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Abstract: Recently, robotic exoskeletons are gaining attention for assisting industrial workers. The
exoskeleton power source ranges from fully passive (FP) to fully active (FA), or a mixture of both. The
objective of this experimental study was to assess the efficiency of a new active–passive (AP) shoulder
exoskeleton using statistical analyses of 11 quantitative measures from surface electromyography
(sEMG) and kinematic data and a user survey for weight lifting tasks. Two groups of females and
males lifted heavy kettlebells, while a shoulder exoskeleton helped them in modes of fully passive
(FP), fully active (FA), and active–passive (AP). The AP exoskeleton outperformed the FP and FA
exoskeletons because the participants could hold the weighted object for nearly twice as long before
fatigue occurred. Future developments should concentrate on developing sex-specific controllers as
well as on better-fitting wearable devices for women.

Keywords: exoskeletons; wearable robots; active–passive; electromyography; sEMG; fatigue

1. Introduction

Workers in Canada frequently get musculoskeletal diseases (MSDs) from their jobs,
often in their upper extremities, notably, their shoulders [1]. One recent solution is the
exoskeleton, which is a wearable device that can augment the wearer’s natural physical
abilities [2]. Robotic exoskeletons allow the user to carry heavier objects or mitigate physical
limitations [3]. Exoskeletons for the industrial workforce are being created, researched,
and used more often on a global scale [4]. Exoskeleton design may be divided into three
groups based on the source of assistance: FP [5], FA [2], and AP [6].

Prior to practical exoskeleton deployment across diverse work situations, several
technical, physical, and psychological factors require evaluation. Analysis of these factors
is not standardized and varies according to application domain, focused research objec-
tives, and types of studies performed (simulation [7] or experiment [8]). For example,
Hodson [9], Kim et al. [10] and Alemi et al. [11] have used maximum voluntary isometric
contractions (MVICs) [12] for exoskeleton evaluation. The other evidence-based met-
rics are muscle activity measured through surface electromyography (sEMG) [13–16],
fatigue/endurance using mean power frequency [16–19], muscle metabolic energy expendi-
ture (MMEE) [11], task completion or time [10,20], subjective feedback [10,20], or discomfort
feedback [11,20,21]. However, to the best of our knowledge, there have been limited efforts
to employ an inverse dynamic skeletal model integrated with machine learning-based
muscle models that exhibit kinematic closed-loop interactions with exoskeletons. Specifi-
cally, some prior studies have relied on simplifications in terms of the human-exoskeleton
kinematic closed-loop interaction and have employed different (e.g., Hill-type) muscle
models. For example, Marinou et al. [22], Sharafi and Uchida [23], and Shushtari et al. [24]
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conducted simulation-based evaluations of the human skeletal system with an exoskeleton
(without experimental evaluation), and Kuo et al. [7] and Li et al. [25] carried out experi-
mental evaluations using detailed Hill-type muscle models within musculoskeletal models
and simplified exoskeletons without closed-loop interaction.

Despite the numerous distinctions between male and female functional and static
anthropometrics [26], generally, sex has been disregarded when analyzing exoskeletons [9],
or the tests had male-dominated samples [10]. The majority of industrial and physically
demanding jobs are held by males, which may explain the male predominance in samples.
Nevertheless, exoskeleton sizes and designs may be suboptimal for female anatomy [21].
Only a few investigations report on how exoskeleton use affected muscle activation accord-
ing to sex [9,11,20,27]. Females had remarkably more median sEMG at the right triceps
brachii with the exoskeleton compared to those without exoskeleton and males with the
exoskeleton [20]. A few researchers showed that the MVICs are inconsistent for each
muscle and for each sex, which should be added in sex-specific exoskeleton design and
control [11,27]. Another difference is the time discrepancies in the donning and taking off
of the exoskeleton by sex, with women taking much less time than men [28]. Kim et al. [10]
anticipated that sex will cause variations in exoskeleton effectiveness evaluation. Further
research is needed to characterize the interaction of sex and exoskeleton use [4,10]. Further-
more, there is an increased frequency of discourse regarding sex-based variations in body
morphology and their correlation with exoskeleton fitting, as documented in the study by
Sposito et al. [29].

