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Abstract: To address the problem of low recall rate in the detection of prohibited items in X-ray
images due to the severe object occlusion and complex background, an X-ray prohibited item detection
network, ScanGuard-YOLO, based on the YOLOv5 architecture, is proposed to effectively improve
the model’s recall rate and the comprehensive metric F1 score. Firstly, the RFB-s module was added
to the end part of the backbone, and dilated convolution was used to increase the receptive field of the
backbone network to better capture global features. In the neck section, the efficient RepGFPN module
was employed to fuse multiscale information from the backbone output. This aimed to capture details
and contextual information at various scales, thereby enhancing the model’s understanding and
representation capability of the object. Secondly, a novel detection head was introduced to unify
scale-awareness, spatial-awareness, and task-awareness altogether, which significantly improved
the representation ability of the object detection heads. Finally, the bounding box regression loss
function was defined as the WIOUv3 loss, effectively balancing the contribution of low-quality and
high-quality samples to the loss. ScanGuard-YOLO was tested on OPIXray and HiXray datasets,
showing significant improvements compared to the baseline model. The mean average precision
(mAP@0.5) increased by 2.3% and 1.6%, the recall rate improved by 4.5% and 2%, and the F1 score
increased by 2.3% and 1%, respectively. The experimental results demonstrate that ScanGuard-YOLO
effectively enhances the detection capability of prohibited items in complex backgrounds and exhibits
broad prospects for application.

Keywords: X-ray image; prohibited items detection; deep learning; YOLOv5; multiscale feature fusion

1. Introduction

X-ray prohibited item detection holds significant value in the field of security, playing
a crucial role in areas such as airports, railways, and border checkpoints. Traditional
X-ray prohibited item detection methods often rely on manual operations or traditional
algorithms, leading to low accuracy, low efficiency, and high dependence on human
resources. Therefore, utilizing machine learning for automated prohibited item detection
has become a research focus, offering wide-ranging application prospects.

In recent years, with the improvement of hardware computing power and graphics
memory, deep convolutional neural networks have driven the development of computer
vision fields such as object detection, instance segmentation, and keypoint detection, as well
as a series of advances in X-ray prohibited item detection. Mu et al. [1] proposed a dilated
dense convolution module for increasing the receptive field and feature expression ability by
combining dilated convolution [2] and dense connection [3] for the problem of overlapping
and obscuring each other’s texture information in the X-ray colour image, and introduced
an attention mechanism to enhance the effective feature response and inhibit the influence
of ineffective features to reduce the false negative rate of the model. Aiming at the problem
of difficult detection of small and medium- sized items in baggage, Wu et al. [4] introduced
the CBAM [5] attention mechanism into the YOLOX [6] backbone network to enhance the
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perception of prohibited items and added a bottom-up positive pyramid structure at the
end of the neck portion for fusing more features of different sizes to increase the ability to
detect small objects. Wang et al. [7] used ResNet-101 [8] as a backbone feature extraction
network and fused the high-level feature maps with the low-level feature maps through skip
connections, proposing a detection network that fused multiscale features, which effectively
improved the detection and localisation accuracy of small objects. In order to balance the
accuracy and speed of real-time detection of prohibited items in X-ray images, Li et al. [9]
extended the YOLOv7 [10] backbone network with a MobileNetV3 block at the end, which
captured global information while maintaining the lightweight architecture. Additionally,
they integrated the CA [11] attention mechanism into the MPConv to enhance the model’s
localization performance. Finally, they added a detection head with inputs of low-level
and high-resolution feature maps to improve the model’s ability to detect small objects.
Xiang et al. [12] proposed an enhanced network architecture to address the issue of severe
object occlusion in X-ray prohibited item detection. This enhanced structure comprised
multiscale smoothed atrous convolutions and a material-aware coordinate attention module.
Through statistical analysis, it was found that the distribution of long-short sides in the
target boxes was not equal for each type of prohibited item in different datasets. Therefore,
they improved the SIOU [13] loss function and designed it as a long-short side decoupling
module and a category information embedding module, which effectively mitigated the
effect of different scale items on the detection accuracy. To address the low detection
accuracy caused by intentionally hiding certain prohibited items, Wang et al. [14] created a
large-scale dataset with high-quality bounding boxes and mask annotations. The dataset
was divided into three subsets: easy, hard, and hidden, making it the first benchmark
specifically designed for intentionally hiding prohibited items among clutter. The authors
proposed a selective dense attention network (SDANet) to enhance the capturing ability of
spatial and channel features. They also leveraged the dependencies between multiscale
features to further improve the model’s performance.

