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Abstract: Introducing partial task offloading into vehicle edge computing networks (VECNs) can
ease the burden placed on the Internet of Vehicles (IoV) by emerging vehicle applications and services.
In this circumstance, the task offloading ratio and the resource allocation of edge servers (ES) need
to be addressed urgently. Based on this, we propose a best response-based centralized multi-TaV
computation resource allocation algorithm (BR-CMCRA) by jointly considering service vehicle (SeV)
selection, offloading strategy making, and computing resource allocation in a multiple task vehicle
(TaV) system, and the utility function is related to the processing delay of all tasks, which ensures
the TaVs’s quality of services (QoS). In the scheme, SeV is first selected from three candidate SeVs
(CSVs) near the corresponding TaV based on the channel gain. Then, an exact potential game (EPG)
is conducted to allocate computation resources, where the computing resources can be allocated step
by step to achieve the maximum benefit. After the resource allocation, the task offloading ratio can be
acquired accordingly. Simulation results show that the proposed algorithm has better performance
than other basic algorithms.

Keywords: vehicular edge computing networks; computing resource allocation; offloading strategy;
exact potential game

1. Introduction

Vehicles will be highly connected with the aid of ubiquitous wireless networks. At
the same time, vehicular applications and services, such as virtual reality, augmented
reality, mixed reality, location-sharing applications, and sensor data-sharing applications,
etc., are usually not only data-hungry but also computation-intensive and delay-sensitive,
which is undoubtedly a massive burden on VECNs [1]. Fortunately, vehicle-to-everything
(V2X) communications enable the process of transmission and computation from vehicles
to other vehicles via vehicle-to-vehicle (V2V) links or to the infrastructure via vehicle-to-
infrastructure (V2I) links. They are promising techniques for future vehicular applications
providing high-transmission capacity and fast-computation capability experiences [2].
Based on V2X communications, the goal of applications and services processing among
different entities can be achieved, which is helpful to partially reduce the traffic and
computing load of VECNs.

To enable large-scale and ubiquitous automotive network access, traditional V2X
technologies are evolving to IoV for increasing demands on emerging advanced vehicular
applications [3]. As specified in 3GPP Release 14, V2X has two transmission modes in the
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cellular network [4]. The first is the direct mode, which includes V2I communication and
V2V communication by using the dedicated side-link channel in the intelligent transporta-
tion systems (ITS) 5.9 GHz spectrum. The second is the vehicle-to-network communication
in the mobile licensed spectrum [5]. Vehicular edge computing (VEC) achieved through
V2X can significantly control end-to-end latency, which is a dominating advantage for
vehicular services. Generally, vehicular services have different QoS requirements. To satisfy
these requirements, wireless resource and computation resource allocation are challenges.

The authors in [6] elaborate, compare, and analyze the works in each mode (i.e., V2V,
V2I, and V2X) according to the uplink data offloading for delay-sensitive data. V2V data
offloading refers to transmitting data from TaVs to SeVs, which can leverage the compu-
tation resources of both TaVs and SeVs. Similarly, V2I offloading schemes can help when
network connectivity is scant or lacks end-to-end connectivity. With the increasing number
of vehicles and their services, V2X-based data offloading schemes are an encouraging way
to address the tremendous traffic and computing burden of IoV. In addition, according
to [7], data can be simultaneously offloaded to different entities, which means that a TaV
can perform both V2V and V2I communication simultaneously.

Much work is focused on V2X-based task offloading schemes. The computing re-
sources of SeVs are used via V2V links in [8–12]. Partial offloading is adopted in [8,9],
which means the authors in [8,9] adopt Loc + SeV mode. Namely, tasks can be executed
in multiple vehicle at the same time. The work in [10–12] all adopt 0–1 offloading, which
means a task can only be executed locally or in a SeV. Moreover, the tasks in studies [10,11]
can be offloaded to multiple SeVs. The difference is that [11] considers the velocity of a
TaV, whereas [10] does not. The authors in [13–16] leverage the computation resources
of ESs via V2I links. Where [13] is in Loc + Edge mode and adopts partial offloading,
refs. [14–16] adopt 0–1 offloading. In addition, considering vehicles’ speed, the system
in [14] is modeled in a time-discrete manner. Studies [15,16] do not consider the mobility of
vehicles; ref. [15] considers the probability of task offloading. To fully use the computing
resources near a TaV, refs. [17–19] jointly consider V2V and V2I links. Studies [17,18] adopt
0–1 offloading and tasks can only be executed in one of the three entities, i.e., Loc, SeV,
and ES, whereas [19] adopts partial offloading and considers two execution modes, i.e.,
Loc + SeV mode and Loc + Edge mode.

In this paper, to further leverage the resources near a TaV, we consider four execution
modes, namely, Loc execution mode, Loc + SeV execution mode, Loc + Edge execution
mode, and Loc + SeV + EdgeV execution mode, where SeV can be a moving or stopped
vehicle. When the ratio of tasks executed locally is 100%, the latter three modes become the
Loc execution mode. Therefore, the Loc execution mode is listed separately to distinguish.
In order to realize the minimization of processing delay and the maximization of accom-
modated TaVs, we propose a novel partial offloading and adaptive computation resource
allocation scheme for VEC-assisted V2X networks by jointly optimizing SeV-selection
factors, mode-selection factors, offloading ratios, and computation resource allocation
coefficients. The main contributions of this paper are summarized as follows.

