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Abstract: Nowadays, ransomware is considered one of the most critical cyber-malware categories. In
recent years various malware detection and classification approaches have been proposed to analyze
and explore malicious software precisely. Malware originators implement innovative techniques
to bypass existing security solutions. This paper introduces an efficient End-to-End Ransomware
Detection System (E2E-RDS) that comprehensively utilizes existing Ransomware Detection (RD)
approaches. E2E-RDS considers reverse engineering the ransomware code to parse its features and
extract the important ones for prediction purposes, as in the case of static-based RD. Moreover, E2E-
RDS can keep the ransomware in its executable format, convert it to an image, and then analyze it, as
in the case of vision-based RD. In the static-based RD approach, the extracted features are forwarded
to eight various ML models to test their detection efficiency. In the vision-based RD approach, the
binary executable files of the benign and ransomware apps are converted into a 2D visual (color
and gray) images. Then, these images are forwarded to 19 different Convolutional Neural Network
(CNN) models while exploiting the substantial advantages of Fine-Tuning (FT) and Transfer Learning
(TL) processes to differentiate ransomware apps from benign apps. The main benefit of the vision-
based approach is that it can efficiently detect and identify ransomware with high accuracy without
using data augmentation or complicated feature extraction processes. Extensive simulations and
performance analyses using various evaluation metrics for the proposed E2E-RDS were investigated
using a newly collected balanced dataset that composes 500 benign and 500 ransomware apps. The
obtained outcomes demonstrate that the static-based RD approach using the AB (Ada Boost) model
achieved high classification accuracy compared to other examined ML models, which reached 97%.
While the vision-based RD approach achieved high classification accuracy, reaching 99.5% for the
FT ResNet50 CNN model. It is declared that the vision-based RD approach is more cost-effective,
powerful, and efficient in detecting ransomware than the static-based RD approach by avoiding
feature engineering processes. Overall, E2E-RDS is a versatile solution for end-to-end ransomware
detection that has proven its high efficiency from computational and accuracy perspectives, making
it a promising solution for real-time ransomware detection in various systems.

Keywords: ransomware; malware; cybersecurity attacks; static analysis; vision-based detection
system; transfer learning; fine-tuning; machine learning; deep learning

1. Introduction

One of the most prevalent types of malicious software is ransomware [1,2]. Ran-
somware hijacks the user’s device by locking the device or encrypting the user’s data, re-
questing monetary payment in exchange for the locked resources, often causing irreversible
information losses and enduring high economic costs. According to [3], ransomware threat
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attacks surpassed all other types of cybersecurity threats with around 304.7 million attacks
in the first half of 2022. Therefore, there is an urgent need to develop ransomware detection
systems to face the growing scourge of ransomware applications. Ransomware detection
systems identify whether an application is ransomware or benign. Presently, most anti-
virus software implements the signature-based approach [4]. Even though signature-based
schemes consume fewer resources and less time, they are vulnerable to zero-day attacks.
Additionally, the signature-based systems lack the ability to identify ransomware applica-
tions that utilize obfuscation and polymorphism techniques. Furthermore, the presence of
ransomware development tool kits such as RaaS (Ransomware as a Service) contributes to
the growing number of ransomware attacks [5].

To address the aforementioned issues, Machine Learning (ML) techniques are uti-
lized in implementing ransomware analysis schemes [1,2,6–8]. In ransomware analysis,
the functionality of a certain application is determined to classify ransomware and benign
apps. The process of ransomware classification generally falls into three categories: static
analysis, dynamic analysis, and vision-based analysis. In static analysis, the ransomware
APK is reverse-engineered in order to retrieve the source code, strings, and resources of
the application [9]. This approach lacks the ability to monitor the suspicious behavior
of the ransomware since it does not involve an APK execution process. Consequently,
the source code of the ransomware might bypass the static analysis even though it contains
harmful methods that are invoked only during the run time process. Dynamic analysis
detects ransomware applications by executing their APKs in order to observe their run-time
behaviors. As a result, several features can be investigated through the run-time analysis,
such as network traffic, CPU and memory usage, and system calls [10]. Dynamic analysis
is typically performed in a controlled virtual environment, such as emulators, to avoid
harming real devices, which might affect ransomware behavior.

In the vision-based RD analysis, the Android apps are converted to visual images
before in-depth training and testing mechanisms using the developed deep learning (DL)
classifiers [11–15]. The main improvements of vision-based analysis compared to other
static-based or dynamic-based RD detectors are that they lessen the computational cost and
avert reverse engineering steps needed in static-based RD analysis [16]. Moreover, they do
not require to operate particular and isolated running ecosystems to check the behavior of
the ransomware apps as required in dynamic-based RD analysis [17].

The research problem addressed in this paper is the need for an effective ransomware
detection system to identify and prevent attacks on Android mobile systems. So, we
proposed an end-to-end ransomware detection system that used a combination of machine
learning and deep learning approaches based on static-based and vision-based analyses to
detect ransomware attacks. Thus, this research aims to develop a system that can detect
ransomware attacks in real-time on Android operating systems.

Consequently, the research problem behind this work is the growing threat of ran-
somware attacks on mobile systems and the need for an effective and efficient ransomware
detection system. This motivated us to propose a system combining static-based machine
learning and vision-based deep learning approaches to detect ransomware attacks. This is
because most existing related works apply only one of these approaches in their solutions.
They did not try to benefit from the advantages of both approaches within the same con-
text. As a result, we developed a system that can identify ransomware attacks accurately
and quickly, allowing for timely responses and reducing the impact of such attacks on
organizations and individuals. Consequently, the static and dynamic analyses are built on
feature engineering in which a database of malware features is deployed to implement the
machine learning classification scheme. The rapid development of malware with constant
changes raises the challenge of manually updating the malware feature database. Therefore,
to reduce the cost of malware feature engineering, visual-based approaches are utilized
to develop malware detection systems. In visual-based systems such as convolutional
neural networks (CNN), the feature engineering process is embedded within the model
construction phase, as shown in Figure 1.
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Figure 1. Malware classification approaches.

The conventional detection techniques might not be efficient enough to detect new
malware families, including ransomware, without causing high computational process-
ing and memory overheads. Additionally, the traditional malware detection techniques
disclose detection performance degradation due to a limited number of malware samples.
Consequently, the key contributions of this paper are summarized as follows:

• Proposing an efficient, comprehensive end-to-end RD system (E2E-RDS) that com-
poses different static-based ML and vision-based DL classifiers.

• Developing eight different ML models and 19 different DL models and exhaustively
checking their ransomware detection capabilities.

• Examining the proposed E2E-RDS classification performance using static and vision-
based RD approaches.
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• Testing the proposed vision-based RD approach’s performance using different color
and grayscale visual data of the ransomware and begin apps.

• Assessing the proposed E2E-RDS’s performance using various detection and security
evaluation parameters.

The rest of this paper proceeds as follows. Section 2 summarizes the most recently
published and relevant static-based, dynamic-based, and vision-based RD systems in the
literature studies. Section 3 explains the proposed end-to-end RD system. Section 4 offers
the obtained simulation results and comparisons. Section 5 gives the concluding remarks
and some future suggestions.

2. Literature Survey

The advent of Android ransomware applications that threaten security measures has
motivated several analysis approaches for ransomware classification [18]. This section
presents an overview of ransomware detection techniques used in related studies. Table 1
presents and analyzes the recent and relevant RD systems published in the literature studies.
So, Table 1 compares selected papers published in 2020 and after. This range witnessed
the flourishing of visual-based malware detection. Therefore, this literature survey mainly
discusses three approaches recently utilized in Android ransomware detection, which
are the static-based, dynamic-based, and visual-based approaches. Table 1 summarizes
the comparative analysis among these approaches in terms of their aim, the dataset used,
the approach followed, the ML/DL models utilized, the system input, features considered,
and their solution performance concerning accuracy.

