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Abstract: Internet of Things (IoT) applications have been increasingly developed. Authenticated key
agreement (AKA) plays an essential role in secure communication in IoT applications. Without the
PKI certificate and high time-complexity bilinear pairing operations, identity-based AKA (ID-AKA)
protocols without pairings are more suitable for protecting the keys in IoT applications. In recent
years, many pairing-free ID-AKA protocols have been proposed. Moreover, these protocols have
some security flaws or relatively extensive computation and communication efficiency. Focusing
on these problems, the security analyses of some recently proposed protocols have been provided
first. We then proposed a family of eCK secure ID-AKA protocols without pairings to solve these
security problems, which can be applied in IoT applications to guarantee communication security.
Meanwhile, the security proofs of these proposed ID-AKA protocols are provided, which show they
can hold provable eCK security. Some more efficient instantiations have been provided, which show
the efficient performance of these proposed ID-AKA protocols. Moreover, comparisons with similar
schemes have shown that these protocols have the least computation and communication efficiency
at the same time.

Keywords: AKA; identity-based cryptography; eCK security model; attacks

1. Introduction

Internet of Things (IoT) applications have been increasingly exploited as information
technology, operational technology, communication technology, and electronic technology
develop. Examples include Smart Grid, Internet of Vehicles, Industrial IoT, and Agriculture
IoT, which have enhanced living conditions greatly. With the development of 5G, secure
and efficient communication demands have become huge as massive IoT devices are
participating in these IoT applications. In general, IoT end devices and IoT servers play
important roles in IoT applications. IoT end devices, mounted with sensors, collect useful
information and transmit data to the IoT servers over the open network. When these IoT
data are transmitted among different IoT devices, the sensitive information inserted in
these IoT data needs more secure cryptographic algorithms to protect IoT user privacy and
data security.

To protect the security of data transmission, cryptographic means that require secret
keys are presented. For IoT user identity authentication, the shared key, public key certifi-
cate, and zero-knowledge proof are some common cryptographic methods [1]. For secure
IoT data transmission, the digital signature can help confirm data ownership [2], the key
agreement can help establish a secure session key [3], and the public key encryption can
guarantee IoT data security with ciphertext in the public Internet environment [4]. For
IoT data with fine-grained access control, attribute-based encryption can help establish a
secure access control strategy with the attributes of IoT users and data [5], and security
policy protocol can solve Internet control message protocol (ICMP) attacks [6]. Many
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cryptographic algorithms guarantee secure and efficient communication among different
IoT applications—there are too many to mention one by one. However, these cryptographic
algorithms are public; therefore, the keys are essential for secure data transmission. More-
over, blockchain technology has been applied to IoT applications to solve the centralized
management problem [7].

Key agreement (KA) is an important method to protect keys, which supports building
a common session key between no less than two different users for subsequent communica-
tions. Authenticated key agreement (AKA) not only generates a common session key, but
also prevents active attacks and implicitly authenticates the participants simultaneously. In
the public-key infrastructure (PKI) setting, the user’s long-term public key is matched with
the corresponding identity in a certificate, which is derived by a trusted certificate authority.
However, managing and transmitting these certificates results in heavy computation and
storage costs. Considering IoT end-devices are usually resource-constrained and have
limited memory, computation power, storage, and battery life, PKI-based AKA protocols
(e.g., [3,8]) are not suitable for IoT applications. Therefore, to avoid the PKI certificate
problem, AKA (ID-AKA) protocols with identity are proposed [9]. In ID-AKA protocols,
every user owns a unique identity, the long-term public key is constructed by the user’s
personal identity, and the private key is composed of the identity and a master key, which
is created by the trusted key generation center (KGC). Since the introduction of the first
ID-AKA protocol in [10], many ID-AKA protocols have been introduced based on bilin-
ear pairings [11–18], which is a high time-complexity operation. Because of the resource
restriction of IoT end devices, ID-AKA protocols without pairings are more suitable for
IoT applications.

Currently, the modified Bellare and Rogaway (mBR) model [12], the Canetti–Krawczyk
(CK) model [19], and the extended Canetti–Krawczyk (eCK) model [20] are some famous
security models for AKA protocols. In particular, the eCK model can achieve the most
security properties [13]. Meanwhile, to satisfy the communication demands of the high
speed, low latency, and large connections in IoT applications, a more secure and efficient
AKA protocol is needed. Thus, designing efficient ID-AKA protocols without pairings
while maintaining eCK security would be more suitable for IoT applications.

Motivation and Our Contribution

Aiming at considering the aforementioned problems, this paper presents some efficient
ID-AKA protocols while holding the eCK security for IoT applications.

• We provide the preliminaries of some Diffie–Hellman assumptions and the forking
lemma, provide a detailed description of the eCK-security model for two-party ID-
AKA protocols, and draw a figure to show the network model for these protocols.

• We analyze three recently proposed ID-AKA protocols without pairings [21–23], and
point out the security flaws against some known attacks.

• We propose a family of pairing-free ID-AKA protocols in the eCK security model. The
security proof also considers the case where the public key materials related to the
long-term private key can be altered by an active adversary. Furthermore, events in
our security proof are complementary.

• We provide some more efficient protocols that need four elliptic curve point multi-
plication operations. Protocol comparison shows that our efficient protocols have
the advantage over similar protocols with the items of security, computation, and
communication efficiency.

The paper is organized as follows: Section 2 provides some related work, Section 3
presents the cryptanalysis of several ID-AKA protocols, Section 4 proposes a family of
pairing-free ID-AKA protocols, Section 5 shows some more efficient instantiations, Section 6
presents the performance and comparison, and Section 7 gives the conclusion.
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2. Related Work

Some related works about the cryptographic methods for IoT applications and devel-
opments of KA protocols are provided in the following two subsections.

2.1. Cryptographic Methods for IoT Applications

In IoT applications, the IoT data generally contain plenty of sensitive information
about the system users, such as their personal identity, location, and production data. When
these IoT data are transmitted among different IoT devices and applications, cryptographic
technologies play an essential role in the processes of user identity authentication, IoT
data transmission, IoT data fine-grained access control, and so on. Jayabalasamy et al. [2]
proposed an aggregate signature scheme to solve the nonrepudiation problem in blockchain
ecosystems, which could also confirm the data ownership in the untrusted IoT environment.
Li et al. [3] designed a KA protocol based on the SM2 algorithm, which could help estab-
lish a secure session key between different system users in smart grid communications.
Pu et al. [4] introduced a public key authentication encryption scheme, and added the
function of keyword search into this scheme to guarantee IoT data security in industrial IoT
applications. Rasori et al. [5] provided a survey of the attributed-based encryption protocols
in recent years, and figured out the problems and challenges of IoT data fine-grained access
control in most current IoT applications. Onyema et al. [6] presented a security policy
protocol for the detection and prevention of Internet control message protocol (ICMP)
attacks in software-defined networks. For these different cryptographic algorithms, the key
is an essential part of secure IoT communication. Therefore, establishing a secure session
key is the first issue that should be taken into consideration for secure communication in
IoT applications.

2.2. Developments of KA Protocols

Numerous interesting pairing-free ID-AKA protocols have been introduced in recent
years. In 2010, Cao et al. [24] provided a one-round ID-AKA protocol without pairing and
presented the security proof in the mBR model. Then, two pairing-free ID-AKA protocols
were proposed in [25,26], which utilized the CK model to prove its security. In 2016,
Ni et al. [27] showed that the security proof of Sun et al.’s protocol neglected the case where
the public key materials related to the long-term private key could be altered by an active
adversary, and proposed two eCK-secure ID-AKA protocols without pairings. However,
events in the security proof of their protocols were not complementary, which resulted in a
mismatch in the freshness definition. Moreover, KGC needed to generate one extra long-
term private key, which increased the storage, computation, and communication costs with
the increase in the number of users. Bala et al. [21] presented an ID-AKA scheme without
pairing for wireless sensor networks and claimed it was secure in the eCK security model.
But Dang et al. [28] showed that its security proof had the same problem. Furthermore, the
eCK security model was not secure as it suffered from an ephemeral key reveal attack.

In 2018, Dang et al. [28] provided a pairing-free ID-AKA protocol that could achieve
eCK security in vehicular ad hoc networks. However, in 2021, Deng et al. [29] showed
that it was not eCK-secure and put forward a new scheme that required only four scale
multiplication operations. However, we found that the security proof had some flaws,
for example, it was inappropriate that the challenger grasped the private key of KGC in
the proof Cases CA2, CA3, CA4, and CA6. Mohammadali et al. [22] proposed the NIKE
protocol, an ID-AKA protocol without pairing. However, there were still some drawbacks
to it. Firstly, we found this scheme had a design flaw, i.e., if an individual was to learn
about the long-term private keys of two parties (say A(Meter) and B(AHE)), they could
easily obtain KGC’s master key. Secondly, it could not resist a KCI attack. Thirdly, although
the NIKE protocol only needed, at most, three elliptic curve point multiplication operations,
it needed three hash-to-point operations, which was a more time-consuming operation
than the point multiplication operation. In 2019, Zhang et al. [23] gave two pairing-free
and unbalanced ID-AKA protocols for disaster scenarios. Their protocols were actually
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unbalanced versions of the protocol in [24]. Their protocols reduced one elliptic curve point
multiplication operation for the limited party. However, Zhang et al.’s protocols did not
have ephemeral key reveal resistance. In 2020, Daniel et al. [30] pointed out that Bala et
al.’s protocol [21] could not resist an ephemeral key reveal attack. They also provided an
ID-AKA protocol and presented its security proof in the eCK model [27]. However, its
computational cost was still higher, which needed five-point multiplication operations
in the elliptic curve. Furthermore, they pointed out that protocol [27] suffered from key
offset attacks; however, key offset attacks could be simply avoided by adding a message
authentication code using the same method in [30].

