let the phase-shift matrix
Θ[n] = diag

{
ejθ1[n], . . . , ejθK [n]

}
, where θk[n] ∈ [0, 2π) , k ∈ K = {1, . . . , K}. The enhanced

signal by the active IRS can be expressed as:

y = PΘx︸︷︷︸
desired signal

+ PΘv︸︷︷︸
dynamic noise

+ ns︸︷︷︸
static noise

, (4)

where x is the transmitted signal and P = diag(p1, · · · , pK) denotes the amplification factor
matrix. Thanks to the integrated reflection-type amplifier, each element pk can be larger
than one but not larger than ηk. It can be seen from (4) that the reflector amplifies not only
the useful signal x but also the noise v, it will bring new static noise ns. Considering that
PΘ always appears in a coupled fashion, let ψ = PΘ =

[
p1ejθ1 , · · · , pKejθK

]H , Ψ = diag(ψ).
Assuming the UAV serves only one user in a time slot, αj[n] = 1 indicates that Bj is served
in the n-th time slot, otherwise αj[n] = 0, we can obtain the following constraints:

αj [n] ∈ {0, 1}, ∀n, j, (5)

J

∑
j=1

αj[n] ≤ 1, ∀n, 1 ≤ j ≤ J. (6)

We assume that the channel quality predominantly depends on the UAV–IRS distance
since the air-to-ground communication channels are mainly dominated by the LoS links [26].
Particularly, it is presumed that the receivers will properly compensate for the Doppler
effect brought on by the UAV’s motion [27]. Unlike a uniform linear array (ULA) at the
UAV, we utilize a UPA at the IRS in this paper. Additionally, the active IRS consists of
N = Ny × Nz elements and UAV is equipped with M antennas. The total array response of
the corresponding channel can be seen as the product of the array response of receivers
and that of the transmitter [28]. Therefore, the channel modeling is characterized as the
product channels [7].

HUI [n] =
√

ρ0d−2
UI [n]︸ ︷︷ ︸

path loss

aH
N(θAoA[n], ηAoA[n])aM(γAoD[n])︸ ︷︷ ︸

array response

(7)

aN(θ, η) =

[
1, . . . , ej 2πd0

λ ((n1−1)cos(η)sin(θ)+(n2−1)sin(η)), . . . , ej 2πd0
λ ((Ny−1)cos(η)sin(θ)+(Nz−1)sin(η))

]
(8)

aM(γ) =
[
1, ej2π d

λ sinγ, . . . , ej2π d
λ (M−1)sinγ

]
, (9)

where ρ0 denotes the channel gain at the reference distance D0 = 1m, assuming the path

loss exponent related to the U−I link is 2, dUI [n] =
√
‖q[n]− wI‖2 + (HU − HI)

2 denotes
the distance between the UAV and the active IRS in the n-th time slot, aN(θ, η) and aM(γ)
are the array responses of IRS and transmitter of UAV, λ is the wavelength, d is the antenna
separation, and d0 is the separation of elements at the IRS. θAoA[n] and ηAoA[n] represent
the azimuth and elevation angle of arrival (AoA) of the signal from the UAV to the IRS in
the n-th time slot, respectively. Additionally, γAoA[n] denotes the angle of departure (AoD)
associated with the UAV in the n-th time slot.
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In contrast to HUI [n], the channel from IRS to the legitimate users and eavesdropper
contains both the LoS component and the non-LoS (NLoS) component. Therefore, the Rician
fading channel model [3,7,13] is adopted, the channel gain hIBj[n] can be expressed as

hIBj[n] =
√

ρ0d−α
IBj[n]

(√
κ

1 + κ
hLoS

IBj +

√
1

κ + 1
hNLoS

IBj [n]

)
, (10)

where α is the path loss exponent corresponding to the I − Bj link, dIBj =
√
‖wI −wBj‖2 + H2

I
denotes the distance between the active IRS and Bj, and κ is the Rician factor. The LoS
component can be calculated as hLoS

IBj = aH
N(θAoD, ηAoD) and the NLoS component hNLoS

IBj [n]
is the random scattering component independently modeled by a zero mean and a unit-
variance circularly symmetric complex Gaussian (CSCG) random variable. hIE[n] can be
modeled in the same way.

In actual implementations, copious obstructions in the complicated urban environment
may hinder the LoS path of the UAV to the user, while the wireless channel is still replete
with extensive scatters [29]. The channel coefficients of U − Bj/E link are given by

hUBj[n] =
√

ρ0d−β
UBj[n]h̃[n], (11)

hUE[n] =
√

ρ0d−β
UE[n]h̃[n], (12)

where β is the path loss exponent of U − Bj/EVE link, dUBj[n] =
√
‖q[n]− wBj‖2 + H2

U

and dUE[n] =
√
‖q[n]− wE‖2 + H2

U denotes the distance from the UAV to the served user

and passive eavesdropper, respectively. h̃[n] is modeled as a CSCG distribution with zero
mean and unit variance.

2.2. Secrecy Capacity Model

The received signal of the legitimate user Bj and the eavesdropper in the n-th time slot
can be given as follows, respectively.

yBj[n] =
(

hUBj[n] + hH
IBj[n]Ψ[n]HUI [n]

)
w[n]x[n] + hIBΨnI + nBj, (13)

yE[n] =
(

hUE[n] + hH
IE[n]Ψ[n]HUI [n]

)
w[n]x[n] + hIEΨnI + nE, (14)

where x[n] is the transmitted signal; w[n] ∈ CM×1 denotes the beamforming vector at the
UAV; nI ∼ CN

(
0, σ2

I
)
, nB ∼ CN

(
0, σ2

B
)
, and nE ∼ CN

(
0, σ2

E
)
, respectively, represent the

noise introduced by IRS, user Bj, and eavesdropper; σ2
I , σ2

B, and σ2
E represent the noise

power. The SINR of the legitimate user Bj and the eavesdropper in the n-th time slot,
respectively, are given as:

γBj[n] =

∣∣∣(hUBj[n] + hH
IBj[n]Ψ[n]HUI [n]

)
w[n]

∣∣∣2
σ2

B + ‖hH
IBj[n]Ψ[n]‖2σ2

I

, (15)

γE[n] =

∣∣(hUEj[n] + hH
IE[n]Ψ[n]HUI [n]

)
w[n]

∣∣2
σ2

E + ‖hH
IE[n]Ψ[n]‖2σ2

I

, (16)
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The static noise ns introduced by the IRS in (4) is independent of Ψ and relatively
small, and can be omitted. Hereto, the system’s average secrecy capacity during flight time
can be described as

Rsec =
1
N

N

∑
n=1

[(
J

∑
j=1

αj[n]RBj[n]

)
− RE[n]

]+
, (17)

where RBj[n] = log2
(
1 + γBj[n]

)
, RE[n] = log2(1 + γE[n]), [x]

+ = max(x, 0).