In the context of exoskeletons, efficiency refers to the optimal utilization of energy and
resources by the wearable robotic system to assist and enhance human movement. This
encompasses factors such as biomechanical assistance, metabolic expenditure reduction,
and mechanical advantage, all of which contribute to the overall effectiveness and perfor-
mance of the exoskeleton in aiding the wearer’s mobility and physical tasks. The study
investigates how these efficiency metrics are influenced by sex differences, shedding light
on potential variations in exoskeleton performance between male and female users.

The main goal of this study was to discover the relative efficiency of wearable ex-
oskeleton devices with regard to sex. Specifically:

I. Comparing the efficiency of FP, FA, and AP shoulder exoskeleton in human-in-the-
loop (HITL) experiments;

II. Evaluating with 12 criteria within categories of (1) sEMG channels, (2) kinematic
data, and (3) survey;

III. Reporting and assessing the influence of sex on these criteria.

First, the experimental setup and test protocol are introduced in Section 2. Second,
the evaluation metrics are developed and discussed in Section 3 using independent sub-
component models. Finally, the results for different criteria and sex are presented and
discussed in Section 4.

2. Methodology

To evaluate the assistance provided by the exoskeletons, twenty healthy participants
lifted an object (5 lb kettlebell) and held to exhaustion while wearing the exoskeleton
(Figure 1a) as the sEMG sensors measured their muscle activity. They repeated the test
with different exoskeleton support modes until fatigue occurred. While the object’s weight
may fall within the lighter range of loads encountered in certain industries, it symbolizes
the sustained nature of tasks that workers often face. By examining the exoskeleton’s
performance under such conditions, we aim to shed light on its potential to alleviate fatigue
and enhance endurance, which are vital considerations for preventing workplace injuries
and improving overall efficiency in various occupational settings.

Twenty participants (mean ± Standard deviation (STD): 25 ± 3.3 years; 64 ± 12.9 kg
mass; 1.74 ± 0.09 m height; 2.0 ± 1.8 workout sessions per week; 18 right-handed and 2 left-
handed) participated. Ten of the participants were female (mean ± STD: 24 ± 3.0 years;
59± 10.6 kg mass; 1.65± 0.07 m height; 3.0± 1.9 workout sessions per week; 9 right-handed
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and 1 left-handed) and the rest were male (mean ± STD: 27 ± 3.1 years; 74 ± 11.7 kg mass;
1.78 ± 0.06 m height; 1.0 ± 1.7 workout sessions per week; 9 right-handed and 1 left-
handed). Participants were between the ages of 20 and 50 and without a recent injury or
history of discomfort in their upper extremities. Each participant signed a written waiver
of informed consent. The University of Waterloo’s Office of Research Ethics approved the
experimental protocol.

Participants completed activities according to Table 1. In the first phase, the participant
performed MVIC tasks for normalizing the sEMG signals and calibrating the brushless direct
current (BLDC) motor home angle. Participants performed free motion with a weight during
the second phase. The information from this phase was used to generate training data for
the machine learning mapping electromyography to kinematic and dynamic biomechanical
variables (MuscleNET) model [30]. To evaluate the various modes of support (inactive
exoskeleton (IE), FP, FA, and AP assistance), the participant repeated the weight-lifting task
for each support mode. The participant was instructed to maintain the kettlebell at a 90◦

elevation angle (Figure 1a); however, precise control of the elevation angle was not enforced,
relying instead on vocal feedback provided by the researcher. Furthermore, there were no
specific constraints imposed regarding movement velocity, and participants were encouraged
to lift the object at a comfortable pace. Following each repeated task, participants were
mandated to observe a minimum resting interval of 10 min to mitigate the onset of fatigue.

