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Abstract: Brain-computer interfaces use signals from the brain, such as EEG, to determine brain
states, which in turn can be used to issue commands, for example, to control industrial machinery.
While Cloud computing can aid in the creation and operation of industrial multi-user BCI systems,
the vast amount of data generated from EEG signals can lead to slow response time and bandwidth
problems. Fog computing reduces latency in high-demand computation networks. Hence, this paper
introduces a fog computing solution for BCI processing. The solution consists in using fog nodes
that incorporate machine learning algorithms to convert EEG signals into commands to control a
cyber-physical system. The machine learning module uses a deep learning encoder to generate
feature images from EEG signals that are subsequently classified into commands by a random forest.
The classification scheme is compared using various classifiers, being the random forest the one that
obtained the best performance. Additionally, a comparison was made between the fog computing
approach and using only cloud computing through the use of a fog computing simulator. The
results indicate that the fog computing method resulted in less latency compared to the solely cloud
computing approach.

Keywords: fog computing; BCI; machine learning; random forest

1. Introduction

Brain-Computer Interface (BCI) is a technology emerging in recent decades, whose
aim is to provide a direct interface with the human brain as an alternative to body-mediated
communication.

Thus a BCI system offers a way to control systems or devices without involving any
muscle movements [1], which could result in systems that are friendly to users with some
physical incapacity. As [2] mentions, BCI technology is helpful for patients with severe
brain nerve damage, because in these cases the normal communication channel has been
damaged. Also in [1] is commented that persons suffering neuromuscular diseases, can use
BCI to perform multiple tasks such as controlling a machine or accessing communication
devices, in [3–5] this list is extended to manipulators, exoskeleton control, robotics, electric
wheelchair control, text input, intelligent home control, and industrial equipment. In this
paper, we are interested in this last activity.

Recently, the potential benefits of BCI within the industrial processes have been
investigated in several works [6]. The aim is to facilitate the work of machine operators and
limit risks. Lately, there has been enormous interest in BCI technology, as evidenced by the

Sensors 2024, 24, 149. https://doi.org/10.3390/s24010149 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8981-5350
https://orcid.org/0000-0002-1599-6993
https://orcid.org/0000-0001-7362-6408
https://orcid.org/0000-0002-8368-3948
https://orcid.org/0000-0002-6463-0488
https://doi.org/10.3390/s24010149
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010149?type=check_update&version=2


Sensors 2024, 24, 149 2 of 16

financing of large-scale projects focused on the advancement of the brain-machine interface,
for example, Neuralink and neuronable [7,8], and an estimate of investments in this area
put said technology on the market for a value of more than US $5.8 billion in 2020 [8].

Despite the above, BCI remains an open problem due to the complexity of the acqui-
sition and processing of EEG signals. Regarding the acquisition of signals for use in BCI,
there are several ways to measure activity in the brain. This task is generally divided into
two categories: invasive and noninvasive [9]. Some invasive techniques include electrocor-
ticography and single-unit action potentials. Most modern BCIs are based on noninvasive
acquisition of electroencephalography (EEG) signals because they present less risk to the
user. For noninvasive EEG acquisition, electrodes on the skin surface of the head are
used [3]. However, the signals acquired noninvasively present extreme noise problems
and other distortions, which makes their processing difficult. Additionally, the classifica-
tion of multichannel EEG is an intensive and sophisticated task since those signals, even
without noise, consist of dynamic and complex patterns of electric potential, exhibiting
nonstationarity, high-dimensionality [3,10]. All this makes it difficult to implement BCI
industrial cyber-physical systems, because the BCI systems, apart from presenting the
problems mentioned above, have to respond with a minimum of latency to user signals in
order to efficiently operate cyber-physical systems, this would require having sophisticated
computing equipment on the industry floor to be able to process the user’s EEG, another
alternative is to process the signals in the cloud; however, this could cause latency problems.

In this paper, we propose a fog-based architecture specific to managing the aspects of
cyber-physical systems controlled through BCI. The proposed architecture aims to provide
advanced connectivity, ensuring real-time response, accurate data acquisition from the
physical layer, and information feedback from the cloud services through intermediate
fog nodes. This will allow intelligent data management, collect analytics, and real-time
computational capability. Thus, the contribution of this paper is twofold:

• It is proposed a new scheme for decoding EEG for use in BCI of cyber-physical systems.
• A new fog computing architecture for working with BCI control is developed in a

distributed environment.