2.1. Static-Based Analysis

Static analysis efficiently implements ransomware detection systems without executing
the malware code. Alkhayer et al. proposed a static analysis framework in which the
decompiled APK is parsed in order to build a data set of the applications features [9,19].
Initially, the decompilation process of the APKs retrieves the Manifest file and the .smali
files. After that, these files are scanned via a parsing tool, ASParse, resulting in the
creation of a feature dataset. In [20], a permission-based detection system was developed
to determine Android permissions that contribute to identifying ransomware with high
accuracy. Zhang et al. constructed a static framework that implements a self-attention
detection approach based on opcode sequence in order to classify ransomware [21].

Almomani et al. investigated the most used features of the latest version of Android
(version 11 ) by ransomware [1]. The parsed features were utilized in building a ransomware
detection system by implementing Random Forest (RF) , Naive Bayes (NB) Sequential
Minimal Optimization (SMO), and Decision Tree (DT). In [2], the authors simulated the
real-word by implementing a hybrid evolutionary technique utilizing a highly imbalanced
dataset. The dataset considered by this research consists of 10,153 Android apps, where
only about 5% of the collected applications were ransomware.

In [22], an improved framework named for zero-day ransomware detection was
proposed. The framework employed deep learning-based unsupervised feature extraction
to extract features from the input data and a cost-sensitive Pareto Ensemble classifier to
classify the data into either ransomware or benign. The cost-sensitive approach assigned
different costs to misclassification errors to address the issue of imbalanced data distribution.
The proposed framework showed better performance in detecting zero-day ransomware
compared to traditional classifiers, highlighting the effectiveness of the approach.
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Table 1. Summary of existing malware/ransomware detection schemes.

Work Aim Dataset Approach Models System Input Features Accuracy

[10]

To extract system calls by
developing a dynamic analysis.
The extracted class were fed to
different ML algorithms.

400 B, 400 R Dynamic
Random

Forest, J48,
Naïve Bayes

APK system calls 98.31%

[9]

To propose a static analysis in
which the decompiled APK is
parsed in order to build a data
set of the application’s features.

- Static - Decompiled
APK

Permissions,
API calls -

[20]

To determine Android
permissions that contribute to
identifying ransomware with
high accuracy.

500 B, 500 M Static RF, J48, SMO,
Naive Bayes

Decompiled
APK Permissions 96.9%

[23]

To implement malware
classification on a multi-class
level by combining static
feature extraction and
deep learning.

200 KB,
200 KM Visual Scratch model Decompiled

APK
set of stactic

features 93.36%

[24]
To dynamically analyze an
application by intercepting its
network traffic.

62 B, 130 M Dynamic string
comparison APK System calls 92%

[25]
To develop a ransomware
detection system by observing
the behavior of system calls.

502 B, 500 M Dynamic - APK System calls 98.6%

[21]
To develop a self-attention
detection system based on
opcode sequence.

100 B, 1787 M Static, DL N-gram
opcodes APK Opcode

sequence 89.5%

[26]

To develop a hybrid-based
ransomware detection system
that combines both static and
dynamic analysis.

500 B, 500 M Hybrid (static,
dynamic) - APK API calls -

[1]

To investigate the most used
features by ransomware and
utilize them in building a
ransomware detection system.

501 B, 500 M Static RF, DT, SMO,
NB APK Permissions,

API calls 98.3%

[2]

To classify ransomware
utilizing an evolutionary
approach by deploying the
SVM algorithm.

9653 B, 500 M Static

particle swarm
optimization

algorithm,
SVM, SMOTE

APK Permissions,
API calls -

[27]

To improve the malware
detection accuracy by
deploying fine-tuned
CNN models.

9341 M CNN nine differ-
ent models

Gray-scale
image of APK - 99.97%

[28]

To analyze the local binary
pattern by detecting the
irregularity of the image texture
enabling immediate detection
before execution.

500 B, 305 M CNN

local binary
pattern

(LBP)-based
technique,

SVM

Gray-scale
image of APK - 87.9%

[29]

To effectively classify packed
and unpacked malicious
software by deploying an
ensemble-based CNN scheme.

9339 M CNN VGG16,
ResNet-50

Gray-scale
image of APK - 99%

[30]

To investigate the effectiveness
of the visual-based approach by
employing twelve different
CNN models on a large dataset.

12,971 B
20,199 M CNN VGG3,

ResNet-50

Gray-scale,
colored,

Markov, Gabor
Markov images

- 99.97%

[31]

To construct a Markov image
that contains the malware
statistics by deploying bytes
transfer matrices.

4020 M CNN Scratch model Markov image
of .dex file - 97.364%
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In [32], the authors proposed a new approach named spline interpolation-envisioned
neural network-based for detecting ransomware. This approach combined spline interpo-
lation and neural network techniques to improve accuracy and security. The simulation
results proved the security of the proposed approach against various possible attacks.
In [33], a feature selection-based ransomware detection model is presented. This model
utilized information gain and a genetic algorithm to generate feature sets that can be
used with any machine learning classifier. Different evaluation experiments were con-
ducted on a real-world dataset, demonstrating the feasibility of the proposed model for
ransomware detection.

In [34], the authors proposed a new optimized ML method for ransomware detection
in an Internet of Things (IoT) environment. This method used the dwarf mongoose op-
timization algorithm to optimize the selection of parameters in an extreme ML classifier.
The proposed method was evaluated on a benchmark dataset and outperformed other
state-of-the-art methods in terms of accuracy and speed.

2.2. Dynamic-Based Analysis

An example of the dynamic analysis scheme is ShadowDroid which is a system that
dynamically analyzes an application by intercepting its network traffic [24]. To collect
the needed data, ShadowDroid set up a VPN on the targeted device and performed a
string-matching algorithm to detect private information. The proposed system aims to
enable users to take the correct response strategy. In [26], a hybrid approach was followed
in which both static and dynamic analyses were implemented.

Abdullah et al. developed an Android ransomware classification system using
dynamic-based analysis [10]. The proposed system executed the ransomware applica-
tion on a virtual environment to extract the system calls. Subsequently, the extracted
system calls were fed into three different machine learning algorithms, Random Forest,
Naïve Bayes, and J48. Random Forest exceeded the other algorithms by achieving an
accuracy of 98.31%. Furthermore, Wen et al. built a ransomware detection system based on
observing system calls generated by the ransomware behaviors [25]. The proposed system
focused only on the encryption-type ransomware family.

In [35], the authors presented a comprehensive analysis of techniques to evade ran-
somware detection techniques that use behavioral classifiers. These techniques can evade
behavioral features commonly used by classifiers to detect malware, including features
that are difficult to disguise and are intrinsically related to the behavior of malware pro-
cesses. The authors evaluated the effectiveness of these techniques against state-of-the-art
ransomware detection methods and showed that the proposed evasion techniques could
effectively evade behavioral classifiers.

In [36], the authors proposed a dynamic feature dataset for detecting ransomware
using machine learning algorithms. The dataset included features related to classification,
encryptor, locker, and other relevant factors. The authors evaluated the dataset using three
machine learning algorithms: gradient-boosted regression trees, random forest, and neural
networks. They found that all three achieved an average accuracy of over 0.98 using a
10-fold cross-evaluation.