sEMG sensors and a custom adapted commercial shoulder exoskeleton were the two
main devices used:

I. The Delsys Trigno wireless compact system (Delsys Inc., Natick, MA, USA) is
equipped with two integrated sensors designed for the measurement of sEMG to
assess muscle activity and an inertial measurement unit (IMU) to capture kinematic
data, including Euler angles and angular acceleration. To collect data, these wireless
compact units were affixed to the skin at six specific anatomical sites (Figure 1b): #1
upper trapezius (UTRA), #2 middle trapezius (MTRA), #3 middle deltoid (MDEL), #4
posterior deltoid (PDEL), #5 anterior deltoid (ADEL), and #6 brachioradialis (BRD)
located on the right forearm, shoulder, and upper trunk musculature. The data
obtained from these sensors, encompassing both surface muscle activity and Euler
angles, were utilized as inputs for the MuscleNET framework, with further details
about MuscleNET available in reference [8].

II. Motorized EVO (Ekso Bionics Holdings Inc., San Rafael, CA, USA) upper limb
exoskeleton with built-in three-level passive assistance was used to assist the shoulder
elevation joint. The motor was an AK80-9 KV100 BLDC motor (Cubemars, Jiangxi
Xintuo Enterprise Co., Nanchang, China) with a built-in relative encoder, 0.485 kg
mass, 9 Nm rated torque, and 9:1 gear ratio, which was used for the active component.
The exoskeleton was optimally designed in [6] after being modeled, including its
passive torque-angle function. The active assistance (motor) is controlled with a
hierarchical control structure (Figure 1c) that used a subject-specific MuscleNET-
driven intention prediction model [8,31].

The exoskeleton configuration encompasses four distinct modes, each serving a specific
purpose in the augmentation of human movement:

• Inactive exoskeleton (IE) setting: In this mode, the exoskeleton remains dormant,
providing no assistance to the user. This setting serves as a baseline for evaluating the
unaided human performance during the task.

• Fully passive (FP) setting: The exoskeleton operates in a passive manner, employing
a spring mechanism to generate assistive torque in correlation with the angle of the
user’s shoulder elevation. This assists the wearer in counteracting the gravitational
forces acting on the lifted object.

• Fully active (FA) setting: Activating the lightweight BLDC motor, this mode delivers
targeted assistance based on the user’s muscle contribution and intent. The motor’s
engagement is calibrated to provide a measured level of support, enhancing the user’s
lifting capability.
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• Active–passive (AP) setting: This setting synergistically combines both the passive
spring mechanism and the active BLDC motor to jointly deliver assistive torque
throughout the user’s exoskeleton elevation angle. The collaboration between these
elements aims to optimize the wearer’s performance by harmonizing mechanical
support and motorized assistance.
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Figure 1. (a) The subject is doing a weight-lifting exercise in the sagittal plane while wearing the
exoskeleton and sensors; (b) the placement of wireless sEMG-IMU sensors to the skin at sites of #1
UTRA, #2 MTRA, #3 MDEL, #4 PDEL, #5 ADEL, and #6 BRD located on the right forearm, shoulder,
and upper trunk musculature; and (c) block diagram showcasing the primary components of the
control system and the connection protocols utilized [8].
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Table 1. The 6 steps of the test process, data collection, and exoskeleton calibration.

Phase Name

Source Tasks

Passive Active Weight Lifting Free Motion

Sensor Calibration ✓
Data Gathering ✓ ✓

IE ✓
FP ✓ ✓
FA ✓ ✓
AP ✓ ✓ ✓

3. Evaluation Criteria

The utilization of multiple criteria for assessing exoskeleton performance is crucial
for providing a comprehensive and holistic understanding of its effectiveness. Relying
on a single criterion might oversimplify the evaluation process and potentially overlook
nuanced insights into their performance across different contexts and functionalities. By in-
corporating a diverse set of criteria, our study aims to capture the multifaceted nature of
exoskeleton efficiency, enabling a more nuanced analysis that accounts for a range of factors
influencing their overall performance and impact on users. This approach enhances the
robustness of our findings and provides a deeper level of insight into the interplay between
various parameters and their implications for practical applications.