The subsequent sections of this paper are structured as follows: Section 2 provides
an introduction to fog computing and BCI. Section 3, describes the architecture developed
in this study. Section 4 presents the results obtained, and finally, Section 5, discusses
the results.

2. Background

Fog computing extends the cloud computing paradigm whereby the data generated
by devices at the edge are not uploaded directly to the cloud, but is first preprocessed in
smaller decentralized fog nodes. This new layer functions in the middle between the edge
layer (sensors and/or actuators) and the cloud layer, this is illustrated in Figure 1.

In most cases, these data must be processed by data analysis applications to gain
valuable insights that inform decision-making about the monitored process. This processing
can consume a lot of resources and overload cloud servers, making fog nodes crucial
for ensuring seamless data transfer and mitigating traffic congestion in cloud servers,
ultimately reducing latency.

Fog computing unlike cloud computing, is composed of a large set of closely dis-
tributed nodes with task-specific nodes of moderate capacity, while the cloud operates with
a few high-capacity data centers [11]. Some advantages that provide fog computing are
listed below [12,13]:

• Improves latency-sensitive applications: cloud server providers’ placement is gen-
erally far with respect to the edge devices which could cause latency problems for
example in healthcare networks or vehicle networks. Fog nodes are typically placed
close to IoT devices, helping to decrease latency.
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• Increases cloud scalability problem: As the demand expands for cloud services, increases
in cost and complexity may become unbearable. Fog computing helps in reducing
computation resources diminishing the burden of cost-effective cloud resources.

• Save bandwidth: For example, with an increase in the demand for cloud services
because of an excess of raw data for a wireless network, the spectrum could become
a limited spectral resource when it is time to meet the requested service require-
ments [14]. However, if much of the raw data that arrive is processed by the fog nodes,
only important, less dense information reaches the cloud instead of a large amount of
raw data.

Figure 1. Overall architecture, fog nodes help to process and filter the data generated by the sensors,
and the cloud server executes high level decisions pertaining to the general processing.

Brain-Computer Interface (BCI) technology decodes the brain activity of human beings
in order to recover lost functions and improve their physical and cognitive abilities by
connecting to a device. These interfaces have a defined process that includes the acquisition
of brain activity, processing, classification of brain activity, and finally, the application or
analysis of the acquired information [15].

As mentioned in the previous section, one of the most widely used techniques for
acquisition is the electroencephalogram (EEG). EEG is a non-invasive and relatively low-
cost technique compared to neuro-imaging techniques. EEG signals are characterized by
their high temporal resolution and rapid response to internal or external stimuli; however,
the spatial resolution is low due to the number of electrodes and the space occupied by
the scalp [16]. In addition, they are susceptible to multiple factors internal to the subject,
such as biochemical, metabolic, circulatory, hormonal, neuro-electrical, and behavioral
factors [17]. They are also susceptible to alterations due to external stimuli such as sound,
lighting and electronic noise [18].

The first EEG studies were performed by Richard Caton around 1875; in 1929 the
first experiments on humans were reported by Hans Berger; however, it was not until
1990 when the first applications of EEG in the area of bionics were performed by the U.S.
Department of Defense [19].

Electroencephalographic signals are obtained from the excitatory postsynaptic poten-
tial, which is generated due to the exchange of neurotransmitters between the sending and
receiving cell [20]. These signals are captured due to the potential difference between an
active electrode placed on the scalp and a reference electrode, which are amplified [21].
EEG signals are displayed as temporal sine waves with respect to their amplitude which
normally ranges from 0.5 to 100 microvolts and can be displayed based on their power
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spectrum which is divided into ranges called beta (>13 Hz), alpha (8 Hz–13 Hz), theta
(4 Hz–8 Hz), delta (0.5 Hz–4 Hz) [22].

On the other hand, brain activity for BCIs is generated from two distinct paradigms,
which can be elicited by external visual or auditory stimuli, and generated by internal
stimuli such as the Motor Imagery (MI) paradigm [23]. MI is a technique in which the
movement of a limb is imagined by modulating the frequency of the signal in the alpha and
beta ranges, this modulation is known as event-related desynchronization (ERD) and event-
related synchronization (ERS) [24]. The MI paradigm is performed for trained subjects such
as athletes and untrained subjects [25].

Recent MI studies have shown that the brain regions that provide the greatest informa-
tional weight in the classification of EEG signals are the central region, which is responsible
for motor activity, corresponding to the C3, C4, and Cz regions, mainly according to the
10–20 electrode placement system [26]. However, the study of [27], shows that the frontal
region is the one that provides the most information for signal classification.