1. To maximize the overall benefits of the system, both SeVs and ES are used to provide
computation resources via V2V links and V2I links, respectively, in the proposed
slow-moving vehicle environment, where four offloading modes are studied, namely,
Loc mode, Loc + SeV mode, Loc + SeV + EdgeV mode, and Loc + SeV + EdgeV
mode. Based on these offloading modes, the optimal task offloading strategies and
resource allocation strategies are realized by selecting SeVs, the offloading strategies
development, and the ES computing resources allocation.

2. To reduce the impact of transmission time via V2V links on task processing time, the
SeV is selected with the highest channel gain among three CSVs close to a TaV. When
the SeV, execution mode, and the proportion of allocated ES computing resources are
determined, if and only if the processing time of each execute terminal is the same
can they reach the maximization system benefit. Based on this, the expression of the
offloading ratio is derived.
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3. To allocate computing resources of ES to the TaV that can bring the greatest gain to the
system, a potential game based on pre-allocation is proposed, in which the maximum
number of iterations is determined first. Then, the best response is used to achieve the
best benefit step by step, and the allocated computation resources ratio and offloading
strategies can be acquired accordingly. Additionally, the convergence of the proposed
game is analyzed.

4. To verify the effectiveness of our scheme, we compare it with four based schemes, i.e.,
Loc + SeV Execution algorithm (LSVE) [8], Loc + ES Execution algorithm (LESE) [13],
Loc + SeV and Loc + ES Execution algorithm (LSVLESE) [19], and Local Execu-
tion Algorithm (LEA). The results corroborate the superior performance of our pro-
posed scheme.

The remainder of this paper is organized as follows. Section 2 reviews related work.
In Section 3, we describe the model and define the relevant functions to formulate the task
offloading and computing resources allocation problem. Section 4 introduces a centralized
cooperative computation offloading game model, and the BR-CMCRA algorithm is used to
find the Nash equilibrium (NE) point. Section 5 evaluates the performance and discusses
the numerical results. Finally, Section 6 concludes this paper and discusses future work.

2. Related Work

The emergence of intelligent applications produces the demand for computing. Hence,
how to reduce the computation pressure in VEC under massive computation demand is an
urgent problem to solve. As mentioned above, SeVs and ES can share their idle computing
resource to help TaVs deal with their tasks and provide low-latency computing services.
Generally, applications are not processed only on restricted local resources while SeVs or
ES are available. Much research has focused on the auxiliary computation of TaV at these
two ends.

Due to the dynamic vehicular environment and the variation of available vehicular
computing resources, it is a great challenge to design a practical task offloading mechanism
to utilize vehicular computing resources via V2V links efficiently. The authors in [8] consider
a three-node scenario where a source node wants to communicate with a destination node
with the help of a relay node, where the relay node is for decoding and forwarding. The
goal of the scenario is to optimize partitioning by a virtual queue model. Specifically,
they present a stochastic modeling for V2V communication dynamics, an analytical model
for characterizing the reliability of a V2V link, and an evaluation model to illustrate the
computation reliability, which is defined as the probability that a vehicle successfully
calculates a certain amount of data within a deadline. An offloading strategy for a vehicular
fog computing-assisted platoon system is proposed in [9]. A task arrive at a TaV in the
platoon according to the Poisson distribution. If the available resources in the platoon are
sufficient, the TaV will request to offload the task to one SeV in the platoon. Otherwise, if
the vehicular fog has sufficient computation resource, the TaV will transmit the task to the
leader vehicle of the platoon, then the leader vehicle divides the task into the corresponding
number of subtasks and transmits the subtasks to the corresponding SeVs in the vehicular
fog one by one. The work in [10] considers a vehicle that has several computational tasks to
process, but the limited onboard computational capability cannot satisfy the requirement
of all tasks. It can offload some tasks to one neighboring vehicle with idle computing
resources. In addition, the V2V communication link’s dynamic and vehicles’ computing
resource allocation are considered. The work in [11] investigates the computation task
allocation among vehicles with the help of a base station (BS) and proposes a distributed
V2V computation offloading framework. In particular, the work formulates the task
allocation problem as a sequential decision-making problem. Considering that vehicles
with idle computing resources may not share their computing resources voluntarily, the
work thus proposes a dynamic pricing scheme that motivates vehicles to contribute their
computing resources according to the price they receive. The BS is used for information
management and resource allocation. Similarly, the work in [12] leverages the ability
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of BSs to achieve inter-region task offloading and takes the role of BSs as the resource
retailer in a proposed V2V trading paradigm. Based on the paradigm, the work proposes
a distributed dynamic many-to-many task offloading framework to improve the edge
resource utilization in VECNs while considering privately owned vehicles’ individual
serving and offloading intentions.