We used 12 criteria to statistically analyze the efficiency of the exoskeleton assistance
modes. These criteria are categorized into the following three groups. For statistical
analyses, we used JMP 16.0 (SAS Inc., Cary, NC, USA).

3.1. Surface Electromyography (sEMG) Data

The processing of sEMG signals has become widely used during the last four decades
to assess local muscle exhaustion [12]. In addition to processing this signal, we used the
MuscleNET model [30] to estimate the joint torque from the sEMG signal and kinematic
signals (IMU and BLDC motor angle). Six assessment measures are based on recorded
sEMG signals.

Measure 1 A measure of sEMG amplitude employed in contemporary digital systems is
the mean absolute value (MAV), also known as the average rectified value
(ARV) (defined by Equation (1)), which is used as a time-domain fatigue
evaluation method [12].

Measure 2 The power spectral density of an examined sEMG signal (Instantaneous
median frequency (IMDF), defined in Equation (2)) changes toward lower
frequencies during fatigue-inducing contractions [12,32].

Measure 3 Increase in median power spectral frequencies in comparison to the initial
recording is another indicator of fatigue [33].

Measure 4 Equation (3) describes accumulated muscle activations during motion, and the
square of muscle contractions is a fatigue metric frequently employed in
neuromechanical models [34,35]. Here, filtered sEMG signals represent mus-
cle contractions.

Measure 5 Each phase and participant had different sEMG channel amplitudes and
patterns. We used the trained machine-learning model MuscleNET [30] to
estimate shoulder elevation torque.

Measure 6 The instantaneous power of a human joint is the instantaneous torque esti-
mated by MuscleNET [30] times the instantaneous angular velocity measured
by the angular rotational sensor attached to the BLDC motor.
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MAV =
1
N

N

∑
i=1

|xi| (1)

∫ IMDF(t)

0
P(t, ω)dω =

∫ ∞

IMDF(t)
P(t, ω)dω =

1
2

∫ ∞

0
P(t, ω)dω (2)

FAT = ∑
m

∫
T

σ2
mdt (3)

where
MAV—the mean absolute value;
x—the amplitude of sEMG signal;
N—total number of signal points;
P(t, ω)—time-dependent power spectrum density of the sEMG signal;
ω—frequency of the signal;
IMDF—the IMDF;
σ—the muscle activations
m—the total number of sEMG channels;
FAT—the fatigue (Measure 4 or Measure 7).

3.2. Kinematic Data and Inverse Dynamic Simulation

Here, we used a validated scalable musculoskeletal MapleSim model [36] to simulate
and analyze the participants’ motion with the recorded kinematic data (joint angle, velocity,
and acceleration).

Measure 7 By using the recorded joint kinematics and known external force/weight
(e.g., exoskeleton assistance torque, the mass of the manipulated object, or the
gravitational acceleration), we conducted an inverse dynamic simulation of
the scalable musculoskeletal model (Equations (4) and (5)) [36] to estimate
the activation of the muscle torque generator (MTG). Equation (3) was then
used to calculate the computational fatigue.

Measure 8 Similar to Measure 5, the joint torque was calculated but from inverse dy-
namic simulation of the scalable musculoskeletal model (Equation (4) [36]).

Measure 9 Similar to Measure 6, the joint power was estimated with the inverse dy-
namic simulation of the scalable musculoskeletal model (Equation (4) [36])
and the instantaneous angular velocity sensed by the sensor of the BLDC
motor.

Measure 10 The performance measurement of human motion is facilitated by the MMEE
model. Kim and Roberts [37] combined thermodynamic rules with multi-
body system dynamics concepts to create a joint-space numerical model of
MMEE. The energy model for zero co-contraction of MTG pairs is as shown
in Equation (6).