Although existing detection algorithms have made some progress and can improve
the accuracy and robustness of prohibited item detection to some extent, the algorithms’
recall and F1 score are generally low, mainly due to occlusion and object scale diversity. In
practical applications, low recall means the model may miss certain prohibited items during
detection, increasing security risks. To address this issue, this study investigated critical
components within existing state-of-the-art models based on the YOLOv5 framework [15]
and proposed a network model called ScanGuard-YOLO, tailored for the detection of
prohibited items in X-ray security images. This model enhances feature representation via
introducing the RFB-s [16] module at the end of the backbone network, employing dilated
convolutions with varying dilation rates to expand the network’s receptive field. In the
neck section, the efficient RepGFPN [17] module was employed to fuse multiscale features,
and it utilizes a multi-layer aggregation connection mechanism and a reparameterization
technique to further enhance fusion and detection performance. A dynamic head [18]
was introduced to unify scale-aware, spatial-aware, and task-aware processing on the
multiscale fused feature maps, enhancing the detection head’s ability to perceive objects of
varying sizes and to handle occlusions. To further optimise the contribution of high-quality
and low-quality samples to the regression loss, the bounding box regression loss function
was defined as WIOUv3 [19]. The model proposed in this study was evaluated on two
benchmark datasets, achieving significantly higher recall and F1 score than most current
mainstream detection models. Compared to the state-of-the-art model YOLOv8s [20]
with similar complexity, ScanGuard-YOLO improved recall and F1 score by 4.2% and
2.4%, respectively, on the OPIXray [21] dataset. On the HiXray [22] dataset, the recall and
F1 values were comparable to that of YOLOv8s, but the precision of ScanGuard-YOLO
was 1.1% higher than that of YOLOv8s. The experimental results show that ScanGuard-
YOLO can effectively improve the performance of prohibited item detection in complex
backgrounds, and has a wide range of practicality and great application potential in the
field of automated security screening.



Sensors 2024, 24, 102 3 of 22

2. X-ray Security Image Prohibited Item Detection Model

In this section, we will introduce the relevant components of the YOLOv5 benchmark
model and details of ScanGuard-YOLO. After that, we will introduce the RFB-s module,
the efficient RepGFPN module, the dynamic head module, and the WIOUv3 loss.

2.1. YOLOv5 Baseline Model

YOLOv5, a one-stage object detection network introduced by the Ultralytics organ-
isation, offers five basic network models, namely -n, -s, -m, -l, and -x, designed to meet
different application scenarios and requirements. These models differ in the number of
channels and modules and progressively increase computational and parameter complexity.
In this study, we balanced between detection accuracy and speed, and selected YOLOv5s
as the improved baseline model.

YOLOv5 comprises the feature extraction backbone, the neck feature pyramid fusion
structure, and the detection head. The backbone section consists of four convolutional
layers, four C3 modules, and an SPPF module, all designed for multiscale feature extraction.
Among these, the C3 modules and the SPPF module serve as the core of the backbone. The
neck section consists of a top-down feature pyramid network (FPN) [23] and a bottom-up
path aggregation network (PAN) [24], enabling the fusion of shallow-level visual features
and deep-level semantic features across different scales. The head part consists of a coupled
1 × 1 convolution for predicting different scale objects on the output feature maps of three
different sizes, where the deeper feature map has a larger receptive field for detecting
larger objects.

2.2. Our Method

Different objects with various shapes, densities, and thicknesses in X-ray imaging
exhibit different degrees of scattering and absorption. These effects can impact the quality
and clarity of the resulting images. Moreover, multiple objects may overlap in the image,
making it difficult to distinguish their boundaries. This complexity poses challenges for
detection tasks, especially when smaller prohibited items are obscured by larger objects,
leading to missed detections and lower recall rates for the model. The original YOLOv5
model struggles to effectively address these issues. To tackle these challenges, we propose
ScanGuard-YOLO, whose overall network architecture is depicted in Figure 1. Specific
input/output details are given in Table 1. The SPPF module within the baseline model’s
backbone is a spatial pyramid fusion module that samples the input feature map using
pooling kernels of different sizes. It subsequently concatenates multiple sampled feature
maps in the depth dimension to create a feature representation with rich semantic infor-
mation. However, this module employs max-pooling for sampling, which discards some
pixels in the input feature map, resulting in the loss of certain fine-grained details. The
max-pooling operation requires comparing the pixels within each pooling window and
selecting the largest as the output feature, which is computationally intensive. Hence,
in this study, we replaced the SPPF module with the RFB-s module, which expands the
receptive field without reducing resolution, enhancing the network’s ability to perceive
global information. In the neck section, an efficient multiscale feature fusion module,
termed efficient RepGFPN, was constructed. Its purpose is to enhance interactions between
features of varying scales, allowing for better adaptation to changes in object scale across
different scenarios. To cope with the data distribution characteristics of different X-ray
imaged prohibited item datasets, a detection head containing an attention mechanism was
introduced to enhance the correlation after fusing the features and to help the model focus
on useful features. Finally, the bounding box regression loss was designed as a WIOUv3
loss to optimise the training strategy of the model for hard and easy samples to improve
the accuracy of the model.
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Table 1. Detailed Structure of ScanGuard-YOLO. Channel: input and output channels for each block;
In: input image size; Out: output image size; Input: input for each block; ©: channel concatenation
operation; UP(·): 2x upsampling; F(·): output of the corresponding module; N: serial number of
the module.

Backbone
N Block Filter Stride Channel In Out Input

1 CBS 6 × 6 2 3/32 (H, W) (H/2, W/2) X-ray image
2 CBS 3 × 3 2 32/64 (H/2, W/2) (H/4, W/4) F(1)
3 C3 - - 64/64 (H/4, W/4) (H/4, W/4) F(2)
4 CBS 3 × 3 2 64/128 (H/4, W/4) (H/8, W/8) F(3)
5 C3 - - 128/128 (H/8, W/8) (H/8, W/8) F(4)
6 CBS 3 × 3 2 128/256 (H/8, W/8) (H/16, W/16) F(5)
7 C3 - - 256/256 (H/16, W/16) (H/16, W/16) F(6)
8 CBS 3 × 3 2 256/512 (H/16, W/16) (H/32, W/32) F(7)
9 C3 - - 512/512 (H/32, W/32) (H/32, W/32) F(8)
10 RFB-s - - 512/512 (H/32, W/32) (H/32, W/32) F(9)

