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Abstract: This article is devoted to the theory of the converse magnetoelectric (CME) effect for the
longitudinal, bending, longitudinal-shear, and torsional resonance modes and its quasi-static regime.
In contrast to the direct ME effect (DME), these issues have not been studied in sufficient detail in the
literature. However, in a number of cases, in particular in the study of low-frequency ME antennas,
the results obtained are of interest. Detailed calculations with examples were carried out for the longi-
tudinal mode on the symmetric and asymmetric structures based on Metglas/PZT (LN); the bending
mode was considered for the asymmetric free structure and structure with rigidly fixed left-end
Metglas/PZT (LN); the longitudinal-shear and torsional modes were investigated for the symmetric
and asymmetric free structures based on Metglas/GaAs. For the identification of the torsion mode, it
was suggested to perform an experiment on the ME structure based on Metglas/bimorphic LN. All
calculation results are presented in the form of graphs for the CME coefficients.

Keywords: magnetoelectric effect; direct magnetoelectric effect; converse magnetoelectric effect;
magnetoelectric composite; magnetoelectric coefficient; electromechanical resonance; resonance
mode; bimorph structure

1. Introduction

The continuous development of technology requires constant involvement in the
process of materials with new multifunctional properties. One of these materials is a
composite material with a magnetoelectric (ME) effect [1–3]. A large number of studies
are already known on these materials in connection with the prospects for their use in
the development of new electronic devices [4]. There is the direct ME effect (DME) and
converse ME effect (CME) [5], where the direct effect is characterized by the induction of
an output electrical voltage in the ME composite under the influence of a magnetic field,
and the converse effect is the excitation of magnetization under the influence of an external
electric field. It should be noted that the converse effect is often referred to in the literature
as inverse. The DME effect has already been studied in sufficient detail [5,6], and on its basis,
a number of promising electronic devices [7–10] have been proposed. Relatively few works
have been devoted to the CME effect. The first studies of the CME effect were associated
with the microwave ME effect, which consists of a shift in the ferromagnetic resonance
(FMR) line in the ME structure under the influence of an external electric field [11–15] and
the further use of this effect to create tunable microwave devices [5,6]. In recent years,
research interest in the CME effect in the low-frequency region has increased. This is due
to the great interest in the design of magnetic field sensors [16–18] and low-frequency ME
antennas [19–22] and the possibility of their use in spintronics [23–28] and ME memory
devices [29–31]. The purpose of this article is a brief analysis of the works on the CME effect
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and to obtain expressions for CME coefficients for the low-frequency region, including
the electromechanical resonance (EMR) modes: longitudinal, bending, longitudinal-shear,
and torsional.

Below is a brief overview of the work on the low-frequency CME effect in composites.
In one of the first works, Jia et al. [32] theoretically and experimentally studied the CME
effect in the Terfenol-D/PMN-PT structure and obtained an ME coefficient of 105 mG/V
at a bias field of 170 Oe. A linear relationship was found between the measured magnetic
induction and the applied alternating electrical voltage in the range of 50–160 V. In [33–44],
the authors examined the features of the CME effect in various structures. In [33], the
measurements of CME effects were conducted in the trilayers of PZT/Ni/PZT. A pickup
coil wound around the sample was used to measure the CME effect due to the change
in the magnetic induction in Ni. The measured static magnetic-field dependence of the
ME voltage has been attributed to the variation in the piezomagnetic coefficient for Ni.
The frequency dependence of the CME effect showed a resonance character due to radial
acoustic modes in PZT. Chen et al. [34] investigated the CME effect in a transition metals-
based ferromagnetic-shape memory alloy/piezoelectric ceramic-laminated composite. The
strong CME effect was observed at room temperature over a broad bandwidth, under weak
magnetic bias and an electric field. The authors of [35] studied the CME effect in a two-layer
composite consisting of piezoelectric PZT and ferrite MZF plates. Dependences of the
magnetic induction variation Bm on the amplitude and frequency of the AC electric field,
as well as on magnetic field strength, temperature, and composition for layered PZT/MZF
composite, have been determined. It is shown in [36] that the voltage transformation
coefficient depends not only on the CME coefficient and the number of turns of the inductor
but also on the relative orientation of the magnetic field and the geometric dimensions of
the sample. The CME effect was studied [37] in a layered composite Metglas/PMN-PT by
the induction method at various frequencies. A large CME coefficient of 3.05 G/V was
observed at a resonant frequency of 76.5 kHz in a weak bias magnetic field of 50 Oe. The
CME coefficient of the heterostructure is practically constant and has a relatively high value
in a wide frequency range of 1–64 kHz. Xuan et al. [38] investigated the CME effect in
Metglas/PZT, and the highest value of the CME coefficient was 4.18 G/V at the resonant
frequency of 103 kHz in a low bias field of 45 Oe. In addition, the authors presented data
on the known CME coefficients, where the highest value was 18.6 G/V at a frequency
of 47 kHz, obtained for a three-layer Ni-Mn-Ga/PMN-PT/Ni-Mn-Ga structure. In [39],
using the design of a Rosen-type piezoelectric transducer and a Terfenol-D plate with a
Terfenol-D thickness of 0.7 mm, a gigantic CME coefficient of 35.7 G/V was obtained. Lu
et al. [40] demonstrated the equivalence of the DME effects and the CME ones in two-phase
systems consisting of piezoelectric and magnetostrictive materials. This was achieved by
reformulating Maxwell’s relation in terms of the effective electric and magnetic dipole
moments of the system and comparing the coupling forces at the same electric and mag-
netic DC biases. In [41], a dispersed composite consisting of 65 mol. % Na0.5Bi0.5TiO3
and 35 mol. % CoFe2O4 and its structure, microstructure, ferroelectric, magnetostrictive,
magnetic, and direct/converse magnetoelectric properties were studied. The composite
showed different magnetization behaviors under electrically polarized and unpolarized
conditions. The percentage change in magnetization due to polarization is approximately
15% at a magnetic field of 500 Oe. Bilayer modeling of DME and CME coefficients for
longitudinal modes in the EMR region has been considered and presented in [45]. As an
example, specific cases of bilayers of cobalt ferrite/PZT and nickel/PZT bilayers were
studied. In [45], the DME and CME in Metglas/LN and Metglas/PMN-PT trilayers have
been studied in the range from 20 Hz to 0.4 MHz. It is shown that, as a result of the
difference in piezoelectric constants, the CME in the structure with PMN-PT is significantly
greater (~2 orders of magnitude) than with LN. The article by [46] is devoted to the study
of the linearity of the CME effect and improving sensitivity in the low-frequency range.
Kalgin et al. [43] researched the CME effect in the ME structures consisting of a layer of
Terfenol-D ferromagnetic powder, epoxy adhesive, and a polarized piezoelectric layer of
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PZT. The dependences of the CME effect on the frequency and strength of the electric field,
the strength of the constant magnetic field, the thickness of the ferromagnetic layer, the
average size of Terfenol-D granules in the ferromagnetic layer, and temperature have been
established. The conditions for obtaining the maximum CME effect are analyzed. In [44],
the authors proposed a new bilayer-laminated ME composite consisting of magnetostrictive
Ni and Terfenol-D plates and a piezoelectric PZT plate. The bias magnetic field and the
electric field frequency dependences of the CME coefficient were investigated. It was
shown that the Ni/Terfenol-D/Ni/PZT exhibits a large CME coefficient of 6.2 × 10−7 s/m
at the electric field frequency of 42 kHz under a low bias magnetic field of 230 Oe. Along
with the listed works, which present a measurement technique and provide estimates of
the CME effect, there are known, as noted earlier, works that describe the first practical
applications of the CME effect. Chu et al. [16] studied the potential of an electrically driven
bulk magnetic field sensor based on the CME effect. It was experimentally found that a
limit of detection of 115 pT for a magnetic field of 10 Hz and 300 pT for a magnetic field
of 1 Hz was achieved by exciting the ME laminate by 1 V without any bias field. In this
case, the power consumption for the ME laminate is only 0.56 mW, which is much lower
compared to tens of milliwatts (10–100 mW) for optically pumped or fluxgate sensors and
also shows advantages over conventional ME magnetic field sensors based on the DME
effect with a current pump. In [17], the authors presented the equivalent magnetic noise
of a multi-push–pull magneto (Elasto) electric sensor, implemented as a magnetometer
with phase modulation circuitry. Based on the constitutive equations and the Nyquist
theorem, they have determined the expected sensitivities and the equivalent magnetic
noise for the phase modulation and provided a comparison with experimental results.
For measurement applications, the authors [18] investigated the CME effect on a thin-film
silicon cantilever of a size of 25 mm × 2.45 mm × 0.35 mm using a piezoelectric AlN film
and a magnetostrictive FeCoSiB film, each 2 µm thick. The measured sensitivity at the
resonant frequency of 515 kHz increases nearly linearly with a carrier signal amplitude,
reaching 64 kV/T at 160 mV. The DC detection limit is 210 pT/Hz1/2, and also about
70 pT/Hz1/2 at 10 Hz without magnetic field bias. The obtained high characteristics are
of great interest for biomagnetic applications. Recently, research into ME transmitting
antennas based on the CME effect in the low-frequency range has been very active [19–21]
since their creation will significantly reduce the size and ensure effective underwater and
underground communications. Yao et al. [19] proposed a bulk acoustic wave-mediated
multiferroic antenna structure. Its potential for efficient radiation of electromagnetic waves
is evaluated by analytically deriving the lower bound of its Q factor. A one-dimensional
multiscale finite-difference time-domain technique was developed to predict the bilateral,
dynamic coupling between acoustic waves and electromagnetic waves. Dong et al. [20]
presented a novel, very low-frequency communication system using one pair of ME anten-
nas. With 80 V driving voltage, the power consumption of the ME transmitter has been
measured as 400 mW at the maximum communication distance of 120 m. In [21], Y. Wang
et al. investigated a ME antenna based on mechanical resonance made by MEMS technol-
ogy. The ME resonant disk structure with a diameter of 70 µm and a thickness of 1 µm with
SiO2/Cr/Au/AlN/Cr/Au/FeGaB-stacked layers was prepared on a 300 µm silicon wafer
and showed a giant ME coefficient of 2.928 kV/cm/Oe in resonance at 224.1 kHz. The article
by [22] is devoted to assessing the CME effect within the framework of a two-dimensional
multifield communication model for an acoustically controlled antenna. To compare the
results obtained in our paper, it is necessary to clarify the details of the calculation in [22].
In addition to the use of the CME effect in sensors and antennas, this effect, as noted, is
beginning to be widely explored for applications in spintronics [23–28] and ME memory
devices [29–31]. Zavaliche et al. [23] used piezoelectric force microscopy and magnetic
force microscopy to locally image the coupled piezoelectric-magnetic switching in epitaxial
ferroelectric BiFeO3-ferrimagnetic CoFe2O4 columnar nanostructures. They presented a
perpendicular CME susceptibility of 1.0× 10−2 G cm/V induced by an electric field. In [24],
the authors showed that the magnetization of the NiFe/CoFe film on PZT substrate changes
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by around 6% at the low voltage of 60 V, applied to PZT substrate and is up to two times
larger at 800 V in an external magnetic field of 50 Oe. The use of voltage also allows the
reversible adjustment of the magnetization orientation in ferromagnetic layers. Chopdekar
et al. [25] investigated a (011)-oriented ferroelectric PMN-PT substrate with an epitaxial
ferromagnetic (La,Sr)MnO3 film and showed that the electric field pulses of 6 kV/cm
induce large, reversible, and bistable remanent strains. The authors demonstrated that
an electric field pulse can be used to ‘set’ and ‘reset’ the magnetic anisotropy orientation
and resistive state in the film for the electric-field manipulation of nanostructures at room
temperature. Spaldin and Ramesh in [26] discussed that the change in magnetic properties
by an electric field in ME multiferroic materials has driven significant research activity,
with the goal of realizing their transformative technological potential. Ghidini et al. [27,28]
investigated the Ni films coupled via strain to ferroelectric substrates of BTO and PMN-PT.
The authors studied the shear strain-induced CME effects in Ni thin films on PMN-PT
and the reversible switching of magnetization in Ni films on barium titanate. Eerenstein
et al. [29] showed electrically induced giant, sharp, and persistent magnetic changes (up
to 2.3 × 10−7 sm−1) in ferromagnetic 40 nm LSMO films on 0.5 mm ferroelectric BaTiO3
substrate. Observed X-ray diffraction confirms strain coupling via ferroelastic BaTiO3 do-
mains. Hu and Nan [30] presented a phenomenological model for the electric-field-induced
reorientation of the magnetic easy axis in ferromagnetic Fe, CFO, Ni, Fe3O4/ferroelectric
PZN-PT, BTO, and PZT-layered heterostructures. The authors showed that as the applied
electric field increases, the easy axes tend to switch the directions in CFO and Ni films and
highlight that this effect has great potential in prototype electrically controlled magnetic
recording devices. Wang et al., in their review [31], examined the theoretical and experi-
mental possibilities of an electric field for controlling magnetism through strain coupling in
CoFeB/PMN–PT and discussed the problems and prospects of using this method to create
ME memory. The authors showed that investigating the effect of low-frequency CME is
useful for future research.