Measure 11 The participants were expected to hold the kettlebell as long as feasible.
The time that the shoulder elevation angle was more than 80% of the max-
imum angle (approximately 90◦ as detailed in Section 2 and visualized in
Figure 1a) was considered the load tolerance duration. This weight tol-
erance’s duration was quantitively compared after being recorded during
different modes.[

I2n×2n 0
0 Mn×n(θn×1, β)

][
ȧ2n×1
ω̇n×1

]
=

[
τ̇u2a(a2n×1, u2n×1, t, β)2n×1

Fn×1(ωn×1, θn×1, β) + Qn×1

]
(4)

Qn×1 = [a+τ+
ω (ω, β)τ+

θ (θ, β)τ+
0 (β) + a−τ−

ω (ω, β)τ−
θ (θ, β)τ−

0 (β) + τp(θ, ω, β)]n×1 (5)

E =
∫ tmax

0

[
ḣM|ω|(max)|τa|+ ḣSL|τaω|+ τaω

]
dt (6)
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where
n—the number of independent coordinates = 20;
θ—the column matrix of all joint angles;
ω—the column matrix of all joint angular speed;
M—the mass matrix;
a—the muscle activation signal;
F—Coriolis, centrifugal, and gravitational effects;
Q—the applied joint torques, a column matrix containing τh(t) for all joints;
τu2a—the excitation-to-activation signal ordinary differential equation (ODE) function;
u—the excitation signal;
τω—the active torque–angular–velocity scaling function;
τθ—the active torque-position scaling function;
τ0—the peak isometric joint strength;
τp—the passive torque function due to viscous damping and nonlinear stiffness;
τa—the vector containing the active torques at the joints;
+—the positive direction of joint;
−—the negative direction of the joint;
β—the subject adjustment variables: sex, age, body mass, height, dominant side, and physi-
cal activity;
ḣM—the dimensionless heat rate for activation and maintenance, determined to be 0.054;
ḣSL—the dimensionless shortening lengthening heat rate, 0.283 for positive power, and 1.423
for negative power;
ω(max)—the maximum angular velocity over the entire motion.

3.3. Subjective Feedback

Measure 12 After conducting the exoskeleton performance test, participants engaged in
a structured survey to gauge their experience comprehensively. This survey
encompassed three key dimensions: participants’ self-reported fatigue lev-
els throughout different exoskeleton phases (Table 1), the identification of
specific areas of fatigue, and an assessment of comfort while wearing the
exoskeleton on a scale of 1 to 10. The scale ranging from 1 to 10 for assessing
comfort was a deliberate choice aimed at affording participants a broader
spectrum of options to articulate their comfort perceptions. This scale was
selected for its capacity to offer granularity in capturing the comfort levels
expressed by participants in contrast to a binary scale that would provide
only two options (e.g., comfortable or uncomfortable). Through this user
feedback survey, we gained valuable insights into the interplay between
exoskeleton assistance modes and user experiences. The survey’s structured
approach allowed us to capture nuanced aspects of user interactions, offering
a perspective that informs the practical usability and impact of the exoskele-
ton. This feedback enhances our understanding of how users respond to
diverse assistance modes.

4. Results and Discussions
4.1. Quantitative Evaluation

The results of the quantitative evaluation criteria are shown in Figure 2. The criteria
for the average of all participants are shown as the solid bar, and the medians are shown as
black dots; in addition, the male STD (blue line) and female STD (red line) from the mean
value are shown on the bar charts.

To determine normality, the histograms of the data were visually examined for skew-
ness and kurtosis. In Table 2, the criteria in Figure 2 were evaluated in terms of predicted
root mean square of error (RMSE), p-value (a statistical metric that calculates the likelihood
of obtaining the outcomes that were observed, supposing that the null hypothesis is cor-
rect), and R-squared (a statistical fit metric that quantifies the proportion of a dependent
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variable’s variance accounted for by the independent variables in a regression model).
The general trend in Figure 2 and the following discussion are valid, since the p-value is
less than 0.05 according to Table 2. The p-value is less than 0.001 considering the sex as a
random variable (or a within-participant variable) since obviously each participant tested
exoskeletons with one sex type and has not repeated it with another sex type.
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Figure 2. The sex impact and quantitative evaluation values for the four exoskeleton actuation types
(IE, FP, FA, and AP). (a–l) are Measure 1–Measure 12; note that the median (.), the STD, and the
Tukey honestly significant difference (Tukey HSD) letters are shown on top of all participants STDs
for same-sex type (bar charts).

