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Abstract: This study proposes an approach to minimize the maximum makespan of the integrated
scheduling problem in flexible job-shop environments, taking into account conflict-free routing
problems. A hybrid genetic algorithm is developed for production scheduling, and the optimal
ranges of crossover and mutation probabilities are also discussed. The study applies the proposed
algorithm to 82 test problems and demonstrates its superior performance over the Sliding Time
Window (STW) heuristic proposed by Bilge and the Genetic Algorithm proposed by Ulusoy (UGA).
For conflict-free routing problems of Automated Guided Vehicles (AGVs), the genetic algorithm based
on AGV coding is used to study the AGV scheduling problem, and specific solutions are proposed to
solve different conflicts. In addition, sensors on the AGVs provide real-time data to ensure that the
AGVs can navigate through the environment safely and efficiently without causing any conflicts or
collisions with other AGVs or objects in the environment. The Dijkstra algorithm based on a time
window is used to calculate the shortest paths for all AGVs. Empirical evidence on the feasibility of
the proposed approach is presented in a study of a real flexible job-shop. This approach can provide
a highly efficient and accurate scheduling method for manufacturing enterprises.

Keywords: integrated scheduling; flexible job-shop; conflict-free routing problem; hybrid genetic
algorithm; production scheduling; automated guided vehicle; path planning

1. Introduction

Job-shop Scheduling Problems (JSPs) are known as typical NP-complete problems [1].
Flexible Job-shop Scheduling Problems (FJSPs) are an extension of JSP. Unlike the classical
JSP, the FJSP does not predefine the machine for each operation. Instead, FJSP provides
the opportunity to select from multiple machines for each operation, making it more
closely aligned with real-world situations [2]. The integrated scheduling problem in a
flexible job shop mainly involves scheduling production machines and AGVs. It requires
a scientific and reasonable scheduling arrangement for production tasks to achieve the
optimal allocation of equipment and resources in the system and ultimately achieve the
purpose of improving production efficiency [3].

The literature review in this paper is carried out in two aspects: the scheduling problem
of flexible job-shops and the routing problem of multiple AGVs.

Ulusoy et al. [4] were the first to propose an algorithm for integrated scheduling
by using AGVs and production equipment simultaneously as the object of study for the
scheduling problem under the assumption that there is no path conflict. They used a
genetic algorithm to solve the problem of scheduling production equipment and AGVs
simultaneously and established classical cases. Subbaiah [5] used a flock genetic algorithm
to solve the scheduling problem with a fixed number of AGVs. He used maximum com-
pletion time and minimum average delay as the objective function and determined the
optimal solution with a smaller number of iterations. Badakhshian [6] used a fuzzy logic
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controller to control the operators of the genetic algorithm to filter better combinations
of initial parameters. Reddy et al. [7] dealt with machine, AGV, and tool simultaneous
scheduling in a multi-machine flexible manufacturing system considering jobs’ transport
times among machines to minimize makespan. Erol [8] proposed a multi-agent system
for simultaneous dynamic scheduling of AGVs and production equipment and compared
it with five different algorithms. Zhang et al. [9] proposed an effective genetic algorithm
to minimize makespan and designed Global Selection (GS) and Local Selection (LS) to
generate a high-quality initial population in the initialization stage. Yan et al. [10] addressed
the constraint influence imposed by finite transportation conditions in the FJSP and ana-
lyzed the coupling relationship between transportation and processing stages. Palacios [11]
proposed an effective genetic algorithm hybridized with tabu search and heuristic seeding
to minimize the makespan. However, the above research studies have primarily centered
on production and AGV scheduling but have neglected vehicle collisions and routing
problems.

Conflict-free Routing Problem (CFRP) is a policy that plans a path for an AGV to avoid
path conflicts caused by paths occupied by other AGVs during its run time. These multiple
AGYV systems need to consider conflict avoidance and efficiency between multiple AGVs.
Path planning for multiple AGVs has long been proven to be an “NP-complete” problem.

Path planning is generally divided into two stages: (1) representing the environment
discretely; (2) searching for the optimal path using the graph search algorithm. In terms
of discrete representation of the environment, there are two main methods: the raster
method and the road map method. In most industrial scenarios, there are pre-planned
routes, and road maps exist naturally. Path search is based on the road map. There are
many classical algorithms for graph-based searches, such as the Dijkstra algorithm, A*
algorithm, and Floyd algorithm [12]. In actual engineering, the layout of the workshop
is mostly single-lane. If path planning of AGVs only considers the shortest path, AGVs
are bound to encounter path conflicts during transportation. Mac T T et al. [13] used the
Dijkstra algorithm to obtain an optimal conflict-free path a the triangular decomposition
graph and used a genetic algorithm to smooth the path obtained from the planning. Zhang
et al. [14] proposed a Dijkstra-based path planning algorithm to generate optimal collision-
free paths for substation inspection multi-robots. Sun et al. [15] proposed an improved A*
algorithm to solve the multi-robot collaborative path planning for the large area coverage
problem. They optimized the previously calculated paths by the A* algorithm to minimize
the distance traveled by the vehicle and provided the optimal solution based on the path
planning problem in the multi-robot system. A deadlock is a state of a system where two or
more processes are unable to proceed further because each process is waiting for the other
to release the resources they need. This results in a standstill where both processes are stuck
and cannot proceed unless one of the processes releases its resources. Mohring et al. [16]
used a time window function to solve the common deadlock problem during conflict-free
path planning. Desauliners et al. [17] proposed an exact solution to the real-time scheduling
and conflict-free routing problem of AGVs, with the goal of reducing the production costs
associated with production delays. Lin et al. [18] proposed a path-planning method using
A* algorithm with RFID technology. This method mainly calculates the shortest path based
on the coordinate information provided by the RFID tag and selects the path with the
smallest angle in the current driving direction, and finally attains the result of fewer turns
and the shortest path. Xing et al. [19] proposed a novel tabu search algorithm that aims to
enhance the operational efficiency of AGVs in an automated warehouse. Murakami [20]
addressed an AGV routing problem by formulating the dispatch and conflict-free routing
problem of a capacitated AGV system as a mixed-integer linear programming problem.
Yuan et al. [21] proposed a bi-level path planning algorithm to optimize the routing of
multi-AGVs. Previous studies primarily focused on the vehicle routing problem and
collision-free routing problem while neglecting problems of production scheduling or
assuming optimality in the scheduling problem. However, optimal path planning may not
necessarily align with optimal scheduling and may not result in the ideal makespan.
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Most of the research in this area concentrates on production scheduling problems,
AGYV scheduling problems, or a combination of both. Little research has also been con-
ducted considering the path conflicts of AGVs. Saidi-Mehrabad et al. [22] proposed an
ant colony algorithm to address a JSP by considering the CFRP and the transportation
time. Fu et al. [23] studied a production scheduling and vehicle routing problem with job
splitting and delivery time windows in a company working in the metal packaging indus-
try. However, their research did not specifically focus on the FJSP problem. Hence, this
paper takes into account the integrated scheduling of the flexible job-shop, which involves
scheduling machines and AGVs simultaneously while also considering path conflicts and
transportation time.

