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1. Introduction

Point clouds are considered one of the fundamental pillars for representing the 3D
digital landscape [1], despite the irregular topology between discrete data points. Recent
advances in sensor technology [2] that acquire point cloud data to enable flexible and
scalable geometric representations have paved the way for the development of new ideas,
methodologies, and solutions in ubiquitous sensing and understanding applications. Exist-
ing sensor technologies, such as LiDAR, stereo cameras, and laser scanners [3], can be used
from a variety of platforms (e.g., satellites, aerial, drones, vehicle-mounted, backpacks,
handheld, and static terrestrial) [4,5], viewpoints (e.g., nadir, oblique, and side view) [6],
spectra (e.g., multispectral) [7], and granularities (e.g., point density and completeness) [8].
Meanwhile, many promising methods have been developed based on computer vision
and deep learning to process the point cloud data [9,10]. However, the expanding applica-
tions of point clouds in complex and diverse scenarios, such as autonomous driving [11],
robotics [12], augmented reality [13], and urban planning [14], pose new challenges [15] to
existing intelligent point cloud approaches.

Recently, artificial intelligence has greatly facilitated the extraction of valuable infor-
mation from complex point cloud data [16]. Deep learning-based models [16] have shown
impressive performance in various point cloud tasks, such as completion [17], compres-
sion [18], 3D reconstruction [19], semantic segmentation [19], and object detection [20].
However, as we face increasingly complex and dynamic 3D application scenarios, more
accurate, efficient, and effective methods are becoming more and more urgent [21]. There-
fore, further investigation on improving intelligent point cloud processing, sensing, and
understanding capabilities is of great significance.

This Special Issue collects promising approaches that develop innovative technologies
for generating, processing, and analyzing various formats of point cloud data. A total of ten
contributions (nine regular articles and one survey) from China, Turkey, Romania, Portugal,
the USA, Italy, and the Republic of Korea have been ultimately accepted for publication.
These contributions delve into diverse aspects of point clouds, including structural analysis,
instance segmentation, registration, texture mapping of 3D meshes, model acceleration and
deployment, 3D modeling, up-sampling, plant part segmentation, image-to-point-cloud
reconstruction, and LiDAR point cloud (LPC) object detection. The next section provides a
concise introduction to each contribution collected in this Special Issue.

2. Overview of Contributions

Contribution 1 explored the application of graph kernels in the structural analysis
of point clouds, emphasizing their effectiveness in preserving topological structures and
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enabling machine learning methods on evolving vector data represented as graphs. Specifi-
cally, a unique kernel function was introduced to tailor for similarity determination in the
point cloud data. To reflect the underlying discrete geometry, the kernel was further formu-
lated based on the proximity of geodesic route distributions in graphs. By demonstrating
the effectiveness of the kernel function in supervised classification using a convolutional
neural network (CNN), experimental results validated the efficiency of the proposed kernel
function for understanding the geometric and topological aspects of 3D point clouds.

Contribution 2 presented a weakly supervised instance segmentation approach for
point clouds, addressing the challenge of inaccurate bounding box annotations. To avoid
labor-intensive point-level annotations, they first developed a self-distillation architecture
that leveraged the consistency regularization, and then utilized data perturbation and
historical predictions to enhance generalization, as well as prevent over-fitting to noisy
labels. Later, they selected reliable samples and corrected labels based on historical consis-
tency. Experimental results on the benchmark dataset demonstrated the effectiveness and
robustness of their approach, achieving comparable performance to existing supervised
methods and outperforming recent weakly supervised methods.

Contribution 3 proposed a robust alignment scheme for point clouds, where the
rotation and translation coefficients were calculated using the angle of the normal vector
of the building facade and the distance between outer endpoints. Experimental results
demonstrated the feasibility and robustness of their alignment method on homologous
and cross-source point clouds. In addition, they also pointed out that the future work can
further optimize the efficiency of parameter-dependent building facade point extraction
and explore applications to point cloud registration with varying sensor qualities.

Contribution 4 developed a novel sequential pairwise color-correction approach to
mitigate texture seams generated from multiple images. By selecting a reference image
and computing the color correction paths through a weighted graph, this approach could
effectively enhance the color similarities among different images, resulting in high-quality
textured meshes. Experimental results show that the proposed method outperforms exist-
ing schemes in both qualitative and quantitative evaluations on an indoor dataset, especially
in scenarios with high triangle transitions.