In 2021, Kumar and Chand [31] presented an ID-AKA protocol with cloud for the
wireless body area network for anonymous health data authentication. However, Rakeei
and Moazami [32] pointed out that this protocol could not resist a man-in-the-middle
attack and achieve perfect forward secrecy. In 2022, Pu et al. [33] provided a mutual au-
thentication and KA protocol for data privacy preserving in unmanned aerial vehicles
(UAVs). Zhang et al. [34] designed a group key agreement (GKA) protocol for user pri-
vacy protection and data resource secure sharing in an intelligent IoT system. In 2023,
Zhou et al. [35] presented an AGKA protocol for an AI-based automation system, which
utilized a semi-trusted authority to perform precomputation operations. Pan et al. [36]
focused on the communication security of UAVs to introduce a heterogeneous AKA proto-
col. Zhang et al. [37] provided a symmetric-key AKA protocol for edge-cloud IIoT, which
could achieve perfect forward secrecy based on both authentication and derivation master
keys. Abdussami et al. [38] proposed an AKA protocol for secure patient health-related
data sharing in IoMT.

The security comparisons of these ID-AKA protocols are shown in Table 1, and the
security items of the KGC’s master key (MSS), weak perfect forward secrecy (wPFS), key
compromise impersonation resilience (KCIR), ephemeral secrets reveal resistance (ESRR),
and assumption (AS) were compared. Facing these problems and secure IoT communication
demands, a secure ID-AKA protocol is needed to strengthen the security of session keys
between different IoT users. The next sections will present the cryptanalysis of several
ID-AKA protocols [21–23] first, and then provide the proposed ID-AKA protocols.

Table 1. Security comparisons.

Protocols Security Model wPFS KCIR ESRR MSS AS

CKD [24] mBR* Yes Yes No Yes GDH
FG-I [25] CK Yes Yes No Yes GDH
XW [26] CK Yes Yes No Yes GDH
PF-ID-2PAKA [21] eCK* (flawed) Yes Yes No Yes GDH
DXCLCZF-18 [28] eCK (flawed) Yes No No Yes GDH
ZHWY-19 [23] mBR* (flawed) No No No Yes GDH
NIKE [22] – (flawed) Yes No Yes No –
NCL-16-II [27] eCK@ Yes Yes Yes Yes GDH
DRS-20 [30] eCK Yes Yes Yes Yes GDH
DSH-21 [29] eCK* Yes Yes Yes Yes GDH
PWCAS-22 [33] eCK* Yes Yes Yes Yes PUF
ZHVLH-23 [37] eCK* Yes Yes Yes Yes PRF

eCK* and mBR* are without the case where an active adversary may alter all public key materials not only the
temporary public key. “–” denotes that there is no formal security proof for the protocol. eCK@ denotes that
events in the proof are not complementary.

3. Preliminaries

Some basic concepts including complexity assumptions and the eCK security model
for two-party ID-AKA protocols are reviewed in this section.
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3.1. Complexity Assumptions

Let G be an elliptic curve additive group with a large prime order q, and P is a
generator of G. Some Diffie–Hellman assumptions over G are recalled as follows.

• Computational Diffie–Hellman (CDH) Assumption: Given three points, P, aP, and
bP, where a, b ∈ Z∗q , the advantage AdvCDH

M to compute abP is negligible for any
probabilistic polynomial time (PPT) adversaryM.

• Decision Diffie–Hellman (DDH) Assumption: Given four points P, aP, bP, and cP,
where a, b, c ∈ Z∗q , the advantage AdvDDH

M to decide whether c ≡ ab mod q is negligible
for any PPT adversaryM.

• Gap Diffie–Hellman (GDH) Assumption: Given four points P, aP, bP, and cP, where
a, b, c ∈ Z∗q , the advantage AdvGDH

M to compute abP by accessing a DDH oracle is
negligible for any PPT adversaryM.

3.2. The Forking Lemma

The forking lemma is applied in the security proof of our proposed protocols. Here,
we recall it described in [27].

Let ΘS be a generic digital signature scheme. Given an input message m, ΘS produces
a triple (K, h, v), where K is a randomly selected value in a large set, h is the hash value
of (m, K), and v is only dependent on K, m, and h. Assume that a PPT algorithmM can
produce a valid signature (K, h, v) on the message m with non-negligible probability. Then,
with non-negligible probability, a replay of this algorithm can output two valid signatures
(K, h, v) and (K, h, v) on the same message m, such that h ̸= h.

3.3. eCK-Security Model for Two-Party ID-AKA Protocols

We now recall the eCK-security model for two-party ID-AKA protocols in [13,27].

• Participants. Let U = {ID1, · · · , IDL} be a finite set of L honest parties. Each
participant IDi ∈ U is modeled as a PPT Turing machine. Any two parties can
be involved in a protocol execution. Each party may execute multiple instances
(sessions) in parallel. Let ∏m

i,j denote the mth protocol session, which runs at party
IDi (the owner) with intended partner party IDj. Every session ∏m

i,j has internal
state variables Statem

i,j and tranm
i,j to record the state of ∏m

i,j, and the transcript of
messages sent and received by ∏m

i,j, respectively. If ∏m
i,j can compute a session key SKm

i,j,
Statem

i,j = completed. The messages in tranm
i,j are ordered according to the protocol

specification.
• Adversary Model. The adversaryM is modeled as a PPT Turing machine and has

full control of the communication network. Active attacks are formulated by allowing
the adversaryM to perform the following queries:

– EphemeralKeyReveal (∏m
i,j). The adversaryM is provided the ephemeral pri-

vate key of ∏m
i,j.

– SessionKeyReveal (∏m
i,j). The session key held by a completed session ∏m

i,j is
returned toM.

– Corrupt (IDi). The long-term private key of IDi is returned to the adversaryM.
– KGCStaticKeyReveal. The adversaryM obtains the master key of KGC. This

query is used to model master key forward secrecy.
– RegCT (IDi). Via this query, the adversary M is able to register a dishonest

party with identity IDi. Meanwhile,M obtains IDi’s long-term private key and
totally controls IDi.

– Send (∏m
i,j, M). Via this query, the adversaryM can send any message M to party

IDi in session ∏m
i,j on behalf of party IDj. The adversaryM is responded to

according to the protocol specification. ∏m
i,j can be initiated by IDi when M = λ.

In general, for simplicity IDi ̸= IDj is required, i.e., two identical participants
will not run a session. Internal states of ∏m

i,j should be maintained accordingly.
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– Test (∏m
i,j). The input session ∏m

i,j must be fresh. In response to this query, ∏m
i,j

flips a fair coin b ∈ {0, 1}, and returns the real session key if b = 0, or a random
sample from the distribution of the session key if b = 1.

• Security Experiment. The security experiment between the adversaryM and the
challenger CH consists of the following phases.

– Setup. The challenger CH generates the system parameters along with the
master private key and valid long-term secret keys for each party. The adversary
M is then provided all public data, including the identities of all the honest
parties.

– The first phase of the game. AdversaryM is allowed to issue a polynomial
number of EphemeralKeyReveal, SessionKeyReveal, Corrupt, KGCStaticKeyRe-
veal, RegCT, and Send queries in any order.

– The second phase of the game. At some point, adversaryM chooses a fresh
session ∏m

i,j (see Definition 2) and issues a Test(∏m
i,j) query at most once. After

this, adversaryM can keep asking other queries under the condition that the
test session must remain fresh.

– The end of the game.Mmakes a guess b′ for b.

• Advantage. M wins the above security experiment if the test session ∏m
i,j is still fresh

and b′ = b. The advantage ofM in winning the above security experiment is defined
as AdvAKE(M) = |2Pr[M wins]− 1|, whereM wins refers toM can distinguish the
tested session key from a random string.

In the following, we introduce definitions for Matching Session, Freshness, and eCK
Security.

Definition 1 (Matching Session). If two completed sessions ∏m
i,j and ∏n

j,i have the same message
transcript, they are said to be matching.