ES deployed at a BS or a roadside unit (RSU) can also participate in computation to
enhance the task processing capabilities of TaVs. On the one hand, the ES can participate
in the computation process alone. The authors in work [13] propose an efficient partial
computation offloading and adaptive task scheduling algorithm, where the system-wide
profit problem is decoupled into three parts. To minimize the task transmission delay, they
first develop an asymptotically optimal channel allocation discipline of all vehicles with a
given offloading ratio. Then, to derive the optimal offloading ratio, a convex optimization
problem is formulated that can maximize the system-wide profit. Finally, the payoff policy
for offloading services is determined to achieve the constructed non-cooperative game’s
equilibrium by jointly considering TaV’s position and speed, nearby vehicles, the available
number of ESs, availability of the requested service, etc. The work in [14] considers
a joint ES selection and computation offloading optimization problem in multiservice
VECNs. The problem is considered a sequential decision-making problem, because a
TaV, under the coverage of multiple ES, can select the proper one by sequentially testing
them one after another. At the same time, it can make sequential decisions for finding
a proper offloading ratio to the ES. However, every decision taken by TaVs can alter the
surrounding environment’s state. The V2V communications are exploited to be aware of
the surrounding environment and the potential offloading ESs, leading to better decisions
in terms of network selection and offloading. ESs have limited computing resources, and
multiple tasks may be offloaded to one ES, which leads to a set of contradictions in the
supply and demand of computing resources. Taking into account the distance between
TaV and RSU, application and communication models, and muti-TaV competition for ES
resources, the work in [15] proposes a multi-TaV non-cooperative computation offloading
game of a VEC scenario, in which each TaV adjusts its offloading probability to achieve the
maximum utility. The authors in [16] classify MEC servers into three categories, i.e., hot
MEC, neutral MEC, and nonhot MEC. They consider the sequential dependency between
components that make up the task and strive to realize vehicular task offloading through
cooperation among VEC servers based on the hot zone analysis. Specifically, their goal is to
provide a collaborative way to minimize vehicular application latency.

On the other hand, ES can participate in the computation process together with SeVs.
The work in [17] provides three available offloading modes for TaVs, i.e., local computing,
edge offloading, and V2V offloading while considering the channel allocation, V2V pairing,
and offloading mode selection. At the same time, one TaV can only choose one offloading
mode, and when multiple compute-intensive TaVs turn to the same SeV for help, they
will share the computation resource equally. Except for the offloading mode involved
in [17], the work in [18] considers two extra modes, i.e., TaV offloads the task to an RSU for
processing and uses V2V migration to transfer the computing results, and TaV offloads the
task to an RSU for processing and uses I2I migration to transfer the computing results. To
fully exploit computation resources, the authors in [19] assume that TaVs can selectively
offload partial tasks to the RSU with a MEC sever or SeVs by jointly considering the delay
requirements of tasks, communication distance, and the computation capability of RSUs.
Then, three subproblems, i.e., an offloading-matching subproblem, a channel allocation
subproblem, and a task offloading subproblem, are solved by a tabu search-based matching
algorithm, a graph coloring algorithm, and a variable substitution approach, respectively.
Thus, the appropriate SeVs to offload the computation tasks of TaVs, channel allocation for
vehicles, and computation resource allocation can be achieved.

It is quite a challenge to satisfy the delay requirements of emergency computation-
intensive vehicle applications. To minimize the total task processing delay, the work in [20]
divides vehicles into four sets according to whether they have task offloading requirements
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or provide task processing services, and it considers task processing flexibility by deciding
for each vehicle to process its tasks locally, to offload the tasks to RSU via V2I connections,
or to other vehicles via V2V connections. The work in [21] jointly considers VEC server
selection, offloading strategy, computation resource allocation, and load balancing among
VEC servers for a multi-user multi-server VEC system. Due to the fact that the task
processing delay is short, moving vehicles may have high satisfaction, and the utility
function as a satisfaction function should monotonically decrease with the delay of TaV.
Moreover, because of the limitation of computation resources, offloading can be less efficient
and result in overload if all vehicles select the same VEC server to offload their task. The
logarithmic utility is used here to satisfy the delay and load balancing requirements. Work
in [22] considers a fixed number of time periods and minimizes the average offloading
delay below the following three modes: (1) V2V offloading: TaVs directly offload tasks to
their SeVs with surplus computing resources in a distributed manner; (2) V2I2V offloading:
When there are no SeVs, tasks are first offloaded to an RSU and then assigned to other
vehicles in a centralized manner; (3) V2I offloading: Tasks are offloaded to RSUs for direct
processing. A comparison of the characteristics and the pros and cons in the recent research
is presented in Table 1.

Table 1. Comparison with the latest related studies.

Ref. Year Loc SeV Edge Velocity Advantages Shortcomings

[8] 2021 ✓ ✓ ✗ ✗
A virtual queue model is proposed to opti-
mize partitioning

The velocity of vehicle is
not given

[9] 2023 ✓ ✓ ✗ ✗
Both 0–1 offloading and partial offloading
are considered

The mobility of vehicles is
not considered

[10] 2022 ✗ ✓ ✗ ✗
Multiple SeVs can provide service for
a TaV Only one TaV is considered

[11] 2020 ✗ ✓ ✗ ✓
Relative velocity is considered and BS is
used for information management One TaV is considered

[12] 2022 ✓ ✓ ✗ ✓
Vehicles are motivated to form coalitions
to operate the resources cooperatively Channel model is not considered

[13] 2022 ✓ ✗ ✓ ✗
Non-orthogonal multiple access
is considered

Does not consider the resources
of nearby vehicles

[14] 2023 ✓ ✗ ✓ ✓

V2V links are used to be aware of the sur-
rounding environment and the potential
offloading of ESs

