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Abstract: Characterizing plant material is crucial in terms of early disease detection, pest control,
physiological assessments, and growth monitoring, which are essential parameters to increase produc-
tion in agriculture and prevent unnecessary economic losses. The conventional methods employed to
assess the aforementioned parameters have several limitations, such as invasive inspection, complex-
ity, high time consumption, and costly features. In recent years, optical coherence tomography (OCT),
which is an ultra-high resolution, non-invasive, and real-time unique image-based approach has been
widely utilized as a significant and potential tool for assessing plant materials in numerous aspects.
The obtained OCT cross-sections and volumetrics, as well as the amplitude signals of plant materials,
have the capability to reveal vital information in both axial and lateral directions owing to the high
resolution of the imaging system. This review discusses recent technological trends and advanced
applications of OCT, which have been potentially adapted for numerous agricultural applications,
such as non-invasive disease screening, optical signals-based growth speed detection, the structural
analysis of plant materials, and microbiological discoveries. Therefore, this review offers a compre-
hensive exploration of recent advanced OCT technological approaches for agricultural applications,
which provides insights into their potential to incorporate OCT technology into numerous industries.

Keywords: optical coherence tomography; agriculture; optical imaging; image processing; image
analysis; disease detection

1. Introduction

Plant diseases reduce production levels and cause direct and indirect major economic
losses in agriculture and forestry. Pathogens and other agents, such as insects, animals,
and weeds, cause direct crop losses that range from 20% to 40% of worldwide agricultural
production [1–4]. In the United States, the approximate annual cost of crop damage caused
by plant pathogens was about USD 33 billion [5]. Fruit diseases can also lead to huge
productivity and quality losses during the harvesting and post-harvesting periods [6–8].
Moreover, seeds can harbor a wide range of microflora, including fungi, bacteria, nema-
todes, viruses, and other organisms that can cause crop diseases and cause massive crop
losses [9,10]. Therefore, plant-, fruit-, and seed-borne diseases cause huge economic losses
collectively, and, in most cases, the diseases can only be treated and controlled once the
symptoms are detected at an advanced stage [11,12].

Several approaches for the early diagnosis of leaf diseases have been established. In
the early stages of infection, visual inspection is often utilized; however, it is subjective,
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inefficient, time-consuming, and labor-intensive [13–15]. Plant diseases can also be identi-
fied using physiological, biological, serological, or molecular testing, as well as a variety of
laboratory-based techniques [16–19]. Polymerase chain reactions (PCRs), enzyme-linked
immunosorbent assays, and histological sectioning are some of the most common laboratory
test-based, complex, time-consuming, destructive, and expensive plant disease inspection
methods [20,21]. To compensate for the abovementioned limitations in plant disease di-
agnosis, non-invasive approaches, such as image processing [22–25], microfocus X-ray
fluorescence [26], terrestrial laser scanning [15], spectroscopy [27], sonic tomography [17],
GanoSken technology [28], and the electronic nose [29] have gained much popularity. How-
ever, these techniques have several limitations, including the necessity of a lengthy setup
procedure, complexity, high cost, sensitivity to environmental changes, limited selectivity,
and the necessity of highly sophisticated software [19,30]. X-ray [31], magnetic resonance
imaging (MRI) [32], ultrasound [33], and positron emission tomography (PET) [34] imaging
methods have been used to accomplish the non-invasive morphological and structural
imaging of plant materials. However, these imaging techniques are limited by low image
resolution and long acquisition times [35–38]. However, early disease detection in the
agricultural context is still a challenge; therefore, a non-invasive optical image acquisition
technique can offer a solution for early disease detection in several agricultural industries.

OCT seems to be a promising technique in plant material characterization, which
is based on low-coherence interferometry. OCT is an ultra-high-resolution and purely
non-invasive imaging technology that employs a non-ionizing broadband light source,
which aids in the prevention of radiation-induced tissue damage [39]. The image reso-
lution of OCT is 1–15 µm, which is 10 to 100 times better than that of ultrasound [40];
therefore, it is easy to detect a defect in the plant early by interpreting cross-sectional
and three-dimensional (3D) images of soft and hard tissue, owing to this high resolution.
The high-speed data acquisition capacity of OCT allows real-time imaging of in vitro, ex
vivo, and in vivo samples, where structural changes can be assessed quantitatively and
qualitatively. As a result of possessing the aforementioned qualities, OCT has proven to
be useful in various fields of study, including dermatology [41], medical diagnosis [42],
dentistry [43], tissue imaging [44], agriculture [45], entomology [46], and industrial applica-
tions [47]. Since an OCT imaging depth of 1.5 to 2 mm is sufficient for the inner-structure
visualization of plant material on a micrometer scale, OCT-based agricultural studies have
established a strong platform from which to confirm the applicability of OCT in plant
material assessment [45,48–50].

In this review, six different agricultural areas are focused on, wherein OCT is em-
ployed as a powerful tool for disease detection and monitoring techniques. The contents
of OCT-based inspection are divided into sections and discussed in six different chapters.
In Chapter 1, the non-invasive virus screening of seed specimens through OCT imaging
is reviewed. In Chapter 2, optical inspection for the detection of leaf spot diseases is re-
viewed. In Chapter 3, the diagnosis of physiological diseases of fruit specimens using OCT
is reviewed. In Chapter 4, the optical sensing-based germination rate assessment of plant
seeds is reviewed. In Chapter 5, a backpack-mounted or wearable OCT system for on-field
inspection is reviewed. In Chapter 6, optical coherence imaging-based microbiological find-
ings are reviewed. Furthermore, the future directions of OCT for agricultural applications
have also been discussed in this review.