Definition 2 (Freshness). Let ∏m
i,j be a completed session between honest party IDi and IDj, ∏m

i,j
is said to be fresh if none of the following three conditions hold:

(1) The adversaryM knows the session key of ∏m
i,j or its matching session ∏n

j,i (if ∏n
j,i exists);

(2) ∏m
i,j has a matching session ∏n

j,i, and the adversaryM knows both the long-term private key
of participant IDi and the ephemeral private key of ∏m

i,j, or both the long-term private key of
participant IDj and the ephemeral private key of ∏n

j,i.
(3) ∏m

i,j has no matching session, and the adversaryM knows both the long-term private key
of participant IDi and the ephemeral private key of ∏m

i,j, or the long-term private key of
participant IDj.

Remark 1. The first condition in Definition 2 is to exclude the trivial attack thatM obtains the
session key directly. The second and third conditions in Definition 2 are to exclude the trivial attack
thatM obtains the long-term private key and the ephemeral private key of one party simultaneously.
If ∏m

i,j has no matching session, it means that M has obtained the ephemeral private key of
participant IDj; therefore,M cannot obtain the long-term private key of IDj.

Definition 3 (eCK Security). We say that an ID-AKA protocol is secure in the eCK model if the
following conditions hold:

(1) If two honest parties successfully complete matching sessions, they both compute the same
session key.

(2) For any PPT adversary,M, AdvAKE(M) is negligible in security parameter k.

Remark 2. If a protocol is secure under Definition 3, then it achieves implicit mutual key au-
thentication and the basic security properties, including weak perfect forward secrecy (wPFS), key
compromise impersonation resilience (KCIR), ephemeral secrets reveal resistance (ESRR), known key
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security, no key control, resistance to basic impersonation attack, replay attack resilience, resistance
to man-in-the-middle attack, and unknown key share resilience.

4. Cryptanalysis of Several ID-AKA Protocols

Figure 1 shows the network model for ID-AKA protocols considered in our paper.
Here, user A, user B, and trusted authority (acts as KGC) are the three main parties of an
ID-AKA protocol. A and B obtain their long-term private keys in the extract phase and
use them to reach AKA each other. Next, this section provides the cryptanalysis of several
ID-AKA protocols.

User A User B

Trusted 

Authority(KGC)

(1)Setup: generate system parameters

(3)Key agreement

Public Chnanel Safe Chnanel

Figure 1. Network model for ID-AKA protocols.

4.1. The PF-ID-2PAKA Protocol

PF-ID-2PAKA [21] is also composed of three stages, i.e., setup, extract, and key agree-
ment. The former two stages are the same as those of the DXCLCZF-18 protocol [28]. Here,
we only describe the key agreement stage in Figure 2.

1

1
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1 2
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K e s T H ID R T

K e T

sk H ID ID T T K K

=

B R q

B B

e

T e P

Figure 2. The key agreement phrase of the PF-ID-2PAKA protocol [21].

4.1.1. Ephemeral Key Reveal Attack

Suppose that A’s ephemeral key eA is compromised by an adversary. Next, we show
that the PF-ID-2PAKA protocol suffers from an ephemeral key reveal attack.

(1) The adversaryM initializes a session ∏ℓ
A,B through the query Send(∏ℓ

A,B,⊥), and
then obtains the message M1 = {IDA, RA, TA}, where TA = eAP with a random
element eA ∈ Z∗q .

(2) Upon receiving the message, M1,M randomly picks an ephemeral private key eMB ∈ Z∗q ,
calculates TMB = eMB P− RB − H1(IDB, RB)Ppub, and returns M2 = {IDB, RB, TMB }
to ∏ℓ

A,B impersonating B via the query Send(∏ℓ
A,B, M2). Note that B’s identity IDB
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and correct public key material RB can be obtained from the response of the query
Send(∏t

B,U ,⊥).
(3) Upon the receipt of M2, A calculates the shared session key and completes this

session. Specifically, A calculates sk = H2(IDA|| IDB||TA||TMB ||K1
AB||K2

AB), where
K1

AB = (sA + eA)(RB + H1(IDB, RB)Ppub + TMB ) and K2
AB = eATMB .

(4) Now,M performs the query EphemeralKeyReveal(∏ℓ
A,B) to reveal an ephemeral private key

eA. With the knowledge of eMB and eA,M computes K1M
BA = eMB (RA + H1(IDA, RA)Ppub +

TA), K2M
BA = eATMB , and sk = H2(IDA|| IDB||TA||TMB ||K1M

BA ||K2M
BA ).

Correctness. The following provides the correctness of the attack process.
As a result of TMB = eMB P− RB − H1(IDB, RB)Ppub, we can obtain

K1
AB = (sA + eA)(RB + H1(IDB, RB)Ppub + TMB )

= (sA + eA)eMB P

= eMB (sAP + eAP)

= eMB (RA + H1(IDA, RA)Ppub + TA)

= K1M
BA .

Thus, A andM receive the same session key, which means that the PF-ID-2PAKA
protocol suffers from an ephemeral key reveal attack. Note that our construction cannot
suffer from the above attack as both of the two shared secrets not only depend on the
ephemeral private key, but also depend on the long-term private key, and they are linearly
independent. Therefore, it is impossible to remove the long-term private key from the two
shared secrets simultaneously.

4.1.2. Flaws in the Security Proof

The PF-ID-2PAKA protocol can not be proved secure under the hardness of the GDH
problem in Case 3 (i.e.,M can neither obtain the long-term private key of IDA nor that
of IDB). Meanwhile, the ephemeral key tB of IDB may be created byM, then CH cannot
know tB. In ignorance of tB, CH does not calculate CDH(U, V) = K1 − tA(TB + V)− tBU.
Therefore, the challenger CH cannot solve the GDH instance.

4.2. The ZHWY-19 Protocol

Here, we only describe the key agreement stage of the ZHWY-19-I protocol [23] in
Figure 3. For more details, one can refer to [23]. Note that Cheng et al. [39] pointed
out that the ZHWY-19-I protocol [23] cannot achieve forward security and resist the key
compromise impersonation attack. Here, we point out that this protocol is weak against
the ephemeral key reveal attack and flaws in the security proof.

4.2.1. Ephemeral Key Reveal Attack

If eA and eB in a past session have been compromised by the adversaryM,M can
compute the session key sk.

(1) M accesses to M1 = {RA, VA, uA} and M2 = {RB, VB, TB, TA, macB} of the session.
(2) Given {IDA, eA, RA} and {IDB, eB, RB},M calculates the keys of PKA = RA + H1(IDA||

RA)Ppub, PKB = RB + H1(IDB||RB)Ppub, K1 = eAPKB + eBPKA, K2 = eAeBP, and
sk = H2(IDA||IDB||TA||TB||K1||K2) as the shared session key.

Thus, the ZHWY-19-I protocol is weak against the ephemeral secret key leakage. Note
that they did not claim their protocol holds ephemeral key reveal resistance.
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4.2.2. Flaws in the Security Proof

In the ZHWY-19-I protocol, the answer to oracle Corrupt(IDi) is improper. Actu-
ally, Corrupt(IDi) should return the long-term private key (si, Ri, vi, Vi) rather than si to
the adversary.

M2={RB,VB,TB,TA,macB}
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Figure 3. The key agreement phrase of the ZHWY-19-I protocol [23].

4.3. Mohammadali et al.’s Protocols

Mohammadali et al. [22] proposed two protocols, the NIKE protocol and the NIKE+

protocol. These two protocols contain three stages, namely setup, extract, and key agree-
ment. The NIKE protocol is briefly shown in Figure 4. Note that, here, we did not analyze
the flaws in the security proof as there was no security proof in [22].

4.3.1. The Insecurity of the KGC’s Master Key

If the user A(Meter) and the user B(AHE) launch collusion attacks, they can know
the KGC’s master key s. As yA = H2(IDB, YB)s, they can obtain s = H2(IDB, YB)

−1yA with
the knowledge of yA and YB.

4.3.2. Key Compromise Impersonation (KCI) Attack

The NIKE protocol suffers from a key compromise impersonation (KCI) attack, i.e., if
the user B(AHE)’s long-term private key YB is compromised byM,M can impersonate
any user (say A(Meter) ) with B(AHE)’s long-term private key YB to communicate with
B(AHE). The details are as follows. Note that they did not claim their protocol held
KCI resistance.

(1) M obtains IDA, RA by eavesdropping on a connection between A(Meter) and any user.
Then,M picks eMA ∈ Z∗q at random, calculates TMA = eMA P− H2(IDB, YB)Ppub − RA,
and sends {IDA, TMA , RA} to B(AHE).

(2) Upon the receipt of {IDA, TMA , RA}, B(AHE) generates tB, TB, KBA, mB according to
the protocol.

(3) Upon receiving {IDB, TB, mB}, M calculates KMAB = eMA TB, mMA = H1(1, KMAB) and
SK = H1(IDA|| IDB||, KMAB), and finally sends mMA to B(AHE).
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(4) Upon receiving mMA , B(AHE) verifies mMA is correct and computes the session key
according to the protocol.

M2={IDB,TB,mB}

M1={IDA,RA,TA}
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Figure 4. The NIKE protocol [22].

Correctness. The following provides the correctness of the attack process.
As TMA = eMA P− H2(IDB, yB)Ppub − RA and TB = tBP, we can obtain

KBA = tB(RA + H2(IDA, YB)Ppub + TMA )

= tB(RA + H2(IDA, YB)Ppub + eMA P

− H2(IDB, YB)Ppub − RA)

= tBeMA P

= eMA TB

= KMAB.