2. Problem Description
2.1. Integrated Scheduling Problem of Flexible Job-Shop

Flexible job-shop mainly completes the manufacturing process of workpieces. As the
main equipment for material transportation, AGVs complete the transportation of materials
between various stations. Materials are loaded or unloaded at different stations. Therefore,
AGYV trips can be classified as either deadheading or loaded trips. During deadheading
trips, the AGV moves empty from its current station to a different station where it loads
material. In contrast, during loaded trips, the AGV moves material between stations.

Due to the conflict routing problem, the scheduling of AGVs cannot take the shortest
path but the shortest transportation time as the optimization goal. In a flexible job-shop,
manufacturing machines and transportation equipment can only effectively improve the
overall production efficiency by cooperating with each other. Since the conflict-free routing
problem causes uncertainty in the transportation time of multiple AGVs, it is important
for the optimal allocation of production resources to realize the integrated scheduling of
machines and AGVs.

In the flexible job-shop, it is assumed that there are m sets of machines and w sets of
AGVs, which have the same transport capacity, assigned the task of processing n work-
pieces. Each workpiece comprises multiple processing operations. Machines in the job-shop
have a high degree of automation, and each machine can complete multiple different oper-
ations on different workpieces. Therefore, each operation can be completed by different
machines. However, the time required to complete the same operation varies for different
machines.

Our laboratory functions as a workshop for the production of personalized custom
cars, with five unique models available. With each model having a unique set of operations,
the predetermined durations for each operation are known. It is in line with the flexible
job-shop problem. Figure 1 shows the layout of our laboratory. There are three AGVs.
Node 1 is the L/U station. AGVs depart from the L/U station with the materials and carry
the finished workpiece back to the L/U station. Four machines are distributed in Nodes 8,
9,17, and 18, respectively.

Table 1 shows the processing machines for each operation and the time required.
Table 2 shows the transportation time.

Table 1. Processing machines for each process and the time required.

Workpiece Operation Machine Time(s)
1 1 2 8
2 4 10
1 4 10
2 2 3 14
3 1 1 20
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Table 1. Cont.

Workpiece Operation Machine Time(s)
1 3 6
4 2 1 14
5 1 4 20
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Figure 1. Layout of the flexible job-shop.

Table 2. Transportation time(s).

From/To L/U M; M, M;j; My
L/U 0 18 16 12 8
M; 18 0 14 14 18
M, 16 14 0 12 12
M3 12 14 12 0 16
My 8 18 12 16 0
2.2. CERP

In the study of path planning, due to the constant travel speed of AGVs, the path
with the shortest distance in a single AGV manufacturing system is generally the path
with the shortest time. However, in a multi-AGV system, multiple AGVs are responsible
for different process transportation tasks at the same time, so the path with the shortest
distance may be occupied by other AGVs and require a certain waiting time. So, the
path with the shortest distance is not necessarily the path with the shortest time. The
objective function of the multi-AGV manufacturing system comprises the shortest time
path planning to optimize transportation equipment allocation and AGV utilization.

(1) Conflict classification

During the operation of multiple AGVs, there are mainly three types of conflict: node
conflict, catch-up conflict, and opposite conflict. Since it is assumed in this paper that AGVs
travel at a constant speed during transportation, the catch-up conflicts caused by different
speeds will not be discussed in this paper.

1. Opposite conflict

When two AGVs travel towards each other on the same path, only one AGV is allowed
to pass on each path at the same time. In this case, two AGVs collide, resulting in a deadlock,
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as shown in Figure 2a. Similarly, if an AGV moves from one path into the path of another,
they will collide when moving in opposite directions, as illustrated in Figure 2b,c.

AGV2 AGV2

I [

AGV] [pmm == =mdq— AGV2 AGV1 AGV1

(@) (b) (c)

Figure 2. Opposite conflict.

2. Node conflict

When AGV1 and AGV?2 arrive at the same node at the same time, a node conflict will
occur at this station, resulting in collision and deadlock.

(2) Regulation principle
1. Shortest path

Under the condition that the speed is fixed, the shorter the path, the shorter the time
to execute the transportation task, which can maximize the proportion of the transportation
time in the total completion time and ensure that the AGV after the completion of the
transportation task can be put into the next scheduling task as soon as possible, saving the
transportation resources and the cost generated by the AGV’s own driving.

2. Minimum waiting time

Time is wasted when AGVs collide or choose a suboptimal path.

3. Mathematical Models
3.1. Integrated Scheduling Problem of Flexible Job-Shop

Based on the above description, the problem under study needs to meet the following
assumptions:

(1) Each machine is capable of processing only one job at a time;

(2) Each operation can only be processed on one machine, not split onto two machines;

(3) The AGVs travel at a constant speed in the system, including the time it takes to turn
and crossroads;

(4) An AGYV is assigned the task of transporting a single job at a time;

(5) It does not consider the charging problem and fault problem of the AGVs, and AGVs
are always available;

(6) There is no sequence constraint on the operations between different workpieces;

(7) AGV transportation and machine processing cannot be interrupted;

The meanings of symbols and variables in the established mathematical model are
shown in Table 3 [24].

Table 3. Parameters and descriptions.

Parameter Description
Ji sets of workpieces tasks
My sets of machines

Ky sets of AGVs
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Table 3. Cont.

Parameter Description

Oj step j of task

Sijk the start time of process c on machine k

Cijk the finish time of process O;; on machine k

tijk the spending time of process O;; on machine k

C; the finish time of task i

Tijo AGV v is responsible for the transportation of process Ojj
Thrr the travel time of the AGV from machine k to machine k’
LTjj, the starting node of AGV v in task Tjj,
S/Tijv the start time of no-load transport in task Tj;,
c’ Tijo the finish time of no-load transport in task Tijo

STijp the start time of load transport in task Tj,

CTijp the finish time of load transport in task Tjj,

N; set of nodes

o — 1,if process O is processed on machine k
ijk = 0, else /

[ Lif process O;j is before process Opq on machine k |
Bijpar = 0,else !

e — 1,if AGV vis responsible for the task of process O;;
o 0,else !