2.3. Power Consumption Model

Assuming the UAV flies at a constant power Pf ly, and the total power consumption of
UAV in the n-th time slot is expressed as follows:

PUAV [n] = ξ‖w[n]‖2 + Pf ly, (18)

where ξ is the reciprocal of the energy conversion coefficient at the transmitter of the UAV.
The maximum transmitting power of the UAV at any time slot during the flight cycle shall
not exceed the upper limit of the transmitting power of the antenna PU .

PUAV [n] ≤ PU , ∀n, (19)

The active IRS amplifies not only useful signals but also useless ones, thus the total
energy consumption of the active IRS in the n-th time slot is expressed as

PIRS[n] = ζ
(
‖Ψ[n]HUI [n]w[n]‖2 + ‖Ψ[n]‖2σ2

I

)
+ NPirs + LPamp, (20)

where ζ is the reciprocal of the energy conversion coefficient at the transmitter of the active
IRS. Pirs and Pamp constitute the hardware static power of the active IRS, which corresponds
to the phase shift and amplifier, respectively. The fully connected architecture is adopted in
the active IRS, i.e., L = K. Specifically, PIRS[n] must not exceed the upper limit of the active
IRS PA, i.e.,

PIRS[n] ≤ PA, ∀n. (21)

2.4. Problem Description

We aim to maximize the average secrecy capacity for legitimate users by jointly de-
signing the user scheduling S =

{
αj[n], n = 1, . . . , N, j = 1, 2 . . . J

}
, the UAV trajectory

Q = {q[n], n = 1, . . . , N}, the reflecting matrix of the active IRS Ψ = {Ψ[n], n = 1, . . . , N},
and the active beamforming vector W = {w[n], n = 1, . . . N}. We also consider the mo-
bility constraints, the power constraints of the active IRS and UAV, and the maximum
magnification limit of amplifiers.

The optimization problem (P1) is formulated as

(P1) : max
S,Q,W,Ψ

Rsec =
1
N

N

∑
n=1

[(
J

∑
j=1

αj[n]RBj[n]

)
− RE[n]

]+
(22a)

αj[n] ∈ {0, 1}, ∀n, j, (22b)

J

∑
j=1

αj[n] ≤ 1, ∀n, 1 ≤ j ≤ J, (22c)

PUAV [n] ≤ PU , ∀n, (22d)

PIRS[n] ≤ PA, ∀n, (22e)
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|Ψ[k, k]| ≤ ηk, ∀n, ∀k, (22f)

q[1] = qI , (22g)

q[N] = qF, (22h)

‖q[n + 1]− q[n]‖ ≤ Vmaxδ, 1 ≤ n ≤ N − 1, (22i)

where ηk denotes the maximum magnification at the k-th reflecting element. The opti-
mization problem (P1) is a non-convex problem and there is a tight coupling among the
optimization variables W, Ψ, and Q. In addition, the power constraint and maximum
amplification of the IRS should be considered while optimizing the phase factor and ampli-
fication factor of the IRS. The channel of the auxiliary communication system of the active
IRS is the sum of a direct link and cascade channel, and the active IRS will introduce extra
noise. Moreover, the objective function is the difference between the two rates and makes
the objective function difficult to solve.

3. Joint Optimization Algorithm

Note that if the value of Rsec is negative in the n-th time slot, we can control the transmit
beamforming vector w[n] = 0, resulting in Rsec = 0. Thus, by modifying the beamforming
vector, we can ensure that the secrecy capacity is never negative. In this case, it is possible
to omit the operator [ · ]+ without affecting the result. Even so, the objective function
of the original problem is non-convex and contains non-convex constraints, making it
challenging to solve. Considering the coupling relationship among variables, the BCD
algorithm is applied to decompose the original problem into four sub-problems: user
scheduling, trajectory optimization, beamforming design, and active IRS control. For the
first sub-problem, we choose the best user by comparing the overall channel conditions.
The locally optimal trajectory solution can be obtained in the second sub-problem. In the
beamforming design problem, the variables about beamforming always exist in quadratic
terms. We first converted the problem by the semidefinite relaxation (SDR) algorithm and
solved the fractional programming problem after transformation by CCT. Similarly, in
the IRS designing problem, the SDR algorithm is applied first and the MM algorithm is
used to relax the transformed non-convex objective function. The flow chart of the joint
optimization algorithm is shown in Figure 2.