2. Applicational Overview of OCT in Agriculture

OCT is a relatively new, non-invasive, non-contact, high-resolution imaging system
for in vivo imaging, which is based on the Michaelson interferometer. OCT operates sim-
ilarly to ultrasonic imaging, except it relies on the concept of light scattering rather than
sound [51]. In OCT imaging, the variations in path length differences of the backscat-
tered light from the different layers of the sample structure are measured to produce
two-dimensional (2D) cross-sectional images of the sample structure [39]. Since light
travels through air at a very high speed, it is difficult to evaluate backscattered signals
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directly; therefore, correlation or interferometry techniques are needed. The low-coherence
interferometry method is the one that is most frequently used to determine the time delay
of backscattered light. By using a known light path as a reference, the time delay or path
length difference between the backscattered light path reflected from the sample and the
known reference path can be calculated, which demonstrates the structural difference
between the reference objects and the sample. The Michelson interferometer is the most
frequently used interferometry method for OCT, whereby the light from a source is directed
onto a prism or a beam splitter, or onto a fiber coupler, and is then delivered separately to
the reference and sample arms. Both the light reflected from the mirror of the reference arm
and the sample arm interfere at the beam splitter or fiber coupler. The final interference
signal is detected by a photodetector, which creates dark and bright fringes according to the
sample structures. To enable raster scanning of the sample, two galvanometric scanners are
mounted on the sample arm. The lateral resolution of the OCT system depends on the used
wavelength and beam optics, whereas the axial resolution depends on the coherence length
and bandwidth of the light source being used. Therefore, high-resolution cross-sectional
images of the sample structure can be obtained by utilizing a broad-bandwidth source with
low coherence and an appropriate beam optics configuration. Figure 1a shows a schematic
of the OCT system’s working principle and Figure 1b shows the application of OCT in
various fields.
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Figure 1. The schematic diagram represents an application overview of OCT in agriculture. (a) System
schematic of optical coherence tomography. (b) OCT applications in agriculture.

Fourier-domain OCT (FD-OCT) is the most common currently used technology in
agriculture, which is seen in two approaches: photodetector-based swept-source OCT
(SS-OCT) and spectrometer-based spectral-domain OCT (SD-OCT) [52]. SD-OCT uses a
wideband laser source coupled with a spectrometer, while SS-OCT employs a frequency-
sweeping laser source coupled with a photodiode to split the interference signal into single
wavelengths [53]. OCT also uses the same terminology as ultrasound for single-point
scans (A-Scan), linear scans (B-Scan), and area scans (C-Scan) [54]. A depth profile of the
backscattering is produced along a line that is perpendicular to the object surface (A-scan)
after the Fourier transform of the received signal. Then, 2D cross-sectional images are
obtained via point-by-point scanning of the OCT beam passing over the material (B-scans).
A set of 2D cross-sectional images is then made via line-by-line scanning of the sample,
from which a 3D image stack of the sample can be created.
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3. A-Scan Profiling for Assessing OCT Images

The A-scan (amplitude scan) profiling algorithm is the most widely used technique
for characterizing plant materials by assessing OCT images. Figure 2 shows how the
A-scan profiling algorithm is used to obtain depth directional intensity from obtained OCT
cross-sectional images. Figure 2a shows the optical imaging process for OCT imaging and
a 2D cross-sectional image of the sample. The acquisition technique for a single A-line
intensity profile is shown in Figure 2b; the red dotted line indicates the scanning position.
Multiple irregular intensity peaks (marked by the red arrows) can be seen in a single A-line
intensity profile. In Figure 2c, a total of 330 A-scan signals from the region of interest
(ROI) were added together and averaged in order to eliminate the irregular intensity peaks
seen in the depth intensity profile plots and to cover the whole width of the image. The
averaged depth intensity profile of a single OCT image is shown in Figure 2c. In Figure 2c,
the red box indicates the region of interest (ROI) of the A-scan profiling from a single OCT
cross-sectional image of a sample. The number 330 indicates the number of A-scan signals
that are obtained from the whole ROI of a single OCT cross-sectional image. Multiple 2D
cross-sectional images of a single sample are subjected to depth scan analysis using the
same technique to provide a smoother and more reliable intensity profile from an area
of the sample. Figure 2d shows the averaged A-scan intensity profile for multiple OCT
cross-sectional images of a sample.
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4. Chapters
4.1. Chapter 1—Non-Invasive Screening for Disease in Plant Seed Specimens