Each TaV can offload data to only
one ES

[15] 2020 ✓ ✗ ✓ ✗
The offloading probability of TaVs are
considered

Handover problem between dif-
ferent MEC platforms is not
considered

[16] 2020 ✓ ✗ ✓ ✗
MEC servers are classified into three
categories

Information management needs
to be considered

[17] 2022 ✓ ✓ ✓ ✗ Both SeV and ES can provide services Only one terminal can be chosen
once

[18] 2022 ✓ ✓ ✓ ✓
V2V migration and I2I migration are used
to transfer the computing results

Only one task of a TaV is
considered

[19] 2023 ✓ ✓ ✓ ✓ Multiple offloading modes are considered A computation task of a TaV is
considered

[20] 2023 ✓ ✓ ✓ ✓ Vehicle velocity distribution is analyzed
The time-varying or stochastic
V2V channel gain is not consid-
ered

[21] 2019 ✓ ✗ ✓ ✓
Integrating load balancing with offloading
is proposed

The arriving vehicle has a
constant speed

[22] 2019 ✗ ✓ ✓ ✗
Task is generated in time period and V2I2V
offloading is considered

Local computing resources is
not used

Ours ✓ ✓ ✓ ✓
The offloading mode can be chosen
adaptively A TaV has only one task

3. System Model and Problem Formulation
3.1. System Model

As presented in Figure 1, the system consists of an ES deployed at a BS/RSU and
N TaVs with intensive tasks. Vehicles can be expressed as N = {1, 2, · · · , N}. In addition,
task vehicle n is represented as TaVn and the profile of TaVn’s task as In = {Dn, Appn, τn},
where the three items represent data size (in bits), task processing density (in CPU cy-
cles/bit), and maximum tolerable latency (in seconds), respectively. The total CPU cycles
required to complete the task is Cn = DnAppn [23]. Moreover, the channels of TaVs adopt
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orthogonal frequency division multiple access method. Each TaV has a corresponding SeV,
namely, SeVn. Then, the SNR of TaVn to BS/RSU and to SeVn can be expressed as

γ
edg
n = Pedg

n gedg
n

/
δ2, (1)

γv2v
n = Pv2v

n gn′
n

/
δ2, (2)

where Pedg
n and gedg

n represent the transmitting power and channel gain of TaVn to BS/RSU.
Similarly, Pv2v

n and gn′
n represent relevant parameters between TaVn and SeVn.

MEC
 Server

tasks

Communication links

TaVn

SeVn

TaV

SeV

Loc

Loc+SeV

Loc+SeV+Edge

Loc+Edge

CSV links

TaV

TaV

Loc/SeV/Edge execute tasks

Figure 1. System model.

We adopt the urban channel model [24,25] for V2I and V2V links. The channel gain
gedg

n from the TaV to the BS/RSU is modeled by

gedg
n = 10(VehGain

Ant +BsGain
Ant −(PLV2I(d

edg
n )+SV2I)−BsFig

Noi)
/

10, (3)

where VehGain
Ant , BsGain

Ant , and BsFig
Noi are vehicle antenna gain, BS/RSU antenna gain, and

BS/RSU noise figure, respectively. The path-loss model PLV2I(d
edg
n ) of the V2I links is [24]

PLV2I(d
edg
n ) = 128.1 + 37.6log10(d

edg
n /1000), (dedg

n in m), (4)

where dedg
n represents the distance between TaV and BS/RSU. The shadowing value SV2I

denotes a Gaussian random value whose standard deviation is 8 dB.
Similarly, the channel gain between TaV and its SeV is modeled by

gn′
n =10(2∗VehGain

Ant −(PLV2V(dn′
n )+SV2V)−VehFig

Noi)
/

10, (5)
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where VehFig
Noi represents vehicle noise. The path-loss models PLV2V(dn′

n ) of the V2V links
for line-of-sight conditions are given by [25]

PLV2V(dn′
n ) =

22.7 ∗ log103 + 41 + 20 ∗ log10( f req/5), dist ≤ 3
22.7 ∗ log10(d

n′
n ) + 41 + 20 ∗ log10( f req/5), dn′

n ≤ 4 ∗ (HVeh−1)2 ∗ f req/c
40 ∗ log10(dn′

n )+9.45 − 17.3 ∗ log10((HVeh−1)2) + 2.7 ∗ log10( f req/5), else
,

(6)

where dn′
n , f req, and HVeh represent the distance between TaV and SeVs, the carrier fre-

quency, and vehicle antenna height, respectively. The standard deviation of SV2V is 3 dB.
Thus, transmission rates from TaVn to BS/RSU and SeVn can be expressed as

Redg
n = Blog2(1 + γ

edg
n ), (7)

Rv2v
n = Blog2(1 + γv2v

n ). (8)

3.2. Problem Formulation

The tasks of TaVn can be executed locally, offloaded to SeVn and to BS/RSU at the
same time, and the proportion of each part can be expressed as αn, βn, and θn, which satisfy
αn + βn + θn = 1, 0 ≤ {αn, βn, θn} ≤ 1. They can also indicate the offload modes. In other
words, when a task is not executed in one terminal, the corresponding offloading ratio is 0.
The local execution time can be expressed as

