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Abstract: Altered tibiofemoral contact forces represent a risk factor for osteoarthritis onset and
progression, making optimization of the knee force distribution a target of treatment strategies.
Musculoskeletal model-based simulations are a state-of-the-art method to estimate joint contact forces,
but they typically require laboratory-based input and skilled operators. To overcome these limitations,
ambulatory methods, relying on inertial measurement units, have been proposed to estimated ground
reaction forces and, consequently, knee contact forces out-of-the-lab. This study proposes the use of
a full inertial-capture-based musculoskeletal modelling workflow with an underlying probabilistic
principal component analysis model trained on 1787 gait cycles in patients with knee osteoarthritis.
As validation, five patients with knee osteoarthritis were instrumented with 17 inertial measurement
units and 76 opto-reflective markers. Participants performed multiple overground walking trials
while motion and inertial capture methods were synchronously recorded. Moderate to strong
correlations were found for the inertial capture-based knee contact forces compared to motion capture
with root mean square error between 0.15 and 0.40 of body weight. The results show that our
workflow can inform and potentially assist clinical practitioners to monitor knee joint loading in
physical therapy sessions and eventually assess long-term therapeutic effects in a clinical context.

Keywords: knee osteoarthritis; knee contact forces; wearable sensors; IMU; musculoskeletal
modelling; OpenSim; ground reaction forces; principal component analysis; joint moments

1. Introduction

Osteoarthritis (OA) is the most common chronic joint disease that affects the whole
knee joint. Cartilage degeneration is the hallmark of OA, but associated changes in the
subchondral bone, synovium, bone marrow, muscles, and ligament occur [1,2]. To date,
OA is the leading cause of disability among the elderly, resulting in pain, limited daily
activities, and a decreased quality of life [3–5]. Current treatments for patients with knee
OA (PwKOA) are typically restricted to symptom relief and, in advanced stages of the
disease, joint replacement surgery. To date, no known cure or proven strategy exists for
stopping or slowing OA progression. This leads to a high and only increasing economic
and societal burden of OA for patients and governments. In the US, annual direct and
indirect costs attributable to arthritis and other rheumatic conditions are over $80 billion
and $40 billion, respectively [1,6]. As such, methods for slowing the progression of the
disease are a currently unmet clinical need with clear societal and economic benefits. To
achieve these benefits, an understanding of the drivers of OA progression is required.
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Altered joint loading (i.e., knee contact forces)—associated with obesity, malalign-
ment, trauma, or joint instability—is a critical and known risk factor for the onset and
progression of OA. Therefore, optimizing joint loading has been the target of conservative
(e.g., orthosis, braces, and gait retraining) and surgical treatment strategies (e.g., high tibial
osteotomy) in patients with knee OA [7,8]. Moreover, several studies have demonstrated
that gait retraining—i.e., use of specific gait pattern modifications instructed by the physical
therapist—can optimize knee joint loading, resulting in intermediate pain alleviation [9–11].
Therefore, ambulatory monitoring of joint loading parameters, i.e., as knee contact forces
(KCF), has the potential to significantly impact disease management and rehabilitation of
patients with knee osteoarthritis.

Direct measurement of knee contact forces—in vivo—requires invasive measurement
techniques via instrumented knee implants that measure the forces transmitted through
implants [12]. However, this approach is costly, invasive, and not feasible in large cohorts.
Musculoskeletal (MSK) model-based simulations based on 3D motion capture (MoCap)
data represent the state-of-the-art method to estimate in vivo joint contact forces. Using
these methods, several groups have reported good agreement between MSK model-based
KCF estimates and instrumented knee implant measurements [13,14].