The use of healthy seeds is the first and most important condition for agricultural pro-
ductivity. The use of healthy seeds after separating out diseased seeds increases production
and prevents huge economic losses. Optical coherence tomography can be used to detect
abnormalities in the seeds and monitor morphological variations that are infected with
viruses. Cucumber green mottle mosaic virus (CGMMV)-infected unhealthy cucumber
seed specimens have also been distinguished from healthy seeds using OCT [55]. Seung-
Yeol Lee et al. confirmed that the CGMMV-infected seeds had a narrow gap between the
seed coat and endosperm compared to the healthy seed by analyzing OCT cross-sectional
images and 3D volume images. Additionally, A-scan analysis was also employed to verify
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the result, whereby a narrow gap was found in the inner structure of the infected seeds.
Figure 3i shows a 3D image of healthy and infected seeds, which have been compared
from various directions, and it can be observed that the infected seeds have a narrow gap
throughout the entire inner surface, unlike healthy seeds. Figure 3i(A,B) depicts a gap
between the seed coat and endosperm, affecting the overall interior structure of healthy and
infected seeds in the XZ and YZ planes of the 3D images. Additionally, when comparing
the infected seeds in Figure 3i(D) with the healthy seeds in Figure 3i(C), a clear, narrow gap
can be noticed.
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Figure 3. Comparison of healthy and CGMMV-infected cucumber seeds through OCT images and
A-scan profiles: (i) 3D and en-face images (figure source [55]). (i(A,B)) three dimensional OCT
images, and (i(C,D)) is the XY plane images of the healthy and infected cucumber seeds. (ii) OCT
en-face images of cucumber seed and the corresponding A-scan profile (figure source [55]). (iii) The
difference between healthy and CGMMV-infected seeds after heat-drying (A) or water immersion (B).
SC, seed coat; ISG, infected seed gap; HSG, healthy seed gap; IE, infected seed endosperm; HE,
healthy seed endosperm; GD, gap distance between healthy and CGMMV-infected seeds (figure
source [55]).

As per the work of Bennett [56], the presence of the second layer in abnormal seeds
can be described as one of the most distinctive interactions between plant viruses and
their hosts, which is the great defense of embryos against viruses infecting the mother
plant. The morphological changes in normal and infected seeds were observed using OCT
images, and a distinct layer under the surface was identified by evaluating the infected seed
images. To identify the anthracnose (fungus)-infected tomato seeds and evaluate its effect,
Bharti et al. [57] used full-field optical coherence tomography. They measured the healthy
seed coat thickness as 28.2 µm, which disappeared with infection, and the gap between
the surface and endosperm was barely noticeable. The 3D-OCT (three-dimensional OCT)
image revealed that the permeability of the seed coat was also affected by the infection,
which plays a vital role in protecting the seed. The healthy and infected seed coat surfaces
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showed significant differences in the cross-sectional, en-face, and 3D images, and the
two boundary layers also disappeared with infection. Yang Zhou et al. investigated
mold contamination in maize kernels at an early stage using OCT [58]. They used the
surface and near-surface information from the OCT images of maize kernels to analyze
those changes caused by mold contamination that can be detected by feature extraction or
image-processing methods. High-resolution 2D tomographic images of the microstructure
of maize can be obtained via the OCT technique, and the experimental results suggest
that mold-contaminated maize kernels can be identified and marked at an early stage by
monitoring the near-surface layers.

4.2. Chapter 2—Optical Sensing-Based Germination Rate Assessment for Plant Seeds

Seed germination rates are influenced by various chemical treatments, and OCT can be
used to observe the early morphological and structural changes occurring under the seed
surface. OCT was used to evaluate the germination rate acceleration of chemically primed
seeds using three chemical compounds: sterile distilled water (SDW), butanediol, and
1-hexadecene [59]. In the samples treated with 1-hexadecene, morphological changes in the
embryo, storage cotyledons, radicle, and micropylar endosperm, along with a long sprout,
were identified within a short period in comparison with the seeds treated with other chem-
icals. This confirmed the suitability of 1-hexadecene as a growth-promoting chemical. OCT
can visualize morphological changes in the micropylar endosperm and the development of
cotyledons, embryos, and storage cotyledons, as well as help analyze germination time and
measure the optimum growth-promoting chemical that will help to extend the harvesting
speed. Figure 4 reveals the three-dimensional top view, the en-face view of the seed middle
region, and an ortho-sliced cross-sectional view of seeds with a morphological variation
that were treated with sterile distilled water (SDW) (Figure 4a–c), butanediol (Figure 4d–f),
and 1-hexadecene (Figure 4g–i), respectively. The resulting en-face images demonstrate the
morphological variations caused by the growth-promoting substances.

Danyang Li et al. proposed the use of biospeckle optical coherence tomography
(bOCT) to investigate the response of Kaiware daikon seeds under exposure to a simulated
acid mine drainage environment at different concentrations under various treatments [60].
They claimed that low pH can have a significant effect on the earlier stages of germination
using bOCT. It was also found that bOCT could be used to observe the changes in seed
internal activity after only 1 h when the seeds were under acid mine drainage (AMD) stress.
The bOCT images clearly distinguished the changes at different concentrations of AMD
treatments within a short time; the variation was found to be statistically significant and
could reflect the internal activity of the seeds.

Xinhua Li et al. monitored and characterized the entire seed germination process of pea
seeds to assess the morphological changes in the specimens, both externally and internally,
using a web camera and OCT system, respectively [61]. A-scan analysis was applied to
three different positions of the OCT cross-sectional images, which were acquired with time
intervals of three hours during the germination process. In addition, seed-coat thickness
was also measured from the obtained OCT cross-sectional images through A-scans.