Thus, A andM obtain the same session key, which means that the NIKE protocol
suffers from a KCI attack. The KCI attack on the NIKE+ protocol is the same as above.

5. Our General Construction

This section firstly provides the construction ∑C1,C2,C3,C4
, secondly show the construc-

tion ∑C1,C2,C3,C4
is correct, and thirdly provides the security proof.
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5.1. Construction Description

The ∑C1,C2,C3,C4
is composed of three stages, i.e., setup, extract, and key agreement.

• Setup: Select security parameter k, KGC performs as follows:

(1) Pick an elliptic curve E/Fp, where Fp is a finite filed, and p is a prime number
with k bits.

(2) Create a cyclic additive group G with the order q, which is generated by a base
point P over E/Fp.

(3) Choose s ∈ Z∗q randomly, and then set the master private key s and the system
public key Ppub = sP.

(4) Pick H1 : {0, 1}∗ → Z∗q and H2 : {0, 1}∗ → {0, 1}k.
(5) Expose ⟨E/Fp,G, q, P, Ppub, H1, H2⟩, and meanwhile retain s unrevealed.

• Extract: KGC derives the long-term private key for user IDi ∈ {0, 1}∗ as below.

(1) KGC randomly selects ri ∈ Z∗q , and calculates Ri = riP and hi = H1(IDi||Ri).
(2) KGC computes si = ri + his mod q and derives (si, Ri) as the user’s long-term

private key.
(3) KGC sends (si, Ri) to the user securely.

Upon receiving (si, Ri), the user can verify siP
?
= Ri + H1(IDi||Ri)Ppub. If this verifi-

cation succeeds, the key pair (si, Ri) is correct and valid. siP serves as the real public
key in relation to IDi.

• Key Agreement: Assume that user A with identity IDA hopes to compute a key with
user B with identity IDB.

(1) A randomly picks an ephemeral secret key eA ∈ Z∗q , calculates TA = eAP, and
returns M1 = {IDA, RA, TA} to B. The agreement process in Figure 5.

(2) When {IDA, RA, TA} is received, B picks an ephemeral secret key eB ∈ Z∗q , calcu-
lates TB = eBP, and returns {IDB, RB, TB} to A. Next, B calculates
skBA = H2(IDA||IDB||RA||RB||TA||TB||K1

BA||K2
BA) as the shared session key,

where K1
BA = (sB + C2eB)(PKA + C1TA), K2

BA = (sB + C4eB)(PKA + C3TA),
PKA = RA + H1(IDA||RA)Ppub, Ci(i = 1, 2, 3, 4) ∈ Z∗q and C1 ̸= C3, C2 ̸= C4.
Finally, B sends M2 = {IDB, RB, TB} to A.

(3) When M2 = {IDB, RB, TB} is received, A calculates PKB = RB + H1(IDB||RB)Ppub,
and two shared secrets K1

AB = (sA + C1eA)(PKB + C2TB) and K2
AB = (sA +

C3eA)(PKB + C4TB), where Ci(i = 1, 2, 3, 4) ∈ Z∗q and C1 ̸= C3, C2 ̸= C4. Fi-
nally, A calculates the shared session key skAB = H2(IDA||IDB||RA||RB||TA||TB||
K1

AB||K2
AB).
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Figure 5. The key agreement phrase of our proposed construction ∑C1,C2,C3,C4
.

Note that our construction provides a method to construct eCK secure ID-AKA proto-
cols; however, parameters C1, C2, C3, and C4 should be fixed in the real execution environ-
ment. One can choose a concrete and efficient protocol derived from our construction to
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execute in the real environment, e.g., protocol ∑1,1,−1,−1, protocol ∑1,−1,−1,1 and protocol
∑1,1,2,2 described in Section 6.

5.2. Construction Correctness

The following provides the correctness of our construction. As PKB = RB + H1(IDB||RB)
Ppub = sBP, PKA = RA + H1(IDA||RA)Ppub = sAP, TA = eAP and TB = eBP, we can obtain:

K1
AB = (sA + C1eA)(PKB + C2TB)

= (sA + C1eA)(sBP + C2eBP)

= (sA + C1eA)(sB + C2eB)P

= (sB + C2eB)(sA + C1eA)P

= (sB + C2eB)(PKA + C1TA) = K1
BA = K1;

K2
AB = (sA + C3eA)(PKB + C4TB)

= (sA + C3eA)(sBP + C4eBP)

= (sA + C3eA)(sB + C4eB)P

= (sB + C4eB)(sA + C3eA)P

= (sB + C4eB)(PKA + C3TA) = K2
BA = K2.

Thus both A and B compute skAB = skBA = sk = H2(IDA||IDB||RA||RB||TA||TB||K1|| K2)
as their session key. Hence the correctness holds.

5.3. Security Proof

Here, the events in our security proof are complementary, while they are not comple-
mentary in [27], and the security proof can be reduced to the following theorems.

Theorem 1. Provide two random oracles, H1 and H2, the proposed ID-AKA protocol is secure in
the eCK model based on the GDH assumption over the elliptic curve group.

Proof. This theorem is under the condition that the two conditions shown in Definition 3
hold. The correctness analysis shows that the first condition stands. The second condition
would be proven by contradiction, i.e., there is an adversary who can execute a PPT
algorithm to win the game with non-negligible probability, we can useM to create a GDH
solver CH who can find a solution for the GDH instance.

AssumeM is a polynomially (in security parameter k) bounded adversary whose
advantage is AdvM(k). Suppose thatM activates no more than np(k) different honest
parties, and each party can take part in no more than ns(k) sessions. Suppose that M
chooses ∏n

a,b, the nth protocol session which executes between party IDa (the owner) and
the target party IDb (the peer) as the test session. Assume thatM performs, at most, nh(k)
H2 queries.

According to AdvAKE(M) = |2Pr[M wins]− 1|, we can derive that Pr[M wins] is
non-negligible as AdvAKE(M) is non-negligible. As H2 is modeled as a random oracle,M
can make a clear distinction between a random string and the tested session key in the
following three ways:

A1. Guessing attack:M directly guesses the correct session key.
A2. Key replication attack: M successfully creates a session that cannot match the test

session while holding the same session key. Here,M can obtain the test session key
by querying the non-matching session key.

A3. Forging attack: Sometimes,Mmakes H2 queries on (IDa, IDb, Ra, Rb, Ta, Tb, K1, K2)
in the test session. Here,M calculates K1 and K2 itself.
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The guessing of H2’s output is with the negligible probabilityO(1/2k). If two sessions
are different, H2 has the same input by probability O(ns(k)2/2k), which is also negligible.
Then,M can provide the difference between a random string and the tested session key
only by forging attack.

Next, a reduction approach is applied to analyze the forging attack. This approach
reduces the protocol security to the hardness of mathematical problems in the GDH as-
sumption. By making assumptions about the adversary, a challenger can solve a GDH
instance with the queried data and forged session key derived by a query-respond game
between them. As the GDH instance cannot be solved with the current computation ability
in polynomial time, the assumptions about the adversary are invalid, and the proposed
ID-AKA protocols are secure.

Now, the detailed descriptions of the reduction proofs are as follows.
IfM can successfully execute forging attack with non-negligible probability AdvF

M(k),
we will useM to create a GDH solver CH to find a solution for the GDH instance with
AdvGDH

S (k). Here, GDH instance is (U = uP, V = vP), and u, v ∈ Z∗q , P ∈ G, CH plans
to calculate GDH(U, V) = uvP performing the DDH oracle. CH acts as a challenger that
performs the eCK game withM and makes response forM’s queries.

Before the game starts, CH guesses the test session thatM’s choices is ∏n
a,b with a

correct probability at least 1/np(k)2ns(k). Next, CH needs to guess the strategy thatM
adopts. Then, according to Definition 2, test session ∏n

a,b has the matching session ∏l
b,a,

thenM can only passively forward messages between participant IDa and participant
IDb, i.e., messages including public key materials and ephemeral keys of ∏n

a,b and ∏l
b,a are

selected by CH. Test session ∏n
a,b has no matching session, thenM alters some messages

at its own will, i.e., messages including the public key material and the ephemeral key
of ∏n

a,b are chosen by CH, and another one of IDb is chosen by M, and, thus, for IDb,
CH can only consider the long-term private key of IDb. With the former analysis and
the freeness definition, CH guesses the operation thatM selects one of the following six
complementary choices. Note that, strictly speaking, the ephemeral private key of IDa
refers to ∏n

a,b’s ephemeral private key, and the ephemeral private key of IDb refers to the
matching session ∏l

b,a’s ephemeral private key.

S1: ∏n
a,b has ∏l

b,a, and M obtains neither the long-term private key of IDa nor the
ephemeral private key of IDb.

S2: ∏n
a,b has ∏l

b,a, and M cannot obtain any information about the ephemeral private
keys of IDa and IDb.

S3: ∏n
a,b has ∏l

b,a, andM knows neither the ephemeral private key of IDa nor the long-
term private key of IDb.