2.3. Visual-Based Analysis

Recently, deep learning has arisen as a distinguished malware classification approach.
However, there is a shortage of research on detecting ransomware deploying a visual-based
approach [28,37,38]. Hence, general malware texture-based classification systems were
reviewed. Sharma et al. analyzed local binary patterns by detecting the irregularity of
the image texture, enabling immediate detection before execution [28]. Consequently,
the proposed system exposes any malicious operations injected into the ransomware
byte code.

In some research works, pre-trained models can be utilized by implementing a fine-
tuning phase in which the knowledge of these models is transferred. For example, El-
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Shafai et al. deployed fine-tuned CNN models to improve the malware detection accuracy
without constructing training models [27,39]. The visual-based approach might be com-
bined with the static approach in order to implement a multi-class classification of malware
applications. In [23], the authors have proposed DIDroid, which converts the static features
into 2D images aiming to perform malware characterization on a multi-class level. At first,
the APKs were decompiled to extract the required features. Hence, the extracted features
were converted into 2D images and fed to the deep learning model.

To effectively classify packed and unpacked malicious software, the authors of [29]
deployed VGG16 and ResNet-50 CNN models utilizing the Malimg dataset to develop
the proposed detection system. Pinhero et al. investigated the effectiveness of the vision-
based approach by employing twelve different CNN architectures by modifying the VGG3
and ResNet-50 models [30]. A further step towards utilizing the vision-based approach
in implementing malware classification schemes on the byte level was proposed by [31].
In [31], the authors constructed a Markov image containing malware statistics by deploying
bytes transfer matrices.

In [40], a method for evading ransomware detection technologies that use entropy
measurements to identify encrypted data was proposed. This method involved the applica-
tion of various encoding algorithms, including base64 and different file formats, to alter the
randomness of the data and make it appear less random, thereby bypassing the entropy-
based detection methods used by ransomware detection technologies. While the proposed
method was found to be effective against several ransomware detection tools, the au-
thors caution that it may not be effective against all detection technologies, and further
research is needed to develop more robust detection techniques. In [41], the authors pre-
sented a new method for detecting ransomware using graph embedding to represent the
portable executable header. The proposed approach overcame the limitations of traditional
signature-based and machine learning-based methods that require large amounts of labeled
data. The authors evaluated their method on a dataset of over 2000 ransomware and
non-ransomware samples and found that it achieved high accuracy and outperformed
existing methods.

As can be observed from Table 1, no existing study has considered both static/dynamic
and vision-based approaches within the same context to examine their performance in
detecting malware in general and ransomware in specific. Consequently, this has motivated
this research to conduct a deep study on the impact of applying both approaches while
considering the same malware datasets and implementation environments.

3. Proposed End-to-End Ransomware Detection System

This section discusses the details of the proposed end-to-end ransomware detection
system. End-to-end means full utilization of different types of analysis methods, whether
the ones that depend on reverse engineering where the malware code is recovered and
parsed and several features are gathered, such as the case in the static-based analysis or
by taking the malware executable code as is (PE: Portable Executable), converting it to an
image, and then applying analysis as in the case of vision-based systems. The aim is to
investigate the advantage of each one of them to ensure efficient detection of ransomware
apps using the same inputs and environments.

Figure 2 shows the high-level diagram of the E2D-RDS system that composes two
proposed approaches to efficiently detect ransomware apps. The first static-based RD
approach has utilized ML models, as will be discussed in Section 3.1. In contrast, the second
vision-based RD approach has used different CNN models by exploiting the substantial
advantages of FT and TL mechanisms, as will be clarified in Section 3.2.
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Figure 2. Structure of the proposed end-to-end ransomware detection system.

Here are the main steps of the proposed E2E-RDS system that are presented in Figure 2:

• Load dataset containing ransomware and non-ransomware files.
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• Preprocess the dataset by extracting features.
• Split extracted features dataset into training and testing sets.
• Train static-based machine learning models on the training set.
• Test the machine learning models on the testing set.
• Convert the dataset samples into color and gray images.
• Split images dataset into training and testing sets.
• Train vision-based deep learning models on the training set.
• Test the deep learning models on the testing set.
• Check the output of the static-based and vision-based models.
• If the output indicates ransomware, flag the file as malicious.
• If the output indicates non-ransomware, flag the file as safe.
• Evaluate the performance of the system using different relevant metrics such as

accuracy, precision, recall, and other detection metrics.
• Fine-tune the models and retrain if necessary.
• Save the final models for use in future detections.

3.1. The Proposed Static-Based RD Approach

As indicated in Figure 2, in the static-based RD approach, the binary portable APK
files are first decompiled to extract the AndroidManifest.xml binary file, which comprises
the APK’s metadata and all well-defined permissions by the Android APKs. In the de-
compile process, we used the APKtool (https://ibotpeaches.github.io/Apktool/, accessed
on 1 January 2020) to decompile the zipped Android app to the manifest and SMALI files.
The SMALI file signifies a well-defined class in the original binary code of the Android
APK. After that, the required features of the Android APKs are obtained by analyzing the
obtained SMALI and manifest files.

In the parsing process, the obtained feature set used in the proposed static-based
RD approach includes 161 permissions, 228 API packages, and 389 features. The feature
occurrences have been calculated using the assembled APKs by obtaining the features from
the manifest and SMALI files. Therefore, all Android APKs are scanned using separate
stages during the parsing process. In the first stage, the manifest file of each Android APK
is parsed to count the specified features, such as permissions. Then, in the second stage,
the SMALI files of each Android APK are parsed to count the utilized API packages. At the
end, the total parsed extracted features are deposited in the database.

In addition, in the proposed static-based RD approach, we apply pre-processing,
preparing, and cleaning mechanisms to the extracted features to remove the zero-values or
null attributes and represent the extracted features in the proper format before forwarding
them to the utilized ML classifiers. This approach uses eight different ML models to train
and test the extracted features from the APK files. These ML classifiers are Support Vector
Machine (SVM), Random Forest (RF), Ada Boost (AB), Decision Tree (CART), K-Nearest
Neighbor (KNN), Naive Bayes (NB), Linear Discriminant Analysis (LDA), and Logistic
Regression (LR) [42–44]. Finally, the detection efficacy of the used ML classifiers is evaluated
using different assessment tools such as precision, recall, F1-score, ROC curve, confusion
matrix, and accuracy [45,46].

3.2. The Proposed Vision-Based RD Approach

The efficient Ransomware Detection (RD) process is an obligatory aspect of cyberse-
curity applications because ransomware is a highly harmful malicious software that can
infect and encrypt the users’ or organizations’ files and request payment to decipher the
encrypted files. Most of the RD approaches developed recently have introduced different
detection mechanisms to identify ransomware after extracting its main texture features
(static-based RD) or starting its execution (dynamic-based RD). However, unfortunately,
the static-based RD approaches require additional processing stages to analyze and extract
the ransomware features. In addition, until recently once the ransomware app is executed
and begins its attack, no currently developed dynamic-based RD approaches have been

https://ibotpeaches.github.io/Apktool/
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suggested that can prevent and stop its harm. Therefore, instead of using conventional
static- or dynamic-based RD approaches, this section introduces a vision-based RD ap-
proach by exploiting 19 different FT CNN models. These models can inexpensively identify
ransomware apps with low computation requirements and high detection performance.

In the proposed vision-based RD approach, the binary executable files of the benign
and ransomware apps are converted into 2D visual (color or grayscale) images. Then, these
images have been forwarded to the employed FT CNN models for a binary classification
purpose to differentiate ransomware apps from benign apps. The main benefit of this
approach is that it can efficiently detect and identify ransomware without using data aug-
mentation or complicated feature extraction processes. Therefore, the FT (Fine-Tuning) and
TL (Transfer Learning) techniques were only exploited in the proposed vision-based RD
approach to achieve high detection accuracy. The TL process offers effective and promising
solutions through the knowledge transfer of pre-trained CNN models. While in the FT tech-
nique, the pre-trained CNN layers are progressively trained by modifying their weights and
the learned hyperparameters until they achieve a remarkable classification performance.