To evaluate the effects of the fixed factors exoskeleton and exoskeleton condition
times sex, we conducted Least-Squares Mean Differences and computed Tukey HSD test
(using α = 0.050 and Q = 3.14619). For example, for metabolic energy expenditure in
Figure 2j, the Tukey HSD is provided in Table 3. As can be seen, levels in Table 3 that are not
connected by the same letter differ greatly, which means FP-female, FA-male, and AP-male
are considered in the same category; the differences are minor but they are definitely better
than IE and worse than AP-female.

Since the normalized RMSE by the mean value for Measure 2 and Measure 3 is high
in Table 2, we provided more details (each sEMG channels) for these measures in Figure 3.
For the majority of muscles, according to Figure 3, the following exoskeletons showed a
decline in median frequency and a rise in median power from low to high: AP, FA, FP,
and IE. This indicates that the AP exoskeleton reduced muscular fatigue. Nevertheless,
a few muscles did not exhibit the same tendencies as the majority of the other muscles
(Figure 3). For example, the sEMG signals from the BRD location showed no signs of
fatigue. Since BRD is for elbow flexion/extension (EFE), these muscles and the joints they
pass through were unaffected by the exoskeleton.
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According to Figure 2, the most efficient exoskeleton types from powerful to weak are
AP, FA, FP, and IE. According to Figure 2a–c,g,j, using the AP exoskeleton can decrease the
fatigue level compared to using the FP exoskeleton.

Table 2. Statistical measures for different criteria: RMSE, p-values, and R-squared.

Criteria
Fi
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Signal Model Statistical Metric

K
in

em
at

ic

sE
M

G

M
us

cl
eN

ET

D
yn

am
ic

M
od

el

N
or

m
al

iz
ed
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SE
by
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(%
)
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R
-S

qu
ar

ed

Measure 1 (a) ✓ 11.5 0.0021 0.95
Measure 2 (b) ✓ 52.7 0.0336 0.57
Measure 3 (c) ✓ 70.1 0.0167 0.60
Measure 4 (d) ✓ 29.7 0.0029 0.90
Measure 5 (e) ✓ ✓ ✓ 12.1 0.0307 0.91
Measure 6 (f) ✓ ✓ ✓ 30.9 0.0312 0.82
Measure 7 (g) ✓ ✓ 21.9 0.0033 0.90
Measure 8 (h) ✓ ✓ 8.0 0.0045 0.94
Measure 9 (i) ✓ ✓ 29.9 0.0115 0.82
Measure 10 (j) ✓ ✓ 28.2 0.0270 0.76
Measure 11 (k) ✓ 30.5 0.0244 0.78
Measure 12 (l) 18.1 0.0360 0.93

Table 3. A sample of Tukey HSD letters of metabolic energy expenditure for exoskeleton condition
times sex factor. Levels not connected by the same letter are significantly different.

Category Connections Least Sq MeanExoskeleton Setup Sex

IE Male A 1.451
FP Male A 1.333
IE Female A B 1.236
FP Female A B C 1.067
FA Male B C D 0.816
AP Male B C D 0.710
FA Female D 0.473
AP Female D 0.463

As seen in Figure 2k, participants could lift the object for more time (until they became
fatigued) by using the AP exoskeleton. The AP exoskeleton can be helpful for almost
two times longer than the FP exoskeleton. In fact, the AP exoskeleton is adaptive to the
task and can provide variable assistive torque instantly compared to the FP torque that can
only provide fixed assistive torque at one specific angle, as mentioned in [38].