S4: ∏n
a,b has ∏l

b,a, andM cannot obtain any information about the long-term private keys
of IDa and IDb.

S5: ∏n
a,b does not have a matching session, andM knows neither the ephemeral private

key of IDa nor the long-term private key of IDb.
S6: ∏n

a,b does not have a matching session, andM does not know any information about
the long-term private keys of IDa and IDb.

One of the former operation successes is ifM succeeds in a forging attack with non-
negligible probability. Therefore, the assumption about adversaryM is invalid, and the
proposed ID-AKA protocol is secure in the eCK model.

5.3.1. The Analysis of Strategy S1

In this subsection, we analyze strategy S1.

• Setup: CH initializes a list Setuplist with entries of (IDi, (di, Ri), PKi). CH creates the
system parameters and long-term private keys of all parties as follows.

– CH picks Ppub ∈ G at random, and exposes ⟨E/Fp,G, q, P, Ppub, H1, H2⟩. Thus,
CH cannot obtain any information about KGC’s master key.
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– For IDa, CH sets the long-term private key (⊥, Ra), where ha ∈R Z∗q ,
Ra = U − haPpub. Thus, PKa = Ra + haPpub = U.

– For IDi(i ̸= a), CH sets the long-term private key (si, Ri), where hi, si ∈R Z∗q ,
Ri = siP− hiPpub. Thus, PKi = Ri + hiPpub = siP.

– For every participant, CH transfers (IDi, Ri) toM, and stores the tuple (IDi, (di, Ri),
PKi) and (IDi, Ri, hi) in Setuplist and H1

list (described later), respectively.

• Queries: CH maintains four lists, H1
list, H2

list, Sendlist, and Rlist, which are initially
empty and used to record H1, H2, Send, and SessionKeyReveal oracles, respectively.
CH startsM by answeringM’s queries, as follows.

– H1(IDi, Ri): If an entry (IDi, Ri, hi) is recorded in H1
list, CH responds with hi.

Then, CH randomly selects hi ∈ Z∗q , appends (IDi, Ri, hi) to H1
list, and sends hi

back toM.
– H2(IDi, IDj, Ri, Rj, Ti, Tj, K1, K2): List H2

list is with (IDi, IDj, Ri, Rj, Ti, Tj, K1, K2, h2).

* If a matching entry (IDi, IDj, Ri, Rj, Ti, Tj, K1, K2, h2) is stored in H2
list, CH

replies with h2.
* Else, CH seeks (∗, IDi, IDj, Ri, Rj, Ti, Tj, ∗) in Rlist. Then, if such an entry ex-

ists, CH sees if K1 and K2 are produced correctly by validating DDH(PKi +

C1Ti, PKj +C2Tj, K1)
?
= 1 and DDH(PKi +C3Ti, PKj +C4Tj, K2)

?
= 1, respec-

tively, where PKi = Ri + H1(IDi, Ri)Ppub and PKj = Rj + H1(IDj, Rj)Ppub.
If both verifications pass, CH receives the corresponding SKm

i,j and sets
h2 ← SKm

i,j. Otherwise (at least one verification fails or none), CH picks h2 ∈
{0, 1}k at random. Finally, CH inserts the tuple (IDi, IDj, Ti, Tj, K1, K2, h2)

into H2
list and provides h2 as the answer.

– Corrupt(IDi): If IDi = IDa, CH discontinues. Otherwise, CH responds with si.
– KGCStaticKeyReveal: CH discontinues.
– EphemeralKeyReveal(∏m

i,j): If ∏m
i,j = ∏l

b,a, CH discontinues. Otherwise, CH
provides the stored ephemeral key rm

i,j as the answer.

– Send(∏m
i,j,M): List Sendlist is with (∏m

i,j, tranm
i,j, rm

i,j, Statem
i,j), where tranm

i,j, rm
i,j and

Statem
i,j are the transcript by now, the ephemeral secret key, and the state by now,

respectively.

* If M is the second message on the transcript, CH sets Statem
i,j = completed

and updates Sendlist.
* Else CH executes as follows.

· If ∏m
i,j = ∏l

b,a, CH sets rm
i,j = ⊥, gets Rb from Setuplist and replies with

{IDb, Rb, V}.
· Else CH randomly chooses rm

i,j ∈ Z∗q , obtains Ri from Setuplist and
replies with {IDi, Ri, rm

i,jP}.
· Finally, CH updates Sendlist, and updates Statem

i,j to completed if the
newly generated message is the second message on the transcript.

– SessionKeyReveal(∏m
i,j): List Rlist is of the form (∏m

i,j, IDini, IDresp, Rini, Rresp, Tini,
Tresp, SKm

i,j), where ini ∈ {i, j} and resp ∈ {i, j} denote the initiator and the re-
sponder of ∏m

i,j, respectively.

* CH receives Statem
i,j from Sendlist. If Statem

i,j ̸= completed, CH returns ⊥.

* Else if ∏m
i,j = ∏n

a,b or ∏m
i,j = ∏l

b,a, CH aborts.

* Else if the session key SKm
i,j already exists, CH responds with SKm

i,j.

* Else CH obtains {IDini, Rini, Tini} and {IDresp, Rresp, Tresp} from Sendlist, and
looks up H2

list to see if there is a tuple (∗, IDini, IDresp, Rini, Rresp, Tini, Tresp,∗).
Then, if it exists, CH sees if K1 and K2 are produced correctly by validating
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DDH(PKini +C1Tini, PKresp +C3Tresp, K1)
?
= 1 and DDH(PKini +C3Tini, PKresp

+C4Tresp, K2)
?
= 1, respectively, where PKini = Rini + H1(IDini, Rini)Ppub and

PKresp = Rresp + H1(IDresp, Rresp)Ppub. If both verifications pass, CH receives
the corresponding h2 and sets SKm

i,j ← h2. Otherwise (at least one verification

fails or no such a tuple exists), CH picks SKm
i,j ∈ {0, 1}k at random. Finally,

CH inserts the tuple (∏m
i,j, IDini, IDresp, Rini, Rresp, Tini, Tresp, SKm

i,j) into Rlist

and returns SKm
i,j.

– Test(∏m
i,j): If ∏m

i,j = ∏n
a,b, CH picks ξ ∈ {0, 1}k at random and sends ξ back to

M. Otherwise, CH aborts.

• Analysis: If M can successfully execute a forging attack in Strategy S1 with non-
negligible probability, the following conditions should be met.

(1) CH continues following the above simulation. IfM chooses Strategy S1, with ∏n
a,b

and ∏l
b,a as the test session and its corresponding matching session, respectively,

this condition can be met.
(2) For the test session ∏n

a,b, adversary M must have conducted H2 queries on
the values {IDa, IDb, Ra, Rb, Ta, V, K1, K2}, where Ra and Rb are the public key
materials of IDa and IDb picked by the challenger CH, respectively, Ta and V are
the outgoing messages of IDa and IDb picked by the challenger CH , respectively,
and K1 and K2 are correctly formed.

* If ∏n
a,b is an initiator, the correct input of H2 should be (IDa, IDb, Ra, Rb, Ta, V,

K1, K2), where K1 = (DLOG(U)+C1rn
a,b)(Rb + hbPpub +C2V), K2 = (DLOG

(U) + C3rn
a,b)(Rb + hbPpub + C4V), and hb = H1(IDb, Rb).

* If ∏n
a,b is a responder, the correct input of H2 should be (IDb, IDa, Rb, Ra, V, Ta,

K1, K2), where K1 = (DLOG(U)+C2rn
a,b)(Rb + hbPpub +C1V), K2 = (DLOG

(U) + C4rn
a,b)(Rb + hbPpub + C3V), and hb = H1(IDb, Rb).

Finally, CH receives the item in H2
list and outputs GDH(U, V) = (C2 − C4)

−1
(

K1 −

K2 + rn
a,b(C3 − C1)(Rb + hbPpub) +rn

a,b(C3C4 − C1C2)V
)

if ∏n
a,b is an initiator or

GDH(U, V) = (C1−C3)
−1

(
K1−K2 + rn

a,b(C4−C2)(Rb + hbPpub) +rn
a,b(C3C4−C1C2)V

)
if ∏n

a,b is a responder by the knowledge of rn
a,b. Note that since Ci(i = 1, 2, 3, 4) ∈ Z∗q

and C1 ̸= C3, C2 ̸= C4, the solution of GDH(U, V) is correct. The CH success rate is
at least

AdvGDH
S (k) >=

AdvF
M(k)

6nh(k)np(k)2ns(k)2 .

As AdvF
M(k) is non-negligible, AdvGDH

S (k) can also be seen as non-negligible. Now, it
derives the contradiction of the GDH assumption.

5.3.2. The Analysis of Strategy S2

In this subsection, we analyze strategy S2.

• Setup: Setuplist is an initially empty list with (IDi, (di, Ri), PKi). CH creates the
system parameters and all parties’ long-term private keys as follows.