Neck
N Block Filter Stride Channel In Out Input

11 CBS 1 × 1 1 512/256 (H/32, W/32) (H/32, W/32) F(10)
12 CBS 3 × 3 2 256/256 (H/16, W/16) (H/32, W/32) F(7)
13 Concat - - 512/512 (H/32, W/32) (H/32, W/32) F(11©12)
14 CSPStage - - 512/256 (H/32, W/32) (H/32, W/32) F(13)
15 Upsample - - 256/256 (H/32, W/32) (H/16, W/16) UP(F(14))
16 CBS 3 × 3 2 128/128 (H/8, W/8) (H/16, W/16) F(5)
17 Concat - - 640/640 (H/16, W/16) (H/16, W/16) F(7©15©16)
18 CSPStage - - 640/256 (H/16, W/16) (H/16, W/16) F(17)
19 Upsample - - 256/256 (H/16, W/16) (H/8, W/8) UP(F(18))
20 Concat - - 384/384 (H/8, W/8) (H/8, W/8) F(5©19)
21 CSPStage - - 384/128 (H/8, W/8) (H/8, W/8) F(20)
22 CBS 3 × 3 2 128/128 (H/8, W/8) (H/16, W/16) F(21)
23 Concat - - 384/384 (H/16, W/16) (H/16, W/16) F(18©22)
24 CSPStage - - 384/256 (H/16, W/16) (H/16, W/16) F(23)
25 CBS 3 × 3 2 256/128 (H/16, W/16) (H/32, W/32) F(18)
26 CBS 3 × 3 2 256/128 (H/16, W/16) (H/32, W/32) F(24)
27 Concat - - 512/512 (H/32, W/32) (H/32, W/32) F(14©25©26)
28 CSPStage - - 512/512 (H/32, W/32) (H/32, W/32) F(27)

Head
N Block Filter Stride Channel In Out Input

29 CBS 1 × 1 1 128/128 (H/8, W/8) (H/8, W/8) F(21)
30 CBS 1 × 1 1 256/128 (H/16, W/16) (H/16, W/16) F(24)
31 CBS 1 × 1 1 512/128 (H/32, W/32) (H/32, W/32) F(28)
32 Dynamic Head - - 256/128 - (H/8, W/8) F(29,30)
33 Dynamic Head - - 384/128 - (H/16, W/16) F(29,30,31)
34 Dynamic Head - - 256/128 - (H/32, W/32) F(30,31)

2.2.1. Expanding the Receptive Field

When performing feature extraction, it is common to use max-pooling operations
with varying kernel sizes to extract features for objects of different sizes within the feature
maps. However, max-pooling reduces the size of feature maps by selecting the maximum
value within specific regions, which can result in the loss of certain feature information. In
X-ray prohibited item images, there are often multiple items obscuring each other, which
causes us to observe only some of the edge features. In order to better capture the features
and structures in the input data to enhance the perception of objects of different sizes, we
adopted the strategy of expanding the receptive field in the feature extraction network.
Specifically, the RFB-s module was introduced, and its structure is shown in Figure 2.
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Figure 2. Structure of SPPF and RFB-s.

This module utilizes multiple dilated convolutions with different dilation rates to
enlarge the neural network’s receptive field. Concurrently, it incorporates multiple convo-
lutional kernels of varying dimensional sizes to learn abstract features at different levels,
thereby enhancing the model’s expressive capacity and better representing object shape,
texture, and other information. Furthermore, the substitution of 3 × 3 convolutions with
1 × 3 and 3 × 1 convolutions was employed to reduce model parameters and alleviate
computational overhead. This design contributes to efficient feature extraction, especially
in situations with limited computational resources.

2.2.2. Efficient Multiscale Feature Fusion

The backbone network is usually a deep convolutional neural network for extracting
feature representations of an image from shallow to deep layers, with different receptive
fields and semantic information at different levels. The traditional feature pyramid pro-
poses a top-down feature fusion strategy, in which the upsampled deep feature maps are
sequentially fused with the shallow feature maps through a top-down path to obtain a
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feature pyramid with multiscale information. However, using only one top-down uni-
directional information flow path, the deeper feature maps may have lost some detailed
information [23]. To compensate for the lack of unidirectional data flow, PANet [24] adds a
bottom-up feature propagation mechanism. PANet utilizes feature propagation modules to
propagate feature information between different levels, enhancing the interaction between
features at different levels. In order to improve the detection ability of different scale objects,
we constructed an efficient multiscale feature fusion module, efficient RepGFPN, at the
neck of the network, the structure of which is shown in Figure 3.
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In this structure, when fusing multiscale features, we employed a non-shared channel
setting, which allowed for the preservation of the original feature information at each
scale. Since the number of channels is not adjusted via convolution, the downscaling and
upscaling operations of the features are avoided, which reduces the loss of information.
At the same time, a richer feature representation is formed via the stacking features from
different scales according to the original channels, which helps the network better under-
stand and use the multiscale information. In the Simplify Rep Block structure, a structural
re-parameterization mechanism is employed to eliminate branches that are present during
training but not required during inference. This helps reduce the model’s computational
requirements and memory footprint, thereby improving the model’s inference efficiency.