On the other hand, BCI applications based on MI are classified into two main groups,
medical and non-medical applications. Medical applications focus on restoring motor
functions lost during spinal cord injury through stimulation for brain regeneration and
plasticity [28], another medical application is the substitution of movement through BCI
for control or communication, such is the case of [29]. On the other hand, non-medical
applications are used to increase human capabilities and entertainment; such as the case of
control of robotic arms and exoskeletons [30], control of ground vehicles [31], drones [32],
and games in virtual environments [33].

After the acquisition of the electroencephalographic signals, the processing stage
follows. This stage varies according to the study design and ranges from the selection of
acquisition channels [34], signal filtering, and elimination of artifacts and noise, since EEG
signals have a low signal-to-noise ratio (SNR) [35].

One of the most commonly used algorithms at this stage is independent component
analysis (ICA), for example in the [36] study they use ICA to optimize the characterization of
subject-independent MI signals, based on the ERD/ERS paradigm, improving the accuracy
between 6.9% and 7.9%. Another study is [37] which proposes a method to extract features
from low-quality EEG signals in combination with ICA.

After processing, the next step is feature extraction, which can be spatial, the most
commonly used technique being Common Spatial Patterns (CSP) [38]. Temporal character-
istics which are generally statistical techniques [39]. And spectral characteristics such as
FFT, PSD, DWT [40–42].

However, during the processing and feature extraction stage, there is a high possibility
of losing important information. That is why recent studies have shown that neural net-
works have the ability to learn complex features from high-dimensionality temporal data
which can be even in raw [43].

During the classification stage, several classical machine learning algorithms such as
Random Forest (RF) [44], Decision Tree (DT) [45], Support Vector Machine (SVM) [46], as
well as deep learning algorithms in which hybrid neural networks stand out, the most
common is the hybridization of convolutional neural networks (CNN) and recurrent neural
networks such as Long short term memory (LSTM) [47,48]. They have been used in EEG
signal classification methods for BCI to increase accuracy. However, it is necessary to apply
BCI to the real world, so this paper proposes to decrease the latency in classification using
fog computing.

3. Materials and Methods

In this section, we discuss the materials and methods proposed for this research.

3.1. Fog Computing for BCI Based System

The proposed architecture is illustrated in Figure 2. This architecture proposes the use
of MI BCI in an industrial setting to control a cyber-physical system using an IoT device
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consisting of a Raspberry Pi and an EEG headset for acquiring MI EEG data. The acquired
data are transmitted to a fog node which filters the raw data and uses a neural network to
encode the data into commands. These commands are then sent to the cloud for validation,
analysis and control.

Figure 2. Overall Fog BCI architecture, fog nodes help to process and filter the EEG data acquired from
sensors at the scalp, the cloud server executes high level decisions pertaining the general processing.

3.2. BCI System Architecture

The illustration in Figure 3 outlines the machine learning model being proposed for
categorizing EEG signals into commands. The input of the model is a raw EEG signal,
x ∈ X , where X represents the signals in the database. Each signal x is then transformed
into a latent representation, F , through encoding. This new representation is expected
to contain relevant information that the classification algorithm, a random forest, uses to
determine the command that the input signal corresponds to.

The latent space in this case is an image or matrix space. The concept of transform-
ing signals into images has been used in prior works, such as converting an ECG into
32 × 32 binary images in [49], and utilizing a Gramian Angular Summation Field to trans-
form traffic time-series data into images in [50]. In this work, we propose using a deep
learning encoder to accomplish this task.

Figure 3. Proposed machine learning model for EEG classification. In this study, the EEG signal will
be classified into one of the following four classes: 0-movement of the left foot, 1-left hand (LH),
2-state of relaxation (RX), and 3-math activity (MA).

For this an encoder was trained using an autoencoder with the signals in X of the
database, the architecture is shown in Figure 4.
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Figure 4. Autoencoder for encoding an EEG signal to an image.