As indicated in Figure 2, the primary strategy of the proposed vision-based RD
approach involves three main stages: (1) dataset conversion and preparation stage, (2) TL,
FT, and classification stage, and (3) performance assessment stage. The explanations of
these stages are as follows:

3.2.1. Dataset Conversion and Preparation Stage

In this stage, the benign and ransomware apps of our newly collected balanced
500/500 (ransomware/benign) dataset are directly converted to both color and gray images
without using any decryption, decompression, and disassembly methods. The primary
goal of transforming the PE (portable executable) APKs to images is to acquire the main
texture features of the benign and ransomware apps. In the conversion process, the benign
and ransomware APKs are first transformed into 1D 8-bit binary vectors, and after that,
these binary vectors are transformed into visual 2D color or gray images. The CNN
models utilized in the proposed vision-based RD approach for the binary classification task
exploited the resulting texture features extracted from the obtained images in detecting
ransomware apps efficiently. Thus, the significant benefit of the proposed vision-based
RD approach is that it does not need any feature extraction or reverse-engineering tasks to
be performed.

Figure 3 demonstrates some visual color and gray images of the ransomware and
benign apps after reorganizing the 1D binary vectors into 2D graphical arrangements. It
is noticed from Figure 3 that the texture features and stripes of the obtained ransomware
images are entirely different from the texture features and stripes of the benign images,
either in the color or gray images. Additionally, as observed, each converted image has a
different width than another image because each benign or ransomware app has a different
size. So, the obtained image width is based on the size of the benign and ransomware APKs.
Table 2 shows the typical different image widths of benign and ransomware APKs based
on their sizes. Consequently, such remarks have inspired us to optimize and exploit the
common pre-trained CNN architectures applied for image recognition and classification
tasks into vision-based RD tasks.

Before forwarding the accumulated visual images of the ransomware and benign apps
to the suggested fine-tuned CNN models for detection and classification purposes, these
images are divided into 80% to train the layers of CNN models and 20% for testing the
CNN models. These testing and training percentages of benign and ransomware images
are selected randomly for the accumulated visual image datasets (color and grayscale). Ad-
ditionally, as a preparation step, the obtained visual images of the benign and ransomware
apps must be resized before performing the training and classification processes using a
specified CNN model. This is because each one of the suggested fine-tuned CNN models
has its standard size for the input visual images, as demonstrated in Table 3.
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(i) Color images. (ii) Gray images.

(a)

(i) Color images. (ii) Gray images.

(b)

Figure 3. Samples of visual color and gray images of ransomware and benign apps. (a) Visual images
of ransomware apps. (b) Visual images of benign apps.

Table 2. Typical image widths for different sizes of benign and ransomware APKs.

APK Size Image Width

<10 KB 32
10∼30 KB 64
30∼60 KB 128

60∼100 KB 256
100∼200 KB 384
200∼500 KB 512
500∼1000 KB 768

1000∼2000 KB 1024
2000∼4000 KB 1280
4000∼8000 KB 1536

8000 KB∼10 MB 1792
10∼15 MB 2048
15 ∼20 MB 2560
20∼25 MB 3072
25∼30 MB 4096

>30 MB 5120

Table 3. The examined CNN models and their input image resolutions.

No. Model Name Image Size

1 ResNet50 224 × 224
2 AlexNet 227 × 227
3 InceptionV3 299 × 299
4 ResNet101 224 × 224
5 GoogleNet 224 × 224
6 VGG16 224 × 224
7 DarkNet53 256 × 256
8 Xception 299 × 299
9 InceptionResNetV2 299 ×299
10 MobileNetV2 224 × 224
11 NasNetMobile 224 × 224
12 DarkNet19 256 × 256
13 ResNet18 224 × 224
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Table 3. Cont.

No. Model Name Image Size

14 DenseNet201 224 × 224
15 NasNetLarge 331 × 331
16 Places365-GoogleNet 224 × 224
17 ShuffleNet 224 × 224
18 SqueezeNet 227 × 227
19 VGG19 224 × 224

3.2.2. TL, FT, and Classification Stage

As shown in Figure 2, the proposed vision-based RD approach comprises 19 various
CNN models, which are ResNet50, AlexNet, InceptionV3, ResNet101, GoogleNet, VGG16,
DarkNet53, Xception, InceptionResNetV2, MobileNetV2, NasNetMobile, DarkNet19, ResNet18,
DenseNet201, NasNetLarge, Places365-GoogleNet, ShuffleNet, SqueezeNet, and VGG19 [47–49].
These models do not employ reverse engineering to extract the main features of the visual
images used in the binary classification process of detecting and recognizing ransomware apps.
Thus, in the proposed vision-based RD approach, we exploit the transfer learned features
of the fine-tuned and optimized CNN versions of these pre-trained CNN models to detect
ransomware attacks without the need to design deep CNN models learned from scratch.

The CNN models used in the proposed vision-based RD approach can be classified into
two categories: (1) single-path designs and (2) multi-path designs. In the first category of
single-path designs, the CNN layers are arranged in a series path with a sequential structure,
and they have single input and output layers. In the second category of multi-path designs,
there are multiple parallel paths for the composed CNN layers in the utilized CNN model,
and thus they have multiple input and output layers. Examples of single-path CNN designs
are AlexNet, VGG16, DarkNet19, and VGG19 models, wheres examples for the multi-path
CNN designs are ResNet50, InceptionV3, ResNet101, GoogleNet, DarkNet53, Xception,
InceptionResNetV2, MobileNetV2, NasNetMobile, ResNet18, DenseNet201, NasNetLarge,
Places365-GoogleNet, ShuffleNet, and SqueezeNet models [47–49]. From a complexity
perspective, the multi-path designs-based CNN models are more complex than the single-
path-design-based CNN models. They have an additional advantage in attaining high
detection accuracy and a low misclassification rate. This is due to the extensive extracted
features from the input visual ransomware and benign images by different composed CNN
layers during the training process.

The TL is considered a supervised learning process that trains a CNN model on one
classification problem with a specific image dataset. After that, it utilizes the learned fea-
tures in another and different classification challenge on a different image dataset. The sig-
nificant profit of using the TL process is to decrease the examined CNN model’s training
time and achieve low generalization and classification errors, thus avoiding the overfitting
occurrence. In addition, the importance of employing the TL process is highlighted when
the dataset used in the classification task has few samples of visual images, as in our
proposed vision-based RD approach (500 ransomware samples and 500 benign samples).

Amongst the nineteen different tested CNN structures utilized in the proposed vision-
based RD approach, the optimized version of the ResNet50 CNN structure attains the best
detection efficiency and classification accuracy. Therefore, in our work, in-detail discussions
and explanations of this CNN model (FT ResNet50) are presented. The general details
and basic descriptions of the other 18 different CNN structures (AlexNet, InceptionV3,
ResNet101, GoogleNet, VGG16, DarkNet53, Xception, InceptionResNetV2, MobileNetV2,
NasNetMobile, DarkNet19, ResNet18, DenseNet201, NasNetLarge, Places365-GoogleNet,
ShuffleNet, SqueezeNet, and VGG19) used in the proposed vision-based RD approach
could be explored in [50–56].

The structural design of the employed FT ResNet50 CNN model employed in the
proposed RD approach is depicted in Figure 4. The pre-trained version of this ResNet50
CNN model is trained on more than ten million natural images with more than 1000 various
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classes composed in the common ImageNet dataset [57]. Thus, in the proposed vision-
based RD approach, we exploited the resulting learned features and performed fine-tuning
for the convolutional layers’ hyperparameters and weights to detect ransomware attacks
efficiently and rapidly.