The participants scored the AP exoskeleton to be more effective than other exoskeletons
(Figure 2l). Regarding the subjective feedback aspect, it is important to acknowledge that
this section is primarily reliant on participants’ self-reported feelings and perceptions.
Given our study’s sample size of 20 participants, we must be cautious when drawing
concrete conclusions based on subjective assessments, particularly in areas involving
mental and emotional aspects. The limitation stems from the relatively small sample size
for such subjective evaluations, where larger participant groups would be more ideal to
establish robust conclusions.
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Figure 3. The muscle fatigue evaluations for the four exoskeleton actuation types (IE, FP, FA, and AP).
(a–c) Measure 1–Measure 3. The male STD (blue line), the female STD (red line), and the median
(black dot) are also shown on the average of all participants (bar charts).

4.2. Sex Difference Perspective

From the sex differences perspective, a detailed evaluation of Figures 2a–d,g and 3a–c
reveals that females tend to experience more pronounced fatigue than their male counter-
parts when engaged in heavy lifting tasks. This observation underscores the importance of
considering sex-specific ergonomic factors particularly in strenuous industrial settings that
involve heavy lifting. To help mitigate the risk of MSDs among female workers and, conse-
quently, enhance their overall well-being, the implementation of exoskeleton technology is
strongly recommended.

It is noteworthy that the female participants in our study exhibited shorter stature
compared to their male counterparts, resulting in relatively shorter arm lengths. This
anatomical distinction has biomechanical implications, as shorter arms require less joint
torque to lift objects of the same weight, which is a phenomenon supported by previous
research [26,39]. Furthermore, shorter and lighter individuals tend to possess less muscle
mass, contributing to produce less joint torque [26,39]. Consequently, females required less
joint torque than males (Figure 2e,h).

Surprisingly, despite the lower joint torque requirements, females in our study demon-
strated a significantly faster lifting pace compared to males. Actually, they required more
shoulder adduction/abduction (SAA) power than males. This unique characteristic under-
scores the need for specialized considerations in exoskeleton design for females. Manufac-
turers should focus on optimizing exoskeleton joint stiffness to accommodate the increased
speed of movement. Additionally, the control algorithm for such active exoskeletons should
be tailored to effectively manage the specific biomechanical demands associated with rapid
object manipulation.

It is important to note that in general, females tend to have a lower body mass and
shorter stature compared to males. As depicted in Figure 2j, these anatomical differences
contribute to a commensurately lower MMEE for females when compared to males. This
characteristic highlights the significance of tailoring exoskeleton technology to accommo-
date diverse body types.

During the course of our study, several female participants expressed concerns regard-
ing the fit of the exoskeleton belt. More precisely, regardless of the seated test condition,
the exoskeleton belt was fastened over the female abdomen while a hip placement may
have been preferred.
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This feedback offers valuable insights for the future development of exoskeleton tech-
nology. Manufacturers can significantly benefit from considering the unique body shape
and biomechanical requirements of female users when designing the kinematic fitting of
exoskeleton attachments. By incorporating sex-specific design considerations, exoskeletons
can be better optimized to enhance comfort and functionality for a broader range of users,
ultimately promoting their adoption and effectiveness in various applications.