1,if AGV v is responsible for the task Tij,, S'Tijp > CTyjp
Yijo = 0, else ’

7 o 1,if AGV v occupies node s at time t
vst = 0, else /

1,if the path from sy to the adjacent node sy can pass at time t,s1 # sy _
Asisat 0,else !

v _ [1,if AGV v occupies the path from s to the adjacent node sy at time t,s1 # s
51200 0, if there are other AGV's coming in the opposite direction on the same path

In order to ensure that the algorithm meets the corresponding scheduling rules, a set
of mathematical models is established as the constraint conditions of the algorithm.

C = min(Cpax) = min (mrﬂl’ff(cio M
1=
Wopt = min(v) o min(Ciax) @)
m
Y g =1Vi€ (1,21}, € {1,2,...,u} ®)
k=1
Spak + M(1= Bijpei) > i @

Vi,pe{1,2,...,n},Vj,g€{1,2,...,u;},Vk € {1,2,...,m}
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w
le‘jvzl,ViG{1,2,...,1’1},Vj€{1/2/--~/ui} (5)

v=1

): Yijp =1, s Tz’] v 2 CTZ]Z}!

(6)
sz €e{1,2,...,n},V),j €{1,2,...,u;},Vo € {1,2,...,w}
Cijk = Sijk + tijks @)
Vie{1,2,...,n},Vje{1,2,...,u;},Yk € {1,2,...,m}
§'Tijr 2 CT(j-1)0 + Z i(j-1)k * Li(j-1)ks ®)
Vie{1,2,...,n}, V]€{12 u;}, Vo, o' € {1,2,...,w},Vk € {1,2,...,w}
CTz]v > ST; v+ Z Z Xi(j—1)k' * Xijk tiwr s )
Vie{1,2,.. n} v] € {1 2, ub VK € {1,2,...,m}, Yo € {1,2,...,w}
w
Y ze <1LVs€{1,2,...,p},VteC (10)
v=1
STijp > max(C’Tijv,Ci(j—l))rW e{L2,...,n},Vje{L,2,...,u} (1)
Sijk > max{CTijv,max{Cqu |Vp=1,2,...,n,q # j}}, (12)

Vie{1,2,...,n},Vie{1,2,...,u;},Yk € {1,2,...,m}, Vo € {1,2,...,w}

if wijp = 1, %ijp = 1,C'Tyjp > Ci(j_1ys
then STijv = C/T,'jv;
Zf Kijk = 1, Xijp = 1, C,Ti]'v < Ci(j—l)kr (13)
thei’l STij'U = Ci(j—l)k'
Vie{1,2,...,n},Vje€{1,2,...,u;},Yo € {1,2,...,w}

Formula (1) shows that minimizing the maximum makespan is the primary objective.
Constraint 2 states that the optimal number of AGVs is equal to the minimum number
of AGVs in the job-shop when the maximum completion time is minimum. Constraint
3 indicates that each process can only be processed on one device. Constraint 4 prevents
overlapping of the workpiece processing by mandating the start time of a workpiece to
come after its completion time. Constraint 5 indicates that each process must be handled
by a single AGV for transportation. Constraint 6 ensures that AGVs only move to the next
transportation task after completing the previous one to ensure continuity of work and
avoid simultaneous tasks. It also ensures that AGVs will not execute two or more trans-
portation tasks at the same time. Constraint 7 indicates that the processing interruptions
caused by AGV failure or equipment failure are not considered in the processing process.
Constraint 8 indicates that the next no-load transportation task can only commence after
the current AGV task is finished. Constraint 9 indicates that the load travel time of the
current AGV transportation task should be greater than or equal to the sum of its no-load
time and the transportation time required between the two processing machines. This
is because the completion time of the last process may be after the time when the AGV
arrives at the machine, and the AGV needs to wait for the completion of the last operation
before it can execute the transportation task. Constraint 10 indicates that each node can
only be occupied by one AGV at a time. Constraint 11 mandates that the AGV cannot start
the transportation task until it has completed the preceding operation and arrived at the
destination. Constraint 12 indicates that machining can only begin after the end of the load
stroke. Constraint 13 restricts the process sequence of the same workpiece and ensures the
continuity of the transportation process. If the no-load AGV reaches the position of the
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processing equipment after the workpiece is processed, the no-load end time is equal to the
start time of the load transport. If the no-load AGV arrives before the workpiece is finished,
the load transport start time is equal to the workpiece process completion time.

In the production process, the perfect transportation process is similar to this: at
the end of the AGV no-load stroke, the last process is just finished; When the AGV load
ends, the processing machine just completes the processing task of the current workpiece.
If an AGV with no load travel arrives before the completion of the previous process,
Cij—1)k > C'Tijo; On the same processing equipment, the completion time of the current
workpiece process is greater than the end time of the loading stroke of the next workpiece
AGYV, Cpyk - Bpgijk > CTijp. Both cases will form invalid waiting times, reduce the utilization
rate of AGVs and ultimately affect the final completion time of the whole production.

3.2. CFRP

In flexible systems, AGVs need to drive continuously in the workshop to transport
the workpieces and materials to their destination and need to address and change the path
constantly. Therefore, it is necessary to solve various conflicts that may be encountered in
path planning at the algorithm level [25]. Traditional path-planning strategies are usually
divided into two types. One path strategy prioritizes the optimal path and chooses to wait
in place or in other idle paths according to the conflict type to ensure the shortest AGV
distance. Another routing strategy does not consider path conflicts but only ensures the
principle of avoiding conflicts during AGV movement. Once a path or node is occupied,
the second-best feasible path is selected. Neither of these two strategies can guarantee the
shortest transportation time for AGVs. On the basis of these two strategies, a new recursive
discriminant strategy is proposed in this paper, which not only solves the path conflict
problem but also plans an accurate conflict-free path for AGVs to ensure the shortest
transportation time of AGVs.

In the multi-AGV manufacturing system, the current problem to be solved is how
to make the car find a sub-optimal path to reach the destination with the shortest time
and minimum cost loss while avoiding a collision. We provided each car with a different
task, entered the shop in turn, completed the task, and arrived at the destination. The map
adopts a single-row bidirectional job-shop layout, so before establishing a mathematical
model for the planning problem, basic assumptions should be made about the system
where the AGV resides [26]:

(1) One AGV can only perform one task at a time.

(2) All AGVs move at a constant velocity and possess identical features.
(3) Breakdowns and charging problems are not taken into account.

(4) Once AGV is working, it is not allowed to be interrupted.