3.1. User Scheduling Optimization

For the given UAV trajectory Q, beamforming vector W, and reflecting matrix Ψ,
the transmission rate of eavesdroppers is settled. Thus, the average secrecy capacity is
dependent entirely on the downlink rate of legitimate users. The problem (P1) can be
rewritten by

(P2) : max
S

Rsec =
1
N

N

∑
n=1

J

∑
j=1

αj[n]RBj[n] (23a)

(22b), (22c). (23b)

By finding max(RBc[n]) and setting the corresponding scheduling αc[n] = 1, the rest
αj[n] = 0, j /∈ c, then the optimal scheduling can be expressed as{

αc[n] = 1 αc[n]RBc[n] = max
(
αj[n]RBj

)
∀j ∈ J

αj[n] = 0 j /∈ c
. (24)
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3.2. Trajectory Optimization

With given user scheduling S, beamforming vector W, and reflecting matrix Ψ, the
trajectory optimization sub-problem can be formulated as

(P3) : max
Q

Rsec =
1
N

N

∑
n=1

{(
J

∑
j=1

αj[n]RBj[n]

)
− RE[n]

}
(25a)

(1), (2), (3), (21) (25b)

Based on Jensen’s inequality, RE[n] can be formulated by

RE[n] = E
[

log2

(
1 + εE[n]

∣∣∣(hUE[n] + hH
IE[n]Ψ[n]HUI [n]

)∣∣∣2)] ≤
log2

(
1 + εE[n]E

[∣∣∣(hUE[n] + hH
IE[n]Ψ[n]HUI [n]

)∣∣∣2]) =

log2

(
1 + εE[n]

(
hUE[n]

2 +
∣∣∣hH

IE[n]Ψ[n]HUI [n]
∣∣∣2)) = R̂E[n]. (26)

Considering that W, S, and Ψ are fixed, let A1 =
√

ρ0

∣∣∣h̃[n]∣∣∣, A2[n] =
√

ρ0∣∣∣hIBj[n]Ψ[n]H̃UI [n]
∣∣∣, A3[n] =

√
ρ0

∣∣∣hIE[n]Ψ[n]H̃UI [n]
∣∣∣, H̃UI [n] = aH

N(θAoA[n], ηAoA[n])

aM(γAoD[n]), εBj[n] =
|w[n]|2

‖hH
IBj [n]Ψ[n]‖2σ2

I +σ2
B

, εE[n] =
w[n]2

‖hH
IBj [n]Ψ[n]‖2σ2

I +σ2
E

, ∀n.

Then, the simplified transmission rate of them can be expressed as

RBj[n] = log2

1 + εBj[n]

 A2
1

dβ
UBj[n]

+
A2

2[n]
d2

UI [n]
+

2A1 A2[n]

d
β
2
UBjdUI [n]


, (27)
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R̂E[n] = log2

(
1 + εE[n]

(
A2

1

dβ
UE[n]

+
A2

3[n]
d2

UI [n]

))
. (28)

However, it is difficult to deal with (27) and (28) optimally due to their non-convexity.
We introduce slack variables ν[n] = dUBj[n], ν = {ν[n], ∀n}, and ω[n] = dUI [n],
ω = {ω[n], ∀n}. Provided that R̂E[n] is always negative, which is hard to solve, we
introduce slack variables ζ[n], µt[n](t = 1, 2), the constraints can be expressed as

ζ[n] ≥ log2

(
1 + A2

1εE[n]eµ1[n] + A2
3[n]εE[n]eµ2[n]

)
, ζ = {ζ[n], ∀n}, (29)

e−µ1[n] ≤ ‖q[n]− wE‖2 + H2
U , µ1 = {µ1[n], ∀n}, (30)

e−µ2[n] ≤ ‖q[n]− wI‖2 + (HU − HI)
2, µ2 = {µ2[n], ∀n}. (31)

Then, RBj[n] can be reformulated as follows:

RBj[n] = log2

(
1 + εBj[n]

(
A2

1
νβ[n]

+
A2

2[n]
ω2[n]

+
2A1 A2[n]

ν
β
2 [n]ω[n]

))
. (32)

The original sub-problem can be written as

(P3.1) : max
Q,µ1,µ2,ν,ω,ζ

1
N

N

∑
n=1

(
J

∑
j=1

αj[n]RBj[n]− ζ[n]

)
(33a)

dUBj[n] ≤ ν[n], ∀n, (33b)

dUI [n] ≤ ω[n], ∀n, (33c)

(29), (30), (31), (33d)

which is still non-convex as RBj[n] is still concave with respect to {νk[n], ∀n} and {ωk[n], ∀n}.
The SCA technique is applied to relax the aforementioned issues to its global lower-bound.
The first-order Taylor expansion of (32) can be used to approximate it at the supplied local
points {νk[n], ∀n} and {ωk[n], ∀n} can be given by

R∗Bj[n] ≥ Rlb
Bj[n] = log2G1[n] +

G2[n]
G1[n] ln 2

(ν[n]− νk[n]) +
G3[n]

G1[n] ln 2
(ω[n]−ωk[n]), (34)

G1[n] = 1 + εBj[n]

 A2
1

ν
β
k [n]

+
A2

2[n]
ωk

2[n]
+

2A1 A2[n]

ν
β
2
k [n]ωk[n]

, (35)

G2[n] = −εBj[n]

 A2
1

ν
β+1
k [n]

+
A1 A2[n]

ν
β
2 +1
k [n]ωk[n]

, (36)

G3[n] = −εBj[n]

(
A2

2[n]
ω3

k [n]
+

A1 A2[n]

νk
β
2 [n]ω2

k [n]

. (37)
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Moreover, the constraints (33b) and (33c) are convex with respect to {νk[n], ∀n} and
{ωk[n], ∀n}, and the right parts in (30) and (31) are convex with respect to q[n], and can also
be relaxed to its lower-bound by the first-order Taylor expansion, which can be given by

v2[n] ≥ 2νk[n]ν[n]− ν2
k [n], ∀n, (38)

ω2[n] ≥ 2ωk[n]ω[n]−ω2
k [n], ∀n (39)

u∗1 [n] ≥ ‖qk[n]− wE‖2 + H2
U + 2

(
qk[n]− wE

)T(
q[n]− qk[n]

)
, ∀n, (40)

u∗2 [n] ≥ ‖qk[n]− wI‖2 + H2
U + 2

(
qk[n]− wI

)T(
q[n]− qk[n]

)
, ∀n. (41)

Bringing them to (33b), (33c), (30), and (31), respectively, the problem (P3.1) can be
approximated as

(P3.2) : max
Q,µ1,µ2,ν,ω,ζ

1
N

N

∑
n=1

(
J

∑
j=1

αj[n]R∗Bj[n]− ζ[n]

)
(42a)

d2
UBj[n] + ν2

k [n]− 2νk[n]ν[n] ≤ 0, ∀n, (42b)

d2
UI [n] + ω2

k [n]− 2ωk[n]ω[n] ≤ 0, ∀n, (42c)

e−µ1[n] ≤ u∗1 [n], ∀n, (42d)

e−µ2[n] ≤ u∗2 [n], ∀n, (42e)

(1), (2), (3), (21), (29). (42f)

Thus far, (P3.2) is a standard convex problem that can be solved with the CVX tool.