2.2.3. Dynamic Detection Head

In YOLOv5, 1 × 1 convolutions are used to perform classification and regression on
the three scale features output by the neck. In the YOLOX model, the detection head’s
classification and regression operations are decoupled, accelerating model convergence. To
reduce model computational complexity, YOLOv6 [25] employs a hybrid-channel strategy
and reduces two 3 × 3 convolutions in the YOLOX detection head to one, achieving lower
inference latency, referred to as the efficient decoupled head. All the above detection heads
are only applied to feature maps of the same scale without considering multiscale contextual
features. Zhuang et al. [26] proposed a context-decoupled head that fused multiscale
features, called the TSCODE head, whose structure is shown in Figure 4. The detection
performance of the model was further improved by fusing small-scale features with high-
level semantic information for the classification task while using features from all scales
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for regression. However, the above detection heads do not consider unity, adaptability,
and multi-task support. Furthermore, the performance of the decoupled head may not
necessarily be superior to that of the coupled head after improvements to multiple modules
of the network. Adjustments should be made based on actual application scenarios, and
specific ablation experiments are described in Section 3.4.2.
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In X-ray prohibited item detection tasks, there can be various categories of prohibited
items within packages, and these items come in different sizes and levels of occlusion.
Therefore, it is essential for the detection head to possess scale-awareness capability. Sec-
ondly, the prohibited items to be detected may present different shapes and appear in any
position in the image under different viewpoints, thus requiring spatial-awareness of the
detection head. Finally, due to the varying contributions of different channel features to
different tasks (e.g., classification and regression), it is necessary to dynamically adjust
the detection head’s attention allocation to each channel based on the task type. Hence,
there is a need to enhance the task-awareness capability of the detection head. For this
reason, a dynamic detection head [18] was constructed in the head, and its structure is
shown in Figure 5. The effective fusion between scale-awareness, spatial-awareness and
task-awareness was achieved by introducing the attention mechanism, and the attention
formula is expressed as:

W(F) = π(F)·F (1)

where, given an input tensor F ∈ RL×S×C, L was the number of different scale feature
maps outputted through the neck section, S was the product of the width and height of
the feature maps, C was the number of channels of the feature maps, and π(·) was the
attention function.

To simplify the formula, we still denote the output after the attention operation as
F. Thus, the formula representing the concatenation of spatial-awareness πS(·), scale-
awareness πL(·), and task-awareness πC(·) attention mechanisms can be expressed as:

W(F) = πC(πL(πS(F)·F)·F)·F (2)

In the prohibited items detection task, objects can be deformed due to different viewing
angles, and traditional fixed-shape convolution kernels and fixed-size receptive fields often
struggle to adapt well to this situation. Therefore, we require a convolution operation that
can adaptively adjust the receptive field and convolution kernel sampling positions to better
capture the deformation information of the objects. The spatial-aware attention mechanism
uses deformable ConvNets v2 (DCNv2) [27] to adjust the size of the convolutional kernel
receptive field. DCNv2 can not only adjust the offset of input features but also modulate the
sampling point weights. By learning the offsets, it becomes possible to adaptively adjust
the sampling positions of the convolutional kernel on the input feature map. This enables
the network to better accommodate variations such as deformations and local changes in
the presence of prohibited items at different locations. By learning the weights of sampling
points, the network can adjust the sampling weights of convolutional kernels at different
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positions more effectively based on different local structures and their feature importance.
The formula for spatial-aware attention is expressed as:

πS(F)·F =
1
L

L

∑
l=1

K

∑
k=1

wl,k·F(l; pk + ∆pk; c)·∆mk (3)

Here, F ∈ RL×S×C was the input tensor, and c denoted c-th channel of the feature map.
K represented the number of sampled pixels in the convolution kernel, pk was the k-th
sampled pixel in the convolution kernel, wk corresponded to its weight, ∆pk denoted the
learned offset, and ∆mk was an importance scalar obtained via learning at pk.
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Scale-aware attention performs adaptive average pooling, a 1 × 1 convolution, and
a hard-sigmoid activation on the S and C dimensions of the features, which generates
attention weights specific to different scale features. These weights dynamically fuse
features of different scales based on their semantic importance, as shown in Figure 5, which
can effectively improve the performance of the model on the multiscale detection task. The
scale-aware attention formula is expressed as:

πL(F)·F = σ

(
f

(
1

SC ∑
S,C

F

))
·F (4)

σ(x) = max
(

0, min
(

1,
x + 1

2

))
(5)

In the equation, f (·) represented a linear function approximated by a 1 × 1 convolution,
and σ(x) denoted the hard-sigmoid activation function.
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The task-aware attention was inspired by the dynamic ReLU [28], which adaptively
learns the importance of each feature channel and reallocates the weights of individual
channels based on different tasks. The task-aware attention formula is expressed as:

πC(F)·F = max
(

ω1(F)·Fc + φ1(F), ω2(F)·Fc + φ2(F)
)

(6)

Here, Fc represented the c-th channel of the feature map, and
[
ω1, ω2, φ1, φ2]T

= θ(·)
denoted the hyperfunction for learning control activation thresholds. First, global average
pooling was applied on the S dimensions of the feature map to compute the mean value
of each channel, resulting in a fixed-size vector. The compressed feature vector was
further processed through two fully connected layers, whose outputs indicated the relative
importance weights of each channel in different tasks. To ensure that the task-aware
attention weights have positive and negative values, a shifted sigmoid function was used
to normalise the output within the range of [−1, 1]. Subsequently, these values were passed
through the hyperfunction θ(·) to generate four learnable parameters, ω1, ω2, φ1, φ2. These
parameters were used in subsequent maxout operations to activate different channels of
the input feature map. In this way, the obtained attention weights can enhance the features
of specific channels and suppress the features of other channels.