The mathematical model employs the following set of symbols and variables:

w: indexof AGVs
ky: setof AGVs, v € {1,2,...,w};

N;: setofnodes, s € {1,2,...,p}, prepresents the node number;

te : the travel time of the AGV from notes s tonode s, s, s’ € {1,2,...,p}, s # §';

7 1,if AGV v occupies node s at time t
vst = 0, else /

A {1, if the path from sy to the adjacent node sy can pass at time t,s1 # sy
s152f 0, else ’

v _ [1,if AGV v occupies the path from sy to the adjacent node sy at time t,s1 # s
1298 0, if there are other AGV's coming in the opposite direction on the same path
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AGVs travel at a constant speed, and the mathematical model takes the shortest total
travel time of all AGVs as the objective function, as shown in Formula (14).

w
minZ = min Z Qv (14)
v=1

Firstly, mathematical modeling is carried out for possible path conflicts in path plan-
ning. Node conflict is caused by more than one car arriving at a node at the same time.
Formula (15) indicates that only one car can occupy a node at the same time, as shown in
Figure 3.

w
zost < 1,¥s € {1,2,...,p} (15)

v=1

AGV1

-—e = = w=q—] AGV2

Figure 3. Node conflict.

If two AGVs do not arrive at a node at the same time, but the AGV closest to the node
needs to drive to another occupied path through this node, and the AGV near the node is
on the opposite path, the AGV near the node has two choices: (1) Wait for another car to
release the path; (2) Replace another suboptimal path. For the first case, suppose there are
two AGVs; AGV2 is closer to the node sy, AGV1 turns to the adjacent path of AGV2, as
shown in Figure 2b, then the mathematical model of such conflicts is as follows:

If Vslszvlt * VS3SzUzt = 1/
s1,s2,s3 € {1,2,...,p}, s1 #s2 #5s3,v1,02 € {1,2,...,w}, vl # v2, (16)
Then A5253(t+t5352) =1

For the conflict type in Figure 2b, if AGV1 is closer to the node s, and turns to the
adjacent path of AGV2; AGV1 has two choices: wait or change paths. Assuming that the
time used by the original optimal path to reach the end node is f, the total waiting time of
the car at the intersection is At, and the time required by the replacement of the suboptimal
path is t'. However, since the suboptimal path also needs to consider the path conflict
problem, this path optimization strategy is easy to fall into the local optimal. In order to
reduce the solution space, the suboptimal solution that does not consider path conflicts
is first determined, and the suboptimal solution t + At > min[t/, #”,¢" ...t"] that is less
than the total transportation time of the optimal path selected. Then, considering the path
conflict of the second-best path, the car usually has multiple second-best paths from one
device to another device. A recursive strategy is used to plan a global shortest-time path
judgment method for AGV, as shown in Formula (17).

Assuming that the shortest path of AGV from node p to node p’ needs to pass through
n nodes, which will be encountered in the driving process, then the AGV will encounter
at most n + 1 path conflicts of the same type when it reaches node p’, and it needs to
determine whether to choose the second-best path each time. Therefore ) At = AA; +
Aty + Atz ...+ Ay4q, the waiting time for the conflict of the second-best path is the same.
According to the comparison of the transportation time and waiting time of the sub-optimal
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51,52,53,54,55

path, the optimal path scheme is selected. If Formula (17) holds, the optimal path is selected;
otherwise, the suboptimal path is selected.

t+Y At <min[t' + Y A+ Y A+ Y AT (17)

For the type of locking in Figure 2c, the general adjustment strategy is to let the car
that first arrives at the conflict node change the path and, at the same time, ensure that
there is a second optimal path available for replacement. Assuming that the AGV1 is closer
to the conflict node s, the adjustment strategy is shown in Formula (18).

Istlszvlt * ‘/5352‘02t == 1/ ASZSl(t+t5152) = 1/ ASzS3(t+t5152) = 0’#
€ {1,2,...,p},s1 # sy # s3 # S4 # S5, is an adjacent node to s1,53, 54,55,

18
v1,v2 € {1,2,...,w},v1 # vy, (18)

Then A5294(t+tslsz) + ASZSS(tJFtslsZ) =1
Veysyort * Vegsout = 1 indicates that the paths from s to s, and from s3 to s, are

occupied by AGV1 and AGV2 respectively. A, Fhaysy) = 1 indicates that after time f;,5,,
AGV1 first reaches the conflict node s, but AGV2 still occupies the path from s3 to s;.
A5254(t+t5152) + ASZSB(t+tS]SZ) > 1 means that at least one of the other two paths from s; is a
viable path.

If the conflict node s in Figure 2b has only three adjacent nodes, which means deadlock
occurs at the T-junction, then the adjustment strategy is shown as follows.

If Vsisaort * Vsgspopt = 1'A5251(t+t5152) =1, A5253(t+t5152) =
$1,52,53,54 € {1,2,...,p}, 51 # sa # S3 # 54,57 is an adjacent node to s1,s3,54,
v1,02 € {1,2,...,w},v1 # vy,

Then Agysy(t+tys) 2 1

(19)

Formulas (18) and (19) are designed to ensure that there is room for adjustment of such
conflicts. If the two formulas are valid, the earliest AGV arriving at the node can choose to
wait on the free path until the original path is released or choose the second-best path. For
specific adjustment schemes, refer to Formula (17). In cases when Formulas (18) and (19)
are not valid, Figure 2b is categorized under the same type of unadjustable deadlock as
Figure 2a.

The situation description and adjustment scheme in Figure 2a: If a path is occupied by
an AGYV, then this path does not allow AGVs in the opposite direction to enter at the same
time. Since the AGVs in the system travel at the same speed, two AGVs traveling in the
same direction are allowed on the same path. Formula (20) ensures that multiple AGVs can
travel in the same direction on the same path and that two or more AGVs are not allowed
to travel in the same direction on the same path.

If Vslszvlt =1,
S$1,S2 € {1,2,. . .,p}, S1 f— Sy,
v1,02,03 € {1,2,...,w},v1 # vy # U3,
Then Vslszvzt =1, Vszslvgt =0

(20)

4. Approach Statement

Integrated scheduling of flexible job-shop is solved in two stages: production schedul-
ing and AGV scheduling. In the first stage, a hybrid genetic algorithm is used to solve
the production scheduling problem. In the second stage, according to the production
scheduling scheme obtained in the first stage, an AGV coding-based genetic algorithm is
used to study the AGV scheduling problem. At the same time, AGV routing problems
and path conflicts are taken into account, and finally, a better feasible scheduling scheme is
obtained.
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4.1. Production Scheduling
4.1.1. Encoding Method

Genetic algorithms are largely determined by the choice of an appropriate encoding
scheme. It is desirable to keep the chromosome length as short as possible to reduce
unnecessary computational burden and focus on promising solution alternatives. For the
exploration of all potential solutions within the search space, the encoding method should
be capable of accurately representing them. In the case of scheduling operations, there
are parallels between the job-shop scheduling problem and the first part of the studied
problem in theory. Thus, an operation-based encoding method is used in the approach.

Figure 4 depicts the encoding method. The sum of all operations represents the length
of the chromosome. Assume that the operations chromosomeis [23 11 2 2 3 2]; the first 2
represents the first operation Oy; of workpiece J», and the second 2 represents the second
process Oy of workpiece J». The rest can be performed using the same method. So, the
sequence of the operations is Oy1, O31, O11, O12, O22, O3, O32, Opa4.