3.3. Beamforming Optimization

Given user scheduling S, UAV trajectory Q, and reflecting matrix Ψ, the beamforming
design sub-problem can be expressed as

(P4) : max
W

Rsec =
1
N

N

∑
n=1

(
J

∑
j=1

αj[n]RBj[n]− RE[n]

)
(43a)

(19), (21). (43b)

Since the cascaded channel of the problem is extremely complex and the fixed power
consumption in the constraint is known, the fixed parts can be given by (44)–(49):

P̃U [n] =
1

ξ
(

PU [n]− Pf ly

) , ∀n, (44)

P̃A[n] =
1

ζ
(

PA[n]− NPirs − LPamp
) − ‖Ψ[n]‖2σ2

I , ∀n, (45)

h̃B[n] =
hB[n]√

σ2
B + ‖hH

IBj[n]Ψ[n]‖2σ2
I

, ∀n, (46)
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h̃E[n] =
hE[n]√

σ2
E + ‖hH

IE[n]Ψ[n]‖2σ2
I

, ∀n, (47)

hB[n] = hUBj[n] + hH
IBj[n]Ψ[n]HUI [n], ∀n, (48)

hE[n] = hUE[n] + hH
IE[n]Ψ[n]HUI [n], ∀n. (49)

Since the log formula is monotonous, the solution of the original problem will not be
changed by omitting it, then the original sub-problem can be expressed as

(P4.1) : max
W

1
N

N

∑
n=1

((
1 +

∣∣∣h̃B[n]w[n]
∣∣∣2)(1 +

∣∣∣h̃E[n]w[n]
∣∣∣2)−1

)
(50a)

‖w[n]‖2 ≤ P̃U [n], ∀n, (50b)

‖Ψ[n]HUR[n]w[n]‖2 ≤ P̃A[n], ∀n. (50c)

(P4.1) is testing due to the non-convex objective function. Inspired by the SDR tech-
nique, let Y[n] = w[n]wH [n], Y = {Y[n], ∀n}, the original sub-problem can be transferred
to a relaxed one:

(P4.2) : max
Y

1
N

N

∑
n=1

((
1 + h̃B[n]Y[n]h̃H

B [n]
)(

1 + h̃E[n]Y[n]h̃H
E [n]

)−1
)

(51a)

Y[n] < 0, ∀n, (51b)

tr(Y[n]) ≤ P̃U [n], ∀n, (51c)

tr
(

Ψ[n]HUI[n]Y[n]H
H
UI [n]Ψ[n]H

)
≤ P̃A[n], ∀n, (51d)

which is a standard fractional programming problem. By applying the CCT method [30],
the above problem can be converted to

(P4.3) : max
Ỹ,t

1
N

N

∑
n=1

(
t[n] + h̃B[n]Ỹ[n]h̃H

B [n]
)

(52a)

tr(Ỹ[n]) ≤ t[n]P̃U [n], ∀n, (52b)

tr
(

Ψ[n]HUI [n]Ỹ[n]HH
UI [n]Ψ[n]H

)
≤ t[n]P̃A[n], ∀n, (52c)

h̃E[n]Ỹ[n]h̃H
E [n] + t[n] = 1, ∀n, (52d)

t[n] ≥ 0, ∀n, (52e)

Ỹ[n] < 0, ∀n, (52f)

where Ỹ[n] = t[n]Y[n], Ỹ =
{

Ỹ[n], ∀n
}

, t[n] = 1/
(

1 + h̃E[n]Yh̃H
E [n]

)
, and t = {t[n], ∀n},

(P4.3) can be properly optimized via the CVX tool. However, rank(Y[n]) = 1 may not be
satisfied, so the original w[n] cannot be recovered. Specifically, the rank-1 constraint can
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be equivalently expressed as tr
(

Ỹ[n]
)
− λmax

(
Ỹ[n]

)
≤ 0, where λmax(X) is the largest

eigenvalue of X, tr(X) represents the eigenvector corresponding to the largest eigenvalue
of X. By constructing the penalty function, the objective function of this sub-problem is
converted as follows:

1
N

N

∑
n=1

(
−
(

t[n] + h̃B[n]Ỹ[n]h̃H
B [n]

)
+ Λw[n]

(
tr(Ỹ[n])− λmax

(
Ỹ[n]

)))
. (53)

When Λw[n] is large enough, we have tr
(

Ỹ[n]
)
− λmax

(
Ỹ[n]

)
≈ 0, then the rank-1

constraint can be satisfied. However, (53) is still concave, and λmax

(
Ỹ[n]

)
is not differ-

entiable. We can apply the sub-gradient of λmax

(
Ỹ[n]

)
as umax

(
Ỹ[n](r)

)H
umax

(
Ỹ[n](r)

)
,

where umax(X) is the eigenvector corresponding to the largest eigenvalue of X. There-
fore, given a feasible solution Ỹ[n](r) for (P4.3) in the r-th iteration, we get the improved
expression as

(P4.4) : min
Ỹ,t

1
N

N
∑

n=1

(
−
(

t[n] + h̃B[n]Ỹ[n]h̃H
B [n]

))
+ 1

N

N
∑

n=1

(
Λw[n]

(
tr(Ỹ[n])− umax

(
Ỹ[n](r)

)H
Ỹ[n]umax

(
Ỹ[n](r)

))) (54a)

(52b), (52c), (52d), (52e), (52f). (54b)

Problem (P4.4) can be properly optimized through the CVX solver. Given S, Q, and Ψ,
the log function in (P4) can be omitted because of its monotonicity. In objective functions
and constraints, the variable W always appears in quadratic form. Adopting the SDR
algorithm, the problem is transformed by constructing Y[n] = w[n]wH [n] and the CCT
method is used to solve the fractional programming problem (P4.2). It is worth noting that
the rank-one constraint is introduced into SDR, so the penalty Λw is constructed to recover
the original variable as much as possible. The logic of the penalty-based recovery rank-1
algorithm is shown in Algorithm 1. By iteratively solving problem (P4.4) optimally, we
can monotonically tighten the upper bound of (53). Penalty Λw is updated to guarantee the
rank-one constraint.