Figure 4. Structure of the fine-tuned ResNet50 model.

The utilized residual network (ResNet50) has a simpler multi-path design structure
than other multi-path CNN structures. It consists of four different sequential stages of
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convolutional (Conv) layers with different sizes and numbers of integrated filters, as shown
in Figure 4. These Conv layers extract the main features from the input visual ransomware
and benign images. Each of these Conv layers in the ResNet50 structure has a batch normal-
ization layer and a Rectified Linear Unit (ReLU) activation function that is not indicated in
Figure 4 for presentation simplicity. So, there is a hidden ReLU function after each hidden
batch normalization layer for each Conv layer in Figure 4. The ReLU functions are used to
activate the nonlinear batch normalization layers for quickly accomplishing convergence
performance and thus accelerating the training mechanism. Therefore, the ResNet50 model
is faster and more accurate than other multi-path CNN structures. In addition, it can extract
more features and characteristics from the input visual images of the ransomware and
benign apps.

Furthermore, the ResNet50 model includes a max-pooling layer with a kernel size of
3 × 3 at the input level, and it incorporates an average pooling layer with a kernel size of
7 × 7 at the output level. The max-pooling layer determines the maximum value within the
patches of the extracted feature maps. In contrast, the average pooling layer is employed
to determine the average value within the patches of the extracted feature maps. Finally,
the extracted features resulting from the Conv layers are forwarded to the classification
layers (fully connected and softmax layers) to differentiate the ransomware samples from
the benign samples. In the FT ResNet50 model, the last fully connected layer is modified to
have two outputs (ransomware and benign) instead of the 1000 outputs as in the original
pre-trained ResNet50 CNN model.

The main advantages of the employed FT ResNet50 model are (1) the utilization of the
batch normalization layer that optimizes the parameters of the input layer to improve the
CNN model performance, and thus the covariate shift is alleviated, (2) the utilization of the
identity connections that protect the CNN model structure from diminishing gradient prob-
lems, (3) the utilization of residual bottleneck block designs that enhance the CNN model
performance, and (4) the utilization of different sizes of kernels within the Conv layers,
and thus the achievement of deep discovering and learning of the foremost characteristics
and texture features from the input visual images.

As discussed in the proposed vision-based RD approach, the fine-tuning for the
hyperparameters of the layers included in the employed CNN models is carried out besides
exploiting TL benefits. The fine-tuning method is preferable during the training of CNN
models compared to other tunning methods (e.g., shallow tuning and deep tuning, because
the FT achieves higher detection performance and lower computations than shallow and
deep tuning approaches). Thus, this motivates us to use the FT process in the proposed
vision-based RD approach to optimize the weights and parameters of the CNN layers until
achieving optimum classification results for efficiently detecting the ransomware attacks
in android mobile operating systems. The optimum fine-tuning and training parameters
utilized in the second proposed approach are summarized in Table 4. These optimization
parameters are thoughtfully selected after performing different simulation experiments on
the examined CNN models using the created visual android dataset until optimizing the
testing and training operations of the employed CNN models to avoid overfitting problems.

Table 4. Fine-tuning and training optimization parameters utilized in the proposed vision-based
RD approach.

Parameter Value

Learning ratio (LR) 0.00001
Optimization approach ADAM

Regularization approach L2-regularizer
Regularization decay rate 0.001

Number of epochs 20
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Table 4. Cont.

Parameter Value

Minimum batch size 16
Validation frequency 16

Dropout rate 0.5
LR schedule parameter Piecewise

LR drop period parameter 3
LR drop factor parameter 0.9

Loss function Categorical cross-entropy
Shuffling scenario Performed every epoch

3.2.3. Performance Assessment Stage

Various detection assessment metrics have been exhaustively introduced in the litera-
ture to offer comprehensive evaluations of detection and classification algorithms [45,46].
In our performance analysis of the employed CNN models, we used various detection
metrics instead of only evaluating the detection accuracy, since the utilization of only
detection accuracy as an assessment metric of the classification performance is not precise
from conceptual and practical perspectives. So, the detection accuracy combines the result
in the competence of the CNN model to appropriately predict both N (negative) and P
(positive) cases, and it is not potential to assess if the CNN model is better in accurately
expecting N or P. Thus, a high accuracy value can be achieved by the excellent ability of
the CNN model to predict only one of the possible classes accurately.

Therefore, when the performance accomplishment of a CNN model is assessed, other
evaluation metrics of detection quality are also necessary to be estimated. Moreover, those
evaluation metrics are very beneficial for comparing various CNN-based classification
models because different CNN models can expect very distinct classes but with identical
classification accuracy. Thus, different detection analysis metrics are exploited in this stage
to explore the performance assessment of the developed nineteen CNN models for our
investigated binary classification challenge of detecting ransomware attacks.

Our detection analysis of the binary classification challenge has been performed based
on obtaining the results of the confusion matrix, loss and accuracy curves, validation
accuracy, true-positive rate (TPR) (recall) (sensitivity), predictive value (PPV) (precision),
negative predictive value (NPV), true-negative rate (TNR) (specificity), F1-Score, area
under the receiver operating characteristic (AROC) curve, AROC score, false-negative
rate (FNR), false-positive rate (FPR), false-omission rate (FOR), false-discovery rate (FDR),
and misclassification rate.

In any binary classification challenge, if N (negative) and P (positive) are the probable
classes/labels for each examination, a detection CNN model can generate only four scores,
as shown in Figure 5. These scores are (1) TP (true positive): this score occurs if the CNN
model predicts P, and it is likewise the true response, (2) FP (false positive): this score
occurs if the CNN model predicts P, but the true response is N, (3) TN (true negative):
this score occurs if the CNN model predicts N, and it is likewise the true response, and
(4) FN (false negative): this score occurs if the CNN model predicts N, but the true response
is P. These four scores can be utilized to estimate the numerical values of the examined
detection assessment metrics; their mathematical formulas are expressed as follows:

Validation accuracy =
TN + TP

FP + TP + FN + TN
(1)

TPR (sensitivity) = recall =
TP

FN + TP
(2)

PPV (precision) =
TP

FP + TP
(3)



Sensors 2023, 23, 4467 16 of 27

NPV =
TN

FN + TN
(4)

TNR (specificity) =
TN

FP + TN
(5)

F1-Score =
2TP

2TP + FN + FP
(6)

false-negative rate (FNR) =
FN

TP + FN
(7)

false-positive rate (FPR) =
FP

TN + FP
(8)

false-omission rate (FOR) =
FN

TN + FN
(9)

false-discovery rate (FDR) =
FP

TP + FP
(10)

misclassification rate =
FN + FP

FP + TP + FN + TN
(11)

Figure 5. Binary confusion matrix.

The loss curve is a tracing representation that demonstrates the estimated loss ratios
for all examined training epochs, while the accuracy curve is a tracing representation that
indicates the estimated accuracy ratios for all examined training epochs. Finally, the AROC
curve represents the trade-off between the FPR (1-specificity) and TPR, while the AROC
score is the estimated area under the AROC curve.

4. Results and Comparisons

This section introduces the analysis and discussions of the proposed E2E-RDS, in-
cluding static-based and vision-based RD approaches using our collected and balanced
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benign and ransomware APKs. The dataset used in this work is publicly available on the
Security Engineering Lab (SEL) website (https://sel.psu.edu.sa/Research/datasets/2020
_RansIm-DS.php, accessed on 1 January 2020). The collection process of this dataset started
by assembling the Android APKs (ransomware and benign). Both ransomware and benign
samples were downloaded as Android Packages (APK). Benign APKs were downloaded
from the Google play store. While ransomware APKs were downloaded from several
famous market repositories, including HelDroid, VirusTotal, RansomProper, and Koodous.
After that, the duplicated Android apps were removed.