2 3 1 1 2 2 3 2

i 1 1 1 1 1 11
021 031 011 012 022 023 032 024

Figure 4. Operations-based encoding.

4.1.2. Decoding Method

The proposed approach utilizes the Vehicle Assignment Algorithm (VAA) to address
the vehicle assignment and scheduling issues integrated into the decoding method. The
pseudocode for the decoding method is shown in Algorithm 1.

Algorithm 1: Decoding method

1. for each operation op in the chromosome do

2. machine mc = processing machine of op

3. predecessor pre = preceding operation of op

4. if pre == NULL then

5.  start_timest=0

6. else

7.  start_time st = pre. completion_time

8. endif

9.  number_of_scheduled_ops ns = number of scheduled operations on machine mc
10. ifns > Othen

11. last_scheduled_op sched = last scheduled operation on machine mc
12.  completion_time ct = sched. completion_time

13.  if st < ctthen

14. start_time st = ct

15.  endif

16. end if

17.  completion_time ct = st + op. processing_time

18.  schedule operation op on machine mc with completion time ct

19. end for

During the decoding process, the VAA acquires crucial information, such as the current
operation (op), its recommended start time (st), and the preceding operation within the
sequence (pre). The VAA determines which AGV can complete the transportation in the
least amount of time and adjusts the start time st to account for transportation duration.
The pseudocode for the VAA is demonstrated in Algorithm 2.
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Algorithm 2: Vehicle assignment algorithm

1. min_time_to_finish = infinity

2. best_ AGV = null

3. foreach AGV in available_AGVs do

4. S = AGV. last_trip_destination

5. if pre! = null then

6. D = processing machine responsible for operation pre
7. else

8. D = station for loading or unloading materials

9. endif

10.  dht = travel time between S and D

11.  time_to_finish = max(pre.completion_time, AGV .last_trip_finish_time) + dht
12.  if time_to_finish < min_time_to_finish then

13.  min_time_to_finish = time_to_finish

14.  best_AGV = AGV

15.  endif

16. end for

17.  add_trips_to_best_AGV (best_AGYV, operation_op)
18.  time_to_start = best_AGV. last_trip_finish_time

19. ifst < time_to_start then

20. st =time_to_start

21. endif

The VAA, an optimization algorithm, is designed to determine the AGV that provides
the earliest possible start time for a given operation processed by its allocated machine. The
VAA uses the maximum value between the AGV’s last trip finish time and the preceding
operation completion time in evaluating the start time for a deadheading trip, considering
the required deadheading trip time. The calculation of start time depends on adding the
available start times for deadheading trips, which are exclusively related to the deadheading
trip durations of AGVs due to their identical loaded trip times.

The decoding method employed in this algorithm is based on a critical observation
that a machine schedule generated using the operations-based coding approach tends
to stretch when vehicle transportation times are factored. This is due to a shift in each
operation’s start time. During operation, the VAA aims to minimize these changes in start
times to reduce the makespan. In doing so, the algorithm searches for AGVs that have
minimum completion times for each trip, thus minimizing the shift in start time for each
operation.

4.1.3. Crossover Operator

Uniform crossover is a crossover method utilized in generating a new chromosome
from two matching chromosomes. In this method, each gene in the chromosome is ex-
changed with a predetermined probability. Uniform crossover can be seen as a variation of
the multi-point crossover method, with specific rules in place to ensure the preservation of
the parent genes and maintain the coding structure.

To generate a new chromosome via a uniform crossover, a crossover mask is randomly
generated with the same length as the parent chromosomes. The mask is then applied to the
two matched chromosomes. Genes corresponding to “1” in the mask are swapped between
chromosomes, while genes that correspond to “0” remain unchanged. By randomly crossing
every bit of the parent chromosomes with the same probability, two child chromosomes
are eventually created. Figure 5 provides a visual representation of the uniform crossover
mechanism.
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Figure 5. Uniform crossover.

4.1.4. Mutation Operator

Mutation operators refer to the genetic algorithm components that are responsible for
introducing genetic diversity into the population of potential solutions. These operators
randomly modify one or more genes or components of a candidate solution, essentially
creating a new candidate solution that is slightly different from its parent. This diversity
helps the algorithm to move beyond local optima and discover better solutions in unex-
plored areas of the search space. In swap mutation, two genes are randomly selected from
the parent chromosome, and then their position is swapped, as illustrated in Figure 6.

Before mutation | Oy4

After mutation 0,1

Figure 6. Swap mutation.

4.1.5. The Schedule Recovery Algorithm

The schedule recovery algorithm is a crucial step after applying the genetic operators
of crossover and mutation in order to ensure that technological restrictions are met dur-
ing the GA search. This algorithm is accomplished by rearranging the operations while
ensuring that each operation in the sequence is executed within the specified technological
constraints. Ultimately, the algorithm aims to produce a feasible and optimized schedule
that meets all the necessary constraints.

As shown in Figure 7, the operation 0y is behind operation 0,3 and operation 011
is behind operation 01, after swap mutation. In this case, the schedule recovery algo-
rithm is needed. The pseudocode for the schedule recovery algorithm is demonstrated in
Algorithm 3.

4.1.6. Elite Preservation

The paper employs an elite preservation strategy to minimize the loss of the best-fit
individuals during the GA run. This strategy entails preserving a group of the best-fit
individuals across the generations and updating them with better individuals when they
emerge. The size of the set remains constant throughout the run since it is specified by the
user during the algorithm’s configuration.
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Before mutation | 0,4

After mutation 024

After l‘epairing 021 031 022 011 023 012 032 024

Figure 7. The schedule recovery algorithm.

Algorithm 3: The schedule recovery algorithm

for each operation op in the chromosome do
opi = operation located at position i
prei = preceding operation of opi
if prei # NULL then
for each operation op in the chromosome do
opj < operation located at position j
if prei = opj then
Swap positions of opi and opj
end if
end for
end if
end for

W0 N OO DN

—_ =
_= O

—_
N

4.2. AGV Scheduling

Product scheduling result is a known condition that has been solved in the first stage.
Therefore, in the second stage, the scheduling scheme of the processing machine, the
processing time of the machine, and the process sequence on each processing machine
are taken as the input conditions. Then the problems to be solved in the second stage
become the AGV routing problem and the scheduling problem of AGVs. In the second
stage, the scheduling scheme of the processing machine is decomposed into corresponding
transportation tasks, and the scheduling problem of AGVs becomes the process of assigning
different transportation tasks to AGVs while considering the problem of path conflict.
AGVs are equipped with sensors for the purpose of providing real-time location data.
Formulating conflict-free paths ensures that AGVs will not collide accidentally.