The structure of the article is as follows. The purpose of the article is indicated in the
introduction. Sections 2 and 3 are devoted to the consideration of the longitudinal and
bending modes in symmetric and asymmetric ME structures. Sections 5 and 6 describe the
longitudinal—shear and torsional modes—in such structures. Note that in Sections 4 and 8,
as a special case, the quasi-static regime is also considered. A discussion of the calculation
method specifics used is included in Section 9. Section 10 presents the conclusions of
this paper.

2. EMR Longitudinal Mode
2.1. Symmetric Structure
2.1.1. Free Plate

We accept the alternating magnetic field intensity in the ME composite’s magnetostric-
tive phase to be zero according to [32]: h1 = 0.

The full thickness of the ME composite is

t = pt + 2mt, (1)

where pt and mt are the piezoelectric and magnetostrictive phase thicknesses.
The magnetostrictive and piezoelectric volume fractions are

mν = 2mt
t

pν =
pt
t

, (2)

Figure 1 shows the ME composite’s structure for calculating the longitudinal mode of
the CME effect:
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The strain tensor longitudinal component for magnetostrictive and piezoelectric
phases is

S1 = pS1 = mS1 =
∂Ux

∂x
, (3)

where Ux is the longitudinal displacement.
The material equation of the piezoelectric phase is

pT1 =
S1

ps11
− d31E3

ps11
, (4)

where E3 is the alternating electric field intensity applied to the piezoelectric phase of the
ME composite, ps11 is the piezoelectric phase’s elastic compliance coefficient, and d31 is
piezoelectric coefficient.

The material equations of the magnetostrictive phase are

mT1 = mY(S1 − q11h1), (5)

mB1 = µµ0h1 + q11
mT1, (6)

where mY is the Young’s modulus of the magnetostrictive phase, q11 is the piezomagnetic
modulus, and µ is the magnetostrictive phase’s permeability.

Equations (5) and (6) take the form for h1 = 0:

mT1 = mYS1, (7)

mB1 = q11
mT1, (8)

Substitute Equation (7) into Equation (8):

mB1 = q11
mYS1, (9)

The longitudinal component of the ME composite stress tensor is:

T1 = mνmT1 +
pν pT1 = c11S1 − pν

d31
ps11

E3, (10)

where
c11 =

pν
ps11

+ mνmY , (11)
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The motion equation for deformations of ME composite is [47]

ρ
∂2Ux

∂t2 =
∂T1

∂x
, (12)

Substitute Equation (10) into Equation (12):

−ρω2Ux = c11
∂2Ux

∂x2 , (13)

where ω is the angular frequency of the ME composite’s deformations, and the composite
effective density is

ρ = mνmρ + pν pρ, (14)

where pρ and mρ are the piezoelectric and magnetostrictive phase densities.
The solution to the motion equation for deformations of ME composite is

Ux = A cos(kx) + B sin(kx), (15)

where the wave number is

k =

√
ρ

c11
ω, (16)

Then, the longitudinal component of the strain tensor has the form:

S1 =
∂Ux

∂x
= (B cos(kx)− A sin(kx))k. (17)

The equilibrium conditions for a free ME composite are

T1|x=− L
2
= 0

T1|x= L
2
= 0

, (18)

We obtained a linear inhomogeneous equation system for two unknowns, A and B, by
substituting Equations (17) and (10) into Equation (18), and found two unknowns A and B
from this equation system and substituted them into Equation (17). Then, the obtained ex-
pression for the longitudinal component of the strain tensor is substituted into Equation (9),
and we find the alternating magnetic induction occurring in the magnetostrictive phase
during the CME effect:

mB1 =
q11

mY pνd31E3 cos(kx)
ps11c11 cos(η)

, (19)

where η = kL
2 .