Algorithm 1 Beamforming Design Algorithm for Problem (P4).

(1): Initialization: maximum threshold ε1, ε2 > 0 penalty Λw = 10 feasible point Ỹ[n](0), t(0), and
number of iterations r = 0.

(2): Calculate
∣∣∣tr(Ỹ[n](r)

)
− λmax

(
Ỹ[n](r)

)∣∣∣. If
∣∣∣tr(Ỹ[n](r)

)
− λmax

(
Ỹ[n](r)

)∣∣∣< ε1 , then the
algorithm converges, go to step (5), else go to step (3).

(3): Optimize Ỹ[n](r+1) and t(r+1) in (P4.4), with given umax

(
Ỹ[n](r)

)
.

(4): Calculate
∣∣∣Ỹ[n](r+1) − Ỹ[n](r)

∣∣∣. If
∣∣∣Ỹ[n](r+1) − Ỹ[n](r)

∣∣∣< ε2 , set Λw = Λw + 10 go to step (3),

else set Ỹ[n](r) = Ỹ[n](r+1), r = r + 1 and go to step (2).
(5): update Y[n](r) = Ỹ[n](r)/t(r) as the optimal solution of (P4).

3.4. Active IRS Optimization

For given user scheduling S, UAV trajectory Q, and beamforming vector W, the
sub-problem of optimizing Ψ can be expressed as

(P5) : max
Ψ

Rsec =
1
N

N

∑
n=1

(
J

∑
j=1

αj[n]RBj[n]− RE[n]

)
(55a)

PIRS[n] ≤ PA, ∀n, (55b)
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|Ψ[k, k]| ≤ ηk, ∀n, ∀k, (55c)

Provided that ψ[n] always appears in quadratic form, the SDR method is applied

again as same as in (P4.2). Let V[n] =
[

ψ[n]
1

][
ψ[n]H 1

]
, and the original problem can be

rewritten as follows:

(P5.1) : max
V

C(V) =
1
N

N

∑
n=1

(−
CBj[n]−

−
CE[n]

)
(56a)

tr(HU [n]V[n]) ≤ P̃A[n], ∀n, (56b)

V[k, k] ≤ η2
k , ∀n, ∀k, (56c)

V[K + 1, K + 1] = 1, ∀n, (56d)

V[n] < 0, ∀n, (56e)

where
−
Cj[n] = log2

(
tr
(

HUj[n]V[n]
))
− log2

(
tr
(

HI j[n]V[n]
))

, (57)

τj = σ2
j + hUj[n]w[n]wH [n]hH

Uj[n], (58)

HU [n] =
[

diag(HUI [n]w[n])diag(HUI [n]w[n])H + σ2
I I 0K×1

01×K 0

]
, (59)

HUj[n] =

[
Hj[n]w[n]wH [n]HH

j [n] + H j[n] Hj[n]w[n]wH [n]hH
Uj[n]

hUj[n]w[n]wH [n]HH
j [n] τj

]
, (60)

HI j =

[
H j[n] 0n×1
01×n σ2

j

]
, (61)

Hj[n] = diag
(
hI j[n]

)
HUI [n], (62)

H j[n] = σ2
I diag

(
hI j[n]

)
diag

(
hI j[n]

)H , j ∈ {Bj, E}. (63)

Due to the objective function’s non-convexity, we can relax the problem and use the
MM algorithm to iteratively optimize the relaxed one. The penalty-based strategy is used
once more to recover the rank-1 solution throughout each iteration. At feasible point Ṽ,
C(V) can be approximated by its first-order Taylor expansion:

C(V) ≥ log2
(
tr
(

HUBj[n]V[n]
))

+ log2(tr(HIE[n]V[n]))
−log2

(
tr
(

HIBj[n]Ṽ[n]
))
− log2

(
tr
(

HUE[n]Ṽ[n]
))

−log2

(
tr
(

HIBj[n]Ṽ[n]
))

+ 1
ln2

tr
(

HIBj [n]
tr(HIBj [n]Ṽ[n])

)(
V[n]− Ṽ[n]

)

−ln
(

tr
(

HUE[n]Ṽ[n]
))

+
1

ln2
tr

 HUE[n]

tr
(

HUE[n]Ṽ[n]
)
(V[n]− Ṽ[n]

)
= C̃

(
V; Ṽ

)
. (64)
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Here, C̃
(

V; Ṽ
)

is a surrogate function, after dropping the constant term, the beam-
forming design problem can be recast into a convex form as

(P5.2) : max
V

1
N

N
∑

n=1

(
log2

(
tr
(

HUBj[n]V[n]
))

+ log2(tr(HIE[n]V[n]))
)

− 1
N

N
∑

n=1

(
1

ln2
tr
((

HIBj [n]
tr(HIBj [n]Ṽ[n])

+ HUE [n]
tr(HUE [n]Ṽ[n])

)
V[n]

))
,

(65a)

(56b), (56c), (56d), (56e). (65b)

(P5.2) can be directly optimized using the CVX solver, then the rank-1 solution is recov-

ered by adding the penalty ΛΨ [n] = tr(V[n])− umax

(
V[n](r)

)H
V[n]umax

(
V[n](r)

)
. After

getting optimal V, the initial reflecting matrix can be rewritten as ψ[n] = diag((umax(V[n])√
λmax(V[n]))[1 : K]). The phase coefficient and amplification coefficient can be expressed

as follows:
Θ[n] = diag(exp(j arg(ψ∗[n]))), ∀n, (66)

p[n] = diag(exp(−j arg(ψ∗[n])))ψ∗[n], ∀n. (67)

Algorithm 2 demonstrates the algorithm’s rationale. The SDR algorithm is adopted
to convert the original sub-problem into an SDP format. Applying the MM algorithm, a
surrogate function is constructed to replace the objective function in (P5.1). By iteratively
solving problem (P5.2) optimally, the convergence of C(V) promised. In each iteration, the
penalty-based method is applied to recover the rank-1 solution.