Tloc
n = αnCn

/
fn, (9)

where fn is the local execution capacity. In particular, when all parts of tasks are executed
locally, i.e., in Loc mode,Tn = Tloc

n = Cn/fn, αn = 1. In this case, Tn is equal to the local
execution time. Remote processing time includes transmission time and task execution
time. In general, the size of the computational result is much smaller than the input data
size of a task [26], and the send time is lower when one task needs to be offloaded. Then,
the influence of downloading time and vehicles’ mobility is negligible, and the processing
time of SeVn and ES can be expressed as

tn′
n = βnCn

/
fn′+βnDn

/
Rv2v

n , (10)

tedg
n = θnCn

/
ρnFedg+θnDn

/
Redg

n , (11)

where ρnFedg represents the computing resources of ES allocated to TaVn, and ρn is its
indicator. When tasks are executed in TaVn and SeVn, the Loc + SeV mode is entered, and
the processing time is the larger one of Tloc

n and Tn′
n , namely,

Tn = Tloc+sev
n = max{tloc

n , tn′
n } = max{αnCn

/
fn, βnCn

/
fn′+βnDn

/
Rv2v

n }. (12)

Due to the fact that tasks are not offloaded to ES, i.e., θn = 0, thus, αn + βn = 1,
0 < {αn, βn} < 1. Similarly, when tasks are executed in local and ES, the Loc + Edge mode
is entered, and the processing time is

Tn = Tloc+edg
n = max{tloc

n , tedg
n } = max{αnCn

/
fn, θnCn

/
ρnFedg+θnDn

/
Redg

n }, (13)

in the case, βn = 0, so, αn + θn = 1, 0 < {αn, θn} < 1. The total processing time of
Loc + SeV + EdgeV mode is the maximum one executed locally, offloaded to SeVn and to
ES, which can be expressed as
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Tn = Tloc+sev+edg
n =

max{tloc
n , tn′

n , tedg
n } = max{αnCn

/
fn, βnCn

/
fn′+βnDn

/
Rv2v

n , θnCn

/
ρnFedg+θnDn

/
Redg

n }
(14)

where αn + βn + θn = 1, 0 < {αn, βn, θn} < 1.
The total processing time of a TaV is related to its offloading ratio and the allocated

computation resources of ES. We use an = (αn, βn, θn, ρn) to represent the action of a TaV,
so the benefit based on the total time can be expressed as

Tn(an, a−n) =


−Tloc

n , if αn = 1, βn = θn = 0
−Tloc+sev

n , if 0 < {αn, βn} < 1, θn = 0, αn + βn = 1
−Tloc+edg

n , if 0 < {αn, θn} < 1, βn = 0, αn + θn = 1
−Tloc+sev+edg

n , if 0 < {αn, βn, θn} <1, αn + βn + θn = 1

, (15)

where a−n denotes the joint action of others except for TaVn. Task processing time can
reflect the system’s processing capacity to a certain extent, and lower processing time
means higher processing capacity. Therefore, our goal is to maximize the total benefits of
the system, which can be expressed as

P1 max ∑
{an}

Tn(an, a−n)

s.t. (C1) : αn + βn + θn = 1, 0 ≤ {αn, βn, θn} ≤ 1, n ∈ N
(C2) :0 ≤ ∑

n∈N
ρn ≤ 1, 0 < ρn ≤ 1

(C3) :−Tn(an, a−n) ≤ τn, n ∈ N

(16)

Constraint C1 ensures the integrity and separability of tasks. Constraint C2 ensures
that the utilization of computing resources of ES does not exceed the maximum. Constraint
C3 bounds the maximum delay of TaVn.

4. Problem Decomposition and Solution
4.1. Problem Decomposition

Figure 2 shows the relationship of the three terminals: TaV, SeVs, and ES. They all can
provide computation resources. Moreover, the ES can manage the matching of TaVs and
SeVs and make task-offloading strategies.

Make task offloading strategies

TaV
SeV

Manage the matching of TaVs and SeVs

ES

Provide and allocate computation resources

n nnTask 
offloading

Provide computation resources

Figure 2. The relationship of TaV, SeV, and ES.

Theorem 1. The total task processing time is minimal only when the processing time of each execute
terminal is the same.

Proof of Theorem 1. Take the Loc + SeV + EdgeV mode as an example. Suppose there exist α′n,
β′n, and θ′n that make Tn = max{α′nCn

/
fn, β′

nCn
/

fn′+β′
nDn

/
Rv2v

n , θ′nCn

/
ρnFedg+θ′nDn

/
Redg

n }
reach the minimal value, while satisfying

α′nCn
/

fn > β′
nCn

/
fn′+β′

nDn

/
Rv2v

n > θ′nCn

/
ρnFedg+θ′nDn

/
Redg

n ,
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it must be possible to adjust the ratio of α′n, β′
n, and θ′n to enable the task performed locally

to decrease and the task performed remotely to increase so that the values of the three parts
are gradually nearer and equal. Only if it satisfies

α∗nCn
/

fn = β∗
nCn

/
fn′+β∗

nDn
/

Rv2v
n = θ∗nCn

/
ρnFedg+θ∗nDn

/
Redg

n , does Tn reach the
minimal value.