2.2.4. Bounding Box Regression Loss Function

The loss function is a metric that measures the discrepancy between model predictions
and ground truth. It is used to evaluate the model’s performance and guide parameter
updates. The loss function of YOLOv5 consists of classification loss, confidence loss, and
bounding box regression loss. In order to improve the precision and recall of detection
and to accelerate the speed of bounding box regression, we introduced WIOUv3 [19] as the
bounding box regression loss. WIOUv3 adopts a dynamic and non-monotonic focusing
mechanism, compared to Focal-EIOU’s [29] static focusing mechanism, which can more
effectively balance the contribution of high-quality and low-quality samples to the loss
function. Its formula is represented as follows:

LWIOUv3 = rLIOUe
(
(x−xgt)

2+(y−ygt)
2

(w2
c+h2

c )
∗ )

(7)

r =
β

δϑβ−δ
(8)

β =
L∗

IOU

LIOU
(9)

LIOU = 1 − IOU (10)

where xgt and ygt denoted the coordinates of the centre of the ground truth bounding
box, and x and y represented the coordinates of the center of the predicted bounding box.
Furthermore, wc and hc stood for the width and height of the minimum enclosing rectangle
of the predicted and ground truth boxes. L∗

IOU indicated that during the computation
of the loss within the current batch, LIOU was detached from the computation graph,
making it devoid of gradient information. LIOU was the exponential running average with
momentum factor m = 1 − 7000

√
0.5, and β was the ratio between L∗

IOU and LIOU , which
characterized the outlier degree used to describe anchor box quality; a smaller outlier
degree implies higher anchor box quality. r was the nonmonotonic focusing coefficient
of β, with hyperparameters ϑ = 1.9 and δ = 3.0 during training. The WIOUv3 loss not
only reduced the competitiveness of high-quality anchor boxes but also mitigated the
harmful gradients generated by low-quality samples. This allows the network to focus
more on anchor boxes of moderate quality, thereby enhancing the overall accuracy of
object detection.
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3. Experiments

This section introduces the dataset, experimental setup, and evaluation metrics used
in our experiments. Next, we validated the state-of-the-art performance of the proposed
model through comparative experiments. Finally, we assessed the effectiveness of our
approach through ablation experiments.

3.1. Datasets

OPIXray [21] is a dataset for occluded prohibited items detection using X-ray imaging.
It comprises 8885 images and includes five classes of sharp objects commonly carried by
passengers: folding knives, straight knives, scissors, utility knives, and multi-tool knives.

HiXray [22] is a large, high-quality dataset for prohibited item detection in X-ray
images. It consists of a total of 45,364 images, encompassing eight classes of items commonly
carried by passengers, including two types of convenient portable chargers, water bottles,
laptops, mobile phones, tablets, canned cosmetics, and nonmetallic lighters.

The OPIXray dataset is artificially synthesized via scanning through the security
screening machine, while the HiXray dataset was collected from real daily security checks
at international airports, and two datasets of prohibited items were manually labelled by
professional security screeners at international airports. All images are stored in JPG format
with an average resolution of 1200 × 900 and a maximum resolution of 2000 × 1040.

3.2. Experimental Environment and Evaluation Indicators

The following experiments were conducted on a server with an NVIDIA A40 (48 GB)
GPU, using the PyTorch 1.13.1 framework for training and testing. Both datasets were
divided into training, validation, and test sets in a ratio of 6:2:2. In all the experiments
described below, the models were trained for 100 epochs, with an input image size of
1280 × 1280 and a batch size of 16. We used the SGD optimizer with an initial learning rate
of 10−2, a final learning rate of 10−4, momentum of 0.937, weight decay of 5 × 10−4, and
pretrained weights were used.

We employed several metrics to evaluate the model’s prediction performance, in-
cluding the mean average precision (mAP@0.5, with an IOU threshold greater than 0.5),
precision, recall, and F1 score.

3.3. Comparative Experiments with State-of-the-Art Models

We compared the proposed ScanGuard-YOLO model with several excellent object
detection models, including YOLOv5, YOLOv6, YOLOv7, and YOLOv8, on the OPIXray
and HiXray datasets to validate the superiority of ScanGuard-YOLO over similar models. In
all tables below, bold indicates the best-performing values, and underlined values represent
the second-best results. The baseline model was YOLOv5s 7.0.

The results of the comparison experiments between different models on the OPIXray
dataset are shown in Table 2. It can be seen that compared to the baseline model, ScanGuard-
YOLO improved recall by 4.5%, mAP(@0.5) by 2.3%, F1 score by 2.3%, and precision was
slightly reduced by 0.1%. Despite the increase in computation and number of parameters,
ScanGuard-YOLO still shows the best overall performance compared to state-of-the-art
models with more parameters.

The results of the comparison experiments between different models on the HiXray
dataset are shown in Table 3. It was found that mAP(@0.5) was 1.6% higher than the
baseline model, which was the optimal value among several comparison models. Although
the recall and F1 score were only sub-optimal, they were only 0.2% and 0.3% lower than
the optimal values. Considering all evaluation metrics and the number of parameters and
calculations, ScanGuard-YOLO was more suitable for X-ray prohibited item detection tasks.
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Table 2. Results of comparison experiments on the OPIXray dataset.