Algorithm 2 Active IRS Control Algorithm for Problem (P5).

(1): Initialization: maximum threshold ε3 > 0, feasible point Ṽ, Calculate C(V)(r) given Ṽ and
number of iterations r = 0.
(2): Optimize V in (P5.2), with given Ṽ.
(3): Calculate rank(V). If rank(V) > 1, the penalty-based method is applied to recover the rank-1
solution.
(4): Calculate C(V)(r+1) given the rank-1 solution V.

(5): Calculate
∣∣∣C(V)(r+1) − C(V)(r)

∣∣∣. If
∣∣∣C(V)(r+1) − C(V)(r)

∣∣∣< ε3 , then the algorithm converges,

go to step (6), else set r = r + 1, Ṽ = V and go to step (2).

(6): Update ψ[n] = diag
((

umax(V[n])
√

λmax(V[n])
)
[1 : K]

)
as the optimal solution of (P5).

3.5. Overall Algorithm Description

The overall algorithm for solving the issue (P1) is outlined in Algorithm 3, where
the BCD algorithm is applied, in accordance with the results gained in the previous four
sub-problems. The original problem’s sub-optimal solution is found by solving the sub-
problems in turn.

(P4.4) is an approximate solution to the sub-problem obtained from the decomposition
of the original problem, and the convergence analysis of the BCD method cannot be
applied directly. The convergence of Algorithms 1 and 2 are proved in Appendices A
and B, respectively.
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Algorithm 3 Joint Optimization Algorithm for Maximizing Average Secrecy Capacity.

(1): Initialization: maximum threshold ε4 > 0, feasible point Q(0), W(0), Ψ(0) and iteration r = 1.
(2): Obtain S(r) with given Q(r−1), W(r−1), Ψ(r−1) by solving (P2).
(3): Obtain Q(r) with given S(r−1), W(r−1), Ψ(r−1) by solving (P3.2).
(4): Obtain W(r) with given S(r−1), Q(r), Ψ(r−1) by solving (P4.4).
(5): Obtain Ψ(r) with given S(r−1), Q(r), W(r) by solving (P5.2).
(6): With Given S(r), Q(r), W(r) and Ψ(r), update Rsec

(r) set r = r + 1.
(7): Calculate the increment of the target value ∆ = Rsec

(r) − Rsec
(r−1), if ∆ < ε4, the algorithm

converges, go to step (8), else go to step (2).
(8): Output S∗, Q∗, W∗, Ψ∗ and Rsec

∗.

Denote g(S, Q, W, Ψ) as the objective function of (P1), then consider that S(r) is
the solution of (P2), Q(r) is the solution of (P3.2), W(r) is the solution of (P4.4), and
Ψ(r) is the solution of (P5.2). According to the above convergence analysis, we get the
following inference:

g
(

S(r), Q(r), W(r), Ψ(r)
)
≤ g

(
S(r+1), Q(r+1), W(r+1), Ψ(r+1)

)
. (68)

The target value of problem (P1) is non-decreasing after each iteration of Algorithm
3. Since the target value of problem (P1) is bounded by a finite value, Algorithm 3 must
converge to a stable point.

The computational complexity of solving (P2) is expressed as O(N(J + 1)), the com-
putational complexity of using the SCA algorithm for (P3) is O

(
(10N)3.5

)
[31], and the

computational complexity of solving semidefinite programming problems for (P4) and

(P5) is expressed as O
(

NM3) and O
(

N(K + 1)3
)

[32], respectively. Thus, the complexity

of the overall algorithm isO
(

Rite

(
N(J + 1) + (10N)3.5 + NM3 + N(K + 1)3

))
, where Rite

indicates the total number of iterations [33].

4. Analysis of Simulation Results

This section presents numerical findings to demonstrate the effectiveness of the sug-
gested joint optimization scheme based on an active IRS-aided UAV system in improving
the system’s average secrecy capacity. In this section, we present simulation results to show
the performance of the proposed secure transmission scheme. Specifically, we assume that
the ground area is 500× 500 m, where the fixed height of the UAV is 50 m with a maxi-
mum speed Vmax = 15 m/s, the starting position is at the origin, and the flight endpoint
of the UAV is (500, 500)T m. We consider a scenario where a M = 4 antenna UAV and
a K = 16 element active IRS are employed to cooperatively serve the J = 4 legitimate
users, whose positions are (50, 200)T m, (250, 100)T m, (400, 100)T m, and (450, 400)T m,
respectively. The active IRS adopts a fully connected architecture, which means there are
L = 16 amplifiers. The antenna arrays of the UAV and the active IRS are assumed to be
a uniform linear array and UPA, respectively, where the antenna spacings are both λ/2,
λ is the frequency of the carrier wave. The position of the single passive eavesdropper
is (500, 200)T m. There are also fixed active IRSs located at (350, 150)T m with a height of
10 m. The UAV flies at a constant power P f ly = 29.7 dBm, the hardware static power of the
active IRS, which corresponds to the phase shift and amplifier are Pirs = Pamp = 10 dBm,
the maximum power budget at UAV and active IRS are PU = PA = 30 dBm, δ = 1 s is the
time slot. Moreover, σ2

I , σ2
B, σ2

E = −110 dBm and α = 2.2, β = 2.5, κ = 3, ρ0 = −30 dBm,
are the power of AWGN, the path loss exponent, the Rician factor, and the reference chan-
nel gain, respectively. The default simulation parameters are shown in Table 3 unless
otherwise specified.
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Table 3. Simulation parameters.