Therefore, when offloading modes and allocating ratio ρn of TaVs are determined, the
offload proportion can be directly obtained. To get the offloading ratio of Loc + SeV + EdgeV
mode, we set

αnCn
/

fn = βnCn
/

fn′+βnDn

/
Rv2v

n = θnCn

/
ρnFedg+θnDn

/
Redg

n , (17)

and define 
Φ1 = fn

/
Cn

Φ2 = Rv2v
n fn′

/
(Rv2v

n Cn + Dnfn′)

Φ3 = ρnFedgRedg
n

/
(Redg

n Cn+ρnFedgDn)

. (18)

When we put (18) into (17), we have αnΦ1 = βnΦ2 = θnΦ3. Thus, the offloading ratio
can be obtained by 

αn = Φ1
/
(Φ1 + Φ2 + Φ3)

βn = Φ2
/
(Φ1 + Φ2 + Φ3)

θn = Φ3
/
(Φ1 + Φ2 + Φ3)

. (19)

Similarly, the offloading ratio of Loc + SeV mode is denoted by{
αn = Φ1

/
(Φ1 + Φ2)

βn = Φ2
/
(Φ1 + Φ2)

, (20)

and the offloading ratio of Loc + Edge mode is denoted by{
αn = Φ1

/
(Φ1 + Φ3)

θn = Φ3
/
(Φ1 + Φ3)

. (21)

The point is to find the proper offloading mode, and when TaVn offloads its tasks
to ES, ρn is also needed. In addition, the purpose of finding a proper offloading mode
and ρn for a TaV is to maximize the benefit of the utility. In this process, each TaV should
compete for computing resources and cooperate to maximize the overall benefit, which can
be solved by a game.

4.2. Multiuser Computation Resource Allocation Game

We introduce game theory and construct a centralized framework to obtain an ap-
propriate solution. Accordingly, we formulate the optimization problem as a multi-TaV
task offloading game G = {N , An, Un}, where N is the TaVs’ set, An = αn ⊗ βn ⊗ θn ⊗ ρn
represents TaVn’s strategy space, and Un is the utility function of TaVn.

As in studies [17,27], the impact of a certain decision-making action on the whole
system is measured by the marginal utility theory, and the utility function of a game
participant is denoted by

Un(an, a−n) = Tn(an, a−n) + ∑
i ̸=n

(Ti(ai, a−i)− Ti(ai, a−i\n)), (22)

where a−n is the TaVs’ action profile, except TaVn, Ti(ai, a−i) is the benefit of TaVi when
TaVn takes action, and Ti(ai, a−i\n) is the benefit of TaVi when TaVn takes no action.
Therefore, the first term and the second term of Equation (22) denote the benefit of TaVn
and the influence on other TaVs brought by TaVn’s action, respectively.
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The formulated game G reaches a NE while a∗ =
(
a∗1 , a∗2 , . . . , a∗N

)
if and only if no TaV

can increase its utility when changing its action unilaterally while other TaVs keep their
decisions unchanged, namely,

Un(a∗n, a∗−n) ≥ Un(an, a∗−n), ∀n ∈ N , ∀an ∈ An, an ̸= a∗n. (23)

In addition, if and only if there exists a potential function Θ such that [28]

Un(ãn, a−n)− Un(an, a−n) = Θ(ãn, a−n)− Θ(an, a−n), ∀n ∈ N , ∀an ∈ An, ∀ãn ∈ An, (24)

a game is an EPG, where an and ãn are available actions from TaVn’s strategy space.
Equation (24) means that the fluctuation of the two functions is the same while any TaV
changes its action.

Theorem 2. The proposed multi-TaV task offloading game is an EPG with at least one pure-strategy
NE point, and the optimal combination of offloading strategy and computation resources allocation
consists of a pure-strategy NE point of G.

Proof of Theorem 2. Motivated by [17], to make the potential function have physical
significance, the potential function is designed as

Θ(an, a−n) = ∑
n∈N

Tn(an, a−n), (25)

which is equivalent to the aggregate values of all TaVs. When TaVn changes its decision
from an to ãn, the change in individual utility function can be denoted by

Un(ãn, a−n)− Un(an, a−n)

= Tn(ãn, a−n) + ∑
i ̸=n

(Ti(ai, ã−i)− Ti(ai, ã−i\n))−
(

Tn(an, a−n) + ∑
i ̸=n

(Ti(ai, a−i)− Ti(ai, a−i\n))

)
= Tn(ãn, a−n)− Tn(an, a−n) + ∑

i ̸=n
(Ti(ai, ã−i)− Ti(ai, a−i)) + ∑

i ̸=n
(Ti(ai, a−i\n)− Ti(ai, ã−i\n))

. (26)

Whether or not the action of TaVn changes, the influence on other TaVs maintaining
their decisions is the same regardless of TaVn’s decision, i.e., Ti(ai, a−i\n) = Ti(ai, ã−i\n).
Then, the above expression can be reorganized as

Un(ãn, a−n)− Un(an, a−n) = Tn(ãn, a−n)− Tn(an, a−n) + ∑
i ̸=n

(Ti(ai, ã−i)− Ti(ai, a−i))

= Tn(ãn, a−n) + ∑
i ̸=n

Ti(ai, ã−i)−
(

Tn(an, a−n) + ∑
i ̸=n

Ti(ai, a−i)

)
= Θ(ãn, a−n)− Θ(an, a−n)

. (27)

Therefore, the constructed multi-TaV task offloading game is an EPG because the
change in individual utility function is the same as in the potential function when any TaV
unilaterally changes the decision. Based on the properties of EPG, the optimal solution
constitutes a pure-strategy NE. Theorem 2 is proven.