– CH picks s ∈ Z∗q at random, computes Ppub = sP, and exposes system parame-
ters ⟨E/Fp,G, q, P, Ppub, H1, H2⟩. Thus, CH cannot obtain any information about
KGC’s master key.

– For IDi, CH sets the long-term private key (si, Ri), where hi, si ∈R Z∗q ,
Ri = siP− hiPpub. Thus, PKi = Ri + hiPpub = siP.

– For every participant, CH transfers (IDi, Ri) toM, and stores the tuple (IDi, (di, Ri),
PKi) and (IDi, Ri, hi) in Setuplist and H1

list (described later), respectively.
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• Queries: CH maintains four lists H1
list, H2

list, Sendlist, and Rlist to store H1, H2, Send,
and SessionKeyReveal oracles, respectively. CH performs the queries game withM
as follows:

– H1(IDi, Ri), SessionKeyReveal(∏m
i,j), Test(∏m

i,j), and H2(IDi, IDj, Ri, Rj, Ti, Tj, K1,
K2): These four queries are described in the same as those in Strategy S1.

– Corrupt(IDi): CH responds with (si, Ri).
– KGCStaticKeyReveal: CH responds with s toM.
– EphemeralKeyReveal(∏m

i,j): If ∏m
i,j = ∏n

a,b or ∏m
i,j = ∏l

b,a, CH discontinues.
Otherwise, CH provides the stored ephemeral key rm

i,j as the answer.

– Send(∏m
i,j,M): List Sendlist has (∏m

i,j, tranm
i,j, rm

i,j, Statem
i,j), where tranm

i,j, rm
i,j and

Statem
i,j are the transcript by now, the ephemeral secret key, and the state by now,

respectively.

* If M is the second message on the transcript, CH sets Statem
i,j = completed

and updates Sendlist.
* Else CH performs the following steps.

· If ∏m
i,j = ∏n

a,b, CH sets rm
i,j = ⊥, receives Ra from Setuplist, and replies

with {IDa, Ra, U}.
· Else If ∏m

i,j = ∏l
b,a, CH sets rm

i,j = ⊥, receives Rb from Setuplist, and
replies with {IDb, Rb, V}.

· Else CH randomly chooses rm
i,j ∈ Z∗q , obtains Ri from Setuplist, and

replies with {IDi, Ri, rm
i,jP}.

· Finally, CH updates Sendlist, and updates Statem
i,j to completed if the

newly generated message is the second message on the transcript.

• Analysis: Here, we assume that ∏n
a,b is an initiator here. IfM indeed chooses Strategy

S2, ∏n
a,b and ∏l

b,a as the test session and its matching session, respectively, then CH
continues this simulation. If M successfully executes the forging attack, it must
have queried oracle H2(IDa, IDb, Ra, Rb, U, V, K1, K2), where Ra, Rb, U, and V are all
picked by the challenger CH, K1 = (sa + C1DLOG(U))(Rb + hbPpub + C2V), K2 =
(sa + C3DLOG(U))(Rb + hbPpub + C4V), and hb = H1(IDb, Rb).

Finally, CH receives the item in H2
list, and outputs GDH(U, V) = (C1C3(C2−C4))

−1
(

C3K1

−C1K2 + sa(C1−C3)(Rb + hbPpub) + sa(C1C4−C2C3)V
)

by the knowledge of sa. Note

that as Ci(i = 1, 2, 3, 4) ∈ Z∗q and C1 ̸= C3, C2 ̸= C4, the solution of GDH(U, V) is correct.
CH’s success probability is at least

AdvGDH
S (k) >=

AdvF
M(k)

6nh(k)np(k)2ns(k)2 .

As AdvF
M(k) is non-negligible, AdvGDH

S (k) can also be seen as also non-negligible.
Now, it derives the contradiction of the GDH assumption.

5.3.3. The Analysis of Strategy S3

Here, we omit the detailed analysis of Strategy S3 as the analysis is almost the same as
that for Strategy S1.

5.3.4. The Analysis of Strategy S4

In this subsection, we analyze strategy S4.

• Setup: CH initializes a list Setuplist with (IDi, (di, Ri), PKi). CH creates the system
parameters and all parties’ long-term private keys.
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– CH picks Ppub ∈ G at random, and exposes ⟨E/Fp,G, q, P, Ppub, H1, H2⟩. Thus,
CH does not obtain any information about KGC’s master key.

– For IDa, CH sets the long-term private key (⊥, Ra), where ha ∈R Z∗q ,
Ra = U − haPpub. Thus, PKa = Ra + haPpub = U.

– For IDb, CH sets the long-term private key (⊥, Rb), where hb ∈R Z∗q ,
Rb = V − hbPpub. Thus, PKb = Rb + hbPpub = V.

– For IDi(i ̸= a, i ̸= b), CH sets the long-term private key (si, Ri), where hi, si ∈R
Z∗q , Ri = siP− hiPpub. Thus, PKi = Ri + hiPpub = siP.

– For every participant, CH transfers (IDi, Ri) toM, and stores (IDi, (di, Ri), PKi)

and (IDi, Ri, hi) in Setuplist and H1
list (described later), respectively.

• Queries: CH maintains four lists H1
list, H2

list, Sendlist, and Rlist, which are initially
empty and used for recording H1, H2, Send, and SessionKeyReveal oracles, respec-
tively. CH performs the queries game withM as follows:

– H1(IDi, Ri), SessionKeyReveal(∏m
i,j), Test(∏m

i,j), H2(IDi, IDj, Ri, Rj, Ti, Tj, K1, K2),
and KGCStaticKeyReveal: These five queries are described in the same way as
those in Strategy S1.

– Corrupt(IDi): If IDi = IDa or IDi = IDb, CH discontinues. Otherwise, CH
responds with (si, Ri).

– EphemeralKeyReveal(∏m
i,j): CH responses with rm

i,j.

– Send(∏m
i,j,M): List Sendlist is of the form (∏m

i,j, tranm
i,j, rm

i,j, Statem
i,j), where tranm

i,j,
rm

i,j, and Statem
i,j are the transcript by now, the ephemeral secret key, and the state

by now, respectively.

* If M is the second message on the transcript, CH sets Statem
i,j = completed

and updates Sendlist.
* Else CH randomly chooses rm

i,j ∈ Z∗q , obtains Ri from Setuplist, and replies with

{IDi, Ri, rm
i,jP}. Then, CH updates Sendlist, and updates Statem

i,j to completed
if the newly generated message is the second message on the transcript.

• Analysis: Here, we assume that ∏n
a,b is an initiator. IfM selects Strategy S4, ∏n

a,b
and ∏l

b,a as the test session and its matching session, then CH does not abort in the
simulation. IfM successfully performs the forging attack, it must have queried ora-
cle H2(IDa, IDb, U − haPpub, V − hbPpub, Ta, Tb, K1, K2), where Ta, Tb, U, and V are all
picked by the challenger CH, K1 = (DLOG(U) + C1rn

a,b)(V + C2Tb),
K2 = (DLOG(U) + C3rn

a,b)(V + C4Tb), ha = H1(IDa, Ra), and hb = H1(IDb, Rb).

Finally, CH receives the item in H2
list, and outputs GDH(U, V) = (C4−C2)

−1
(

C4K1−

C2K2 + rn
a,b(C2C3 − C1C4)V +rn

a,bC2C4(C3 − C1)Tb

)
by the knowledge of rn

a,b. Note

that as Ci(i = 1, 2, 3, 4) ∈ Z∗q and C1 ̸= C3, C2 ̸= C4, the solution of GDH(U, V) is
correct. CH’s success probability is at least

AdvGDH
S (k) >=

AdvF
M(k)

6nh(k)np(k)2ns(k)2 .

As AdvF
M(k) is non-negligible, AdvGDH

S (k) can also be seen as non-negligible. Now, it
derives the contradiction of the GDH assumption.

5.3.5. The Analysis of Strategy S5

∏n
a,b has no matching session in strategy S5, thus at least one of IDb’s public key

material Rb and IDb’s ephemeral private key is chosen byM. If the adversary selects Rb
themselves, then the change in Rb means the change in the IDb’s long-term private key sb.
Hence, a GDH instance cannot be embedded in the long-term private key in strategy S5.
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• Setup: Setuplist is an initially empty list and (IDi, (di, Ri), PKi) is needed in this phase.
CH creates the system parameters and all parties’ long-term private keys.

– CH sets V as the system public key Ppub and exposes the system parameters
⟨E/Fp,G, q, P, Ppub, H1, H2⟩. Thus CH cannot know KGC’s master key.

– For IDi, CH sets the long-term private key (si, Ri), where hi, si ∈R Z∗q ,
Ri = siP− hiPpub. Thus, PKi = Ri + hiPpub = siP.

– For every participant, CH transfers (IDi, Ri) toM, and stores (IDi, (di, Ri), PKi)

and (IDi, Ri, hi) in Setuplist and H1
list (described later), respectively.