The seed coat absorbs water from the beginning of the imbibition phase (phase I) until
it reaches the lag phase, and Figure 5i(A–D) depicts this process. A large proportion of air
pores exists in the early stage of phase I in the seed coats and cotyledons, resulting in a
strong scattering OCT signal. Figure 5i(a–d) shows the A-scan profile of the obtained OCT
images, where the ROI is marked by 1, 2, and 3 of the red, green, and blue lines. The water
intake modifies the internal inhomogeneity from the subsurface context, allowing light
to pass through to the deeper tissues. These changes are revealed by the reduced signal
intensity of the endocarp layer and in the appearance. During phase II, the water level of the
seeds remains relatively constant, while metabolic activities rise, as shown in Figure 5i(E–I);
the corresponding A-scan is shown in Figure 5i(e–i). As the young seedling establishes
itself, in phase III (final phase) an increase in water intake can be detected, as shown in
Figure 5i(J–L), and the corresponding A-scan is shown in Figure 5i(j–l). Figure 5ii illustrates
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the boxplot of the maximum whisker length, which is specified as being two times the
interquartile difference. The boxplot of the maximum whisker length, which is defined as
two times the interquartile difference, is shown in Figure 5ii. A horizontal line within each
box denotes the median of the seed coat, while the box’s bottom and top margins denote the
first and third quartiles, respectively. As heavy metals considerably affect seed germination
and plant growth, bOCT was used to examine the effects of increasing Zn concentrations
on lentil seed germination and seedling growth by Y. Sanath K. De Silva et al. [62]. After
exposing each sample to different Zn concentrations, the bOCT intensity was recorded
at 0, 6, 12, and 24 h to observe the effect of different Zn concentrations on the internal
activity of seed specimens. Due to the micronutrient impact of Zn at low concentrations,
the samples treated with 5 mg/L and 10 mg/L Zn had greater internal activity compared
to the control, whereas the internal activity of the sample treated with 100 mg/L was
found to be considerably lower compared to other samples, due to the toxic effect of Zn at
high concentrations.
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Figure 4. A 3D illustration of the changes in seed morphology as a result of germination: (a–c) 3D,
en-face, and cross-sectional OCT images of a seed treated with SDW; (d–f) 3D, en-face, and cross-
sectional OCT images of a seed treated with butanediol; (g–i) 3D, en-face, and cross-sectional OCT
images of a seed treated with 1-hexadecene. C, cotyledons; E, endosperm; EM, embryo; H, hypocotyl;
ME, micropylar endosperm; R, radicle; SC, storage cotyledons; SP, sprout; T, testa (seed coat). The
horizontal and vertical scale bars are 700 µm and 200 µm, respectively (figure source [59]).



Sensors 2024, 24, 219 8 of 21

Sensors 2024, 24, x FOR PEER REVIEW 8 of 21 
 

 

signal intensity of the endocarp layer and in the appearance. During phase II, the water 
level of the seeds remains relatively constant, while metabolic activities rise, as shown in 
Figure 5i(E–I); the corresponding A-scan is shown in Figure 5i(e–i). As the young seedling 
establishes itself, in phase III (final phase) an increase in water intake can be detected, as 
shown in Figure 5i(J–L), and the corresponding A-scan is shown in Figure 5i(j–l). Figure 
5ii illustrates the boxplot of the maximum whisker length, which is specified as being two 
times the interquartile difference. The boxplot of the maximum whisker length, which is 
defined as two times the interquartile difference, is shown in Figure 5ii. A horizontal line 
within each box denotes the median of the seed coat, while the box’s bottom and top mar-
gins denote the first and third quartiles, respectively. As heavy metals considerably affect 
seed germination and plant growth, bOCT was used to examine the effects of increasing 
Zn concentrations on lentil seed germination and seedling growth by Y. Sanath K. De Silva 
et al. [62]. After exposing each sample to different Zn concentrations, the bOCT intensity 
was recorded at 0, 6, 12, and 24 h to observe the effect of different Zn concentrations on 
the internal activity of seed specimens. Due to the micronutrient impact of Zn at low con-
centrations, the samples treated with 5 mg/L and 10 mg/L Zn had greater internal activity 
compared to the control, whereas the internal activity of the sample treated with 100 mg/L 
was found to be considerably lower compared to other samples, due to the toxic effect of 
Zn at high concentrations. 

 

Figure 5. OCT and A-scan profiles for revealing the different phases of the germination at an interval
of 3 h. (i) OCT images of the germination phases. Images (i(A–D)), (i(E–I)), and (i(J–L)) show phases I
and III, and their corresponding A-scan profiles (i(a–d)), (i(e–i)), and (i(j–l)), obtained from positions
1, 2, and 3, are marked by the red, blue, and green colors, respectively (figure source [61]). The
cotyledon layer becomes visible in (i(C)) marked by red circle; the radicle first observed in (i(E))
marked by blue circle; the seed coat cracked in (i(J)) marked by yellow circle. (ii) Boxplot for the
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4.3. Chapter 3—Optical Inspection for the Detection of Leaf Spot Diseases