4.1. Performance Analysis and Discussion of the Proposed Static-Based RD Approach

This section discusses the performance analysis of the proposed static-based RD
approach. The evaluation of the utilized eight different ML classifiers is performed on
the extracted features of the balanced ransomware and benign images (500 ransomware
and 500 benign). These features are divided into 80% to train the layers of the examined
ML classifiers and 20% for testing the utilized ML classifiers. These testing and training
percentages of benign and ransomware features are selected randomly from the obtained
static features dataset.

For simplicity in the presentation of the results, the obtained confusion matrix and
ROC curve of only the best proficient ML classifier used in the proposed static-based RD
approach are presented. At the same time, the summarized outcomes of the average values
of all quantitive evaluation metrics (accuracy, recall, precision, and F1-Score) are offered for
all examined ML classifiers.

Figure 6 declares the obtained confusion matric and ROC curve for the best accom-
plished AB classification model used in the proposed static-based RD approach. The ac-
quired confusion matrix and ROC curve reveal that the AB ML-based RD classifier can
correctly detect almost all ransomware APKs and differentiate them from benign APKs
using the static input features.

(a) (b)

Figure 6. The obtained confusion matrix and ROC curve for the best accomplished ML-based AB
detection model. (a) Confusion matrix. (b) ROC curve.

The performance analysis results of the average values of different classification as-
sessment metrics for the examined ML classifiers are given in Tabe 5. The tested ML models

https://sel.psu.edu.sa/Research/datasets/2020_RansIm-DS.php
https://sel.psu.edu.sa/Research/datasets/2020_RansIm-DS.php


Sensors 2023, 23, 4467 18 of 27

utilized in the proposed static-based RD approach are observed to achieve reasonable
and acceptable detection outcomes of high detection accuracy, F1-Score, recall, and pre-
cision values. The tested ML models utilized in the proposed static-based RD approach
are observed to achieve reasonable and acceptable detection outcomes of high detection
accuracy, F1-Score, recall, and precision values. The best-accomplished ML classifier that
achieves high detection accuracy was the AB model, while the LR model achieved the
lowest detection performance compared to other examined ML models.

Table 5. The obtained evaluation metrics for the examined ML detection models.

ML Model Accuracy Recall Precision F1-Score

SVM 0.925 0.925 0.925 0.925
RF 0.945 0.945 0.945 0.94
AB 0.97 0.97 0.97 0.97

CART 0.94 0.94 0.94 0.94
KNN 0.93 0.929 0.93 0.93
NB 0.88 0.88 0.889 0.88

LDA 0.90 0.90 0.90 0.90
LR 0.84 0.84 0.84 0.84

4.2. Performance Analysis and Discussion of the Proposed Vision-Based RD Approach

In this section, the performance analysis of the proposed vision-based RD approach is
discussed. The training and validation experiments were carried out using MATLAB 2020b
on a laptop machine with an Intel Core i7-4500 processor with 8 gigabyte memory without
a GPU accelerator. The evaluation of the 19 different employed CNN models is performed
on the created balanced visual ransomware and benign images (500 ransomware images
and 500 benign images). These images were divided into 80% to train the layers of the
examined CNN models and 20% for testing the utilized CNN models. These testing and
training percentages of benign and ransomware images were selected randomly from the
created visual color or gray dataset.

Therefore, the detection efficiency and classification performance of the proposed
vision-based RD approach that composes nineteen different employed CNN models have
been examined using both visual color and grayscale images generated from our collected
ransomware and benign apps. This is to extensively analyze and investigate the effect
of using two different visual image representations (color and grayscale formats) of the
android ransomware and benign APKs on the detection efficiency of the proposed vision-
based RD approach.

For simplicity in the presentation of the results, the detailed outcomes regarding the
confusion matrix, loss and accuracy curves, and AROC curves of the best proficient fine-
tuned ResNet50 model in the proposed vision-based RD approach are presented. While the
summarized outcomes of the average values of all quantitive evaluation metrics (validation
accuracy (Val. Acc.), recall (Rec.), precision (Prec.), NPV, specificity (Spec.), F1-Score, AROC
score, FNR, FPR, FOR, FDR, and misclassification rate (Mis. Class. Rate)) that are discussed
in Section 3.2.3 are offered for all developed and fine-tuned CNN models utilized in the
proposed vision-based RD approach.

Figures 7 and 8 declare the obtained accuracy and loss curves for the training and
validation processes of the best accomplished ResNet50 classification model using the color
and grayscale image datasets, respectively.
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Figure 7. The obtained accuracy and loss curves for the training and validation processes of the best
accomplished ResNet50 classification model using the color image dataset.

Figure 8. The obtained accuracy and loss curves for the training and validation processes of the best
accomplished ResNet50 classification model using the gray image dataset.
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It can be realized that the testing and training accuracy curves for both color and
grayscale datasets are matched to each other, and they tend to be steady after only five
epochs. However, the testing loss curves were marginally higher than the training loss
curves, especially for the grayscale image dataset, but the obtained validation loss has an
acceptable average value of less than 0.1. Thus, it is demonstrated that the outcomes of the
testing and training loss and accuracy curves for the visual color dataset are better than
those for the visual grayscale dataset. Both visual color and grayscale datasets proved
and validated the excellent detection performance of the examined fine-tuned ResNet50
model using different visual image representations for the ransomware and benign APKs.
So, the fine-tuned ResNet50 model achieved high detection and low misclassification per-
formance at minimal epochs (training iterations). Furthermore, analogous outstanding
achievements of loss and accuracy curves are acquired and accomplished for the other
investigated 18 different CNN models tested in the proposed vision-based RD approach
for the color and grayscale image datasets. Consequently, the developed fine-tuned CNN
models that have been used in the proposed vision-based RD approach are highly recom-
mended to be exploited in cybersecurity applications for accurately detecting ransomware
attacks in Android operating systems.

Figure 9 shows the obtained confusion matrices for the best accomplished FT ResNet50
classification model using color and grayscale image datasets. In addition, Figure 10
demonstrates the obtained AROC curves for the best accomplished ResNet50 classification
model using color and grayscale image datasets. These acquired confusion matrices and
AROC curves reveal that the fine-tuned ResNet50 model can correctly detect almost all
ransomware APKs and differentiate them from benign APKs using color or grayscale image
datasets. Furthermore, it is clear that the attained confusion matrices or AROC curves of the
color image dataset are slightly better than those achieved using the grayscale image dataset.
These similar observations are obtained for the other 18 different examined FT CNN models
utilized in the proposed vision-based RD approach. Thus, the employed fine-tuned CNN
models are highly recommended to be used efficiently for detecting ransomware attacks in
Android cybersecurity applications.

(a) (b)

Figure 9. The obtained confusion matrix for the best accomplished ResNet50 classification model
using (a) color image dataset and (b) gray image dataset.
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(a) (b)

Figure 10. The obtained AROC curves for the best accomplished ResNet50 classification model using
(a) color image dataset and (b) gray image dataset.