Despite the accuracy, reliability, and repeatability of MSK model-based simulation work-
flows using laboratory-based MoCap, this approach is limiting true clinical implementation as
it requires an expensive, high-tech, and controlled lab-based environment and relies on highly
skilled operators [15]. In addition, patients may alter their movement pattern when walking
in a highly controlled environment. As such, movement captured in these environments may
not represent the natural walking pattern of patients in a “real” environment. To overcome
this limitation, several ambulatory methods, relying on inertial measurement units (IMUs),
have been developed [16–18]. Inertial capture systems (InCap) represent a valid alternative
for camera-based motion capture systems when estimating joint kinematics following func-
tional sensor-calibration [19–23]. Several studies have used InCap methods to also estimate
kinetic parameters (i.e., joint moments) during daily living activities (stair ascent, descent, and
sit-to-stand) based on machine learning approaches [24–27]. So far, these approaches were
limited to estimating joint kinematics and moments, thereby neglecting the contribution of
muscle forces. Only a few studies [28,29] used IMU-based data as input to a MSK-model-
based simulation workflow to estimate joint loading profiles in patients with knee and hip
OA. The results showed that to accurately estimate joint loading, the ground reaction forces
are mandatory in addition to the IMU data. Therefore, to evolve to a real-world estimation of
knee joint loading, a mobile estimate of ground reaction forces or even direct estimation of the
joint moments from IMU data, which are then used as input to the musculoskeletal modelling
workflow, is necessary.

Previous work from our research group [30] proposed estimating ground reaction
forces and ground reaction moments (GRFM) during treadmill walking based on a prob-
abilistic principal component analysis (PPCA) trained using gold standard MoCap data.
Leave-one-out validation confirmed that this method works well for gait in healthy partici-
pants. However, the robustness of the workflow to capture gait modifications in subjects
with KOA was not yet tested. Furthermore, the point of application of the estimated ground
reaction forces (i.e., center of pressure), a necessary component for MSK modelling, was not
estimated. The combination of the PPCA and zero moment point (ZMP) method [31–33], a
previously validated method to estimate the center of pressure (COP), could potentially
provide the missing input for a full IMU-based MSK model-based simulation workflow to
estimate knee joint loading in a clinical context.

Therefore, the aim of this study is to develop a full InCap-based MSK modeling
workflow for estimating knee joint contact forces (KCF), which we hypothesize will be
sufficiently accurate to detect previously reported significant peak differences in KCF
between healthy subjects and patients with knee OA in the order of 0.3 BW [34–37]. Such
a workflow may be able to inform and assist clinical practitioners about the success of
inducing knee joint loading modifications as part of the regular physical therapy sessions
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in an everyday life context, and eventually monitor the impact of feedback on an individual
patient’s joint loading locomotor function during the disease progression.

2. Materials and Methods
2.1. Experimental Dataset Used to Develop and Validate the InCap Workflow

Training dataset: 3D MoCap collected at Laval University, Quebec City, Canada
was used as gold standard reference dataset. Eighteen patients diagnosed with knee OA
(demographic: 5 males and 13 females; age: 66.6 ± 7.3 year; height: 1.65 ± 0.12 m; weight
80.5 ± 15.3 kg; BMI: 29.86 ± 6.28 kg/m2, Kellgren-Lawrence score 2–4) walked on an
instrumented treadmill at a self-selected speed (0.75 ± 0.23 m/s) for ~2 min (between 65
and 167 gait cycles per subject—1787 cycles in total). The 3D position of the 74 reflective
markers, 42 attached to anatomical landmarks of the different body segments (ISB [38])
and 32 on clusters, was recorded using the 9 infrared camera system (VICON, Oxford
Metrics Group, Oxford, UK, 100 Hz) while an instrumented treadmill (Bertec, Columbus,
OH, USA, 1000 Hz) synchronously collected force plate data. All participants provided
written informed consent prior to data collection. This research was in accordance with the
ethical guidelines provided by the Ethical Research Committee Centre Intégré Universitaire
de Santé et de Services Sociaux de la Capitale-National, Quebec (MP-13-2020-1954).