The alternating magnetic induction in the ME composite averaged over the magne-
tostrictive phase volume during the CME effect is as follows:

mB1 =
1
tL

L
2∫

− L
2

mB1dx

mt∫
0

2dz =
2mtq11

mY pνd31E3tg(η)
ps11c11ηt

, (20)

The CME coefficient is

αinv =
mB1

E3
=

2q11
mtmY pνd31tg(η)

ps11c11ηt
, (21)

The fundamental resonant frequency for this case is

fr =
1

2L

√
c11

ρ
, (22)
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2.1.2. Rigid End of the Plate

Boundary conditions for the case when the left end of the ME composite is rigidly
fixed, and the right one is free:

Ux(0) = 0
T1(L) = 0

, (23)

Substitute Equations (10) and (15) into Equation (23):

A = 0
c11(B cos(kL)− A sin(kL))k− pν d31

ps11
E3 = 0

, (24)

Then, we obtain
A = 0
B =

pνd31E3
ps11c11k cos(kL)

, (25)

Completely analogous to the case with a free ME composite, we find

mB1 =
q11

mY pνd31E3 cos(kx)
ps11c11 cos(kL)

. (26)

The alternating magnetic induction in the ME composite averaged over the magne-
tostrictive phase volume during the CME effect is

mB1 =
1
tL

L∫
0

mB1dx

mt∫
0

2dz =
2mtq11

mY pνd31E3tg(kL)
ps11c11kLt

, (27)

The CME coefficient is

αinv =
mB1

E3
=

2mtq11
mY pνd31tg(kL)

ps11c11kLt
, (28)

The fundamental resonant frequency for this case is

fr =
1

4L

√
c11

ρ
. (29)

2.2. Asymmetric Structure
2.2.1. Free Plate

Figure 2 shows the asymmetric ME composite’s structure for calculating the longitudi-
nal and bending mode of the CME effect:
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The CME coefficient in the resonant regime of the longitudinal mode can be found in
Equation (21) for an asymmetric free ME composite, and only in Equations (1) and (2) is it
necessary to remove the number 2 before mt. Also, it is necessary to remove the number 2
when integrating the thickness of the magnetostrictive phase in Equation (20).

2.2.2. Rigid End of the Plate

The CME coefficient in the resonant regime of the longitudinal mode can be found
in Equation (28) for an asymmetric ME composite with a rigidly fixed left-end and the
right one is free, and only in Equations (1) and (2) is it necessary to remove the number 2
before mt. Also, it is necessary to remove the number 2 when integrating the thickness of
the magnetostrictive phase in Equation (27). Figure 3 below shows the dependence of the
CME coefficient on the alternating electric field frequency applied to the ME composite’s
piezoelectric phase for the longitudinal mode of the ME effect. The following parameters
were used in the calculations: the magnetostrictive phase is Metglas with a thickness of
mt = 29 µm; piezoelectric is PZT (LN cut y + 128◦) with a thickness of pt = 0.5 mm; the
resonance quality factor Q = 130; the length of the ME composite is 10 mm. Piezoelectric
PZT is ceramic that is polarized along the thickness direction (the Z-axis is index 3). The
Metglas width is equal to the piezoelectric width, and the ME composite width is much
greater than its thickness; the ME composite’s width is less than its length. To take into
account losses in the calculation, it is assumed ω = 2π

(
1 + 1

Q i
)

f . The resonant frequency
calculated by Equation (22) for the longitudinal mode of the ME effect for the symmetric free
ME composite Metglas/PZT/Metglas is 165.8 kHz; for the symmetric free ME composite,
Metglas/LN cut y + 128◦/Metglas is 267 kHz. The resonant frequency calculated by
Equation (29) for the longitudinal mode of the ME effect for symmetric ME composite with
rigidly fixed left-end Metglas/PZT/Metglas is 82.9 kHz, and for symmetric ME composite
with rigidly fixed left-end Metglas/LN cut y + 128◦/Metglas, it is 133.5 kHz. The resonant
frequency, calculated by Equation (22) for the longitudinal mode of the ME effect for the
asymmetric free ME composite Metglas/PZT is 164.6 kHz, and for the asymmetric free ME
composite Metglas/LN cut y + 128◦, it is 272.6 kHz. The resonant frequency calculated by
Equation (29) for the longitudinal mode of the ME effect for asymmetric ME composite
with rigidly fixed left-end Metglas/PZT is 82.3 kHz, and for asymmetric ME composite
with rigidly fixed left-end Metglas/LN cut y + 128◦, it is 136.3 kHz.

The CME coefficient value is two times less for an asymmetric ME composite for
the longitudinal mode of the CME effect in comparison with a symmetric ME composite
because an asymmetric ME composite has the volume of the magnetostrictive phase and
is two times less than for a symmetric one. The resonant frequency of the CME effect for
the longitudinal mode is greater for the composite with LN cut y + 128◦ as a piezoelectric
than for a composite with PZT as a piezoelectric due to the lower effective density and
greater effective stiffness of the composite with LN cut y + 128◦. The CME coefficient value
is greater for a composite with PZT as a piezoelectric than for a composite with LN cut
y + 128◦, which is due to a much larger piezoelectric coefficient PZT compared to LN cut
y + 128◦ and a greater elastic compliance coefficient for the PZT than for LN cut y + 128◦.
The CME effect resonant frequency is two times less for the ME composite with a fixed left
end than for the free ME composite, while the CME coefficient resonant value almost does
not change.
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cause an asymmetric ME composite has the volume of the magnetostrictive phase and is 

Figure 3. Dependence of the CME coefficient on the alternating electric field frequency applied
to the ME composite’s piezoelectric phase for the longitudinal mode of the ME effect. (A) Free
symmetric ME composite: the blue line is composite Metglas/PZT/Metglas, and the red line is
composite Metglas/LN cut y + 128◦/Metglas. (B) Symmetric ME composite with a rigidly fixed left
end: the blue line is composite Metglas/PZT/Metglas, and the red line is composite Metglas/LN cut
y + 128◦/Metglas. (C) Free asymmetric ME composite: the blue line is composite Metglas/PZT, and
the red line is composite Metglas/LN cut y + 128◦. (D) Asymmetric ME composite with a rigidly
fixed left end: the blue line is composite Metglas/PZT, and the red line is composite Metglas/LN cut
y + 128◦.

3. EMR Bending Mode

The calculation is performed for an asymmetric ME composite (see Figure 2) for the
bending mode in the EMR region.

3.1. Free Plate

The full thickness of the ME composite is

t = mt + pt, (30)
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The longitudinal component of the strain tensor for magnetostrictive and piezoelectric
phases is [47]

pS1 = mS1 = S1 = −z
∂2w
∂x2 , (31)

where w is the transverse displacement.
The longitudinal component of the magnetostrictive and piezoelectric phases stress

tensor, electric field intensity’s third component applied to the piezoelectric phase of the
ME composite, and the alternating magnetic induction in the magnetostrictive phase for
h1 = 0 are

mT1 = mYS1
pT1 = cD

11S1 − h31
pD3

E3 = −h31S1 + βS
33

pD3
mB1 = q11

mT1

, (32)

where [47]

cD
11 =

(
ps11 −

d2
31

εT
33ε0

)−1

h31 =
cD

11d31
εT

33ε0

βS
33 = 1+h31d31

εT
33ε0

, (33)

εT
33 is the permittivity tensor’s component of the piezoelectric phase, and pD3 is the

piezoelectric phase’s electrical displacement.
The alternating magnetic induction in the magnetostrictive phase is determined by

Equation (9).
The ME composite’s bending moment is

M =

z0∫
z0−pt

bzpT1dz +
z0+

mt∫
z0

bzmT1dz = −b
∂2w
∂x2 D− bpt2〈h31〉pD3, (34)

where b is the composite width,

〈h31〉 =
1

pt2

z0∫
z0−pt

zh31dz =
2z0 − pt

2pt
h31, (35)

D = pD + mD is the full cylindrical stiffness of the composite [44],

pD = 1
3 cD

11
pt
(pt2 − 3ptz0 + 3z2

0
)

mD = 1
3

mYmt
(mt2 + 3mtz0 + 3z2

0
) , (36)

z0 is the position of the boundary between the piezoelectric and magnetostrictive
phases relative to the ME composite’s neutral line.