The performance analysis results of the average values of different classification
assessment metrics for the examined CNN models on the color and grayscale image
datasets are given in Tables 6 and 7, respectively. It is observed that the whole tested fine-
tuned CNN models utilized in the proposed vision-based RD approach achieve promising
outcomes of high validation accuracy, TPR, PPV, NPV, TNR, F1-Score, and AROC values,
and also, all of them attain low FNR, FPR, FOR, FDR, and misclassification rate values
for both color and grayscale datasets. Moreover, it is demonstrated that the assessment
detection values obtained using the color image dataset are slightly higher than those
obtained using the grayscale image dataset. Furthermore, despite its design simplicity,
the fine-tuned ResNet50 CNN model achieved the best detection results compared to other
fine-tuned CNN models for both color and grayscale images. These promising classification
results for the whole tested FT CNN-based TL models have been accomplished with the aid
of using transfer learned features resulting from the pre-trained CNN models in addition
to exploiting the fine-tuning of their layers and hyperparameter values.

After validating the classification performance analysis and detection efficiency of the
proposed fine-tuned CNN models, we have investigated the complexity analysis of the
proposed vision-based RD approach concerning (1) the storage size of the utilized visual
datasets, (2) experimental requirements of the employed CNN models, and (3) computation
detection overhead of the FT CNN models. Table 8 presents the storage size in gigabytes of
the color and grayscale visual images of the ransomware and benign samples, while Table 9
indicates the specifications of the utilized FT CNN models. Finally, Table 10 introduces the
computational analysis of the utilized FT CNN models.

Table 8 shows that the storage size of the visual color samples (4.198 GB) has a minor
increase in size compared to the storage size of the visual grayscale samples (4.143 GB).
The last row in Table 8 indicates that there is a slight storage size increase of 0.055 GB
for the visual color samples compared to the visual grayscale samples. Thus, there is an
increase in percentage of 1.31% produced when using the visual color samples, which is
reasonable and tolerable compared to the added benefits from using them compared to
visual grayscale samples concerning the accomplished high detection efficiency and low
misclassification rate for almost all FT CNN models as discussed and indicated previously
in Tables 6 and 7.
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Table 6. Performance analysis results of the examined CNN models on color image dataset.

Model Val. Acc. Rec.
(TPR)

Prec.
(PPV) NPV Spec.

(TNR)
F1-

Score AROC FNR FPR FOR FDR Mis Class.
Rate

ResNet50 0.995 1 0.99 1 0.99 0.995 0.9998 0 0.01 0 0.0099 0.005
AlexNet 0.995 0.99 1 0.9901 1 0.995 1 0.01 0 0.0099 0 0.005

InceptionV3 0.995 0.99 1 0.9901 1 0.995 0.999 0.01 0 0.0099 0 0.005
ResNet101 0.995 0.99 1 0.9901 1 0.995 0.9998 0.01 0 0.0099 0 0.005
GoogleNet 0.99 0.99 0.99 0.99 0.99 0.99 0.9977 0.01 0.01 0.01 0.01 0.01

VGG16 0.99 0.98 1 0.9804 1 0.9899 1 0.02 0 0.0196 0 0.01
DarkNet53 0.99 0.98 1 0.9804 1 0.9899 0.99 0.02 0 0.0196 0 0.01
Xception 0.99 0.99 0.99 0.99 0.99 0.99 0.9981 0.01 0.01 0.01 0.01 0.01

InceptionResNetV2 0.99 1 0.9804 1 0.98 0.99 0.9981 0 0.02 0 0.0196 0.01
MobileNetV2 0.985 1 0.9709 1 0.97 0.9852 0.9995 0 0.03 0 0.0291 0.015
NasNetMobile 0.985 0.99 0.9802 0.9899 0.98 0.985 0.9984 0.01 0.02 0.0101 0.0198 0.015

DarkNet19 0.985 0.99 0.9802 0.9899 0.98 0.985 0.9926 0.01 0.02 0.0101 0.0198 0.015
ResNet18 0.985 1 0.9708 1 0.97 0.9852 0.9962 0 0.03 0 0.0291 0.015

DenseNet201 0.985 1 0.9708 1 0.97 0.9852 0.9988 0 0.03 0 0.0291 0.015
NasNetLarge 0.985 0.99 0.9802 0.9899 0.98 0.985 0.9984 0.01 0.02 0.0101 0.0198 0.015

Places365-GoogleNet 0.98 1 0.9615 1 0.96 0.9804 0.9991 0 0.04 0 0.0384 0.02
ShuffleNet 0.98 0.97 0.9898 0.9706 0.99 0.9798 0.9904 0.03 0.01 0.0294 0.0102 0.02

SqueezeNet 0.98 0.99 0.9706 0.9897 0.97 0.9802 0.9973 0.01 0.03 0.0102 0.0294 0.02
VGG19 0.97 0.97 0.97 0.97 0.97 0.97 0.995 0.03 0.03 0.03 0.03 0.03

Table 7. Performance analysis results of the examined CNN models on gray image dataset.

Model Val. Acc. Rec.
(TPR)

Prec.
(PPV) NPV Spec.

(TNR)
F1-

Score AROC FNR FPR FOR FDR Mis Class.
Rate

ResNet50 0.99 0.99 0.99 1 0.99 0.99 0.9997 0.01 0.01 0.01 0.01 0.01
NasNetMobile 0.985 0.99 0.9802 0.9899 0.98 0.9851 0.9983 0.01 0.02 0.0101 0.0198 0.015
MobileNetV2 0.985 0.97 1 0.9709 1 0.9847 0.9912 0.03 0 0.0291 0 0.015
InceptionV3 0.985 0.97 1 0.9709 1 0.9847 0.9999 0.03 0 0.0291 0 0.015
GoogleNet 0.985 0.98 0.9899 0.9802 0.99 0.9849 0.9997 0.02 0.01 0.0198 0.0101 0.015

VGG16 0.98 0.96 1 0.9615 1 0.9796 0.9996 0.04 0 0.0385 0 0.02
AlexNet 0.98 0.98 0.98 0.98 0.98 0.98 0.9939 0.02 0.02 0.02 0.02 0.02

DarkNet19 0.98 0.98 0.98 0.98 0.98 0.98 0.9925 0.02 0.02 0.02 0.02 0.02
Places365-GoogleNet 0.975 1 0.9523 1 0.95 0.9756 0.9942 0 0.05 0 0.0476 0.025

ResNet18 0.975 1 0.9523 1 0.95 0.9756 0.9996 0 0.05 0 0.0476 0.025
ResNet101 0.975 0.97 0.9798 0.9703 0.98 0.9749 0.9949 0.03 0.02 0.0297 0.0202 0.025
DarkNet53 0.975 0.98 0.9703 0.9798 0.97 0.9751 0.999 0.02 0.03 0.0202 0.0297 0.025
ShuffleNet 0.975 0.97 0.9798 0.9703 0.98 0.9749 0.9986 0.03 0.02 0.0297 0.0202 0.025
Xception 0.975 0.96 0.9897 0.9612 0.99 0.9746 0.9992 0.04 0.01 0.0388 0.0103 0.025

InceptionResNetV2 0.975 0.99 0.9612 0.9897 0.96 0.9754 0.9985 0.01 0.04 0.0103 0.0388 0.025
SqueezeNet 0.97 0.96 0.9796 0.9608 0.98 0.9696 0.9871 0.04 0.02 0.0392 0.0204 0.03

DenseNet201 0.97 0.96 0.9796 0.9608 0.98 0.9696 0.998 0.04 0.02 0.0392 0.0204 0.03
VGG19 0.96 0.95 0.9694 0.9509 0.97 0.9596 0.9962 0.05 0.03 0.049 0.0306 0.04

NasNetLarge 0.96 0.99 0.934 0.9894 0.93 0.9612 0.9943 0.01 0.07 0.0106 0.066 0.04

Table 8. The storage size (gigabytes) of the color and gray images of the ransomware and benign samples.