Validation dataset: 3D MoCap data was collected at the Movement & Posture Analysis
Laboratory Leuven at the Department of Movement Science, KU Leuven, Leuven, Belgium,
as the gold standard reference data system. Five patients with knee OA (demographic:
2 females and 3 males; age: 68.0 ± 3.7 year; height: 1.74 ± 0.7 m; weight 73.0 ± 12.11 kg;
BMI: 23.95 ± 2.79 kg/m2, Kellgren-Lawrence score 3–4) walked overground at self-selected
speed (1.16 ± 0.13 m/s) (between three and four gait cycles per subject—16 cycles in
total). A total of 13 infrared camera systems (VICON, Oxford Metrics Group, Oxford, UK,
100 Hz) recorded the 3D position of 65 reflective markers attached on anatomical landmarks
of the different body segments (Plug-in Gait [38]) as well as the ground reaction forces
recorded using force plate (AMTI, Watertown, MA, USA, 1000 Hz). Simultaneously, a 3D
InCap system (MVN BIOMECH Awinda, Xsens Technologies, Enschede, The Netherlands,
60 Hz [39,40]), consisting of 17 IMUs, recorded the 3D body segment orientation after
performing a previously developed functional calibration procedure [41]. Both systems
were time synchronized based on the manufacturer’s guidelines with a specific trigger at
the start/stop recording time. All participants provided written informed consent prior to
data collection. This research was approved by the Ethics Committees of the University
Hospital Leuven in collaboration with Ziekenhuis Oost-Limburg (Genk) and Jessa Hospital
(Hasselt, Belgium) (S59857).

2.2. Data Processing

Filtered, labelled, and gap-filled MoCap data were exported as .c3d files from Nexus
2.12 (training dataset) and raw InCap data were exported as .mvnx files from Xsens MVN
2021.0 into the InCap-based workflow (validation dataset) (Figure 1) developed in MATLAB
(R2020a, MathWorks). All trials were processed and time-normalized to 100% of the gait
cycle (101 time points) using custom-built MATLAB scripts.

2.3. InCap-Based Workflow Overview

The InCap-based workflow consists of four steps, schematically presented in Figure 1
and further elaborated below:

(1) The InCap validation dataset was used to calculate the joint kinematics following
a previously developed functional calibration method—OpenIMUs [41]. (2) IMU-based
kinematics were input to the probabilistic principal component analysis (PPCA) model to
estimate the GRFM. (3) GRFM were used as input to the ZMP method to estimate COP
position. (4) IMU-based kinematics and estimated FP data (GRFM and COP) were used in
OpenSim Joint Articular Mechanics (JAM) [42,43] to estimate KCF. As validation, estimated
KCF based on the MoCap data and InCap data were compared.
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2.4. Musculoskeletal Model

A validated multi-body knee model with combined 12 degrees of freedom for the
tibiofemoral (6DOF) and patellofemoral (6DOF) joints [35,43,44] was used. Fourteen liga-
ments surrounding the knee joint were represented by bundles of nonlinear elastic springs.
Cartilage surface were modelled as a non-linear elastic material, and contact pressures
were computed using an elastic foundation formulation [42].

The knee model was integrated into an existing lower extremity musculoskeletal
model, which included 44 musculotendon units crossing the hip, knee, and ankle joints [45].
Cartilage contact pressures were calculated using a nonlinear elastic foundation formulation
based on the penetration depth between overlapping vertices of the cartilage surface meshes.
Combined uniformly distributed thicknesses of 3 mm were assumed in the tibiofemoral
and patellofemoral joints, respectively [42,44]. An elastic modulus of 10 MPa and a Poisson
ratio of 0.45 were assumed for cartilage [43]. The MSK model was scaled to subject-
specific segment lengths, as determined from the marker positions measured during a
static calibration trial.
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JAM—KCF estimation and comparison.