Let us find the electric voltage on the piezoelectric:

U =

z0∫
z0−pt

E3dz = pt2〈h31〉
∂2w
∂x2 + ptβS

33
pD3, (37)

Find the electrical displacement in piezoelectric pD3 from Equation (37) and substitute
into Equation (34)

M = −bt3〈c11〉
∂2w
∂x2 −

bpt〈h31〉
βS

33
U, (38)
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where

〈c11〉 =
1
t3

(
D−

pt3〈h31〉2

βS
33

)
, (39)

z0 is determined from the minimum condition 〈c11〉:

z0 =

(
cD

11
pt2 − mYmt2)βS

33 − h2
31

pt2

2
(

mYmt + cD
11

pt
)

βS
33 − h2

31
pt

, (40)

The shear force is [47]:

V =
∂M
∂x

= −bt3〈c11〉
∂3w
∂x3 , (41)

The motion equation for bending vibrations of ME composite is [47]

ρbt
∂w2

∂τ2 =
∂V
∂x

, (42)

Substitute Equation (41) for shear force into Equation (42):

t2〈c11〉
∂4w
∂x4 + ρ

∂w2

∂τ2 = 0, (43)

The dependence of the displacement on time is harmonic w ∼ eiωτ , therefore:

∂4w
∂x4 − k4w = 0

k =
(

ρ
t2〈c11〉

ω2
) 1

4
, (44)

where the composite effective density is determined by Equation (14).
The general solution to the motion equation is

w = C1 cosh(kx) + C2sinh(kx) + C3 cos(kx) + C4 sin(kx), (45)

Then, we obtain

S1 = −zk2[C1 cosh(kx) + C2sinh(kx)− C3 cos(kx)− C4 sin(kx)], (46)

The equilibrium conditions for a free ME composite are

V(0) = 0
M(0) = 0
V(L) = 0
M(L) = 0

, (47)

We obtain a linear inhomogeneous equation system for four unknowns C1, C2, C3, C4
by substituting Equations (38) and (41) into Equation (47). We find four unknowns
C1, C2, C3, C4 from this equation system.

Then, substitute the obtained constants C1, C2, C3, C4 into Equation (46) and find the
alternating magnetic induction in the ME composite averaged over the magnetostrictive
phase volume during the CME effect:

mB1 =
1
tL

L∫
0

z0∫
z0−mt

mB1dzdx =
q11

mY〈h31〉Uptmt(mt − 2z0)[r4(1− r1) + r2(1− r3)]

4Lkt4〈c11〉βS
33(r1r3 − 1)

, (48)
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where
r1 = cosh(kL)
r2 = sinh(kL)
r3 = cos(kL)
r4 = sin(kL)

, (49)

Then, the CME coefficient is calculated by the equation

αinv =
mB1

pt
U

=
q11

mY〈h31〉pt2mt(mt − 2z0)[r4(1− r1) + r2(1− r3)]

4Lkt4〈c11〉βS
33(r1r3 − 1)

. (50)

The fundamental resonant frequency for this case is

fr =
χ2t

2πL2

√
〈c11〉

ρ

χ = 4.73
. (51)

3.2. Rigid End of the Plate

The boundary conditions for the case when the left end of the ME composite is rigidly
fixed and the right one is free:

w(0) = 0
∂w
∂x (0) = 0
V(L) = 0
M(L) = 0

, (52)

The general solution to the motion equation corresponds to Equation (45).
After substituting Equations (45), (38) and (41) into Equation (52), we obtain a linear

inhomogeneous system for determining unknown constants C1, C2, C3, C4. Having found
them from this system, we substitute them into Equation (46) and then find the alternating
magnetic induction averaged over the volume of the ME composite during the CME effect:

mB1 =
1
tL

L∫
0

z0∫
z0−mt

mB1dzdx =
q11

mY〈h31〉Umt pt(2z0 − mt)(r1r4 + r2r3)

2Lkt4〈c11〉βS
33(r1r3 + 1)

. (53)

Then, the CME coefficient is calculated by the equation

αinv =
mB1

pt
U

=
q11

mY〈h31〉pt2mt(2z0 − mt)(r1r4 + r2r3)

2Lkt4〈c11〉βS
33(r1r3 + 1)

. (54)

The fundamental resonant frequency for this case is

fr =
χ2t

2πL2

√
〈c11〉

ρ

χ = 1.875
. (55)

Figure 4 below shows the dependence of the CME coefficient on the alternating electric
field frequency applied to the ME composite’s piezoelectric phase for the bending mode
of the ME effect. The ME composite’s material parameters are the same as for calculating
the dependence of the CME coefficient on the alternating electric field frequency for the
longitudinal mode.
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Figure 4. Dependence of the CME coefficient on the alternating electric field frequency applied to
the ME composite’s piezoelectric phase for the bending mode of the ME effect. (A) Free asymmetric
ME composite: the blue line is composite Metglas/PZT, and the red line is composite Metglas/LN
cut y + 128◦. (B) Asymmetric ME composite with a rigidly fixed left end: the blue line is composite
Metglas/PZT, and the red line is composite Metglas/LN cut y + 128◦.

The resonant frequency calculated by Equation (51) for the bending mode of the
CME effect for the asymmetric free ME composite Metglas/PZT is 19.7 kHz, and for the
asymmetric free ME composite Metglas/LN cut y + 128◦, it is 33.1 kHz. The resonant
frequency calculated by Equation (55) for the asymmetric ME composite with rigidly fixed
left-end Metglas/PZT is 3.1 kHz, and for the asymmetric ME composite with rigidly fixed
left-end Metglas/LN cut y + 128◦, it is 5.2 kHz.

The CME effect resonant frequency for the bending mode is greater for a composite
with the LN section y + 128◦ as a piezoelectric phase than for a composite with PZT due
to the lower effective density and greater effective stiffness of the composite with LN
cut y + 128◦. The value of the CME coefficient is greater for a composite with PZT as a
piezoelectric phase than for a composite with LN cut y + 128◦, which is due to a much
higher value of the piezoelectric coefficient PZT compared to LN cut y + 128◦—a greater
elastic compliance coefficient for the PZT than for LN cut y + 128◦. The CME effect resonant
frequency is three times less for the case when the composite’s left end is rigidly fixed than
for the free ME composite, while the CME coefficient resonant value increases by more
than three times for the bending mode of vibrations of the ME composite. The CME effect
resonant frequency is much less for the bending mode than for the longitudinal mode for
the free ME composite and the composite with the rigidly fixed left end, while the CME
coefficient resonant values for the bending mode of vibrations are much less than for the
longitudinal mode.

4. Quasi-Static Regime

When the bias field H0 is oriented along the ME composite length, the CME coefficient
in the quasi-static regime for a symmetric ME composite is determined by the contribution
of only the longitudinal mode; for an asymmetric ME composite, the CME coefficient in
the quasi-static regime is determined by the contribution of both the longitudinal and
bending modes.
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4.1. Symmetric Structure

Assuming in Equation (21) the frequency f is equal to zero, we obtain:

αinv =
2mtq11

mY pνd31

tps11c11
, (56)

4.2. Asymmetric Structure

Consider the motion equation for deformations:

ρ
∂2Ux

∂t2 =
∂T1

∂x
, (57)

Equation (57) has the form of the quasi-static regime:

∂T1

∂x
= 0, (58)

This means that T1 should not depend on x. This means that S1 should also not depend
on x. Since both the longitudinal and bending modes are excited in the asymmetric ME
composite for the quasi-static regime, then

S1 = A + zB. (59)

The magnetostrictive phase’s material equations are

mT1 = mYS1 − q11h1, (60)

mB1 = µµ0h1 + q11
mT1, (61)

Equations (60) and (61) have the form for h1 = 0:

mT1 = S1
mY , (62)

mB1 = q11
mT1, (63)

The longitudinal component of the piezoelectric phase stress tensor and electric field
intensity third component, applied to the piezoelectric phase of the ME composite, are

pT1 = cD
11S1 − h31D3, (64)

E3 = −h31S1 + βS
33D3, (65)

The electrical voltage on the piezoelectric, taking into account that D3 does not depend
on z, is as follows:

U =
z0+

pt∫
z0

E3dz =
z0+

pt∫
z0

[
−h31S1 + βS

33D3
]
dz =

z0+
pt∫

z0

[
−h31(A + zB) + βS

33D3
]
dz

= −h31
ptA− 1

2 h31
pt(2z0 +

pt)B + βS
33

ptD3

, (66)

Let us express the electric displacement’s third component in the piezoelectric phase
from Equation (66):

D3 =
U

ptβS
33

+
h31

βS
33

(
A +

1
2
(2z0 +

pt)B
)

, (67)

Substitute Equation (59) into Equation (62):

mT1 = mY(A + zB), (68)
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The first condition for the static equilibrium of an ME composite is that the total
longitudinal force is equal to zero:

F1 =
z0+

pt∫
z0

pT1dz +
z0∫

z0−mt

mT1dz =
βS

33(Ym
pt+cD

11
mt)−h2

31
pt

βS
33

A+

βS
33[c

D
11

pt(pt+2z0)+Ym
mt(2z0−mt)]−h2

31
pt(2z0+

pt)
2βS

33
B− Uh31

βS
33

= 0
, (69)

The second condition for the static equilibrium of the ME composite is the zero total
moment, which is given by:

M1 =
z0+

pt∫
z0

zpT1dz +
z0∫

z0−mt
zmT1dz =

βS
33[c

D
11

pt(pt+2z0)+Ym
mt(2z0−mt)]−h2

31
pt(2z0+

pt)
2βS

33
A

+
(4ptcD

11(
pt2+3z0[

pt+z0])+4Ym
mt(3z2

0−3mtz0+
mt2))βS

33−3h2
31

pt(pt+2z0)(2z0+
pt)

12βS
33

B

− (pt+2z0)Uh31
2βS

33
= 0

, (70)

We use the well-known condition to determine z0, which is that the longitudinal force
does not depend on the coefficient B associated with bending vibrations, and the bending
moment does not depend on the coefficient A associated with longitudinal vibrations.

This condition is

βS
33

(
cD

11
pt(pt + 2z0) + Ym

mt(2z0 − mt)
)
− h2

31
pt(2z0 +

pt) = 0. (71)

Then, we obtain

z0 =
mYmt2βS

33 − cD
11

pt2βS
33 + h2

31
pt2

2
(

mYmtβS
33 + cD

11
ptβS

33 − h31
pt
) . (72)

Let us determine coefficients A and B from Equations (69) and (70):

A = − Uh31(Ym
mt(3mt [2z0−pt ]−4mt2+6z0

pt)−cD
11

pt3)
Y2

mmt4βS
33−mt ptYm(pt2(3h2

31−4cD
11βS

33)+2(h2
31−cD

11βS
33)[3mt pt+2mt2])−cD

11
pt4(h2

31−cD
11βS

33)

B = 6Uh31Ym
mt(mt+pt)

Y2
mmt4βS

33−mt ptYm(pt2(3h2
31−4cD

11βS
33)+2(h2

31−cD
11βS

33)[3mt pt+2mt2])−cD
11

pt4(h2
31−cD

11βS
33)

, (73)

Then, we find the alternating magnetic induction averaged over the volume of the ME
composite mB1 during the CME effect, substituting in Equation (63) the obtained constants
A and B; then, the CME coefficient is as follows:

αinv =
mB1

pt
U

=
pth31Ymq11

mt(Ym
mt3+cD

11
pt3)

t{Y2
mmt4βS

33−mt ptYm(pt2(3h2
31−4cD

11βS
33)+2(h2

31−cD
11βS

33)[3mt pt+2mt2])−cD
11

pt4(h2
31−cD

11βS
33)}

, (74)

Figure 5 below shows the dependence of the CME coefficient on the piezoelectric
volume fraction for the quasi-static regime of the CME effect. The material parameters of
the ME composites are the same as for calculating the dependence of the CME coefficient
on the alternating electric field frequency for the longitudinal mode of the CME effect.

The optimal piezoelectric volume fraction of a symmetric ME composite is 0.55, at
which the CME coefficient is maximal for a composite with PZT and 0.45 for a composite
with LN cut y + 128◦. The optimal piezoelectric volume fraction is 0.8 for an asymmetric ME
composite with PZT, and the optimal piezoelectric volume fraction is 0.75 for a composite
with LN cut y + 128◦. The CME coefficient value is greater for a composite with PZT as
a piezoelectric phase than for a composite with LN cut y + 128◦, which is due to a much
larger piezoelectric coefficient PZT compared to LN cut y + 128◦.
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Figure 5. Dependence of the CME coefficient on the piezoelectric volume fraction in the quasi-static
regime. (A) The blue line is the symmetric composite Metglas/PZT/Metglas, and the red line is the
symmetric composite Metglas/LN cut y + 128◦/Metglas. (B) The blue line is asymmetric composite
Metglas/PZT, and the red line is asymmetric composite Metglas/LN cut y + 128◦.

5. EMR Longitudinal Shear Mode

The equations for calculating the CME coefficient during the longitudinal shear mode
are the same as for the longitudinal mode, but the longitudinal mechanical stress tensors
are replaced by mT1, pT1 on the shear mechanical stress tensors mT6, pT6, the piezoelectric
and piezomagnetic modulus d31, q11 are on d36, q16, the piezoelectric phase compliance
coefficient ps11 is on ps66, the magnetostrictive phases Young’s modulus mY is on shift
modulus mG, and the composite’s effective stiffness coefficient c11 is on c66.

Figure 6 shows the symmetric ME composite’s structure for calculating the longitudi-
nal shear mode of the CME effect.
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5.1. Symmetric Structure

The CME coefficient is calculated by the following equation:

αinv =
2mtq16

mG pνd36tg(η)
ps66c66ηt

, (75)
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where
η =

kL
2

, (76)

k =

√
ρ

c66
ω, (77)

ρ = mνmρ + pν pρ, (78)

c66 =
pν

ps66
+ mνmG, (79)

The fundamental resonant frequency for this case is [47]

fr =
1

2L

√
c66

ρ
. (80)

5.2. Asymmetric Structure

The CME coefficient can be found in Equation (75) for an asymmetric ME composite
in the resonant mode of the longitudinal-shear ME mode for a free composite, and it is
necessary to remove the number 2 before mt in Equations (1), (2) and (75).

6. EMR Torsional Mode for ME Composite of Metglas/GaAs

The calculation is performed for an asymmetric ME composite (see Figure 7) for the
torsional mode in the EMR region.
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Figure 7. Asymmetric ME composite scheme for the torsional mode.

The orientations of the crystallographic axes are [100], [010], and [001], where [100] is
the length (X-axis is index 1), [010] is the width (Y-axis is index 2), and [001] is a thickness
(Z-axis is index 3), respectively, for GaAs as a ME composite’s piezoelectric.

The X-axis is drawn along the composite length in the corresponding symmetry plane
of the composite, along the composite beam rotation axis during torsional vibrations in
the direction of the composite length. The Y-axis will be directed along the composite
width. The bias field H0 is directed along the Y-axis, and the alternating electric field pE3 is
directed along the Z-axis.

The full thickness of the ME composite is determined by Equation (30).
The ME composite’s strain tensor shear components are as follows:

S5 = y ∂θ
∂x

S6 = −z ∂θ
∂x

, (81)

where θ is the twist angle.
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The material equation for the piezoelectric phase is

S5 = 1
pG

pT5

S6 = 1
pG

pT6 + d36
pE3

, (82)

where pG is the piezoelectric phase’s shift modules.
We find the piezoelectric phase’s stress tensor tangent components from Equation (82):

pT5 = pGS5 = pGy
∂θ

∂x
, (83)

pT6 = pG(S6 − d36
pE3) = −pGz

∂θ

∂x
− d36

pG pE3, (84)

The material equations of the magnetostrictive phase for h1 = 0 as follows:

S5 = 1
mG

mT5

S6 = 1
mG

mT6
, (85)

We find the magnetostrictive phase’s stress tensor tangent components from
Equation (85):

mT5 = mGS5 = mGy ∂θ
∂x

mT6 = mGS6 = −mGz ∂θ
∂x

, (86)

The ME composite’s magnetic induction for h1 = 0 is:

mB1 = q16
mT6, (87)

The electric displacement in piezoelectric is:

D3 = d36
pT6 + εε0

pE3 = −d36
pGz

∂θ

∂x
+
(

εε0 − pGd2
36

)
pE3, (88)

where ε is the piezoelectric phase’s permittivity.
We express pE3 from Equation (88):

pE3 = h36z
∂θ

∂x
+ βS

33D3, (89)

where
h36 = d36

pG
εε0−pGd2

36

βS
33 = 1

εε0−pGd2
36

, (90)

and substitute it into Equation (84). As a result, we obtain

pT6 = −pGDz
∂θ

∂x
− h36D3, (91)

where
pGD =

εε0
pG

εε0 − pGd2
36

. (92)
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The torque is as follows:

M =

b
2∫
− b

2

dy
z0∫

z0−pt
(ypT5 − zpT6)dz +

b
2∫
− b

2

dy
z0+

mt∫
z0

(ymT5 − zmT6)dz

=

b
2∫
− b

2

dy
z0∫

z0−pt

(
ypGy ∂θ

∂x − z
(
−zpGD ∂θ

∂x − h36D3

))
dz

+

b
2∫
− b

2

dy
z0+

mt∫
z0

(
ymGy ∂θ

∂y + zmGz ∂θ
∂y

)
dz = K0

∂θ
∂y + b〈h36〉pt2D3

, (93)

where
K0 = pK + mK
pK = 1

3
pGD

(
z3

0 − (z0 − pt)3
)

b + 1
12

pG ptb3

mK = 1
3

mG
(
(z0 +

mt)3 − z3
0

)
b + 1

12
mGmtb3

〈h36〉 = 1
pt2

z0∫
z0−pt

zh36dz = h36(2z0−pt)
2pt

, (94)

where z0 is the position of the boundary between the piezoelectric and magnetostrictive
phases relative to the ME composite’s rotation axis.

Let us find the electric voltage on the piezoelectric:

U =

z0∫
z0−pt

pE3dz =

z0∫
z0−pt

(
h36z

∂θ

∂x
+ βS

33D3

)
dz = pt2〈h36〉

∂θ

∂x
+ ptβS

33D3, (95)

We express the electric displacement in a piezoelectric from Equation (95)

D3 =
U

ptβS
33
−

pt〈h36〉
βS

33

∂θ

∂x
(96)

and substitute it into Equation (93):

M = −bt3〈G〉 ∂θ

∂x
− bpt〈h36〉

βS
33

U, (97)

where [47]

〈G〉 = 1
bt3

(
K0 −

bpt3〈h36〉2

βS
33

)
. (98)

z0 is determined from the condition of the minimum effective shear modulus of the
ME composite 〈G〉:

z0 =
pGD pt2βS

33 − mGmt2βS
33 − h2

36
pt2

2
(

mGmtβS
33 +

pGD ptβS
33 − h2

36
pt
) , (99)

The torsional vibrations are as follows:

J
∂θ2

∂τ2 =
∂M
∂x

, (100)

where the ME composite’s moment of inertia per unit width is

J = pρ p I + mρm I , (101)
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where the piezoelectric and magnetostrictive phases polar moments are

p I = ptb
(

1
3

pt2 − ptz0 + z2
0 +

1
12 b2

)
m I = mtb

(
1
3

mt2 + mtz0 + z2
0 +

1
12 b2

) , (102)

Substitute Equation (97) into Equation (100):

J
∂2θ

∂τ2 = −bt3〈G〉 ∂2θ

∂x2 , (103)

The dependence of the twist angle on time is harmonic θ ∼ eiωτ , therefore:

∂2θ

∂x2 + k2θ = 0, (104)

where the wave number is

k = ω

√
J

bt3〈G〉 . (105)

The general solution to Equation (104) is as follows:

θ = A cos(kx) + B sin(kx). (106)

The equilibrium conditions for a free ME composite are

M
(

L
2

)
= 0

M
(
− L

2

)
= 0

, (107)

We obtain a linear inhomogeneous equation system for two unknowns A and B by
substituting Equation (97) into Equation (107). Then, we find two unknowns A and B,
from this equation system and substitute them into Equation (87). After that, we find the
alternating magnetic induction occurring in the magnetostrictive phase mB1 during the
CME effect. And we will find the CME coefficient:

αinv =
mB1

pt
U

=
q16

mG〈h36〉pt2mt(2z0 +
mt)

2ηt4〈G〉βS
33

tg(η), (108)

where
η =

kL
2

. (109)

The fundamental resonant frequency for this case is

fr =
1

2L

√
bt3〈G〉

J
. (110)

Figure 8 below shows the dependence of the CME coefficient on the alternating electric
field frequency applied to the ME composite’s piezoelectric phase for the longitudinal-shear
and torsional modes.
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ME composite Metglas/GaAs. 

Figure 8. Dependence of the CME coefficient on the alternating electric field frequency applied to the
free ME composite’s piezoelectric phase for the longitudinal-shear and torsional modes. (A) Longitu-
dinal shear mode, a symmetric free ME composite Metglas/GaAs/Metglas; (B) longitudinal-shear
mode, an asymmetric free ME composite Metglas/GaAs; (C) torsional mode, a symmetric free ME
composite Metglas/GaAs.

The magnetostrictive phase is Metglas, with a thickness of mt= 29 µm. The piezoelectric
is GaAs with a thickness of pt= 0.2 mm. The value of the quality factor Q= 300. The ME
composite length was 23 mm, and the width was 0.3 mm.

The resonant frequency calculated by Equation (80) for the longitudinal shear mode of
the CME effect for the symmetric free ME composite Metglas/GaAs/Metglas is 67.1 kHz,
and for the asymmetric free ME composite Metglas/GaAs, it is 69.5 kHz. The resonant
frequency, calculated by Equation (110) for the torsional mode of the CME effect for the
asymmetric free ME composite Metglas/GaAs, is 67.8 kHz.

The resonant frequency of the CME effect is slightly less for the longitudinal shear
mode for an asymmetric ME composite with GaAs as a piezoelectric phase than for the
torsional mode, while the resonant value of the CME coefficient is more than ten times
greater for the longitudinal shear mode than for the torsional mode. The value of the CME
coefficient is almost two times less for an asymmetric ME composite for the longitudinal
shear mode in comparison with a symmetric ME composite because the volume of the
magnetostrictive phase is two times less for an asymmetric ME composite than for a
symmetric one.
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It was determined in previous studies that in an asymmetric ME composite, with
the orientation of the bias field shown in Figure 6, both longitudinal shear and torsional
modes exist simultaneously during the CME effect. Moreover, the resonant frequency of the
longitudinal shear mode and the torsional mode differ slightly, and the CME coefficient’s
value for the longitudinal shear mode is an order of magnitude greater than for the torsional
mode. Because of this, the contribution of the torsional mode to the full CME coefficient is
insignificant against the background of the longitudinal shear mode, and it is difficult to
determine experimentally. One of the possible ways out of this situation may be the use of
a bimorph LN Zy + 45◦ as a piezoelectric phase in the ME composite.

7. EMR Torsional Mode in a ME Composite Based on Bimorph LN

The X-axis is drawn along the composite length in the corresponding symmetry plane
of the composite, along the composite beam rotation axis during torsional vibrations in
the direction of the composite length. The Y-axis will be directed along the composite
width. The bias field H0 is directed along the Y-axis, and the alternating electric field pE3 is
directed along the Z-axis.

Figure 9 shows the asymmetric ME composite’s structure with bimorph LN Zy + 45◦

as a piezoelectric phase for calculating the torsional mode of the CME effect:
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A bimorph LN Zy + 45° consists of two LN Zy + 45° plates having the opposite po-
larization direction along the thickness. The crystallographic axis, corresponding to the 
thickness of the bimorph layer for one plate, is [101] (the Z-axis is index 3), and for the 
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The ME composite’s strain tensor shear components are determined by Equation (81). 

Figure 9. Asymmetric ME composite scheme with bimorph LN Zy + 45◦ phase.

A bimorph LN Zy + 45◦ consists of two LN Zy + 45◦ plates having the opposite
polarization direction along the thickness. The crystallographic axis, corresponding to the
thickness of the bimorph layer for one plate, is [101] (the Z-axis is index 3), and for the
other plate, it is [−10−1]. Crystallographic axes, directed along the length and width, are
[10−1] (the X-axis is index 1) and [010] (the Y-axis is index 2), respectively.