Contribution 5 designed a light-weight CNN model for moving object segmentation
in LPCs, addressing the challenge of real-time processing on embedded platforms. The pro-
posed network achieved a reduction in parameters compared to the state of the art, demon-
strating efficient processing on the RTX 3090 GPU. In addition, it has been also successfully
implemented on an FPGA platform, achieving 32 fps for moving-object segmentation,
meeting the real-time requirements in autonomous driving. Despite its comparable error
performance with significantly fewer parameters, this light-weight model faced potential
challenges, such as simplifying the network structure without compromising performance
and addressing the sacrifice of low-level details for computational acceleration.

Contribution 6 addressed the challenge of accurately representing cultural heritage
objects for finite element analysis (FEA) to understand their mechanical behavior. Unlike
the use of traditional CAD 3D models and non-uniform rational B-spline surfaces (NURBS),
they employed an alternative method utilizing the re-topology procedure to create simpli-
fied yet accurate 3D models for FEA. This study emphasized the importance of retaining the
formal definition compatible with FEA software, demonstrating its effectiveness for mor-
phologically complex objects. Experimental results demonstrate that the proposed method
can reduce the mesh size, while maintaining high accuracy compared to high-resolution
reality-based models. Future work can be developed to improve interoperability, material
segmentation, and detailed parameterization for a more comprehensive understanding of
the structural behavior of cultural heritage objects.

Contribution 7 proposed a point cloud up-sampling via multi-scale features attention
(PU-MFA) method, leveraging the U-Net structure to combine multi-scale features and
cross-attention mechanism. PU-MFA was developed to adaptively and effectively use multi-
scale features, demonstrating superior performance in generating high-quality dense points.
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Experimental validations on synthetic and real-scanned datasets show the effectiveness of
PU-MFA. It is worth noting that PU-MFA currently has limitations in addressing arbitrary
up-sampling ratios.

Contribution 8 introduced the MASPC_Transform, a segmentation network for plant
point clouds designed to address the challenges posed by the intricate and small-scale
nature of plant organs. Leveraging a multi-head attention separation and a spatially
grounded attention separation loss, MASPC_Transform established connections for similar
point clouds scattered across different areas in the point cloud space. Additionally, a
position-coding method was proposed to enhance the feature extraction in the presence
of disordering point clouds. Experimental results demonstrated that MASPC_Transform
outperformed existing approaches on the plant segmentation. Finally, they also emphasized
the need for further testing on new open-source datasets to validate the generalizability of
the MASPC_Transform.

Contribution 9 presented a novel 3D-SSRecNet network for efficient 3D point cloud
reconstruction from a single image. 3D-SSRecNet was composed of a 2D image feature
extraction network based on a backbone network for object detection, and a point cloud
prediction network for minimizing the reconstruction loss. The specially chosen activation
function was then employed for better shape prediction and lower reconstructed error.
Experimental results on two datasets demonstrated the promising performance of 3D-
SSRecNet. Although 3D-SSRecNet can be considered as a computationally effective solution
for point cloud reconstruction, future work can be investigated to further improve local
reconstruction effects while maintaining computational efficiency.

Contribution 10 provided a comprehensive survey on deep learning-based LiDAR
3D object detection for autonomous driving. It summarized the commonly used feature
extraction and processing techniques for LPCs, the coordinate systems in LiDAR object
detection, and the stages of autonomous driving. Furthermore, a deep learning-based LPC
object detection methods were classified into three categories: projection, voxel, and raw
point clouds. They have also conducted in-depth analyses, comparisons, and summaries of
the advantages and disadvantages of existing LPC object detection methods. Finally, they
pointed out that there are still many open issues in improving model speed and accuracy
to achieve real-time processing for level-4 to level-5 autonomous driving.

3. Conclusions

This Special Issue serves as a portfolio, bringing together a wide range of contributions
that address crucial challenges and advancements in the region of point cloud processing,
sensing, and understanding. The selected papers represent a collective endeavor to push the
boundaries of point cloud knowledge, offering intelligent solutions to existing challenges,
while also unlocking new applications for 3D point clouds. We believe that the above papers
will provide valuable insights for researchers and practitioners in this field, stimulating
ongoing evolution towards academic and industrial solutions that are not only more
accurate, but also more efficient and effective.
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