4.3. Best Response-Based Centralized Multi-TaV Computation Resource Allocation Algorithm

In this section, we develop the BR-CMCRA algorithm to achieve the desirable NE
point of the multi-TaV computation resource allocation game.

4.3.1. Algorithm Design

The BR-CMCRA algorithm based on the best response is proposed here, and the
algorithm follows one design principle of game theory, namely, the finite improvement
property. Based on the property, the game player can improve its utility step by step. This
principle is embodied in many learning algorithms, e.g., best response and better reply [29].
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The best response can find the best solution in each iteration. Specifically, the chosen TaVn
updates its decision if and only if it can improve more properties than the other TaVs.
Otherwise, TaVn decides to keep its decision unchanged. The specific algorithm process is
shown in Algorithm 1.

Algorithm 1 BR-CMCRA algorithm
Initialization:
1. Each TaV chooses its SeV based on the channel gains from its nearest three candi-

date SeVs.
2. The processing time of a TaV’s task is first initialized according to the time of Loc

execution mode and Loc + SeV execution mode. Specifically, if the local execution time is
smaller, it is initialized to the Loc mode. Otherwise, it is initialized to the Loc + SeV mode.
3. The edge computing resources are divided into λN parts, and the ratio of each part is

1/λN, where λ is a constant factor. The iteration index k of the proposed algorithm is set
to 1.
Repeat Iterations:
Step 1: One part computation resource Fedg

/
λN is taken out and will be allocated in

this iteration.
Step 2: The ES maintains a table that stores the processing time of each TaV in different

modes, i.e., Loc + SeV mode, Loc + Edge mode, Loc + SeV + EdgeV mode, and Loc execu-
tion mode.
Step 3: Evaluate the completion status of each TaV and if ∆Tn < 0. The picked TaVn

updates its allocated computation ratio ρn based on the following rule:

an(k + 1) =
{

a′n, i f min ∆Tn
an(k), else (28)

Step 4: If ∆Tn ≥ 0, evaluate the improved utility of each TaV according to the BS/RSU for
an update opportunity. The picked TaVn updates its allocated computation ratio ρn based
on the following rule:

an(k + 1) =
{

a′′
n , i f max ∆Un

an(k), else (29)

where a′n and a′′
n is the decision based on Equations (30) and (31) of TaVn; an(k + 1) is

TaVn’s decision in the (k + 1)th iteration, while other TaVs keep their decision unchanged.
Step 5: Update the offloading strategy based on Equations (19)–(21); k = k + 1.
The algorithm will terminate when the utility reaches the maximum number of iterations,

i.e., λN.
End

It’s worth noting that the new action a′n, selected from the strategy space of player n,
is updated if player n cannot complete processing its tasks, i.e.,

a′n = min
(
{a′n|a′n ∈ An,∆Tn}

)
, ∀n ∈ N , (30)

where An indicates TaVn’s strategy space, and ∆Tn = τn − Tn(an, a−n) denotes the differ-
ence between the maximum delay and the processing time. Similarly, the new action a′′

n is
updated if and only if a′′

n can bring the highest improved utility than the other players, i.e.,

a′′
n = max

(
{a′′

n |a′′
n ∈ An,∆Un}

)
, ∀n ∈ N , (31)

where ∆Un = Un(a′n, a−n)− Un(an, a−n) represents the improved utility.
We adopt a pre-allocation mechanism to achieve the improved benefit comparison

between multi-TaV interactions. Specifically, a part of edge computing resource Fedg
/

λN
is pre-allocated to each TaV, and the processing time is calculated and stored in ES.
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Then, the improved benefits can be acquired based on the pre-allocated resources and
the previous results.

4.3.2. Analysis of the Convergence and Complexity

The aforementioned game model is an EPG, so all TaVs can gradually improve their utility
step by step based on the finite improvement property [28]. In addition, the change of value in
the constructed utility function and its corresponding potential function is just the same when
any TaV changes its decision, i.e., Un(ãn, a−n)−Un(an, a−n) = Θ(ãn, a−n)− Θ(an, a−n) in
Equation (24). It means the optimization objective will improve with the rise of utility. Since
the finite strategy space bounds the utility, if no TaV wants to change its current decision,
the proposed algorithm will converge and achieve the maximization of the optimization
problem locally or globally. In other words, the BR-DMCTO algorithm converges to the NE
point of the optimization problem.

The complexity of the proposed algorithm is analyzed here. As shown in Algorithm 1,
the number of iterations is λN. In each iteration, the complexity mainly comes from the ES
computation resources selection of TaVs. In the first iteration, the TaV with the maximum
increment utility is selected for updating. The complexity is log(N). In the subsequent
iterations, only the TaV that allocated computation resources will update its increment
utility before selection. The complexity is log(N1) or log(N2) based on steps 3 and 4, where
N1 and N2 represent the TaVs that satisfy ∆Tn < 0 and ∆Tn ≥ 0, respectively. Let us
consider the worst-case scenario where the complexity of each iteration is log(N). Hence,
the complexity of the proposed algorithm is O(λN ∗ log(N)).

5. Performance Evaluation

Simulation results are given to verify the effectiveness of our proposed algorithm,
which are averaged over 1000 independent experiments to ensure the scientific nature of
the simulation. It is worth mentioning that if the velocity of vehicles is 30 (in m/s), then
the average inter-vehicle distance is 2.5 × 30/3.6 according to TR 36.885, i.e., 20.83. In
addition, the cell radius CR of the model is 500 (in m). The major simulation parameters
are summarized in Table 2.