OCT imaging reveals the specific infected area of an abnormal leaf, as well as the
strength and direction of fungus activity, which can be useful in preventing fungal disease
in apple trees. Tzu H. Chow et al. diagnosed virus infection in orchid plants using
high-resolution OCT [63]. In their study, OCT was used to identify highly scattering top
and lower epidermal layers in the leaves of virus-infected plants that are invisible under
histological examination. Also, despite having similar visual symptoms to those seen in
virus-infected plants, the high level of scattering characteristic of the epidermal layers
of virus-infected leaf samples was not seen in the leaves of stressed plants. The high
level of scattering in the epidermal layers suggested that the leaves were infected with
Cymbidium Mosaic Virus (CymMV), as confirmed by the enzyme-linked immunosorbent
assay (ELISA) test, which is the current gold standard test for detecting virus infection in
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orchid plants. In our previously published article, a threshold for the pre-identification of
palisade parenchyma (PP) and spongy parenchyma (SP) layer anomalies in persimmon
and apple-leaf specimens was defined using the depth profile approach, based on OCT
cross-sections [64]. A set of OCT cross-sectional images of apple and persimmon leaves
were employed to quantitatively evaluate the inner structure of the leaf specimens, where
it was observed that the thickness between the PP and SP layers gradually decreased in
apparently healthy leaves and merged in infected apple leaves. In the persimmon leaves, PP
and SP layers were gradually decreased in both apparently healthy and infected specimens.
Figure 6 illustrates the OCT cross-sectional images of healthy, seemingly healthy, and
diseased persimmon and apple leaves. The UE, PP, and SP layers in the persimmon leaves
are clearly visible in Figure 6i(a–c), and the thickness difference between the layers is
indicated by white arrows. Similar cross-sectional images of healthy, apparently healthy,
and infected apple leaves are shown in Figure 6i(d–f).
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healthy, and infected persimmon and apple leaves. (i(a–c)) OCT cross-sectional images of persimmon
leaves. (i(d–f)) OCT cross-sectional images of apple leaves (figure source [64]). (ii) Depth profiles
of healthy, apparently healthy, and infected apple leaves; (ii(a,b)), (ii(c,d)), and (ii(e,f)) show the
depth profiles of healthy, apparently healthy, and infected apple leaves, respectively. (ii(a,c,e)) Depth
intensity profiles of three regions of interest (ROIs) from a single leaf. (ii(b,d,f)) The averaged depth
intensity profiles of three ROIs from a single leaf (figure source [64]).

The layers become merged in the infected leaves rather than the healthy and apparently
healthy leaves, which is shown in Figure 6i(e,f), respectively. Figure 6ii(a–f) displays
the depth intensity profiles of healthy, apparently healthy, and infected apple leaves,
respectively. Figure 6ii(a,c,e) shows the depth intensity profiles of three ROIs from a single
apple leaf as black, blue, and magenta, respectively. The average depth intensity profiles of
three ROIs from single healthy, apparently healthy, and infected apple leaves are shown in
Figure 6ii(b,d,f), respectively. The peaks are apparent in Figure 6ii(b) and, gradually, the
intensity decreases in the infected leaves, which is shown in Figure 6ii(d,f). In Figure 7
the depth intensity profiles of healthy, apparently healthy, and infected persimmon leaves
are presented, respectively. The four ROIs of a single persimmon leaf’s depth intensity
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profiles are represented by the colors black, blue, magenta, and green. Figure 7a,d,g shows
the depth intensity profiles, Figure 7b,e,h shows the average depth intensity profiles, and
Figure 7c,f,i shows the curved fitted thickness intensity profiles of four ROIs from a single
healthy, apparently healthy, and infected persimmon leaf, respectively. Rapid plant disease
diagnosis using an image processing-based artificial intelligence system was demonstrated
recently by Sanjaya Shankar Tripathy et al. [65], wherein image acquisition, pre-processing,
segmentation, feature extraction, statistical analysis, classification, and disease diagnosis
processes were employed.
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The growth and spread of the leaf rust disease caused by Puccinia triticina in wheat
leaves were assessed in a study by Adya Rateria et al., where the OCT images of epidermal
and parenchyma cell layers were correlated with the histological images to show the
distinctive leaf morphological boundaries [48]. A-scan analysis was used to monitor and
compare the morphological changes in the infected leaf with a healthy leaf.

However, besides assessing leaf disease through OCT inspection, several OCT appli-
cations regarding plant leaves were also demonstrated in various previously published
studies for different purposes. In one, a bOCT has been applied to monitor short-term
activity changes during the foliar application of phytohormones to a plant. Different
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concentrations of the plant growth hormone gibberellic acid (GA3) were applied to the
leaves of Chinese chives and their effects were monitored through bOCT contrast images,
where OCT structural images had failed to show any differences [66]. Biospeckle OCT
imaging was also applied to the leaves of Chinese chives to assess the response of the
subjected leaves to ozone (O3) stress at different concentrations [67]. The standard devia-
tion of the biospeckle signal from the back and front surfaces of the leaves was calculated,
where both surfaces were found to show an increased fluctuation in the biospeckle signal
under O3 stress. Furthermore, the internal cell structure of the leaves could be distin-
guished in the OCT biospeckle images, while it was not clearly visible in traditional OCT
cross-sectional images.

4.4. Chapter 4—Diagnosis of Physiological Diseases of Fruit Specimens

One of the most damaging diseases in apple production is bitter rot, which is caused
by Colletotrichum spp. [68]. OCT was employed to characterize bitter-rot progression on
apple specimens [49]. The goal of the study was to determine the initial rotting status
in apple specimens in the early stages by using 2D-OCT images, intensity profiles, and
circular tissue pattern formations in both en-face OCT and boundary detection analyses.
The visually non-identifiable circular tissue patterns, created under the epidermal cell layer
owing to early rotting, were well represented by the obtained en-face images. Figure 8i
displays the histological confirmation of OCT images that were obtained from approxi-
mately the same scan levels. Figure 8i(a,b) displays the cross-sectional images, as well as
the enlarged histological view of internal morphological structures that are clearly visible
in healthy specimens, such as wax layers, cuticles, epidermis layers, and hypodermis lay-
ers. Figure 8i(c,d) and i(e,f) represent the cross-sections of a partially infected and entirely
infected specimen, respectively. Both the histological and OCT analysis of partially infected
and fully infected specimens revealed the absence of the mentioned layers and morphologi-
cal boundaries, as seen in Figure 8i(c,d) and Figure 8i(e,f), respectively. Figure 8ii shows the
three-dimensional analyses of the depth direction in en-face OCT images acquired at depths
of 250 µm, 500 µm, and 1000 µm, respectively. In Figure 8ii(b–d), the tissue distribution
is clearly visible in all depth ranges. Circular regions below the epidermis layer started
to emerge as a result of the bitter-rot disease symptoms, as seen in Figure 8ii(f–h). The
boundary continued to develop as a result of the expanding spots growing in the center of
the infected area, as seen in Figure 8ii(j–i).