4.2.1. Dijkstra

The Dijkstra algorithm is a classical path planning algorithm based on graph theory
G = (V,E) to solve the shortest distance between two nodes. Where V represents the set of
all nodes in the topological map, and E represents the set of all lines in the topological map.
According to the layout of the job-shop, the important equipment position is set as the
node, the path that can be directly connected between the node and the node is represented
by the line, and the corresponding edge is assigned the corresponding weight according to
the distance of the connecting path or through the time. In this study, unit time is used to
represent the weight between the two nodes so that the complex shop environment can
be abstracted into the topological map represented by the node and the line. Topological
maps are expressed in the form of an Adjacency Matrix (AM) in the algorithm. The core
of the Dijkstra algorithm is to take the start node as the center and find the optimal path
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with the smallest sum of ownership values to the end node according to the weights of the
adjacency matrix and lines between nodes. The procedures are as follows:

Step 1: Set initial conditions: start node Sg and end node Uj. Calculate the shortest
distance from the start node to the end node.

Step 2: Set and initialize the node set S (the set of nodes with the lowest weight that
has been calculated so far) and U (the weight of Sy to the remaining nodes). Where S
contains Sy, and the distance from Sy to Sy is known to be 0; U contains other nodes except
Sp. The distance between nodes is initialized. If two nodes are adjacent, the weight is the
weight of the line between two nodes; if not, the weight is infinite.

Step 3: Go through all nodes in the set U, determine the adjacency Sy closest to Sy,
delete Sy from the set U and add S, to the set S, and determine whether Sy is Uy. If yes, the
algorithm terminates and Sy is the shortest path in the map; otherwise, update the weight
Go_sx of Sp to Si and jump to the next step.

Step 4: Calculate Sy, as the start node to traverse all nodes in set U and take the node
Sky1 with the shortest distance from Sy, delete Sy, 1 from set U and add it to set S, and
update the weight of Sy in set U to the other nodes. If Gy_,x11 < Gg_x + Gx_x+1, update
the weight of Gg_,x,1 in set S; Otherwise, proceed to the next step.

Step 5: Determine whether Sy is Up. If it is, terminate the algorithm to obtain the
shortest path information and minimum weight. Otherwise, loop steps 4 and 5 until you
find the end node U.

4.2.2. Time Window

The basic idea of a time window is to mark the direction of the occupied path. Other
AGVs cannot pass through this path in the opposite or the same direction. AGVs can only
wait or change other paths until the occupied path ends and other AGVs can pass through.
In the time window method, path L is often divided into two parts: idle time window set
F; and reserved time window set R. The commonly used mathematical model of the time

window is as follows:
F = { fr= [ak, b"” 1)

R, = { k_ [ck, dk} } (22)

In Formula (21), f* represents the idle time period of path L, and k represents the
kyy, idle time period, starting from a* and ending from b¥. Similarly, #* in Formula (22)
represents the occupied period of path L, starting from c* and ending with d*.

4.2.3. Algorithm Design

Since the scheduling problem of the processing machine has been solved, based on the
mathematical model of the integrated scheduling problem, the mathematical scheduling
model of the second stage only needs to consider the processing sequence constraint of the
same workpiece, the process sequence constraint of the workpiece on the same equipment
and the AGV scheduling problem.

The solution of the AGV routing problem and path conflict problem refers to the
solution strategy in Section 3.2. Taking the minimum completion time of the maximum
transportation process as the objective function, the mathematical model of the second
stage is as follows:

C = min(CTyax) = min <m721x(CTiuiv)) (23)

i=1

if Qjjk = Kpgk = 1, ﬁiquk =1,
Cijk + ITW < Squ, (24)
Vi,pe{1,2,...,n},Vj,ge {1,2,...,u;},k € {1,2,...,m}
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Formula (23) takes the minimum completion time of the maximum transportation
process as the objective function. Formula (24) guarantees that workpieces are processed in
a specific sequence on each processing machine.

A genetic algorithm that employs AGV-encoding is utilized in the second stage to
resolve AGV scheduling and conflict-free routing issues, with the incorporation of the time
window-based Dijkstra algorithm.

1.  Encoding method

In this section, AGV-based encoding is adopted. Since the working procedure of
the workpiece on each machine is known, chromosomes are arranged according to the
sequence of workpieces and their operations. The number on the chromosome represents
the AGV number responsible for transporting that operation. For example, there are five
genes in the coding position of Workpiece 1, which respectively imply five operations of
Workpiece 1. The first operation of Workpiece 1 will be transported to machine M1 by
AGV2, as shown in Figure 8.

M5 MI M3 M6 MI M2 M6 M5 M3 M5 Ml M4 M3

2

rtrfrttrtr ottt
L3123t f2(t|3[1|1|3]1

Workpiecel Workpiece2 Workpiece3

Figure 8. Encoding and decoding method based on AGV number and obtained scheduling scheme.

When the objective function is to minimize the maximum completion time, the maxi-
mum number of AGVs usually has an upper limit. In order to rationally allocate logistics
equipment resources, the upper limit of the number of AGVs in the chromosome is set,
and the variation of the mutation operator [1,...w] is set. The number of AGVs is cross-
mutated. Calculate the fitness function of each iteration result, and the number of AGVs
is finally obtained when the maximum completion time is minimum. Finally, output the
optimal scheduling scheme.

2. Decoding method

AGVs are assigned to transport tasks according to the number of AGVs in chromo-
somes. The AGV makes route planning according to the assigned transportation tasks and
finds the shortest conflict-free path so as to transport the last workpiece to the finished
product warehouse as the maximum completion time. Specific decoding steps are shown
as follows:

Step 1: Transform the chromosome based on the process code of the gene chain into a
specific process chain.

Step 2: Read every gene of the process chain according to the sequence of different
workpiece areas. The gene number indicates that the corresponding process is responsible
for O;;. Read the implied information of the gene, the corresponding processing machine k,
the processing time of the corresponding machine is t;j;, and the processing sequence of
the process on the machine k.

Step 3: Make sure ok = opgk = 1, Bijpgk = 1. According to the completion time
Ci(j—1)r of the tight preceding procedure O;(;_1) of procedure Ojj, the completion time Cyrjx
of the tight preceding procedure in machine k, the number of the AGV in charge of the
processing task and the location of the node where the AGV is located, determine the time
s’ Tjj, when the AGV can start no-load transportation.

Step 4: Route planning for no-load transportation. According to the available time
s’ Tij» of the AGV in charge of the transportation task (or the end time CTj, of load
transportation of the last process that v is responsible for), the location node, the node
position S of the machine in charge of the process O;(;_1) and the adjacency matrix Az;M,
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the next node N of the shortest path of no-load transportation, is determined by the Dijkstra
algorithm. Go to Step 7.