The ME composite’s strain tensor shear components are determined by Equation (81).
The material equations of the magnetostrictive phase for h1 = 0 correspond to

Equations (86) and (87).

pT5 = pcE
55S5 +

pcE
56S6 − e35

pE3
pT6 = pcE

56S5 +
pcE

66S6 − e36
pE3

D3 = e35S5 + e36S6 + ε33ε0
pE3

, (111)

where pcE
55, pcE

56, pcE
66 are the shear components at a constant electric field intensity of

the piezoelectric phase’s stiffness tensor, and e35, e36 are the piezoelectric coefficients at a
constant electric field intensity.
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Let us express pT5, pT6, pE3:

pT5 = pcD
55S5 +

pcD
56S6 − h35D3

pT6 = pcD
56S5 +

pcD
66S6 − h36D3

pE3 = −h35S5 − h36S6 + βS
33D3 = −h35y ∂θ

∂x + h36z ∂θ
∂x + βS

33D3

, (112)

where pcD
55, pcD

56, pcD
66 are the shear components at a constant electrical displacement of the

piezoelectric phase’s stiffness tensor, and h35, h36 are the piezoelectric coefficients for the
constant strain tensor shear components.

pcD
55 = pcE

55 +
e2

35
ε33ε0

pcD
66 = pcE

66 +
e2

36
ε33ε0

pcD
56 = pcE

56 +
e35e36
ε33ε0

h35 = e35
ε33ε0

h36 = e36
ε33ε0

βS
33 = 1

ε33ε0

, (113)

The torque is as follows:

M = p M + m M =

b
2∫
− b

2

dy
z0∫

z0−pt
(ypT5 − zpT6)dz +

b
2∫
− b

2

dy
z0+

mt∫
z0

(ymT5 − zmT6)dz

=

b
2∫
− b

2

dy
z0∫

z0−pt

(
y
(
cD

55S5 +
pcD

56S6 − h35D3
)
− z
(

pcD
56y ∂θ

∂x −
pcD

66z ∂θ
∂x − h36D3

))
dz

+

b
2∫
− b

2

dx
z0+

mt∫
z0

(
ymGy ∂θ

∂x + zmGz ∂θ
∂x

)
dz = Q̃ ∂θ

∂x + bpt2〈h36〉D3

, (114)

where
Q̃ = pQ + mQ, (115)

where z0 is the position of the interface between the piezoelectric and magnetostrictive
phases relative to the composite beam rotation axis.

We have p1t = p2t = pt/2, p2h36 = −p1h36 = h36 for bimorph LN Zy + 45◦, where

〈h36〉 = 1
pt2

z0∫
z0−p2t−p1t

zh36dz =

 z0−p1t∫
z0−p2t−p1t

zp2h36dz +
z0∫

z0−p1t
zp1h36dz


= 1

2pt2

(p2h36
p2t
(
2z0 − 2p1t − p2t

)
+ p1h36

p1t
(
2z0 − p1t

))
= 1

4
p1h36

, (116)

The piezoelectric and ferromagnet phases’ polar moments of the shear stiffness coeffi-
cient are given by:

pQ = ptb
[

pcD
66

(
1
3

pt2 − ptz0 + z2
0

)
b + 1

12
pcD

55b2
]

mQ = mGmtb
(

1
12 b2 + 1

3
mt2 + mtz0 + z2

0

) , (117)

Let us find the electric voltage on the piezoelectric:

U =

z0∫
z0−pt

pE3dz =

z0∫
z0−pt

(
−h35y

∂θ

∂x
+ h36z

∂θ

∂x
+ βS

33D3

)
dz = pt2〈h36〉

∂θ

∂x
+ ptβS

33D3, (118)
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We express the electric displacement in a piezoelectric as

D3 =
U

ptβS
33
−

pt〈h36〉
βS

33

∂θ

∂x
, (119)

Substitute Equation (119) into Equation (114):

M = Q
∂θ

∂x
+

bpt〈h36〉
βS

33
U, (120)

where

Q = Q̃− bpt3〈h36〉2

βS
33

, (121)

The position of the interface between the piezoelectric and magnetostrictive phases
relative to the composite beam rotation axis z0 is determined from the condition of the
minimum polar moments of the shear stiffness coefficient Q:

∂Q
∂z0

= 0

z0 =
pcD

66
pt2−mc44

mt2

2(mc44
mt+pcD

66
pt)

, (122)

The torsional vibrations are determined by Equation (100), the ME composite’s mo-
ment of inertia per unit width is determined by Equation (101), where the piezoelectric and
magnetostrictive phases polar moments are determined by Equation (102).

Substitute Equation (120) into Equation (100):

J
∂2θ

∂τ2 = Q
∂2θ

∂x2 , (123)

The dependence of the twist angle on time is harmonic θ ∼ eiωτ , therefore:

Q
∂2θ

∂x2 + Jω2θ = 0, (124)

∂2θ

∂x2 + k2θ = 0, (125)

where the wave number is

k = ω

√
J
Q

, (126)

The general solution of Equation (125) is determined by Equation (106). The equilib-
rium conditions for a free ME composite correspond to Equation (107).

We obtain a linear inhomogeneous equation system for two unknowns A and B by
substituting Equation (120) into equilibrium conditions for a free ME composite (107).
Solving this system, we find A and B. Then, we substitute the found constants into
Equation (87) and find the alternating magnetic induction occurring in the magnetostrictive
phase mB1 during the CME effect. After that, we will find the CME coefficient:

αinv =
mB1

pt
U

=
q16

mG〈h36〉bpt2mt(2z0 +
mt)

2ηQβS
33t

tg(η), (127)

where
η =

kL
2

, (128)
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The fundamental resonant frequency for this case is

fr =
1

2L

√
Q
J

. (129)

Figure 10 below shows the dependence of the CME coefficient on the alternating elec-
tric field frequency applied to the ME composite’s piezoelectric phase for the longitudinal-
shear and torsional modes for a composite with a bimorph LN Zy + 45◦.
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Figure 10. Dependence of the CME coefficient on the alternating electric field frequency applied to
the free ME composite’s piezoelectric phase for the torsional mode. Asymmetric free ME composite
bimorph LN Zy + 45◦/Metglas.

The following material parameters were used in the calculation: The length of the
ME composite was L = 23 mm, and the width was b = 0.5 mm. In the calculation,
the following material parameters of the initial components were used: For Metglas:
mρ = 7180 kg/m3, mG = 3.85 × 1010 Pa, q16 = 1.0 × 10−9 m/A, and mt = 29 µm. For LN
Zy + 45◦: pρ = 4647 kg/m3, pcE

55 = 6.75× 1010 Pa, pcE
56 = 7.5× 109 Pa, pcE

66 = 6.75 × 1010 Pa,
ε33 = 36.5, p1e35 = −p2e35 = 2.5 C/m2, p1e36 = −p2e36 = 2.5 C/m2, and pt = 0.4 mm. The

value of the quality factor for this ME composite Q = 100.
The resonant frequency calculated by Equation(129) for the torsional mode of the CME

effect for the asymmetric free ME composite bimorph LN Zy + 45◦/Metglas is 85.2 kHz.
The value of the CME coefficient is much greater for the torsional mode for an asym-

metric composite with bimorph LN Zy + 45◦ as a piezoelectric phase than for a composite
with GaAs.

The longitudinal shear mode of the CME effect in an asymmetric composite with a
bimorph LN will not be excited. If some type of CME effect is observed in the experi-
ment, then it can only occur from the torsional mode. Thus, the longitudinal shear mode
interfering with the observation of the torsional mode will be eliminated.
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8. Quasi-Static Regime

When the bias field H0 is oriented along the ME composite width, the CME coefficient
in the quasi-static regime for a symmetric ME composite is determined by the contribution
of only the longitudinal shear mode; for an asymmetric ME composite, the CME coefficient
in the quasi-static regime is determined by the contribution of both the longitudinal shear
and torsional modes.