Model Precision Recall mAP (@0.5) F1 Parameters (M) GFLOPs

Baseline [15] 0.924 0.861 0.891 0.891 7.0 16.0
YOLOv5m [15] 0.934 0.881 0.903 0.907 20.9 48.3
YOLOv6s [25] 0.903 0.876 0.905 0.889 18.5 45.3

YOLOv7tiny [10] 0.887 0.838 0.866 0.862 6.0 13.2
YOLOv7 [10] 0.922 0.858 0.875 0.889 36.5 103.3
YOLOv8s [20] 0.918 0.864 0.902 0.89 11.1 28.7

ScanGuard-YOLO 0.923 0.906 0.914 0.914 13.1 24.1

Table 3. Results of comparison experiments on the HiXray dataset.

Model Precision Recall mAP (@0.5) F1 Parameters (M) GFLOPs

Baseline [15] 0.861 0.835 0.842 0.848 7.0 16.0
YOLOv5m [15] 0.88 0.834 0.852 0.856 20.9 48.3
YOLOv6s [25] 0.85 0.854 0.849 0.852 18.5 45.3

YOLOv7tiny [10] 0.85 0.841 0.837 0.845 6.0 13.2
YOLOv7 [10] 0.875 0.848 0.858 0.861 36.5 103.3
YOLOv8s [20] 0.851 0.857 0.854 0.854 11.1 28.7

ScanGuard-YOLO 0.862 0.855 0.858 0.858 13.1 24.1

ScanGuard-
YOLOm 0.885 0.851 0.862 0.868 37.8 69.9

On the OPIXray dataset, which had a smaller volume of data, ScanGuard-YOLO
surpassed the models in Table 2. The model’s noticeable performance boost can be credited
to proficiently using the limited dataset, which facilitated capturing relevant features
and generalized well in this constrained surrounding. In contrast, the challenges faced
while working with the HiXray dataset, with a larger data volume and elevated category
diversity, adversely affected the model’s performance. While our model may not surpass the
performance enhancement achieved on OPIXray, it is important to note that it consistently
achieved optimal results in terms of the primary evaluation metric, mAP(@0.5), as shown
in Table 3. The prioritisation of mAP(@0.5) ensured that the model excelled in achieving
the necessary precision for detecting prohibited items in X-ray imaging, aligning with
real-world security applications’ stringent requirements.

YOLOv7 showed suboptimal performance on the smaller OPIXray dataset. However,
on the larger HiXray dataset, YOLOv7 showed excellent performance. This could be
attributed to the fact that YOLOv7 had a larger number of parameters, potentially leading to
overfitting on the smaller OPIXray dataset. Therefore, ScanGuard-YOLO showed superior
performance than YOLOv7 on the OPIXray dataset.

To verify whether our approach performed exceptionally well with a comparable
number of parameters to YOLOv7, we built the ScanGuard-YOLOm model by extending
the YOLOv5m model with the addition of the RFB-s, efficient RepGFPN, dynamic head
modules, and the WIOUv3 loss. As shown in Table 3, ScanGuard-YOLOm outperformed
YOLOv7 in all metrics, indicating that with the same number of parameters, ScanGuard-
YOLOm may perform better in feature extraction and feature fusion, and can capture more
useful information from the input data, resulting in better performance metrics.

Figure 6 illustrates the comparison of the detection performance of ScanGuard-YOLO
with the aforementioned advanced models on the HiXray dataset. We found that ScanGuard-
YOLO was more effective at detecting occluded objects with the same number of parameters,
while other advanced models tended to have more instances of missed detections. Even
when all models detected prohibited items, ScanGuard-YOLO captured more global and
multiscale information, enhancing the perceptual capabilities of its dynamic head. This
results in higher confidence scores for detected prohibited items.
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Figure 6. Comparison of detection performance of different detection models on the HiXray dataset.

3.4. Ablation Experiment

In this section, YOLOv5s 7.0 was used as the baseline model for ablation studies on the
OPIXray dataset to demonstrate the effectiveness of the proposed model. The experimental
strategies for each group of experiments were consistent. The symbol “✓” represents the
addition of corresponding modules in all the experiments mentioned below.

3.4.1. Impact of Different Modules on Model Performance

In Table 4, A is the efficient RepGFPN module, B is the WIOUv3 loss, C is the dynamic
head module, and D is the RFB-s module. It can be observed that when the A module was
added alone, mAP(@0.5) decreased by 0.2%, but the recall rate increased by 1.4%, indicating
that more prohibited items were detected. Furthermore, through combination experiments
of different modules, we observed that as the improved modules were gradually added to
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the network, the value of mAP(@0.5) also increased gradually. This indicated that there may
be a synergistic effect between the improvement modules, leading to better performance.
When all four modules were stacked together in the network, the model achieved the
best performance, with a 4.5% increase in recall, a 2.3% increase in mAP(@0.5), and a 2.3%
increase in F1 score. These improvements enabled the model to more accurately predict the
categories of prohibited items to be detected, resulting in increased reliability and usability
in practical applications.

Table 4. Results of ablation experiments.