Step 5: Route planning for load transportation. Compare the completion time of the
tight preceding process Cy(; 1), if Cjj_1)p» > C/Tjjp, then STjj, = Cj(;_1)r (The transporta-
tion of a load begins only after completion of the preceding process directly connected
to it). On the contrary, if the AGV arrives at k when the tight preceding process has been
completed, the completion time of the tight preceding process is regarded as the start time
of load transportation, that is, STjj, = c’ Tijo.

Step 6: According to the adjacency matrix A;;M, the position node S of the tight
preceding operation, the position node T of the processing machine responsible for the
current operation, and the start time of the load transportation use the Dijkstra algorithm
based on the time window to calculate the next node N of the load transportation path. Go
to Step 7 and repeat Step 5 until N = T.

Step 7: Path conflict detection. Determine if the planned paths conflict with each other
based on their respective time windows, and if there are no conflicts identified, proceed to
Step 8. If there are contflicts, proceed to Step 9.

Step 8: Update the time window of each section on the topology map. In the no-load
transport phase, check whether N = S. If yes, go back to Step 5. Otherwise, return to step 4
until N = S is true, and then return to step 5. If N = T during the load transport phase,
generate the shortest path plan and revise the time window of each section accordingly. Go
to Step 11. Otherwise, continue to search for the next node of the shortest path through the
Dijkstra algorithm and return to Step 7.

Step 9: Detect the path conflict type.

Step 10: Determine if the transportation is over. If N = §, return to Step 5, output
the shortest path, and update the time windows of each section; If N = T, compare
the completion time of the previous process Cy i of k. If Cyrjp > CTjjy, the start time of
Oij Sijk = Cijris if Cy ik < CTijp, the start time is equal to the end time of load transportation,
that is S;jx = CTjj,. Then, output the shortest path and update the time windows of each
section. Go to Step 11. Otherwise, select the suboptimal path and go to Step 7.

Step 11: Output the start time, end time, and available time based on the shortest path
and time window of the process.

Step 12: Iterate Steps 3—11 until the selection of all workpieces and process transporta-
tion tasks has been accomplished, and output the path planning scheme, that is, the final
scheduling scheme, according to the time set of each workpiece (such as the time and
sequence of each working process).

5. Computational Results
5.1. Parameter Settings

The performance of the algorithm is heavily affected by the crossover probability
P. and mutation probability P, which are critical components of the algorithm. An
increase in the crossover probability improves the ease of generating new individuals.
However, setting the crossover probability too high might cause the individuals’ structures
to disintegrate. Meanwhile, decreasing the crossover probability might significantly reduce
the algorithm’s search efficiency. When the mutation probability value is too low, producing
new individuals becomes challenging. Conversely, an extremely high mutation probability
can convert the genetic algorithm into a random search algorithm, significantly reducing
the algorithm’s efficiency [27].

Experiments are conducted on a Windows 10 computer with an Intel Core i7-8750H
CPU, clocked at 2.50 GHz, and 16.00 GB of RAM, using Python programming language
version 3.9. The performance of the genetic algorithm is analyzed by manipulating the
crossover and mutation probabilities, ranging from 0.4 to 1.0 and 0.0001 to 1.0, respec-
tively [28]. Based on 20 independent genetic algorithm trials, the algorithm’s effectiveness
is assessed by averaging the makespan. The results of the study concluded that higher
probabilities of crossover and mutation result in more optimal solutions. As shown in
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Figure 9, the optimal range of crossover probability is determined to be between 0.8 and
1.0, while the ideal range for mutation probability is confirmed at a range between 0.4
to 1.0. In addition, the algorithm’s uniform performance within these parametric ranges
is presented.

150
140 4

130

Average Makespan

0.4

0.2
04 0 mutation probability

crossover probability

Figure 9. The performance of GA under different probabilities of crossover and mutation.

5.2. Comparative Experiment

The comparative experiment utilizes the collection of 82 test problems suggested by
Ulusoy and Bilge. These problems consist of four workshop layouts and 10 production
tasks and are divided into two groups according to the proportion of transportation time
and processing time. For 40 cases with t/p > 0.25 and 42 cases with t /p < 0.25, t represents
the transportation time between different processing machines, and p represents the time
of operation. When t/p > 0.25, AGV transportation time takes up a large proportion. The
purpose is to verify the algorithm’s searching ability for integrated scheduling and path
planning. When t/p < 0.25, problem number mantissa 0 means that all processing time is
doubled, and mantissa 1 means that all processing time is multiplied by three. At the same
time, the path in the map is halved to reduce the influence factors of path planning in the
problem. In order to ensure the consistency of data comparison, this paper also adopts the
same path planning strategy, AGV number, and process constraints. Experiments use the
same map as the classical example.

The algorithm settings used in this study entail a crossover probability of 0.9, a
mutation probability of 0.5, a population size of 100, an elite set size of 10, number of
generations set to 100, with a uniform crossover as the crossover operator, swap mutation
as the mutation operator, roulette wheel as the selection scheme, and 20 genetic algorithm
(GA) runs. Results are shown in the proposed algorithm in Tables 4 and 5. The LB value is
the theoretical optimal value obtained by the lower limit method proposed by Ulusoy. The
STW value is the optimal value obtained by the sliding time window heuristic proposed
by Bilge. The UGA value is the optimal value obtained by the genetic algorithm proposed
by Ulusoy. The improvement value is defined as the discrepancy between the optimal
outcomes achieved by the UGA and those achieved by the proposed algorithm.
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Table 4. Results for cases where the t/p ratio is above 0.25.

Problem t/p LB STW UGA Proposed Algorithm Improvement
EX11 0.59 72 96 96 96 0
EX21 0.61 86 105 104 100 +4
EX31 0.59 81 105 105 102 +3
EX41 091 62 118 116 112 +4
EX51 0.85 60 89 87 87 0
EX61 0.78 96 120 121 118 +3
EX71 0.78 76 119 118 115 +3
EX81 0.58 146 169 152 161 -9
EX91 0.61 93 120 117 116 +1

EX101 0.55 124 153 150 147 +3
EX12 0.47 66 82 82 82 0
EX22 0.49 76 80 76 76 0
EX32 0.47 75 88 85 85 0
EX42 0.73 60 93 88 87 +1
EX52 0.68 54 69 69 69 0
EX62 0.54 86 100 98 100 -2
EX72 0.62 74 90 85 80 +5
EX82 0.46 140 151 142 151 -9
EX92 0.49 91 104 102 102 0

EX102 0.44 114 139 137 135 +2
EX13 0.52 64 84 84 84 0
EX23 0.54 82 86 86 86 0
EX33 0.51 77 86 86 86 0
EX43 0.8 58 95 91 90 +1
EX53 0.74 52 76 75 74 +1
EX63 0.54 88 104 104 103 +1
EX73 0.68 76 91 88 85 +3
EX83 0.5 142 153 143 153 —10
EX93 0.53 93 110 105 105 0

EX103 0.49 116 143 143 139 +4
EX14 0.74 68 108 103 103 0
EX24 0.77 84 116 113 108 +5
EX34 0.74 81 116 113 111 +2
EX44 1.14 62 126 126 126 0
EX54 1.06 56 99 97 97 0
EX64 0.78 90 120 123 120 +3
EX74 0.97 76 136 128 127 +1
EX84 0.72 148 163 163 163 0
EX94 0.76 91 125 123 120 +3

EX104 0.69 120 171 164 159 +5
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Table 5. Results for cases where the t/p ratio is below 0.25.