2.5. PPCA Model Training Phase

A previously developed PPCA method was further customized [30] for use with
KOA patients. In the training phase, MoCap-based kinematics and measured GRFM of
1787 gait cycles of 18 PwKOA were used to calculate joint moments using an inverse
dynamics approach in OpenSim, which determines the generalized forces (e.g., net forces
and moments) at each joint underlying a given movement. Inverse dynamic results were
used to build the PPCA model based on PwKOA during treadmill walking. The new
trained PPCA model was used to estimate the GRFM using as input the kinematics, the
scaled MSK models, and the timing events of the stance phase [46,47]. The timing events
specified in the PPCA model are needed to overcome the indeterminacy of the double
stance phase and to reduce the sensitivity to skeletal model inaccuracies. The PPCA model
then estimates GRFM that were most consistent with the observations of the training
dataset. The model was validated based on leave-one-out-subject cross-validation [24].

2.6. PPCA Model Validation Phase

In the validation phase, the customized KOA-based PPCA model was used to estimate
the GRFM using as input the InCap-based kinematics, the scaled MSK models, and the timing
events during the overground walking. The InCap-based kinematics were calculated using
a previously validated functional calibration method using functional movements [41,48].
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Models were scaled based on the body segment dimensions derived from markers on anatomic
landmarks [49,50].

2.7. COP Estimation

Calculation of knee joint contact forces requires estimations of ground reaction forces,
moments (from PPCA), and center of pressure. To estimate the COP position, a previously
validated Zero Moment Point (ZMP) method was applied [32,33].

However, during the heel strike and the toe-off instants (0% and 100% of stance
phase), the ground reaction forces are close to zero. In the ZMP method equations [33], the
coordinates of the center of pressure are obtained by dividing ground reaction moments by
the ground reaction forces, and, therefore, if the forces are close to zero, the results tend
to be infinite, inducing the discontinuities. To avoid these discontinuities, the estimated
coordinates between 0–15% and between 85–100% of the stance phase were fitted using
a polynomial function of the 10th order that best represents the entire COP curve to
eliminate discontinuities. In addition, the fitted COP trajectory was based on the MSK
model calcaneus origin position between 0% and 15% and between 85% and 100% of
the stance phase. The estimated COP position was then compared to the measured COP
position obtained from the force plates for validation.

2.8. Knee Contact Forces and Joint Moments Estimation

OpenSim JAM [44,51] with the integrated concurrent optimization of muscle activa-
tions and kinematics (COMAK) algorithm [44] was used to solve the muscle activation
distribution problem, and compute the resultant secondary degrees of freedom (dofs) and
the knee contact forces [52]. Subsequently, an inverse dynamics approach computed the
external joint moments: knee flexion moment (KFM), knee adduction moment (KAM),
and knee rotation moment (KRM) for the three rotational knee dofs based on the resultant
optimized kinematics. For the InCap-based knee contact forces estimation, IMU-kinematics
(from OpenIMUs) and the estimated GRFM and COP position (from PPCA and ZMP) were
used. In addition to knee contact forces, secondary knee coordinates and moments were
also compared between both approaches (Figures S2 and S3).

2.9. Statistics

The Shapiro–Wilk test revealed that the KCF data were not normally distributed. Thus,
for multiple comparisons, the Wilcoxon rank test was used to statistically compare KCF
peak and impulse difference between MoCap- and InCap-based results in MATLAB. A
significance level was set at p ≤ 0.05. A false discovery rate (FDR) statistical approach
in multiple assumptions testing was used for multiple comparisons in order to correct
for random events that falsely appear significant. A q-value threshold of 0.05 (FDR of
5%) among all significant variables was used. To evaluate the functional relevance of the
observed differences between MoCap and InCap-based knee contact forces estimation, the
root mean squared error (RMSE), the determination coefficient R2, and the mean absolute
differences in first, second peak, and impulse were evaluated. Errors were compared
to previously reported KCF differences between the healthy subject and PwKOA (in the
order of 0.45–0.60 BW for the first KCF peak, 0.30–0.45 BW for the second KCF peak and
0.3–0.6 BWs for the KCF impulse [36,37,53,54]) in order to evaluate the feasibility of the
frameworks to differentiate the two—-a key goal for clinical applications.