The bruise on a pear fruit was also visualized through OCT imaging and a quantitative
analysis model was proposed to classify unbruised and bruised tissue automatically [69].
Following boundary detection in the OCT images, A-scan analysis was applied to deter-
mine four possible indicators for bruises in pear fruit, including the OCT signal slope,
light penetration depth, shaping, and scaling, which were taken into consideration for
quantitative analysis. It was demonstrated that when the pear fruit was mechanically
damaged, the slope, shape, and scaling of the OCT signal decreased while the depth of light
penetration increased. A fruit bruise detection technique based on inner microstructural
parameters using OCT was demonstrated by Yang Zhou et al. [70,71]. In this study, total
cell surface area, average cell surface area, average cell Feret diameter, equivalent diameter,
and the amount of parenchyma cells from bruised and non-bruised loquat tissue were
measured. The total cell surface area and the cell number in bruised and non-bruised
loquats differed significantly, suggesting that these two parameters might be utilized as
indicators for bruise detection.

OCT was also employed to optically screen venturia nashicola caused pear scab disease
using pear leaves and fruits, where the morphological changes of pear scab-infected Asian
pear (Pyrus pyrifolia) leaves and fruits were assessed [72]. Here, the signal intensity differ-
ence between healthy and infected samples, owing to cross-sectional layer reduction in
the infected sample, was confirmed using depth profile analysis. The histological changes
associated with the progression of rind breakdown (RBD) disorder in ‘Nules Clementine’
mandarins were investigated by Magwaza et al. using OCT imaging [72]. The immediate
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and non-destructive acquisition of healthy and RBD-affected intact mandarin fruit images
was conducted using the Thorlabs OCT system to visualize histological and microstructural
features in intact rind tissue, where it was observed that the oil glands stayed intact in
unaffected fruit and gradually collapsed in RBD-affected fruit, and the collapsed oil glands
became increasingly deformed and flattened at an advanced stage of the disorder. Figure 9i
presents illustrations of the oil glands at various phases of RBD. The unaffected fruit in
Figure 9i(a) had intact oil glands with an almost round shape, whereas those in the afflicted
fruit in Figure 9i(b–d) eventually collapsed. Figure 9ii(a–c) shows the 3D representations
of oil glands with no RBD, moderate RBD, and severe RBD, respectively. The glands of
healthy mandarins generally have an ellipsoidal form, but as the RBD progressed, they
severely flattened, became irregular, and decreased in size.
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Figure 8. Illustration of the structural differences in fruit specimens through histology, OCT cross-
section, and en-face images with the progression of the disease. (i) Histological validation of the 2D
OCT images obtained from healthy and naturally infected fruit specimens. (i(a,b)) Morphology of
healthy fruit. (i(c,d)) Morphology of apparently healthy fruit. (i(e,f)) Morphology of entirely infected
fruit (figure source [49]). (ii) Illustration of the inner structure of healthy fruit and the changes in its
structure at the depth direction, using en-face images. (ii(a–d)) The 3D and en-face images of healthy
specimens at depth direction. Images (ii(e–l)) illustrate the morphological changes in depth direction
with disease progression (figure source [49]).
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Figure 9. Illustration of the development of progressive rind breakdown (RBD) in mandarin fruit:
(i(a)) unaffected fruit, (i(b)) mildly affected, (i(c)) moderately affected, and (i(d)) severely affected
(figure source [72]). (ii) Oil glands in 3D representation with (a) no RBD, (b) moderate RBD, and
(c) severe RBD (figure source [72]).

4.5. Chapter 5—Wearable OCT for On-Field Inspection

Our research group has developed a wearable (backpack-type) diagnostic imaging
modality, employing OCT to meet the demand for non-contact inspection equipment
in both indoor and outdoor experimental environments [50]. This compact, versatile
backpack-type imaging system consists of a compact spectrometer, a miniature computer,
a rechargeable power source, and a handheld inspection probe. To preview the 2D-OCT
image, a user-friendly user interface is displayed on the miniature built-in LCD screen, and
a built-in button on the handheld device is attached to save the obtained images. Therefore,
the operator only has to perform three simple steps to begin the inspection while wearing
the system: turning it on, previewing the acquired images, and saving the results. Through
the direct use of the imaging modality in agricultural fields, this technology improves
real-time in situ specimen inspection and minimizes the limitations of complex tabletop
inspection modalities in the laboratory. Figure 10i shows the schematic of a conventional
spectrometer-based, compact, customized, SD-OCT system for a backpack-type imaging
facility, comprising a light source, reference arm, LCD monitor-oriented handheld-probe-
based sample arm, spectrometer, and image processing unit. The developed wearable
(backpack-type) diagnostic modality with a diagnostic procedure system is depicted in
Figure 10ii, wherein a user can easily move the whole OCT system around on his back
during the real-time field inspection. The full system is shown in Figure 10ii(a), the system
and its operator are shown in Figure 10ii(b), the system is shown in activity in Figure 10ii(c),
and the in vivo and real-time imaging system is shown in Figure 10ii(d). Field experiments
were conducted in apple, persimmon, and pear plantations to evaluate the robustness,
feasibility, and precise imaging capability of the developed system. On-field inspection
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results of the apple, persimmon, and pear plantations that were obtained using the wearable
(backpack-type) diagnostic imaging modality are listed in Table 1. In the system program
interface, an automated software-based OCT signal intensity detection mechanism was
implemented to achieve fully automated confirmation of the healthy and infected states of
leaf specimens during the real-time inspection process.
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Figure 10. Compact, portable, and wearable OCT imaging modality configuration. (i) Schematic
diagram of the OCT system. BLS, broadband laser source; C, collimator; CB, capture button; DG,
diffraction grating; FC, fiber coupler; GS, Galvano scanner; L, lens; LCD, liquid crystal display;
LSC, line scanning camera; M, mirror; PC, polarization controller; S, sample (figure source [50]).
(ii) Wearable imaging modality appearance. (ii(a)) complete system, (ii(b)) wearable OCT with its
operator, (ii(c)) wearable OCT in action, and (ii(d)) display of in vivo and real-time imaging (figure
source [50]).