It is important to remember that males and females have natural physical differences.
These differences, like how muscles are distributed [40], the effects of hormones [41],
and physical strength [26], can affect how people respond to the exoskeleton and how
well they do in tasks [9]. Second, although this study did not select participants based
on characteristics (e.g., height, weight, race, age, dominance side, hormonal levels, mus-
cle distribution, or physical strength), the standard deviations of participants’ features
(mean ± STD: 25 ± 3.3 years; 64 ± 12.9 kg mass; 1.74 ± 0.09 m height; 2.0 ± 1.8 workout
session per week; 18 right-handed and 2 left-handed) were within an acceptable range of
deviation. To be more specific, employing a one-way analysis of variance, as illustrated
in Figure 4, it is discerned that the median values for age, weight, and activity within one
sex align closely with the main distribution of the corresponding attributes in the other
sex. To be precise, the F-value (variation between sample means per variation within the
samples) is 1.83, 3.51, and 0.96 for age, weight, and activity, respectively. It is noteworthy
that despite females typically exhibiting shorter body height than males, their upper-limb
length in proportion to body height is greater than that of males [42]. Furthermore, it
is crucial to underscore that the test specifically entailed the lifting of a kettlebell with
arms extended in a straight position, emphasizing the greater significance of upper-limb
length over body height in this context. Third, the study’s primary goal was to selectively
consider participant sex while treating all other participant features as random variables
with minimal deviation. It is essential to note that adopting a selective approach, such
as matching an overweight female with an underweight male to attain identical weight
profiles, would compromise the consistency of the study cohort. Furthermore, it is worth
noting that Hodson [9] and Rubio et al. [43] have previously deliberated on the concerns
related to sex-based exoskeleton evaluation and advocated for a non-selective approach to
participant recruitment.
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0
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Figure 4. Depiction of a one-way analysis of variance conducted on the sample data of F: female
versus M: male participants, with respect to their (a) age, (b) weight, (c) height, and (d) activity.
Notably, the figure highlights an outlier through a red plus sign, while the median is represented
by a red bar at the center. The minimum and maximum values are denoted by black minus signs at
the bottom and top, respectively, and the 25th and 75th percentile values are enclosed within a blue
bounding box.

4.3. Limitations

The present study rigorously assesses the performance of an AP shoulder exoskele-
ton, and the ensuing evaluation and discussion are specific to this particular exoskeleton
model. While the participant cohort was substantial and well suited for objective statistical
and scientific comparisons, it is important to acknowledge that the sample size may not
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have been sufficiently large to facilitate comprehensive subjective emotional comparisons,
as elaborated upon in the survey section.

While, to the best of our knowledge, there exists only one AP shoulder exoskeleton
worldwide, it is worth noting that a broader evaluation encompassing various AP shoulder
exoskeleton models may yield a more comprehensive assessment.

Furthermore, in cases where a particular exoskeleton system can adjust torque in
response to varying velocities, a comprehensive experiment involving different velocity
settings, in addition to the examination of weight lifting scenarios, could provide valuable
insights and a more holistic understanding of the system’s performance.

5. Conclusions

Robotic exoskeletons are becoming a more common tool for assisting industrial work-
ers. The assisting source ranges from FP to FA. The effectiveness of four support modes were
evaluated using the following types of assessment criteria: (I) sEMG-based, (II) kinematic-
based, and (III) survey. The participants could hold the weighted object for nearly twice as
long before becoming exhausted, indicating that the AP exoskeleton was superior to the FA
and FP exoskeleton.

Future improvements should focus on proposing sex-specific controllers, accommo-
dating anthropometric and joint demand differences, as well as the kinematic fitting of the
wearable device for females.
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Abbreviations
The following abbreviations are used in this manuscript:

ADEL anterior deltoid
AP active–passive
ARV average rectified value
BLDC brushless direct current
BRD brachioradialis
EFE elbow flexion/extension
FA fully active
FP fully passive
HITL human-in-the-loop
IE inactive exoskeleton
IMDF instantaneous median frequency
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IMU inertial measurement unit
MAV mean absolute value
MDEL middle deltoid
MMEE muscle metabolic energy expenditure
MSD musculoskeletal disease
MTG muscle torque genera
MTRA middle trapezius

MuscleNET
machine learning mapping electromyography to kinematic and dynamic
biomechanical 407 variables

MVIC maximum voluntary isometric contraction
ODE ordinary differential equation
PDEL posterior deltoid
RMSE root mean square of error
SAA shoulder adduction/abduction
sEMG surface electromyography
STD Standard deviation
Tukey HSD Tukey honestly significant difference
UTRA upper trapezius
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