3. Results

Complete figures and tables for a comparison of estimated and measured parameters
are presented in the Supplementary Materials.

GRFM estimation (Figure 2): The customized PPCA model showed an average RMSE
of the vertical, anterior-posterior, and medio-lateral ground reaction forces of 0.083 ±
0.035 BW, 0.020 ± 0.008 BW and 0.017 ± 0.096 BW, respectively, with R2 of 0.97 ± 0.26,
0.86 ± 0.14, and 0.85 ± 0.26, respectively; further, an average RMSE of the sagittal, frontal,
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and medio-lateral ground reaction moments of 0.198 ± 0.038 Nm/kg, 0.202 ± 0.066 Nm/kg
and 0.041 ± 0.014 Nm/kg was shown, respectively, with R2 of 0.93 ± 0.21, 0.59 ± 0.09, and
0.66 ± 0.18, respectively.
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COP estimation (Figure 3): The ZMP method showed an average RMSE of 1.26 ± 0.58 cm
and RMSE of 0.66 ± 0.30 cm for the anterior-posterior position and the medio-lateral posi-
tion, respectively, with R2 of 0.98 ± 0.11 and 0.88 ± 0.19, respectively.
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Figure 3. Mean measured (blue solid) vs. mean estimated (orange solid) COP trajectories of one
patient during walking (84 gait cycles) (COP trajectories in dashed—measured in blue and estimated
in orange).

KCF estimation (Figure 4): The estimated resultant IMU-based KCF showed an average
RMSE of the medial and lateral knee compartment of 0.35 ± 0.11 BW and 0.15 ± 0.05 BW,
respectively, and moderate to strong R2 of 0.76 ± 0.12 and 0.58 ± 0.24, respectively (Table 1).
The mean absolute difference (MAD) for the first peak, second peak, and impulse of the medial
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knee compartment contact force was of 0.21 ± 0.14 BW, 0.27 ± 0.14 BW and 0.30 ± 0.19 BWs,
respectively. Further the MAD for the first peak, second peak, and impulse of the lateral
knee compartment contact force was of 0.08 ± 0.06 BW, 0.12 ± 0.13 BW and 0.31 ± 0.15 BWs,
respectively (Table 2). Significant differences between MoCap and InCap-based estimates were
only confirmed for total and medial KCF impulse (Table S2).
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Table 1. Root mean square error (RMSE) and coefficient of determination (R2) of knee contact forces
between MoCap and InCap.

Knee Contact Forces
RMSE (BW) R2

Mean Std Mean Std

Total 0.40 0.17 0.68 0.16

Medial 0.35 0.11 0.76 0.12

Lateral 0.15 0.05 0.58 0.24

Table 2. Mean absolute difference (MAD) in first peak, second peak, and impulse between MoCap
and InCap estimated total knee contact forces, and in the medial and lateral knee compartment.

MAD

Mean Std

Peak 1 (BW)
Total 0.24 0.15

Medial 0.21 0.14

Lateral 0.08 0.06

Peak 2 (BW)
Total 0.19 0.15

Medial 0.27 0.14

Lateral 0.12 0.13

Impulse (BWs)
Total 0.31 0.18

Medial 0.30 0.19

Lateral 0.31 0.15

4. Discussion

The aim of this study was to develop an InCap-based MSK modeling workflow for
monitoring knee joint contact forces that is accurate enough to discriminate between healthy
subjects and patients with KOA. The developed method addresses previously documented
research gaps within the literature, specifically through the use of the probabilistic Bayesian
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principal component analysis modelling based estimation of ground reaction forces, ground
reaction moments, and the consequent calculation of the COP position using an inertial
capture system combined with a MSK modelling workflow without the requirement of
lab-based force plates. In general, results showed that the developed workflow’s accuracy,
in terms of peak knee contact forces and impulse differences (<0.27 BW and <0.31 BWs, re-
spectively), does allow for the detection of previously reported differences in KCF between
healthy people and patients with KOA (0.45–0.60 BW for the first KCF peak, 0.30–0.45 BW
for the second KCF peak, and 0.30–0.60 BWs for the KCF impulse [36,37,53,54]).