Symbol Value Symbol Value

J 4 Vmax 15 m/s

M 4 δ 1s

K 16 ρ0 −30 dBm

L 16 α, β 2.2, 2.5

N 50 σ2
I , σ2

B, σ2
E −110 dBm

HU 50 m Pf ly 29.7 dBm

HI 10 m Pirs −20 dBm

q0 (0, 0)T m Pamp −20 dBm

qF (500, 500)T m PU 30 dBm

wBj (50, 200)T m, (250, 100)T m, (400, 100)T m, (450, 400)T m

wE (500, 200)T m PA 18 dBm

wI (350, 150)T m ζ, ξ 1.1

κ 3 d, d0 λ/2

4.1. Performance Simulation Results

Figure 3 illustrates the distribution of four legitimate users, the eavesdropper as well
as the active IRS, and plots the optimal trajectory of the UAV under different flight time
conditions. Due to the “multiplicative fading” effect introduced by IRS, the UAV can
balance the cascaded channel conditions by flying around the IRS and legitimate users and
away from eavesdroppers, providing a safer quality of communication for legitimate users.
Four situations are represented as four actual scenarios: for the original strategy, the UAV
can only fly in an approximately straight path; when T = 60 s, the UAV will try to fly to the
best location to serve each legitimate user; when T = 80 s, the UAV can reach each optimal
location and stay appropriately; when T = 100 s, the UAV will stay in the optimal location
longer, providing a safer and better quality of service to legitimate users.

Figure 4 shows the time allocation and scheduling of four users in each time slot. In
order to maximize the average secrecy capacity, the UAV should select appropriate users
to transmit signals. It is shown that at the beginning, user-1 can obtain a higher secrecy
rate and be selected. Until the 16th slot, user-2 can have a more secure communication
environment due to the changes in UAV position, beamforming, and reflection parameters
of the IRS, so user-2 becomes the served user. Once a user is selected for service, the UAV
will send signals to that the user to obtain the maximum average secrecy capacity. In a
multi-user scenario where time is sufficient, the UAV will first select the service user Bj(k)

and fly to the optimal location. Taking the flight constraints into account, the UAV will
stay for an appropriate amount of time and fly to the next optimal position, simultaneously
sending a signal to Bj(c+1) as so on until it reaches the destination.
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Figure 4. User scheduling in each time slot.

4.2. Performance Comparison of Different Optimization Algorithms

Figure 5 shows a comparison between the suggested scheme and the other two
benchmarks in terms of the average secrecy capacity with respect to various values of P̃U
in (44), which is equivalent to the transmitting power. We considered a scenario where
a M = 4 antenna UAV and a K = 16 element active IRS are employed cooperatively. In
addition, it is worth noting that for the active scheme P̃U is used for transmitting antennas
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and the same power P̃U for reflecting signals, while for the passive schemes 2 ∗ P̃U is used
for transmitting signals. It is shown that the rate of all schemes will increase with the
increase in P̃U to varying degrees. For example, at P̃U = 18 dBm, the active IRS achieves an
improvement of 55.4% and 61.7% compared to the case with passive IRS and without IRS,
respectively. By jointly optimizing user scheduling, UAV trajectory, beamforming, and the
reflecting matrix, the proposed joint optimization strategy can outperform the benchmark
schemes in terms of average secrecy capacity, proving that it is an efficient way to enhance
security performance.

The convergence of the proposed joint optimization algorithm (Algorithm 3) and the
benchmark algorithm is depicted in Figure 7. The average secrecy capacity scheme under
consideration is 11.9% higher than the benchmark without optimal trajectory. Additionally,
the method converges after roughly 30 rounds.
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Figure 6 shows the curve of the performance of the average security capacity with
different settings of the number of IRS reflector units K and the number of antennas of UAV
M. The transmit power P̃U = 18 dBm. As can be seen from the figure, our scheme can
achieve acceptable performance in the above three settings. By comparing the curve of the
(K = 16, M = 4) and (K = 9, M = 4) schemes, we can find that the average secrecy capac-
ity will increase significantly with the increase in K, since more reflecting units can better
align the signal to the served user. By comparing the curve of the (K = 9, M = 6) and
(K = 9, M = 4) schemes, it is verified that the beamforming capability was also improved
to some extent by increasing M, with a further improvement in secure communication per-
formance.
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5. Conclusions

This paper established a model for an active IRS-assisted UAV communication system
where the UAV can dynamically select a user for service in each time slot based on its
channel conditions. To maximize the average achievable secrecy capacity for the whole
flight, the user scheduling, UAV trajectory, transmitting beamforming, and reflecting
matrix are jointly optimized. However, the established problem was challenging to solve
because of the objective non-convex function and tightly coupled variables. Therefore, an
algorithm based on BCD is adopted to solve it. Initially, we decoupled the original issue
into four sub-problems, and then the SCA technique, CCT method, and MM algorithm
were applied to convert the original sub-problems into convex forms. Furthermore, we
solved the above four sub-problems alternately based on the BCD algorithm and finally
obtained the equivalent solution of the original problem. Numerical results show that the
active IRS-assisted UAV communication scheme can efficiently weaken the effect of the
“multiplicative fading” and significantly improved the secrecy capacity. In future research,
we will consider the issues of IRS discrete designing and new advanced multi-access
techniques for next-generation networks, such as NOMA and RSMA. Moreover, the DRL
algorithm can be applied to solve the related optimization problems.
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The following abbreviations are used in this manuscript:
IRS intelligent reflecting surface
UAV unmanned aerial vehicles
BCD block coordinate descent
LoS line of sight
NLoS non-line of sight
MISO multiple input single output
MIMO multiple input multiple output
SCA successive convex approximation
SDR semidefinite relaxation
CCT Charnes–Cooper transformation
MM majorization-minimization
ULA uniform linear array
UPA uniform plane array
AoA angle of arrival
AoD angle of departure

Appendix A

The equivalent form of the problem (P4.4) is expressed as

min
Ỹ,t

1
N

N
∑

n=1

(
−
(

t[n] + h̃B[n]Ỹ[n]h̃H
B [n]