A B C D Precision Recall mAP (@0.5) F1 Parameters (M) GFLOPs

0.924 0.861 0.891 0.891 7.0 16.0
✓ 0.917 0.875 0.889 0.896 9.2 19.5
✓ ✓ 0.909 0.869 0.892 0.889 9.2 19.5
✓ ✓ 0.906 0.881 0.891 0.893 12.3 23.4
✓ ✓ 0.93 0.862 0.895 0.895 10.1 20.2
✓ ✓ ✓ 0.922 0.873 0.897 0.897 10.1 20.2
✓ ✓ ✓ 0.912 0.887 0.906 0.899 12.3 23.4
✓ ✓ ✓ 0.922 0.894 0.897 0.908 13.1 24.1
✓ ✓ ✓ ✓ 0.923 0.906 0.914 0.914 13.1 24.1

Through ablation experiments with different modules, we observed that the RFB-
s module had a significant impact on precision, while the efficient RepGFPN and dy-
namic head modules had a more pronounced impact on recall. When combined with the
WIOUv3 loss function and the other three modules, optimal performance was achieved. In
Sections 3.4.2 and 3.4.4, we performed ablation studies on various excellent detection head
modules and loss functions.

According to Table 4, it is clear that the baseline model tended to produce false
negatives during detection, resulting in lower recall. In the context of prohibited item
detection, minimizing false negatives is of paramount importance. To demonstrate the
detection performance improvement achieved by ScanGuard-YOLO, we used the Grad-
CAM++ [30] method for heatmap visualization, as shown in Figure 7. Heatmaps were used
to visualise the regions of interest that the model focused on during the detection task. In
these heatmaps, the red regions indicated higher contribution levels, while the blue regions
represented lower contribution levels. The heatmap results show that ScanGuard-YOLO
had stronger perceptual capabilities than the baseline model. It can more accurately detect
features related to the prediction results, reducing the reliance on irrelevant features and
resulting in a more accurate object box regression.

Figure 8 compares the actual detection performance between ScanGuard-YOLO and
the baseline model for five categories of prohibited items. In the “folding knife” category
detection, occlusion of the object led to missed detections and false positives in the baseline
model, while ScanGuard-YOLO was able to identify the category of occluded objects with
higher confidence scores. In the case of the “straight knife” category detection, where there
were many densely distributed objects, the baseline model experienced false positives. For
the remaining three category detections, the baseline model achieved lower confidence
scores, while ScanGuard-YOLO achieved higher scores.

As can be seen from the heat map and the images of the actual detection effect,
ScanGuard-YOLO detected better than the baseline model in images with object occlusion
and dense distribution of multiscale objects and achieved the expected effect.
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3.4.2. The Impact of Different Detection Heads on Model Performance

In this section, experiments were conducted on several excellent detection head meth-
ods to investigate the impact of different detection heads on the performance of both the
baseline model and the proposed model.

Table 5 shows the comparative experimental results of four detection heads on the
baseline model, where a represents the efficient decoupled head, b represents the TSCODE
head, c represents the replacement of the 1 × 1 convolution at the end of the dynamic
head with the efficient decoupled head, and d represents the dynamic head. If none of the
options a, b, c, or d were used, it corresponds to the baseline model with a 1 × 1 convolution
detection head. The experimental results indicated that the use of c on the baseline model
achieved higher precision and recall compared to d. Due to the decoupled head, which
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handled the prediction of position and category separately, their learning objectives were
more explicit and independent. This independence can help the network to better capture
both the position and category information of the targets, resulting in higher precision and
recall. However, the performance of the coupled option was also excellent, suggesting that
task-awareness within the dynamic detection head played a crucial role.

Table 5. Comparative experimental results of different detection heads on the baseline model.

a b c d Precision Recall mAP (@0.5) F1 Parameters (M)

0.924 0.861 0.891 0.891 7.0
✓ 0.92 0.88 0.897 0.9 13.6

✓ 0.925 0.878 0.898 0.901 11.9
✓ 0.926 0.889 0.909 0.907 11.1

✓ 0.917 0.886 0.91 0.901 10.1

Table 6 shows the comparative experimental results of adding different detection
heads to the baseline model after incorporating the modules of RFB-s, efficient RepGFPN,
and WIOUv3 loss. We observed that in the combined module experiment, the performance
of the dynamic head after decoupling was not as good as that of the coupled head with
fewer parameters. This may be due to the introduction of the RFB-s and efficient RepGFPN
modules, which enhance the feature extraction and fusion capabilities of the model, result-
ing in more powerful feature representations after fusion. In this scenario, the task-aware
module within the dynamic head can perform well without decoupling the coupled head
and training separate regressors and classifiers. This suggests that a more comprehensive
model-based improvement in the X-ray prohibited item detection task may lead to more
significant performance gains beyond simply adding decoupled or coupled heads.

Table 6. Comparative experimental results using different detection heads on the combined module.

a b c d Precision Recall mAP (@0.5) F1 Parameters (M)

0.92 0.873 0.897 0.896 10.0
✓ 0.908 0.884 0.899 0.896 16.6

✓ 0.923 0.864 0.897 0.893 14.9
✓ 0.92 0.9 0.908 0.91 14.1

✓ 0.923 0.906 0.914 0.914 13.1

3.4.3. The Impact of the Number of Input Channels of the Detection Head and Its Module
Repetitions on Model Performance

To investigate the impact of the number of input channels on the performance of
the dynamic head, we conducted relevant ablation experiments on the baseline model,
as shown in Table 7 (with a module repetition number of 6). The highest mAP(@0.5)
was achieved when the number of input channels was set to 512. This suggested that a
larger number of input channels provided richer feature representations, which helped the
network to learn more complex features and patterns. However, as the number of channels
increased, the model became more complex and required more computational resources
during inference. When the input channel number was adjusted to 128, the mAP(@0.5)
reached its second-highest value, but the number of parameters was reduced by a factor of
5 compared to the input channel number of 512. While fewer input channels limited the
model’s representational capacity, the reduced parameter and computational requirements
made the model lighter, making it more suitable for real-time detection of prohibited items.
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Table 7. Impact of input channel numbers on dynamic head performance.