The input and output of the autoencoder are the same signal, such networks consist of
two parts the encoder, fenc : X → F , and a decoder part, fdec : F → X . The encoder takes
signals from X and maps them to a latent space F that is subsequently transformed again
into the signal space by the decoder. The training of the autoencoder consists of obtaining
fenc, fdec such that

fenc, fdec = arg min
fenc , fdec

||X − ( fdec ◦ fenc)X ||2 (1)

In this study it is proposed to use a convolutional LSTM layer for the encoder, since
convolutional LSTMs are designed to work with sequential data, they are well-suited
for handling the sequential nature of EEG signals, which represent temporal activity
in the brain. Their capability in managing the brain’s electrical activity over time and
their adaptability for learning long-term dependencies make them effective in capturing
temporal patterns within EEG signals. Furthermore, the capacity of LSTMs to selectively
retain or discard information across extended sequences is of great help, especially for
EEG signals characterized by intricate patterns distributed over time. Additionally, in the
case of EEG signals, where relevant features may not be immediately obvious, LSTMs
can automatically learn and extract features from the input data, eliminating the need for
manual feature engineering. The proposed architecture is described below. The encoder
used involves a convolutional LSTM layer with 20 filters and a kernel size of two. The
layer is then reshaped to a 3 × 20 dimensional output tensor, followed by a convolutional
transpose layer consisting of a single filter of size 14 × 2, resulting in an output tensor
(image) of size 16 × 21.

The decoder is composed of a flatten operator as its initial step, followed by a long
short-term memory layer that contains two neurons, then a convolutional layer with three
filters of size four. It also includes two convolutional transpose layers that have three
filters of size three, and three convolutional layers with seven filters of sizes 90, 90, and 11,
respectively. The final step in the decoder is a convolutional layer with four filters of size
ten. It is important to note that the autoencoder is only utilized during training and is not
part of the final implementation.

As shown in Figure 3 only the encoder part was used in the final model. In this
way, the input signal is transformed into an image. It is expected that this image contains
relevant characteristics for its classification. This classification is carried out by a random
forest. The Algorithm 1, comprises the classification module that takes an EEG signal as
input. This signal is then processed through the encoder and classified using a random
forest. Finally, the module returns the result of the classification.

Algorithm 1 Classify signal
Input: EEG signal x ∈ X
Output: C {class of the signal}

h = fenc(x) {signal in latent space}
C = RF(h) {classification by RF}
return C

3.3. Data Used to Train the Network

For training the network, the MI EEG database from [51] was used, where the data
acquisition was carried out using a MUSE™ device, that is, a headset that detects EEG
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signals. Because it is non-invasive, it is harmless to acquire signals from the brain; therefore,
this headband allows the measurement of brain activity in real-time without affecting the
human being.

Specifically, the EEG acquisition device works with four channels. These channels are
used by bipolar gold electrodes, which are placed in the area of the sensorimotor cortex
at locations AF7, AF8, TP9, and TP10, of the 10–20 system, as shown in Figure 5. For this
database, subjects were instructed not to physically perform any kind of movement, instead,
the subject simulated a given action using Motor imagery (MI). As a result, an amount of
200 records distributed among the following activities was obtained through MI: movement
of the left foot (LF), left hand (LH), state of relaxation (RX), and math activity (MA).

Figure 5. Channel locations used by the EEG acquisition device.

3.4. Fog Integration

Consider the following scenario, a machine operated by a person using BCI on an
industrial plant floor. The person wears a headband to gather EEG signals which are used
to control the machine in real-time. This scenario is repeated by each operator and both the
headbands and machines could differ from one another.

It would be challenging to entirely build the scenario mentioned above using only
cloud computing as real-time processing of EEG data requires processing units to be as
close to the data source as possible to reduce latency and network congestion. This limits
the use of cloud computing for application management and global coverage. However,
fog computing is a suitable solution for these types of issues where proximity and global
coverage are required [52]. This is why the use of fog computing is critical for the objectives
of this paper as it is expected to lead to low latency and reduce the need for constant cloud
connectivity. In Figure 6, we illustrate the proposed fog computing solution, consisting of
three layers specific to the environment of this work, adapting a common architecture for
fog applications. The IoT layer includes EEG acquisition devices as sensors and a cyber-
physical system for control, serving as the actuator. The fog layer comprises dedicated fog
nodes, each incorporating EEG signal processing mechanisms such as the filtering module,
feature extraction, and the classifier. The fog node has the capability to directly control
the cyber-physical system or transmit the classifier’s output to the cloud. The cloud is
equipped with three services: one for retraining the classifier to obtain new parameters,
another for statistical data analysis, and a command module. The command module not
only controls the cyber-physical system based on the classifier’s output but also receives
data from the cyber-physical system for verification purposes. The fog layer and the cloud
layer are described in more detail below.
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Figure 6. Fog computing module.