))
+ 1

N

N
∑

n=1

(
Λw[n]

(
tr
(

Ỹ[n]p[n]− λmax

(
Ỹ[n](r)

))))
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− 1
N

N

∑
n=1

(
Λw[n]

(
umax

(
Ỹ[n](r)

)H(
Ỹ[n]− Ỹ[n](r)

)
umax

(
Ỹ[n](r)

))))
. (A1)

Denote f
(

t, Ỹ
)

as the objective function of (P4.4) and
(

t[n](r), Ỹ[n](r)
)

is a feasible so-

lution to the aforementioned problem with a given Λw[n].
(

t[n](r+1), Ỹ[n](r+1)
)

represents
the optimal solution of (64), and one obtains that

−
(

t[n](r+1) + h̃B[n]Ỹ[n]
(r+1) h̃H

B [n]
)
+ Λw[n]

(
tr
(

Ỹ[n](r+1)
)
− λmax

(
Ỹ[n](r)

)
−umax

(
Ỹ[n](r)

)H(
Ỹ[n](r+1) − Ỹ[n](r)

)
umax

(
Ỹ[n](r)

))

≤ −
(

t[n](r) + h̃B[n]Ỹ[n]
(r) h̃H

B [n]
)
+ Λw[n]

(
tr
(

Ỹ[n](r)
)
− λmax

(
Ỹ[n](r)

))
. (A2)

Moreover, the sub-gradient of λ
(

Ỹ[n](r)
)

satisfies

∂λ
(

Ỹ[n](r)
)
= umax

(
Ỹ[n](r)

)
umax

(
Ỹ[n](r)

)H
, (A3)

∀Y ≥ 0, λmax(Y)− λmax(X) ≥ umax

(
Ỹ[n](r)

)H
(Y− X)umax

(
Ỹ[n](r)

)
. (A4)

Thus, we obtain the following

f
(

t[n](r+1), Ỹ[n](r+1)
)
= −

(
t[n](r+1) + h̃B[n]Ỹ[n]

(r+1) h̃H
B [n]

)
+Λw[n]

(
tr
(

Ỹ[n](r+1)
)
− λmax

(
Ỹ[n](r+1)

)
−λmax

(
Ỹ[n](r)

)
+ λmax

(
Ỹ[n](r)

))
≤ −
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t[n](r+1) + h̃B[n]Ỹ[n]

(r+1) h̃H
B [n]

)
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(
tr
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Ỹ[n](r+1)
)
− λmax

(
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))
−Λw[n]

(
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(
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)H(
Ỹ[n](r+1) − Ỹ[n](r)

)
umax

(
Ỹ[n](r)

))
≤ −

(
t[n](r) + h̃B[n]Ỹ(r)[n]h̃H

B

)
+ Λw[n]

(
tr
(

Ỹ[n](r)
)
− λmax

(
Ỹ[n](r)

))
= f

(
t[n](r), Ỹ[n](r)

)
. (A5)

For a given Λw[n], f
(

t[n](r), Ỹ[n](r)
)
≤ f

(
t[n](r+1), Ỹ[n](r+1)

)
holds. Therefore,

f
(

t[n](r), Ỹ[n](r)
)

is non-increasing, which guarantees the convergence of Algorithm 1.

Appendix B

For any concave function, we have f (x) ≤ f (x̃) + (∇ f (x̃))T(x− x̃). tr
(

HIBj[n]V[n]
)

and tr(HUE[n]V[n]) are linear functions, log2

(
tr
(

HIBj[n]V[n]
))

and log2(tr(HUE[n]V[n]))

are concave functions, then the first-order Taylor expansion of log2
(
tr
(

HIBj[n]V[n]
))

and
log2(tr(HUE[n]V[n])) with a given feasible Ṽ can be expressed as

log2
(
tr
(

HIBj[n]V[n]
))

≤ log2

(
tr
(

HIBj[n]Ṽ[n]
))

+ 1
ln2

tr
(

HIBj [n]
tr(HIBj [n]Ṽ[n])

)(
V[n]− Ṽ[n]

)
,

(A6)

log2(tr(HUE[n]V[n]))

≤ log2

(
tr
(

HUE[n]Ṽ[n]
))

+ 1
ln2

tr
(

HUE [n]
tr(HUE [n]Ṽ[n])

)(
V[n]− Ṽ[n]

)
.

(A7)
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Bringing them to C(V), then we have

C(V) = log2
(
tr
(

HUBj[n]V[n]
))

+ log2(tr(HIE[n]V[n]))
−log2(tr(HUE[n]V[n]))− log2

(
tr
(

HIBj[n]V[n]
))

≥ log2
(
tr
(

HUBj[n]V[n]
))

+ log2(tr(HIE[n]V[n]))
−log2

(
tr
(

HIBj[n]Ṽ[n]
))
− log2

(
tr
(

HUE[n]Ṽ[n]
))

−log2

(
tr
(

HIBj[n]Ṽ[n]
))

+ 1
ln2

tr
(

HIBj [n]
tr(HIBj [n]Ṽ[n])

)(
V[n]− Ṽ[n]

)
−log2

(
tr
(

HUE[n]Ṽ[n]
))

+ 1
ln2

tr
(

HUE [n]
tr(HUE [n]Ṽ[n])

)(
V[n]− Ṽ[n]

)
= C̃

(
V; Ṽ

)
, (A8)

where C̃
(

V; Ṽ
)

is a surrogate function since four key conditions hold [34]:

1©C(V) ≥ C̃
(

V; Ṽ
)

; 2©C
(

Ṽ
)
= C̃

(
V; Ṽ

)
; 3©∇C̃

(
V; Ṽ

)∣∣∣V=Ṽ = ∇C(V)
∣∣∣
V=Ṽ

; 4©C̃
(

V; Ṽ
)

and are continuous in V and Ṽ. According to the key property of the MM algorithm, the
convergence of Algorithm 2 is guaranteed.
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