Problem t/p LB STW UGA Proposed Algorithm Improvement

EX110 0.15 126 126 126 126 0
EX210 0.15 148 148 148 148 0
EX310 0.15 138 150 148 150 -2
EX410 0.15 112 121 119 119 0
EX510 0.21 102 102 102 102 0
EX610 0.16 163 186 186 186 0
EX710 0.19 137 137 137 137 0
EX810 0.14 271 292 271 292 -21
EX910 0.15 150 176 176 176 0
EX1010 0.14 218 238 236 242 —6
EX120 0.12 123 123 123 123 0
EX220 0.12 143 143 143 143 0
EX320 0.12 135 148 145 145 0
EX420 0.12 111 116 114 114 0
EX520 0.17 99 100 100 100 0
EX620 0.12 160 183 181 181 0
EX720 0.15 136 136 136 136 0
EX820 0.11 268 287 268 287 -19
EX920 0.12 150 174 173 173 0
EX1020 0.11 216 236 238 236 +2
EX130 0.13 122 122 122 122 0
EX230 0.13 146 146 146 146 0
EX330 0.13 136 149 146 146 0
EX430 0.13 110 116 114 114 0
EX530 0.18 98 99 99 99 0
EX630 0.14 161 184 182 182 0
EX730 0.17 137 137 137 137 0
EX830 0.13 269 288 270 288 —18
EX930 0.13 151 176 174 174 0
EX1030 0.12 217 237 241 237 +4
EX140 0.18 124 124 124 124 0
EX241 0.13 217 217 217 217 0
EX340 0.18 138 151 151 151 0
EX341 0.12 203 222 221 221 0
EX441 0.19 166 179 172 172 0
EX541 0.18 148 154 148 148 0
EX640 0.19 161 185 184 184 0
EX740 0.24 137 138 137 137 0
EX741 0.16 203 203 203 203 0
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Table 5. Cont.

Problem t/p LB STW UGA Proposed Algorithm Improvement
EX840 0.18 272 293 273 293 —20
EX940 0.19 149 177 175 175 0

EX1040 0.17 219 240 244 240 +4

In general, the proposed algorithm is in good agreement with the LB value obtained by
the lower limit method proposed by Ulusoy. In comparison with the STW heuristic, the pro-
posed algorithm outperforms it in all problems examined, while the UGA underperforms
in six cases. Moreover, the proposed algorithm delivers better solutions for twenty-one
problems having t/p ratios exceeding 0.25, surpassing the UGA’s improved solutions in
only four. However, for the problems with ¢/ p ratios below 0.25, the UGA outperforms the
proposed GA in six issues, while the proposed GA can only achieve for three issues.

Abdelmaguid [29] has invalidated the UGA’s results for seven problems, namely EX81,
EX82, EX83, EX810, EX820, EX830, and EX840, where the STW used the best methods. If the
results generated by the UGA are ignored, it becomes evident that the proposed algorithm
outperforms the UGA by a significant margin. Specifically, the proposed algorithm obtains
improved solutions for twenty-four problems, while the UGA is only better in three
problems.

5.3. Case Verification

We solve the case presented in Section 2.1 to verify both the efficacy and feasibility of
the proposed algorithm with regard to addressing path conflicts. The white rectangular
in Figure 10 represents the AGVs’ deadheading trips. The various colors correspond to
different workpieces: red represents J1, blue represents ]2, yellow represents ]J3, orange
represents J4, and green represents J5. Figure 10 illustrates that the makespan for production
scheduling is 110 s.

Scheduling Gantt chart
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a ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| I||||||||||||||
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a0 o0 0 100
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Figure 10. Gantt chart of production scheduling.
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Figure 11 illustrates the time window without considering path conflicts, where the
red color represents AGV1, blue color represents AGV2, and green color represents AGV3.
AGV1, AGV2, and AGV3 depart from node 4 at the same time, so we have to let them
pass in order of priority. As is shown in Figure 12a, the route of AGV2 from 7 s to 14 s is
“10-15-14-9-14-15-10", which is the same as that of AGV3, so AGV3 cannot pass. According
to the scheme, AGV3 will go to node 19 from node 15 and wait until AGV2 leaves node 15.
Figure 12b illustrates another conflict at 47 s. AGV2 and AGV3 need to go to M1, so AGV3
will have to stay at node 22 until AGV2 leaves node 21.
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Figure 11. Time window without considering path conflicts.
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Figure 12. Path conflicts happen in production scheduling.

AGV2

Figures 13 and 14 show the Gantt Chart and the time window of final scheduling
after optimizing the path conflicts. The route of AGV1 is “L/U-M1-M4-L/U-M4-M3-L/U".
The route of AGV2is “L/U-M4-L/U-M3-M1-L/U”. The route of AGV3 is “L/U-M4-L/U-
M2-M1-L/U-M2-M4-L/U”. All path conflicts among AGVs are eliminated. Finally, the
maximum completion time is determined to be 136 s.
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Figure 13. Gantt chart of final scheduling.
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Figure 14. Time window of final scheduling.

6. Conclusions

This study addresses the integrated scheduling problem of flexible job-shops that
considers CFRP, with the objective of minimizing the maximum makespan. The study
develops a hybrid genetic algorithm for production scheduling, with the optimal range of
crossover and mutation probabilities identified as 0.8-1.0 and 0.4-1.0, respectively. Two
comparative experiments demonstrate the superior efficiency of the proposed GA over
the STW and the UGA. The study implements AGV-encoding as a basis for a genetic
algorithm that tackles the problem of scheduling AGVs. Conflict resolution strategies
are presented, and a time window-based Dijkstra’s algorithm is employed to identify the
shortest conflict-free route, facilitating efficient planning rooted in production scheduling.
The study verifies the feasibility of the proposed approach by applying it to a real case.
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Future research will investigate the impact of equipment maintenance and breakdowns
on production scheduling and explore the use of advanced algorithms to enhance its
efficiency.
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