3.4.1. Fog Nodes

The proposed solution involves incorporating intelligence into fog computing nodes.
The fog node consists of three main blocks: filtering, feature extraction, and machine
learning (ML) model for classification. The raw data from four EEG channels are received
as input from the IoT layer and is filtered before being passed to the feature extraction
block, which is made up of a previously trained encoder. The resulting features are then
classified by the ML model, which consists of a previously trained random forest classifier.
The classifier determines the EEG signal’s command. The feature extraction modules and
classifiers can also be retrained from the cloud by updating their parameters, giving the
nodes more flexibility.

3.4.2. Cloud

The cloud provides several services with high computing capacity, the input data from
the fog layer, are mainly commands and other parameters pertaining to the machine. The
cloud hosts a data analytics module; command verification and control and ML trainer. The
data analytics module performs the systematic computational analysis of data and statistics
of machine usage and performance. This module consists mainly of diagnostic analytics,
analysis of the current state of operations, predictive analytics, and command analytics.
The command verification and control module verifies commands from the classifier and
issues further commands to operate the machine. In addition, it instructs the ML trainer
module if it is necessary to retrain the ML models, in case of operator change, or repetitive
anomalous commands. The ML trainer contains the ML models in order to retrain them if
necessary. Because the computational cost of training is high, this process is conducted in
the cloud. At the output of this module are the parameters of the trained models.

4. Results

This section presents the results of the performance evaluation of the classifier. In this
section, the performance evaluation results of the classifier are presented. The database
discussed in Section 3.3 was used, with a partition of the data into 80% for training and
20% for testing.
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4.1. Encoder of EEG

Here, we investigated the data produced by the encoder. As explained in the Section 3.2
the encoder transforms an EEG signal into a 16 × 21 image. Figure 7a–d, shows the average
images for each class. Figure 7e shows a visual representation of the significance of each
pixel assigned by the RF classifier, with the significance indicated by color. In this context,
the assumption is made that every pixel represents a feature. The significance of each
feature is determined using the Mean Decrease in Impurity or Gini Importance method, as
assessed by the random forest [53].

(a) (b)

(c) (d)

(e)

Figure 7. Average images produced by the encoder for each class. (a) LF, (b) LH, (c) RX, (d) MA, and
(e) importance of each pixel according to the RF.

In Figure 7, it is evident that the central vertical band is typically the most significant.
However, the average images do not reveal a clear pattern distinguishing the classes. On the
other hand, when the logarithm of the positive pixels of each class is taken, Figure 8, a trend
is observed. The LH and RX classes, depicted in Figure 8b,c, exhibit distinct characteristics.
Notably, these classes reveal vertical clusters prominently positioned at the center and
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right of the images, displaying a substantial concentration of pixels. In contrast, the LF
and MA classes display pixel clusters with lower density. It is important to qualitatively
observe that the distribution pattern of clusters in the LH and RX classes bears greater
similarity to each other, while there is also some similarity between the LF and MA classes.
We anticipated that the LF and LH classes would be similar since both classes have to do
with extremities of the body, but this was not the case, instead, the LH and RX classes are
more are more similar to each other, as are the LF and MA classes. The reason behind the
apparent similarity between the LH and RX classes in the results could be attributed to the
fact that hand movements are frequently performed in daily life and do not require much
mental effort, as is the case with RX. In contrast, moving the foot (LF) is not a common task
and requires more focus from the user, similar to MA.

(a) (b)

(c) (d)

(e)

Figure 8. Log average images produced by the encoder for each class. (a) LF, (b) LH, (c) RX, (d) MA,
and (e) importance of each pixel according to the RF.

4.2. Classifier Performance

For the selection of the classifier, different ML algorithms were evaluated using the
encoder output: Random forest (RF) with 250 estimators; support vector machines (SVC),
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with C = 1.0 and rbf kernel; Gradient Boosting (GB) with 159 estimators, maximum depth
of four; decision tree (DT) with maximum depth of the tree and gini for split quality. All
algorithms were implemented using the scikit-learn library [54], also, library default values
were used for additional algorithm hyper-parameters.

The results are presented in Table 1 and show that the Random Forest (RF) classifier
performed the best with an accuracy (acc) of 0.96, followed by the Gradient Boosting (GB)
classifier with an accuracy of 0.93. RF also achieved the best evaluation in terms of precision,
recall, and f1-score across all classes. Figure 9 depicts the performance of each classifier,
with each bar representing a class and displaying the percentage assigned to the classes
determined by the algorithm.

Table 1. Performance metrics results.