Table 1. Average, standard deviation, minimum, and maximum thicknesses for apple, pear, and
persimmon leaves on experimental days 1, 15, and 30 (table source [50]).

Leaf Type, Experimental Day Avg. (µm) STD (µm) Min. (µm) Max. (µm)

Apple, day 1 49.42 1.03 46.42 53.25
Apple, day 15 78.62 1.72 75.96 81.86
Apple, day 30 113.05 3.21 109.72 116.85

Pear, day 1 41.31 1.12 37.98 44.88
Pear, day 15 62.74 2.24 59.08 67.65
Pear, day 30 99.39 3.12 97.06 102.15

Persimmon, day 1 228.92 8.52 215.22 243.35
Persimmon, day 15 163.69 1.93 160.36 167.47
Persimmon, day 30 120.82 1.73 118.16 124.66

4.6. Chapter 6—Optical Coherence Imaging-Based Microbiological Findings

Microorganisms play a significant role in agriculture in several ways. Nitrates and
other nutrients are added to the soil by microorganisms, which also maintain the soil
fertility and enhance its quality [73]. Microorganisms contribute to the compositing process
that results in manure [74]. Additionally, the process gives the plants specific antibiotics,
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nutrient content, and growth-promoting chemicals to aid in plant growth [75]. However,
OCT has been applied to microorganism assessment in only a few studies.

Mohan et al. employed SS-OCT imaging to monitor the growth of bacteria and the
continuous formation of biofilm in real time [76]. A newly developed mathematical model
was used for the characterization of different bacterial colonies and biofilms by calculating
backscattering optical properties, which were then verified with the conventional ‘Gram
staining’ method. Obtained results revealed that Gram-positive (Bacillus lichaeniformis and
Bacillus subtilis) bacteria scatter light more than Gram-negative Acrylic (BITNR004) and
S3b (BITGN002) bacteria because their cell walls contain a thick coating of peptidoglycan.
Real-time demonstrations of the developing links between two colonies and the migration
of bacteria to establish new colonies inside the medium were also demonstrated. Moreover,
the biofilm formation in drip irrigation systems was demonstrated non-invasively using
OCT [77,78]. In the drip irrigation system, the zigzag structured labyrinth allowed water
from the intake to pass into the basin compartment, and the transparent coverslip of
the labyrinth allowed for non-invasive OCT imaging. The thickness of the biofilm was
measured using OCT imaging to evaluate its formation, and it was found that the biological
fouling increased with time. The dripper system is shown in Figure 11i(A,C) and it consists
of a solid tube with an internal diameter of 19 mm that presses the dripper against the
transparent tube’s walls and has an outlet hole punched above the outlet basin. Each of the
three lines is linked to a different tank and a pump, as illustrated in Figure 11i(B), and nine
drippers are connected according to the variety of drippers, using polyethylene tubing. The
biofilm thickness assessed using the OCT technique at the dripper flow rates is shown in
Figure 11ii. Figure 11 ii(A) illustrates the progression of biofouling thickness at the inlet of
1, 2 l·h−1 drippers, and Figure 11ii(B) illustrates the return dripper areas of 4 l·h−1 drippers
after one and four months, respectively. Initially, biological fouling at the intake region was
concentrated in the first baffle area and at its corners, and it subsequently extended to the
succeeding corner baffles. After four months, the biofilm thickness was higher in the baffle
corners for all the drippers. In both types of drippers, the large bend caused the biofilm
thickness in the return area to expand the most markedly (Figure 11ii(C). The OCT imaging
application in distinct agricultural fields are summarized in Table 2.

Table 2. OCT imaging application in distinct agricultural fields.

Applications Sample Type Cause of Plant
Material Changes OCT-Type

Center
Wavelength of the
Light Source (nm)

References

Screening of disease
in plant seed

Cucumber seed CGMMV d TD-OCT 1310

[55,57,58]Tomato seed Anthracnose (fungus) d FF-OCT 650

Maize kernels Mold infection d SD-OCT 840

Seed germination
rate assessment

Capsicum annum seed Growth-promoting
chemical i SS-OCT 1310

[59–62]Raphanus sativus L. seed Acid mine drainage i bOCT 836.1

Pea seed N/A SD-OCT 840

Lentil seed Zn concentration i bOCT 836.1

Leaf disease and
morphological

assessment

Wheat leaf Fungal infection d SS-OCT 1060

[48,63–67]

Orchid leaf Virus infection d FD-OCT 820

Persimmon and apple
Circular leaf spot d, apple

blotch d SD-OCT 850

Wheat leaf N/A SS-OCT 1060

Chinese chive leaf Plant growth hormone i bOCT 836.1

Chinese chive leaf Exposure to ozone i SD-OCT 836.1
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Table 2. Cont.