Channel mAP (@0.5) Parameters (M) GFLOPs

32 0.896 7.3 16.8
64 0.907 7.9 17.8

128 0.91 10.1 19.8
256 0.909 18.8 24.3
512 0.918 52.7 35.1

To further investigate the impact of the number of dynamic head modules on model
performance, we set the number of input channels to 128 and performed ablation experi-
ments on the baseline model, as shown in Table 8. The purpose of repetitive modules was
typically to increase the feature extraction and representation capabilities of the model.
Each repetitive module can learn different levels of abstract feature representations and
combine these features to better understand the input data. However, too many modules
can lead to an overly complex model that overfits the training data and does not generalise
well to new data. In experiments, six dynamic head modules achieved the best performance
on the OPIXray dataset.

Table 8. Ablation study on the number of dynamic head modules.

The Number of Modules mAP (@0.5) Parameters (M) GFLOPs

1 0.902 7.6 16.9
2 0.906 8.1 17.5
3 0.906 8.6 18.1
4 0.903 9.1 18.7
5 0.908 9.6 19.2
6 0.91 10.1 19.8
7 0.906 10.6 20.4
8 0.908 11.1 21

3.4.4. The Impact of Different Loss Functions on Model Performance

In this section, experiments were conducted to explore the impact of various commonly
used loss functions on both the baseline model and the proposed model. Table 9 and
Figure 9 illustrate the effect of different loss functions on the performance of the baseline
model. The baseline model used the CIOU loss for bounding box regression and achieved
the highest precision but relatively low recall. X-ray prohibited item detection required
high recall, as low recall implied a significant number of false negatives, which could lead
to serious security problems. Compared to the other loss functions, the WIOUv3 loss had
the highest F1 score, with a recall that was only 0.001 lower than the highest recall.

To investigate whether the previously superior performance of the loss functions
holds when combined with the RFB-s, efficient RepGFPN, and dynamic head modules
on the baseline model, we conducted further ablation experiments, and the results are
shown in Table 10. The WIOUv3 loss showed the highest recall and mAP(@0.5) scores
and also achieved the second-best score in the F1 composite performance metric, differing
by only 0.001 from the optimal value. Figure 10 illustrates the performance of the DIOU,
Focal EIOU, and WIOUv3 loss functions on the validation set over each training epoch.
From the above experiments, it is clear that the WIOUv3 loss can more accurately detect
potential contraband, making it a more suitable loss function for X-ray prohibited item
detection applications.
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Table 9. Comparison of experimental results of different loss functions on the baseline model.

Loss Function Precision Recall mAP (@0.5) F1

DIOU [31] 0.924 0.873 0.892 0.898
CIOU [31] 0.924 0.861 0.891 0.891
EIOU [29] 0.918 0.87 0.894 0.893
SIOU [13] 0.921 0.869 0.895 0.894

Focal DIOU [29,31] 0.904 0.861 0.893 0.882
Focal CIOU [29,31] 0.908 0.885 0.895 0.896

Focal EIOU [29] 0.918 0.869 0.895 0.893
Alpha DIOU [32] 0.908 0.854 0.873 0.88
Alpha CIOU [32] 0.908 0.843 0.873 0.874

Alpha EIOU [29,32] 0.895 0.858 0.881 0.876
Alpha SIOU [13,32] 0.889 0.835 0.869 0.861

WIOUv3 [19] 0.918 0.884 0.891 0.901
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Table 10. Comparative experimental results with different loss functions on combined modules.

Loss Function Precision Recall mAP (@0.5) F1

DIOU [31] 0.938 0.893 0.912 0.915
CIOU [31] 0.923 0.889 0.908 0.906
EIOU [29] 0.905 0.889 0.91 0.897
SIOU [13] 0.928 0.891 0.91 0.909

Focal CIOU [29,31] 0.903 0.891 0.909 0.897
Focal EIOU [29] 0.94 0.874 0.912 0.906

WIOUv3 [19] 0.923 0.906 0.914 0.914
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4. Conclusions

In response to the common problem of low recall in existing deep learning models
for X-ray prohibited item detection tasks, we propose an object detection model called
ScanGuard-YOLO based on the YOLOv5 architecture. This model combines the RFB-s,
efficient RepGFPN, dynamic head modules, and the WIOUv3 loss function. Experimental
results show that the RFB-s module significantly improved precision, while the efficient
RepGFPN and dynamic head modules were crucial for improving recall. Optimal results
were achieved by combining the WIOUv3 loss function with these three modules. Com-
pared to current state-of-the-art detection models, ScanGuard-YOLO exhibited higher recall
and F1 score, showing promising applications in practical X-ray prohibited item detection.
It has the potential to assist human operators in accelerating the detection process.

In future work, inspired by the Swin Transformer [33], we plan to improve the back-
bone network architecture. We aim to improve accuracy while reducing model parameters
and computational overhead, thereby increasing detection and recognition speed.
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