Precision Recall f1-Score Accuracy

LF LH RX MA LF LH RX MA LF LH RX MA

SVM 0.42 0.39 0.51 0.30 0.42 0.28 0.44 0.49 0.42 0.33 0.47 0.37 0.40
RF 0.96 0.91 0.98 1.00 0.98 0.98 0.90 1.00 0.97 0.95 0.94 1.00 0.96
DT 0.88 0.81 0.91 0.82 0.88 0.81 0.86 0.89 0.88 0.81 0.89 0.86 0.86
GB 0.92 0.88 0.98 0.95 0.96 0.94 0.86 0.97 0.94 0.91 0.92 0.96 0.93

(a) (b)

(c) (d)

Figure 9. Performance of the classifiers. The proportion of samples that were assigned to a given
class is shown graphically for each class. (a) SVM, (b) Random Forest, (c) Decision Tree, and
(d) Gradient Boosting.
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Although the highest performance of the algorithms evaluated does not achieve a
perfect accuracy of 100%, the system can still be used to control types of cyber-physical
systems that are more forgiving towards occasional errors. For instance, it can be utilized
to control conveyor belts, quality control lights for products, and semi-automated cyber-
physical systems that only require the material to be placed at the start of the cycle and then
the machine delivered once it is finished, such as the case for pre-formed tubes or plastics.

For instance, consider the use of the system in a quality control lights for products
scenario, where an operator checks the product and raises the red light alarm if they spot
any damage. Even if the system triggers a false alarm, it would not have a significant
impact on the business, as another operator would simply verify that the product is not
damaged. In the event that the BCI system fails to detect a command and an alarm is
not raised, the operator will have another opportunity to try again. The likelihood of the
BCI system failing to detect the command twice is low, for example, with the acc of the
RF of 0.96, the probability is 0.04 × 0.04. The aim of the proposed system is to enable
the integration of disabled individuals into the workforce, improving their self-esteem
and keeping them occupied with a sense of purpose, thereby promoting self-sufficiency,
person-centeredness, and community integration [55].

4.3. Fog Architecture Performance

We have simulated a fog computing environment using YAFS (Yet Another Fog Simu-
lator) a fog computing simulator for analysis of designs and performance of deployment of
applications [56]. Two simulations were carried out. The first simulation used a fog node
for processing and classifying the EEG signal, while the second used only a cloud node.
The results of the simulations are shown in Figure 10 where you can see how the fog node
greatly reduces latency.

Figure 10. Average latency.

5. Discussion

This paper introduces a novel BCI system that utilizes fog computing, showcasing a
design that integrates EEG acquisition devices, fog nodes, cloud nodes, and cyber-physical
systems. The designed architecture consists of processing the EEG signal through a con-
volutional LSTM, combining an autoencoder and a random forest for signal classification
into commands for controlling a cyber-physical system. The proposed architecture exhibits
superior performance, achieving a precision of 0.96, outperforming alternative classifiers.
The utilization of a Random Forest-based architecture not only enhances precision but is
also easy to implement and imposes a low computational burden, making it suitable for
deployment on embedded systems hosting the fog node.
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In evaluating the system’s performance through simulation, we observed that the
integration of fog-cloud computing resulted in significantly reduced latency compared
to a system relying solely on cloud computing. This achievement emphasizes the effec-
tiveness of our approach to employing fog computing with machine learning algorithms
to convert EEG signals into commands for cyber-physical systems, ultimately enhancing
responsiveness and performance.

While the utilization of machine learning and fog computing for Brain-Computer
Interfaces in industrial cyber-physical systems holds significant potential, it is essential to
address possible limitations and challenges to ensure the system’s reliability, security, and
adaptability in real-world scenarios. Future work should consider the following aspects:
testing with a larger pool of subjects, as EEG signals exhibit high variability due to factors
such as individual differences, mental states, and environmental conditions; enhancing the
robustness of the filtering module to increase resistance to disturbances such as noise and
artifacts; addressing security and privacy concerns, given the critical nature of industrial
systems, and developing modules with robust security measures to safeguard sensitive
EEG data and improving interoperability with existing equipment, particularly in industrial
settings where legacy equipment is prevalent. Finally, it is necessary to devise techniques
to address the scalability of the system, especially as the amount of EEG data collected
and used for training the machine learning model increases. The system’s capacity to
handle larger datasets while maintaining performance is key in industrial environments.
With the expansion of the user base, the data volume may grow significantly, necessitating
scalable solutions.
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