8.1. ME Composite of Metglas/GaAs
8.1.1. Symmetric Structure

Assuming in Equation (75) the frequency f is equal to zero, we obtain:

αinv =
2mtq16

mG pνd36
ps66c66t

, (130)

8.1.2. Asymmetric Structure

There are no vibrations in the direction of the length of the composite in the quasi-static
regime. This means that S5 and S6 should not depend on x. Since both the longitudinal
shear and torsional modes are excited in the asymmetric ME composite for the quasi-static
regime as follows:

S5 = yB
S6 = A− zB

, (131)

Substitute Equation (131) into Equations (83), (84), and (86):

mT5 = mGyB
mT6 = mG A− mGzB

, (132)

pT5 = pGyB
pT6 = pG(A− zB− d36

pE3)
, (133)

The electric displacement in a piezoelectric is

D3 = d36
pT6 + εε0

pE3 = d36
pG(A− zB) +

(
εε0 − pGd2

36

)
pE3, (134)

Let us express electric field intensity in the piezoelectric from Equation (134)

pE3 = βS
33D3 − h36(A− zB) (135)

and substitute it into Equation (133). As a result, we obtain

pT6 = pGD(A− zB)− h36D3. (136)

The electric voltage on the piezoelectric is

U =

z0∫
z0−pt

pE3dz = ptβS
33D3 − h36

pt
(

A− B
2z0 − pt

2

)
. (137)

Then, the electric displacement in the piezoelectric, expressed in terms of U is

D3 =
U

ptβS
33

+
h36

βS
33

(
A− B

2z0 − pt
2

)
. (138)
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The first condition for the static equilibrium of the ME composite is the total tangential
force on the site perpendicular to the X-axis along the Y-axis, and is equal to zero and is
given by the following equation:

z0∫
z0−pt

pT6dz +
z0+

mt∫
z0

mT6dz = 0, (139)

The second condition for the static equilibrium of the ME composite is the zero torque
and is given by:

b
2∫

− b
2

dy
z0∫

z0−pt

(ypT5 − zpT6)dz +

b
2∫

− b
2

dy
z0+

mt∫
z0

(xmT5 − zmT6)dz = 0, (140)

We use the well-known condition to determine z0, which is that the longitudinal
force does not depend on the coefficient B associated with the torsional vibrations, and
the bending moment does not depend on the coefficient A associated with longitudinal-
shear vibrations.

This condition is as follows:

pGD pt(2z0 − pt) + mGmt(2z0 +
mt) = 0, (141)

Then, we obtain

z0 =
pt2 pGD −m t2mG

2(mtmG + pt pGD)
. (142)

Equations (139) and (140) form a linear inhomogeneous system of two equations with
two unknowns A and B. Solving it, we find the unknowns A and B.

Magnetic induction of the ME composite’s magnetostrictive phase for h1 = 0 is
as follows:

mB1 = q16
mG(A− zB). (143)

Then, we find the alternating magnetic induction averaged over the ME composite vol-
ume in the magnetostrictive phase during the CME effect, substituting into Equation (143)
the obtained constants A and B. Then, we will determine the CME coefficient:

αinv =
mB1

pt
U =

ptmtmGq16h36
t[(pG D βS

33−h2
36)(pt4 pG D+pt2{b2 pG+6mt2mG})+mG pt3mt(4pG D βS

33−3h2
36)

·[pt3 pG D+b2 pt pG+mtmG(b2+mt2)]
+mG ptmt(4mt2{pG D βS

33−h2
36}+b2{(pG+pG D)βS

33−h2
36})+βS

33
mt2mG2(b2+mt2)]

, (144)

8.2. ME Composite Based on Bimorph LN

Assuming in Equation (127) the frequency f is equal to zero, we obtain:

αinv =
q16

mG〈h36〉bpt2mt(2z0 +
mt)

2QβS
33t

. (145)

Figure 11 below shows the dependence of the CME coefficient on the piezoelectric
volume fraction for the quasi-static regime of the CME effect for longitudinal-shear and
torsional modes. The material parameters of the ME composites are the same as for
calculating the dependence of the CME coefficient on the alternating electric field frequency
in the EMR region.

The optimal piezoelectric volume fraction of a symmetric ME composite is 0.54, at
which the CME coefficient is maximal for a composite with GaAs as piezoelectric and 0.45
for an asymmetric ME composite with GaAs. The optimal piezoelectric volume fraction
is 0.68 for an asymmetric ME composite with bimorph LN Zy + 45◦. The maximum
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value of the CME coefficient is approximately five times greater for an asymmetric ME
composite with a bimorph LN Zy + 45◦ than for an asymmetric ME composite with GaAs
as a piezoelectric in the quasi-static regime.
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9. Discussion

We would first like to discuss the applicability limits of our theoretical calculation of
the CME coefficient in this section. One of our main assumptions is that we consider the
mechanical coupling between the magnetostrictive and piezoelectric phases to be ideal.
Therefore, we consider the corresponding strain tensor components of the magnetostrictive
and piezoelectric phases to be equal. In practice, the mechanical coupling between the
magnetostrictive and piezoelectric phases may be quite far from ideal. This is due to the
methods of connecting the phases: gluing or some other methods. At the same time, the
mechanical deformation effect is transferred from the piezoelectric phase to the magne-
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tostrictive one and is not transferred as well as it is described by theory during the CME
effect in the experiment. Therefore, the experimental CME coefficient is always less than the
theoretical one. Another assumption we use in modeling is that we consider the alternating
magnetic field inside the magnetostrictive phase to be zero. This assumption justifies itself
well when the ME composite length is greater than its width and the width is significantly
greater than its thickness. In fact, this is not exactly true. A more accurate picture could be
given by finite element modeling in such a software package as Comsol Multiphysics 6.2 for
the alternating magnetic field distribution inside and around the magnetostrictive phase.
Another assumption close in meaning is that we consider the electric induction vector’s
component directed along the ME composite’s thickness independent of the coordinate
along the thickness when considering bending and torsional modes. Again, this assumption
works well with a long, narrow, very thin ME composite. However, a more accurate calcu-
lation could be made by the method of finite element modeling in Comsol Multiphysics. It
is also necessary to discuss the complexity of observing the CME effect’s torsional mode
against the background of the CME effect’s longitudinal shear mode. These modes exist
simultaneously in an asymmetric ME composite when the CME effect is excited by applying
an alternating electric voltage to the piezoelectric phase. Calculations show that the CME
effect’s main resonant frequency for the longitudinal shear mode for an asymmetric ME
composite with GaAs as a piezoelectric phase is slightly less than for the torsional mode,
while the resonant value of the CME coefficient is more than ten times greater for the longi-
tudinal shear mode than for the torsional mode. Therefore, it is difficult to observe such
a small CME effect from the torsional mode against the background of a relatively large
CME effect from the longitudinal shear mode in a small general frequency range. One of
the possible ways to solve this problem is to use bimorphic LN Zy + 45◦ with the same LN
layer thickness with oppositely directed polarization along the ME composite’s thickness
instead of GaAs. The theory shows that in the ME composite based on the bimorphic LN
Zy + 45◦, the longitudinal shear mode is not excited. Therefore, the observation of the CME
effect’s torsional mode will be greatly simplified. Also, we would like to explain why the
article does not compare our theoretical calculations with the experimental data of other
authors. This is because we consider relatively simple ME structures with the same length
and width as the magnetostrictive and piezoelectric phases in modeling. Other authors
use more complex ME structures in their experiments, in which the lengths or widths of
the magnetostrictive and piezoelectric phases do not coincide [34,35,40,48–50], and other
additional layers are present in the design; for example, a permanent magnet [51]. Such
complex constructions of ME composites require separate, rather laborious calculations for
comparison with our theory when observing the CME effect.

10. Conclusions

The general theory of the CME effect in composites in the low-frequency range,
including the EMR region, is presented. The main EMR modes are considered in more
detail, such as longitudinal, bending, longitudinal-shear, and torsional. To demonstrate the
theory, expressions for the CME coefficients were obtained for symmetric and asymmetric
GaAs/Metglas and LN/Metglas layered structures. To complete the analysis, a brief
overview of the main works on the CME effect in the low-frequency range, including in the
field of EMR, is given.

This article notes a number of limitations of the presented theory of the CME effect
that must be taken into account. This is, first of all, the imperfection of the mechanical
connection between the piezoelectric and magnetostrictive phases associated with the
commonly used adhesive technology. The following restrictions are due to the presence of
an alternating magnetic field inside the magnetostrictive phase and the constant direction
of the electrical induction vector along the thickness of the composite in the case of bending
and torsional modes.

Recommendations are given for the experimental study of the CME effect in the
torsional mode in a bimorph structure based on Metglas/LN, which will eliminate the
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longitudinal shear mode and study only the spectrum of the torsional mode. To reliably
calculate the CME effect, taking into account the complexity of the problem, it is proposed
to use our analytical estimates presented in this article and compare them with calculations
based on the Comsol Multiphysics package and the results of the experiments.
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