The customized probabilistic principal component analysis (PPCA) model was trained
on 18 patients with KOA, and it is the first novel step within this InCap-based MSK
modelling framework that can facilitate the process. The accuracy of this approach was
comparable to the previously developed PPCA model trained on 23 healthy adults [30],
which were the vertical, anterior-posterior, and medio-lateral ground reaction forces RMSE
of 0.050 ± 0.040 BW, 0.050 ± 0.040 BW, and 0.050 ± 0.040 BW, respectively, and the sagit-
tal, frontal, and medio-lateral ground reaction moments RMSE of 0.098 ± 0.013 Nm/kg,
0.092 ± 0.001 Nm/kg, and 0.069 ± 0.020 Nm/kg, respectively. Previous methods for the es-
timation of GRFM described in the literature (e.g., smooth transition assumption (STA) [55],
zero moment point method [33] and the optimization method [56]) reported errors in the
magnitude of GRF > 0.08 BW and GRM > 0.15 Nm/kg. Our customized PPCA model
presented similar accuracy, with errors in GRF < 0.083 BW and GRM < 0.202 Nm/kg. Only
artificial neural network (ANN) methods [57] outperformed our PPCA model resulted in
lower errors (GRF < 0.07 BW and GRM < 0.10 Nm/kg). However, it is only fair to comment
that, when using the ANN method, parameter estimation is highly sensitive to and depen-
dent on the input data. Hence, the validity of the ANN model for unseen situations, i.e.,
not used in initial training, is inherently limited. Therefore, it is important to emphasize
that the reported performance of our PPCA model accounts for its generalizability given
that, despite our model being trained on treadmill data, it was able to accurately predict
untrained situations, in particular overground walking. Therefore, the developed PPCA
model is generalizable for both treadmill and overground walking.

The embedded MSK-modeling workflow relies on an accurate estimation of the center
of pressure using the ZMP method. Several studies described accurate methods to estimate
the COP position based on machine learning approaches. Oubre et al. [58] estimated, with
low-cost wearable devices and supervised machine learning models, anterior-posterior
and medio-lateral COP with an average RMSE of less than 1.5 cm and 0.6 cm, respectively.
Podobnik et al. [59] estimated the anterior-posterior and medio-lateral COP with an average
RSME of 1.49 and 0.09 cm, respectively, solely from raw IMU data using a linear model
and a non-linear Long-Short-Term Memory (LSTM) neural network model. Overall, the
different methods for the COP estimation based on wearable sensors reported an average
RMSE of less than 1.5 cm for the anteroposterior COP and less than 0.8 cm for the mediolat-
eral COP [60,61], which is comparable to our customized ZMP method with an average
RMSE of 1.26 cm for the anteroposterior COP direction and 0.66 cm for the mediolateral
COP direction.