Applications Sample Type Cause of Plant
Material Changes OCT-Type

Center
Wavelength of the
Light Source (nm)

References

Assessment of
physiological disease

of fruit

Apple fruit Bitter-rot d SS-OCT 1310

[49,69–72]

Pear fruit Bruising SD-OCT 1300

Loquat fruit Bruising SD-OCT 1300

Loquat fruit Bruising SD-OCT 1300

Mandarin fruit Rind breakdown
disorder d SD-OCT 930

Wearable OCT for
on-field inspection Apple leaf MarssoninaCoronaria d SD-OCT 850 [50]

OCT-based
microbiological

findings

Bacterial colonies
and biofilms N/A SS-OCT 1064

[76–78]Biofilm in drip
irrigation devices N/A SD-OCT 930

Milli-labyrinth channel
and bacterial
communities

N/A SD-OCT 930

d Disease. i Influencer.
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mesh screen filter; 4. a pressure reducer; 5. a pressure gauge; 6. the drip line with an emitter system
located at 10-cm intervals; 7. a collector; 8. a gutter. (ii(A)) Measurement of biofilm thickness at the
inlet of drippers. (ii(B)) Measurement of biofilm thickness in the return of drippers. (ii(C)) The return
areas of drippers were measured after 1 and 4 months (figure source [78]).

5. Conclusions and Future Directions

This review highlights the recently advanced OCT technological approach as a poten-
tial tool for disease detection and physiological assessment in six distinct agricultural fields.
Following non-invasive OCT imaging, 2D cross-sectional, en-face, and 3D volumetric im-
ages were used to detect physiological changes in plant materials through different image
analysis techniques. OCT imaging was used non-invasively to monitor germination rates
and seed diseases, as well as to identify leaf diseases, assess physiological disorders in fruit
specimens, and conduct on-field inspections and microbiological discoveries. The A-scan
analysis applied to OCT cross-sectional images can reveal vital information about early
disease diagnosis and physiological changes in plant materials. However, the traditional
techniques used to evaluate the above-listed measurements have several drawbacks, in-
cluding invasive inspection, complexity, extended processing times, and expensive features.
OCT technology has been widely utilized to evaluate plant materials in several ways, due
to its non-invasive, high-resolution, and real-time imaging capabilities. The following list
outlines some further potential uses for OCT imaging in the future.

In vivo plant material inspections (on-field inspections) can be carried out in real time
using the handheld probe included in the developed wearable OCT system. In future
advancement of the developed wearable back-pack OCT system, the motion artifacts
during the image acquisition, weight of the system, short operational time due to short
battery life, high power consumption, waterproof coating of the system, and the short
length of the handheld probe should be taken into account.

Many OCT systems stitch together small-area image data, using a mosaic approach to
produce large-area images. However, the applicability of the mosaic approach to stitching
small-area images together to make a large-area image is limited by the inconsistency
of results caused by sample stage controlling inaccuracy, sample stage vibration, and
additional post-processing time, where multiple images need to be captured for a single
image. Therefore, a large-area-scanning OCT system might be a useful device to monitor
the whole leaf area during inspection.

Consumer acceptance is hampered by postharvest softening, which is related to
moisture loss and the loss of relative humidity during storage. By assessing mechanical
stress, OCT can be used to evaluate crop quality in the postharvest storage period. It can
also be used to observe cellular changes, which may help when producing large volumes
of crops to export to distant markets and help to reduce economic loss.

OCT can be used in the context of plant-beneficial microbes (PBMs), which are growth-
promoting rhizo-microorganisms that directly establish a relationship with plants. PBMs
lead to the enhancement of plant growth, increase nutrient uptake, restore soil fertility, and
improve plant resilience to abiotic and biotic stresses. OCT can be actively applied to assess
the activity of PBMs in improving crop productivity and reducing the use of agrochemicals.

The non-destructive measurement of fluidic flow and flow velocity has already been
achieved using OCT [79,80]. OCT has been widely used for the detection of blood flow
and flow velocity; therefore, improvements in this field can be useful to the research of
fluid dynamics in related plants. Future research may explore the possibility of studying
the flow dynamics associated with plants, using highly sensitive Doppler-OCT and a
double-correlation OCT-directed blood vessel spatial distribution detection approach.

Artificial intelligence (AI)-based microbiological identification and classification ap-
plications using OCT imaging can improve microbiological assessment capability in the
agricultural field. However, high-quality and diverse training data are necessary for
accurate AI models, which might be challenging. OCT imaging-based bacterial colony
assessment using AI has not been descriptively reported to date.
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Abbreviations

2D two-dimensional
3D three-dimensional
AMD acid mine drainage
bOCT biospeckle optical coherence tomography
CGMMV cucumber green mottle mosaic virus
CymMV Cymbidium mosaic virus
ELISA enzyme-linked immunosorbent assay
FD-OCT Fourier-domain OCT
GA3 gibberellic acid
LCD liquid crystal display
MRI magnetic resonance imaging
OCT optical coherence tomography
O3 ozone
PCR polymerase chain reaction
PET positron emission tomography
PP palisade parenchyma
ROI region of interest
RBD rind breakdown
SS-OCT swept-source OCT
SD-OCT spectral-domain OCT
SDW sterile distilled water
SP spongy parenchyma
TD-OCT time-domain OCT
UE upper epidermis
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