• Queries: CH maintains four lists, H1
list, H2

list, Sendlist, and Rlist to store H1, H2, Send,
and SessionKeyReveal oracles, respectively. CH performs the queries game withM
as follows:

– H1(IDi, Ri), KGCStaticKeyReveal, Test(∏m
i,j), and H2(IDi, IDj, Ri, Rj, Ti, Tj, K1, K2)

are described the same as those in Strategy S1.
– Corrupt(IDi): If IDi = IDb, CH discontinues. Otherwise, CH responds with

(si, Ri).
– EphemeralKeyReveal(∏m

i,j): If ∏m
i,j = ∏n

a,b, CH discontinues. Otherwise, CH
provides the stored ephemeral key rm

i,j as the answer.

– Send(∏m
i,j,M): List Sendlist is with (∏m

i,j, tranm
i,j, rm

i,j, Statem
i,j), where tranm

i,j, rm
i,j , and

Statem
i,j are the transcript by now, the ephemeral secret key, and the state by now,

respectively.

* If M is the second message on the transcript, CH sets Statem
i,j = completed

and updates Sendlist.
* Else CH performs the following steps.

· If ∏m
i,j = ∏n

a,b, CH sets rm
i,j = ⊥, receives Ra from Setuplist, and replies

with {IDa, Ra, U}.
· Else CH randomly chooses rm

i,j ∈ Z∗q , obtains Ri from Setuplist, and
replies with {IDi, Ri, rm

i,jP}.
· Finally, CH updates Sendlist, and updates Statem

i,j to completed if the
newly generated message is the second message on the transcript.

– SessionKeyReveal(∏m
i,j): This query is the same as that in Strategy S1, except

that “Else if ∏m
i,j = ∏n

a,b or ∏m
i,j = ∏l

b,a” is modified to “Else if ∏m
i,j = ∏n

a,b”. This

is because the matching session ∏l
b,a certainly exists in Strategy S1, while ∏l

b,a
does not exist in Strategy S5.

• Analysis: Here, we assume that ∏n
a,b is an initiator. IfM selects Strategy S5 and ∏n

a,b
as the test session, then CH continues using the above simulation. IfM successfully
performs the forging attack with non-negligible probability, it should execute the H2
query on (IDa, IDb, Ra, Rb, U, Tb, K1, K2), where K1 = (sa +C1DLOG(U))(Rb + hbV +
C2Tb), K2 = (sa + C3DLOG(U))(Rb + hbV + C4Tb), and hb = H1(IDb, Rb). Note
that IDa’s public key material Ra and outgoing message U are both picked by the
challenger CH, and at least one of IDb’s public key material Rb and outgoing message
Tb is chosen byM.
By the forking lemma [27], CH replays M with the same input and tossing coins.
Here, CH only changes the query results of H1(IDb, Rb), i.e., CH sets H1(IDb, Rb) to hb,
where hb ∈ Z∗q and hb ̸= hb. Then, ifM succeeds, it should perform a query on H2 with
(IDa, IDb, Ra, Rb, U, Tb, K1, K2), where K1 = (sa + C1DLOG(U))(Rb + hbV + C2Tb),
K2 = (sa + C3DLOG(U)) (Rb + hbV + C4Tb).

Finally, CH receives the item in H2
list, and outputs GDH(U, V) = C−1

1

(
(hb− hb)

−1(K1−

K1)− saV
)

using the knowledge of sa. Note that as C1 ∈ Z∗q , the solution of GDH(U, V)
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is correct. Let λ be a factor from the forking lemma for Strategy S5. CH’s success
probability is at least

AdvGDH
S (k) >=

λAdvF
M(k)

6nh(k)2np(k)2ns(k)
.

As AdvF
M(k) is non-negligible, AdvGDH

S (k) can also be seen as non-negligible. Now, it
derives the contradiction of the GDH assumption.

5.3.6. The Analysis of Strategy S6

In this subsection, we will analyze strategy S6. A GDH instance cannot be embedded
in the long-term private key in Strategy S6.

• Setup: Setuplist is an initially empty list, and (IDi, (di, Ri), PKi) is needed in this
phase. CH creates the system parameters and all parties’ long-term private keys.

– CH sets V as the system public key Ppub and exposes ⟨E/Fp,G, q, P, Ppub, H1, H2⟩.
Thus, CH does not obtain any information about KGC’s master key.

– For IDa, CH sets the long-term private key (⊥, Ra), where ha ∈R Z∗q ,
Ra = U − haPpub. Thus, PKa = Ra + haPpub = U.

– For IDi(i ̸= a), CH sets (si, Ri) as the long-term private key, where hi, si ∈R Z∗q ,
Ri = siP− hiPpub. Thus, PKi = Ri + hiPpub = siP.

– For every participant, CH transfers (IDi, Ri) toM, and stores (IDi, (di, Ri), PKi)

and (IDi, Ri, hi) in Setuplist and H1
list (described later), respectively.

• Queries: CH maintains four lists, H1
list, H2

list, Sendlist, and Rlist, which are initially
empty and used for recording H1, H2, Send, and SessionKeyReveal oracles, respec-
tively. CH startsM by answeringM’s queries as follows:

– The five queries H1(IDi, Ri), SessionKeyReveal(∏m
i,j), Test(∏m

i,j), KGCStaticKeyRevea,
and H2(IDi, IDj, Ri, Rj, Ti, Tj, K1, K2) are described in the same way as those in
Strategy S5.

– Corrupt(IDi), EphemeralKeyReveal(∏m
i,j) and Send(∏m

i,j,M): These three queries
are described to be the same as those in Strategy S4.

• Analysis: Here, we assume that ∏n
a,b is an initiator. IfM selects Strategy S6 and ∏n

a,b
as the test session, then CH continues this simulation. IfM successfully performs the
forging attack, it should execute H2 query on (IDa, IDb, Ra, Rb, Ta, Tb, K1, K2), where
K1 = (DLOG(U) + C1rn

a,b)(Rb + hbV + C2Tb),K2 = (DLOG(U) + C3rn
a,b)(Rb + hbV +

C4Tb), and hb = H1(IDb, Rb). Note that IDa’s public key material Ra and outgoing
message Ta are both picked by the challenger CH, and at least one of IDb’s public key
material Rb and outgoing message Tb is chosen byM.
By the forking lemma [27], CH replays M with the same input and tossing coins.
Here, CH only changes the query results of H1(IDb, Rb), i.e., CH sets H1(IDb, Rb) to hb,
where hb ∈ Z∗q and hb ̸= hb. Then, ifM succeeds, it should perform a query on H2 with
(IDa, IDb, Ra, Rb, Ta, Tb, K1, K2), where K1 = (DLOG(U) + C1rn

a,b)(Rb + hbV + C2Tb),
K2 = (DLOG(U) + C3rn

a,b) (Rb + hbV + C4Tb).
Here, CH receives the item in H2

list, and outputs GDH(U, V) = (hb − hb)
−1(K1 −

K1) − C1rn
a,bV using the knowledge of rn

a,b. Note that as hb ̸= hb, the solution of
GDH(U, V) is correct. Let λ be a factor from the forking lemma in Strategy S6. CH’s
success probability is at least

AdvGDH
S (k) >=

λAdvF
M(k)

6nh(k)2np(k)2ns(k)
.

As AdvF
M(k) is non-negligible, AdvGDH

S (k) can also be seen as non-negligible. Now, it
derives the contradiction of the GDH assumption.
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The former formal security proof has proven that the proposed ID-AKA protocol
∑C1,C2,C3,C4

is secure against some comment attacks of guessing attacks, key replication
attacks, and forging attacks. Its security can be reduced to the hardness of GDH assumption
over the elliptic curve group in the eCK model.

6. More Efficient Instantiations

As Ci(i = 1, 2, 3, 4) ∈ Z∗q , our construction needs six scalar multiplications (here, we
ignore less time-consuming point additions and general hash function outputs), which
is a bit higher than the NCL-16-II protocol [27] at the same security level. However,
the NCL-16-II protocol is only a special protocol, while our construction will result in
different special protocols with different Ci values, for example, protocol ∑1,1,−1,−1 and
protocol ∑1,1,H1(RA ||RB ||TA ||TB),H1(RB ||RA ||TB ||TA)

. How should the values of C1, C2, C3, and C4
be chosen in the real execution environment? It would be better to select values that result
in more efficient instantiation as different protocols have different computation costs. The
following provides some efficient instantiations of our construction.

Protocol 1 (∑1,1,−1,−1). In this protocol, C1 = C2 = 1, C3 = C4 = −1. A computes the shared
secrets K1

AB = (sA + eA)(PKB + TB) and K2
AB = (sA − eA)(PKB − TB). B compute the shared

secrets K1
BA = (sB + eB)(PKA + TA) and K2

BA = (sB − eB)(PKA − TA). This protocol reduces
two scalar multiplications compared with the general construction.

Protocol 2 (∑1,−1,−1,1). In this protocol, C1 = C4 = 1, C2 = C3 = −1. A computes the shared
secrets K1

AB = (sA + eA)(PKB − TB) and K2
AB = (sA − eA)(PKB + TB). B computes the shared

secrets K1
BA = (sB − eB)(PKA + TA) and K2

BA = (sB + eB)(PKA − TA). This protocol has the
same efficiency as ∑1,1,−1,−1.