The overall accuracy of the developed workflow allows estimation of compartmental
knee contact forces with an accuracy that allows discriminating knee loading conditions in
patients with KOA from healthy controls (peak knee contact forces and impulse differences
less than 0.27 BW and 0.31 BWs, respectively). Previous studies have also proposed
wearable sensor-based methods to estimate KCF from measured GRFM combining IMUs
with force-sensitive resistors (FSRs) in order to measure GRFM and COP position. However,
the estimation of knee contact forces using these FSRs sensors is also challenging, as it
requires the integration of external forces and moments over time, which can be affected
by measurement noise and sensor drift [14,62,63]. Other methods include the use of
pressure insoles, which can provide estimates of the normal force at the foot, and the
use of machine learning algorithms to predict knee contact forces based on IMU data. A
recent study by Stetter et al. [64] used an ANN to estimate knee contact forces based on
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IMU data, and it reported predicted vertical KCF peak and resultant vertical KCF across
different movements (walking, running, and jumping) by an average of 0.17 ± 0.14 BW
and 0.06 ± 0.06 BW, respectively. Related work by De Brabandere et al. [28] showed that
a combination of one IMU sensor and machine learning can estimate knee joint loading
profiles for an unseen patient, with a mean absolute error of 29% BW, although for more
accurate knee contact forces estimates, both IMU-kinematic variables and ground reaction
forces are needed. Other published methodologies for estimating knee contact forces
based on MSK modelling, MoCap kinematics, and estimated GRFM reported an error
around 0.3 BW [14,65]. Therefore, our developed method based on MSK modelling, InCap-
kinematics and estimated GRFM provide an accurate and promising knee contact force
estimation comparable to gold standard MoCap-based approaches.

The study presented has some limitations that need to be addressed in future research.
The ZMP method showed strong discontinuities in the estimation of COP position during the
initial and final double support phases. In future, its performance may be refined by adjusting
its parameters and calculations using a set of measured data to be trained in the PPCA model
to improve its accuracy. Another drawback of the study was that the PPCA model was tested
on a small sample size consisting of only five PwKOA, with a total of 16 gait cycles. This might
restrict the applicability of the workflow to a wider range of OA involvement. Moreover,
further research should consider the use of the PPCA model for the estimation of knee contact
forces, including other daily life activities such as stair negotiation.

Within the current context of use, the performance of the developed PPCA and InCap-
based, MSK modeling workflow warrants the potential of estimating knee contact forces
in an ecological environment during walking. Moreover, the developed approach demon-
strated to be highly generalizable compared to previous pure AI-based approaches; due
to the model scaling, the PPCA model can be used for subjects with a large difference in
body mass, height, and gait speed (see demographic in Section 2). AI-based approaches
rely on a high volume of training data, and their black box nature means new situations,
gait patterns, and environments likely result in a large increase in the errors. Within the
developed workflow, the use of appropriate IMU calibration methods seems crucial given
that kinematic errors exceeding 5◦ will result in inconsistent estimation of COP from the
estimated GRFM and induce high inaccuracies in KCF estimation. Therefore, it is essential
to apply state-of-the-art calibration techniques, such as the one previously developed by
our group, when validating the ground truth InCap-based results.

5. Conclusions

In conclusion, the developed mobile workflow based on musculoskeletal modelling,
sensor-to-segment calibration (OpenIMUs) [41], the PPCA [30] model, and the ZMP [32]
method offer a relatively simple and cost-effective approach to estimating knee contact
forces, and they have the potential to be used in a variety of research and clinical contexts.
Therefore, the developed workflow would eventually allow monitoring KCF in an ecologi-
cal context and a consequent impact of specific gait interventions on an individual patient’s
locomotor function and joint loading. This is of high clinical importance to inform clinical
practitioners on how to induce joint loading changes as part of the regular therapy sessions
with the aim to reduce activity-related pain and functional decline.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23094484/s1, Figure S1: MoCap (blue) vs. estimated (red) joint
moments of the PPCA KOA population-based model; Figure S2: MoCap (blue) vs. InCap (red) joint
kinematics comparison; Figure S3: MoCap (blue) vs. InCap (red) joint moments comparison. Figure
S4: MoCap (blue) vs. InCap (red) muscle activation comparison (main muscles); Table S1: Root mean
square error (RMSE) and coefficient of determination (R2) of joint kinematics, joint moments and
muscle activation between MoCap and InCap. Table S2: Knee contact forces peaks and impulse
significant differences p < 0.05—values in bold. Algorithms will be provided under request (MATLAB
source code and example): GiacomoDR25 (github.com, accessed on 31 March 2023).

https://www.mdpi.com/article/10.3390/s23094484/s1
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