Android Apps Color Samples Gray Samples

Ransomware 0.398 0.353

Benign 3.8 3.79

Total 4.198 4.143

Additional storage size/incremental
percentage produced by color samples 0.055 GB/1.31%

The disk size, total number of layers, number of parameters (total, trainable, and non-
trainable), and reduction percentage in training parameters of the whole employed FT
CNN models in the proposed vision-based RD approach are stated in Table 9. As indi-
cated, these experimental requirements and specifications differ from one CNN model to
another CNN model, depending on the model structure (single-path design or multi-path
design) and the total number of included CNN layers. Furthermore, the number of train-
ing and non-training parameters of each CNN model is based on the number of frozen
and unfrozen layers. In the proposed vision-based RD approach, most of the training
parameters of the CNN layers of the utilized fine-tuned models are frozen. So, for example,
the FT ResNet50 model has trainable parameters of 4,096 and non-trainable parameters of
25,595,904, and thus there is a high reduction percentage in training parameters reached
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99.98%. This significant reduction in training parameters comes from the valuable utiliza-
tion of transfer learned features resulting from the pre-trained CNN models and exploiting
the considerable advantages of fine-tuning the hyperparameters, weights, and CNN layers
of the pre-trained CNN-based TL models as indicated in Table 9, the same observations
concerning the number of training parameters and their reduction percentage are obtained
for all examined FT CNN models in the proposed vision-based RD approach.

Table 9. Specifications of the utilized FT CNN models.

CNN Model Disk Size (MB) Layers Parameters
(Total)

Parameters
(Trained)

Parameters
(Non-Trained)

Reduced (%) in
Training Parameters

ResNet50 96 50 25,600,000 4096 25,595,904 99.98
AlexNet 227 8 61,000,000 8192 60,991,808 99.99

InceptionV3 89 48 23,900,000 4096 23,895,904 99.98
ResNet101 167 101 44,600,000 4096 44,595,904 99.99
GoogleNet 27 22 7,000,000 2048 6,997,952 99.97

VGG16 515 16 138,000,000 8192 137,991,808 99.99
DarkNet53 155 53 41,600,000 2048 41,597,952 99.99
Xception 85 71 22,900,000 4096 22,895,904 99.98

InceptionResNetV2 209 164 55,900.00 3072 55,896,928 99.99
MobileNetV2 13 53 3,500,000 2560 3,497,440 99.93
NasNetMobile 20 * 5,300,000 2112 5,297,888 99.96

DarkNet19 78 19 20,800,000 2048 20,797,952 99.99
ResNet18 44 18 11,700,000 1024 11,698,976 99.99

DenseNet201 77 201 20,000,000 3840 19,996,160 99.98
NasNetLarge 332 * 88,900,000 8064 88,891,936 99.99

Places365-GoogleNet 27 22 61,000,000 2048 60,997,952 99.99
ShuffleNet 5.4 50 7,000,000 1024 6,998,976 99.99

SqueezeNet 5.2 18 1,240,000 1024 1,238,976 99.92
VGG19 535 19 144,000,000 8192 143,991,808 99.99

* The NasNetLarge and NasNetMobile models do not comprise a linear structure of CNN modules.

Table 10. Computational analysis of the utilized FT CNN models.

CNN Model Color Samples Gray Samples

Total Execution
Time (s)

Average Time per
Sample (s)

Total Execution
Time (s)

Average Time
per Sample (s)

ResNet50 1617 1.62 1499 1.5
AlexNet 1890 1.89 1714 1.71

InceptionV3 2166 2.17 2050 2.05
ResNet101 2183 2.18 1939 1.94
GoogleNet 1478 1.48 1434 1.43

VGG16 1966 1.97 1803 1.8
DarkNet53 1975 1.98 1877 1.88
Xception 2021 2.02 1934 1.93

InceptionResNetV2 3792 3.79 3712 3.71
MobileNetV2 1636 1.64 1604 1.6
NasNetMobile 4793 4.79 4609 4.61

DarkNet19 1400 1.4 1377 1.38
ResNet18 1377 1.38 1279 1.28

DenseNet201 4683 4.68 4623 4.62
NasNetLarge 5059 5.06 4967 4.97

Places365-GoogleNet 1496 1.5 1410 1.41
ShuffleNet 1569 1.57 1555 1.56

SqueezeNet 1313 1.31 1248 1.25
VGG19 2220 2.22 2147 2.15

The comprehensive computational analysis of the FT CNN models for the visual color
and grayscale samples are introduced in Table 10. The total training and validation time
and the average detection time to identify the ransomware or benign sample for each
CNN model are estimated. As observed, the processing time is different from one CNN
model to another CNN model, depending on the number of training parameters and CNN
layers as clarified in Table 9. It can be concluded that the computational analysis of the
whole tested FT CNN models proves that the average validation time spent to recognize
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ransomware samples or benign samples is acceptable for all FT CNN models, comparable
to their accomplished classification accuracy.

The overall extensive validation of the proposed E2E-RDS has proven its efficiency in
detecting ransomware, whether by reverse engineering the code itself and then analyzing it
or by handling it in its current format and applying vision-based analysis. The intelligence
is applied using ML or CNN models while considering the system’s resources and require-
ments. Finally, the main target is achieved in detecting ransomware with high accuracy to
protect users’ machines and data.

In addition to the presented results, we also compared the proposed RDS system
with other related works that have been evaluated on the same dataset. Table 11 shows
the comparative analysis outcomes. Compared to related works evaluated on the same
dataset, it is noticed that the proposed RDS system offers a high detection performance
for both static-based ML and vision-based DL approaches. So, compared to the other
systems, the achieved detection accuracy of the proposed system indicates its superiority
in detecting ransomware.

Table 11. Comparative analysis outcomes.

Detection System Detection Accuracy

Proposed (FT ResNet5) 99.5
Proposed (Ada Boost) 97

[1] 94.5
[2] 96.4
[58] 64.8
[59] 96.2

5. Conclusions and Future Work

Ransomware still registers high numbers of successful attacks with a significant impact.
Therefore, many researchers are still working to enhance the performance of ransomware
detection, especially in the context of Android systems. However, the existing approaches
usually utilize one of the analytical approaches that either reverse engineer the ransomware
or deal with it in its current format. Both approaches were used in the literature but
(a) separately by applying one of them only and (b) differently by considering various
contexts, datasets, simulation environments, and evaluation metrics. This paper comprehen-
sively analyses Android ransomware by introducing an efficient end-to-end ransomware
detection system (E2E-RDS). The proposed E2E-RDS either reverses engineering the ran-
somware code, parsing it, extracting its essential features, and then building predictive
systems that are based on machine learning (ML) classifiers, or keeps the ransomware
in its executable format, converts it to images and then build predictive systems using
vision-based CNN models.

The proposed E2E-RDS aims to assess the capabilities of applying different analysis
models while considering the same context in terms of ransomware datasets, experimental
environments, and evaluation metrics. The purpose is to highly and efficiently recognize the
ransomware apps and prevent the users from installing them while considering the system
resources and requirements. The experiments reveal that the resulting predictive models
from different analysis systems succeeded in reaching 99.5% detection accuracy. Eight
ML classifiers and 19 CNN models were developed and examined to reach this accuracy.
Moreover, extensive experiments were conducted to examine not only the accuracy but
many other metrics related to security and complexity. The target is to highlight all aspects
related to malware detection in general and ransomware in specific to choose the proper
model while building the ransomware detection systems.

In future work, different malware types other than ransomware could be investigated.
Additionally, different ML and CNN models could also be integrated and examined within
the E2E-RDS. Moreover, we intend to build an end-to-end mathematical analysis for the
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proposed RDS system. Furthermore, we target to test the detection performance of the
proposed RDS system on real-world applications and services.
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