Protocol 3 (∑1,1,2,2). In this protocol, C1 = C2 = 1, C3 = C4 = 2. A computes the shared secrets
K1

AB = (sA + eA)(PKB + TB) and K2
AB = (sA + 2eA)(PKB + 2TB). B computes the shared

secrets K1
BA = (sB + eB)(PKA + TA) and K2

BA = (sB + 2eB)(PKA + 2TA). This protocol only
adds a point addition operation compared with the protocol of ∑1,1,−1,−1.

7. Performance and Comparison

This section presents the efficiency and security comparison between our Protocols 1
and 2 with other competitive ID-AKA protocols. Note that only the HC protocols [13] were
pairings-based ID-AKA protocols, the other ID-AKA protocols [21–28] and ours were all
pairing-free.

7.1. Comparison of Computation Overheads

To evaluate the computational overhead, Table 2 lists the same execution time of
different cryptographic operations, reported in [40]. The execution time was calculated
using the MIRACL library on a Samsung Galaxy S5 smartphone, equipped with a 2.5 GHz
ARM Krait processor with 2GB RAM memory running the Android 4.4.2 operating system.

Table 2. Execution time on a Samsung Galaxy S5.

Notation Explanation (The Execution Time of) Time (ms)

Tp A bilinear pairing e: G1 ×G1 → G2 32.713
Tpsm A pairing-based scalar multiplication in G1 13.405
Tppa A pairing-based point addition in G1 0.056
Tpexp An exponentiation operation in G2 2.249
Tmtph A hash-to-point in G1 33.582
Tesm An ECC-based scalar multiplication in G 3.350
Tepa An ECC-based point addition in G 0.014
Temtph A hash-to-point in G 8.250
Th A general hash function 0.006
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Next, the total execution times of these two protocols and the competitive ID-AKA
protocols [13,21–28] were computed, which are shown in Table 3. In our Protocols 1 and 2, to
agree on a session key, each party needed to compute four ECC-based scalar multiplications,
three ECC-based point additions, and two general hash function outputs. Therefore, the total
computation time at each party was about 4Tesm + 3Tepa + 2Th ≈ 13.454 ms. Similarly, the
communication costs of protocols in [13,21,24–28] were computed. In protocols ZHWY-
19 [23] and NIKE [22], two parties had unbalanced computation costs, i.e., one party had
a lower computation cost than the other party. Here, we adopted the lower computation
cost of one party. According to Table 2, our Protocols 1 and 2 were nearly 80% of protocols
NCL-16-II [27] and CKD [24], 100% of protocols [25] and [21,23,28], 72% of protocol XW [26],
and 8% of the HC protocol [13] with relation to the computation cost. That is to say, our
Protocols 1 and 2 almost had the lowest computation cost. The comparison results are
shown in Figure 6.

Table 3. Comparative computation overheads.

Protocols Computations Computation
Cost (ms) Energy Consumption (mj)

PF-ID-2PAKA [21] 4Tesm + 2Tepa + 2Th 13.44 322.56
DXCLCZF-18 [28] 4Tesm + 2Tepa + 2Th 13.44 322.56
NIKE [22] 2Tesm + 3Temtph 31.45 754.8
ZHWY-19 [23] 4Tesm + 3Tepa + 3Th 13.46 323.04
NCL-16-II [27] 5Tesm + 4Tepa + 3Th 16.824 403.776
DRS-20 [30] 5Tesm + 3Tepa + 5Th 16.822 403.728
DSH-21 [29] 4Tesm + 3Tepa + 3Th 13.460 323.04
PWCAS-22 [33] 4Tesm + 6Tepa + 5Th 13.514 324.336
ZHVLH-23 [37] 5Tesm + Tepa + 16Th 16.860 404.64
Our protocols 4Tesm + 3Tepa + 2Th 13.454 322.896

Energy consumption is one essential item for IoT communication, and the energy
consumption of ID-AKA protocol decides the energy efficiency of IoT communication as it
is executed by the IoT device. As shown in the former comparative computation overheads
in Table 3, the computation costs were calculated. To compute the energy consumption of
these key agreement algorithms, the IoT devices equipped with 3.0 V and 8.0 mA were
selected. This parameter was set according to the power level of MICA 2 [41]. For the
proposed ID-AKA protocol, the energy consumption was 3.0 ∗ 8.0 ∗ 13.454 = 322.896 mj,
and the comparison results with similar protocols are shown in Figure 7. Therefore, the
low computation overheads led to low energy consumption, and the proposed ID-AKA
protocol had more advantages than similar protocols in relation to the costs of computation
and energy.
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7.2. Comparison of Communication Overheads

Let |G1|, |G2|, |G|, and |Z∗q | represent elements sizes of G1, G2, G, and Z∗q , respectively.
Furthermore, assume |ID| and |H| represent the length of an identifier and a general hash
output, respectively. Considering the Ate pairing and elliptic curves, |G1|, |G2|, |G|, |Z∗q |,
and |H| are 1024, 1024, 320, 160, and 160 bits, respectively. We assumed |ID| is 32 bits
in length.

Table 4 demonstrates the communication cost comparison of the key agreement phase.
Note that in our Protocol 1 (Protocol 2), party A sends {IDA, RA, TA} to party B, where
RA, TA ∈ G and IDA is the identity of A. Party B symmetrically sends {IDB, RB, TB} to
party A, where RB, TB ∈ G and IDB is the identity of B. Therefore, the communication cost
of our protocol 1 (protocol 2) is 2 ∗ (|ID|+2|G|) = 2 ∗ (32 + 2 ∗ 320) = 1344 bits. The results
show that Protocols 1 and 2 have the lowest communication cost.

Table 4. Comparative communication overheads.

Protocols Messages No. Communication Cost Cost (bits)

PF-ID-2PAKA [21] 2 2|ID|+ 4|G| 1344
DXCLCZF-18 [28] 2 2|ID|+ 6|G| 1984
ZHWY-19 [23] 3 6|G|+ |Z∗q |+ 2|H| 2400
NIKE [22] 3 2|ID|+ 5|G| 1664
NCL-16-II [27] 2 2|ID|+ 6|G| 1984
DRS-20 [30] 2 2|ID|+ 4|G|+ |H| 1504
DSH-21 [29] 2 2|ID|+ 4|G| 1344
PWCAS-22 [33] 2 2|ID|+ 4|G|+ 2|H| 1664
ZHVLH-23 [37] 2 3 ∗ (2|ID|+ |G|+ |H|) 1632
Our protocols 2 2|ID|+ 4|G| 1344

7.3. Security Comparisons

As shown in Table 1, some related ID-AKA protocols can capture other security
attributes, including known key security, no key control, resistance to basic impersonation
attacks, replay attack resilience, resistance to man-in-the-middle attacks, and unknown
key share resilience. But, for the proposed IA-AKA protocols, we did not consider explicit
mutual authentication, as it can be easily achieved for all one-round protocols [13,21,24–28]
by adding a key confirmation. Here, the protocol PWCAS-22 [33] is based on physical
unclonable function (PUF), and ZHVLH-23 [37] is based on pseudo-random permutation
(PRF). The HC protocol [13], the NCL-16-II protocol [27], the DRS-20 protocol [30], and our
protocols are provably secure in the eCK security model. But events in the security proof of
NCL-16-II [27] are not complementary, which mismatches the freshness definition. Table 3
shows that our Protocols 1 and 2 can reach the best computation efficiency.

Compared with similar ID-AKA protocols, the proposed Protocols 1 and 2 presented
the lowest computation and communication overheads, which could improve IoT com-
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munication efficiency in IoT applications. Meanwhile, with the increase in the number of
devices, these ID-AKA protocols could also maintain high efficiency, as the key agreement
process was executed between two different IoT users. The key agreement between the two
parties was less affected by the number of devices in IoT applications and only affected
by the hardware, software, and communication protocol in the public internet environ-
ment. Although the key agreement times will increase more, this can be ignored with the
increasing IoT computation ability.

8. Conclusions

This paper first reviews several ID-AKA protocols without pairings in terms of secu-
rity and efficiency. We carefully studied them and pointed out the security weaknesses
against the ephemeral key reveal attack, key compromise impersonation attack, and launch
collusion attack. We also proposed a family of ID-AKA protocols without pairings and
proven the security in the eCK security model, a widely accepted security model for AKA
protocols. Six strategy analyses were provided, and these ID-AKA protocols were proven
to be secure in the eCK model based on the GDH assumption over the elliptic curve group.
Then, the instantiations, performance and comparison were presented, and the results
show that the proposed ID-AKA protocols were more efficient than other protocols in
similar literature. In addition, these ID-AKA protocols no only improved communication
security and efficiency in IoT applications, but also saved energy consumption for the
communication process.

In the future, with the increasing amount of IoT devices, some security issues of
identity authentication, data fine-grained access control, and user privacy protection should
still be taken into consideration. Especially with the development of quantum computers
and quantum computation, the anti-quantum attack security ID-AKA protocol will be a
hot research direction. Meanwhile, many customized ID-AKA schemes should be designed
to meet the special requirements of future IoT applications.
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