Table 2. Simulator parameters.

Parameter Value

Wireless bandwidth of the BS/RSU (B) 2 MHz
Data size of a task (Dn) [10, 20] Mbits
The required CPU cycles per bit of a task (Appn) [100, 200] CPU cycles/bit
The maximum tolerable delay of a task (τn) [1, 2] s
Transmit power of the vehicles (P) 23 dBm
CPU cycle frequency of the ES (Fedg) 10 GHz
CPU cycle frequency of a TaV (fn) or a SeV (fn′ ) [1, 2] GHz
Noise power (δ2) −114 dBm
The cell radius (CR) 500 m
BS/RSU height 25
Vehicles antenna height (HVeh) 1.5
Carrier frequency ( f req) 2 GHz
Antenna gain of BS/RSU and vehicles (BsGain

Ant and VehGain
Ant ) 8 dBi and 3 dBi

The noise figure of BS/RSU and vehicles (BsFig
Noi and VehFig

Noi) 5 dB and 9 dB

The performance of our proposed BR-CMCRA algorithm is compared with the fol-
lowing four algorithms about the total/completed processing delay, maximum processing
time, average throughput of TaVs, number of devices executed in each mode, and lost rate
of each execution mode.

1. LSVE [8] : TaVs leverage Loc + SeV mode to obtain the allocation strategies;
2. LESE [13] : TaVs leverage Loc + Edge mode to obtain the allocation strategies;
3. LSVLESE [19] :TaVs leverage Loc + SeV mode or Loc + Edge mode to obtain the

allocation strategies;
4. LEA: All tasks are executed locally.
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5.1. Convergence Behavior

We analyze the convergence of computation resource allocation from the perspective
of the performance gap of the last two iterations. Algorithms requiring the assistance
of ES include BR-CMCRA, LESE, and LSVLESE. As shown in Table 3, the gap of our
proposed BR-CMCRA algorithm fluctuates around 0.01, which means the performance
cannot improve a lot to some degree. In addition, the maximum gap of the LESE algorithm
is 0.0312, which is acceptable. The LSVLESE algorithm’s gap is significant because its
iteration times are five times the amount of TaVs, whereas the other algorithms are set to
ten times. The iterations are fewer in the LSVLESE algorithm because when a task is chosen
to be executed in Loc + Edge mode, the allocated computation resources must exceed a
certain amount, or the TaV may prefer to choose Loc + SeV mode.

Table 3. The convergence of computation resource allocation.

Number of Vehicles 5 10 15 20 25 30 35 40

BR-CMCRA 0.0129 0.0127 0.0112 0.0099 0.0089 0.0080 0.0073 0.0067
LESE [13] 0.0262 0.0312 0.0309 0.0276 0.0240 0.0201 0.0172 0.0155
LSVLESE [19] 0.2063 0.1875 0.1955 0.1038 0.2066 0.2081 0.2164 0.2131

5.2. Performance Comparison

Figure 3 shows the total and completed task processing time of TaVs, and the total
task completion time is the total task processing time minus the task processing time that
cannot be completed. The proposed algorithm has the lowest value. The task processing
time of all algorithms increases linearly except the completed time of the LESE algorithm.
When the number of TaVs is fewer than 20, with the increase of tasks, the LESE algorithm’s
task completion time gradually increases. Specifically, when the number of tasks is fewer
than 15, there is little difference between the completed and total task processing time. In
this case, ES can assist the TaVs in completing their tasks within a specified delay. When the
number of tasks increases, the number of tasks that cannot be completed increases, and the
computation resources of ES cannot provide enough services. Thus, the gap between the
two times becomes larger and larger. When the number of tasks equals 40, the completed
task processing time is slightly larger than that of LEA. Since TaV has limited resources,
the two curves of the LEA algorithm are at the outermost. Specifically, LEA has the largest
total task processing time and the smallest completed task processing time. Compared
with LEA, the performance of LSVE has improved a lot, which means that SeVs help a
lot. Furthermore, with the help of ES, the total processing time of the LSVLESE algorithm
is smaller than LSVE, and the completed processing time of the two algorithms are the
opposite. The two times of BR-CMCRA coincide, which means the tasks can be totally
completed in our proposed algorithm.

The maximum task execution time is the maximum task execution time of those tasks
that can be completed within the limited latency. As shown in Figure 4, the maximum time
of our proposed BR-CMCRA algorithm is the minimal one. Except for the LESE algorithm,
the curves of other algorithms are the same and do not cross each other. The LESE algorithm
crosses with the LEA algorithm and the LSVE algorithm. As the tasks executed in ES
increase, the computing resources of ES become insufficient, and the performance of the
LESE algorithm will decline.
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Figure 3. The total/completed task processing time versus the number of TaVs.
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Figure 4. The maximum time of all tasks versus the number of TaVs.

As shown in Figure 5, the average throughput of each algorithm is given. As the LEA
algorithm executes tasks locally, its throughput is constant zero. We disregard it in the
figure. Because the number of TaVs and the number of SeVs of the LSVE algorithm increases
1:1, the throughput of each vehicle is relatively stable, which is from V2V links. Except for
V2V links, LSVLESE also uses the V2I links; the throughput of the LSVLESE algorithm
is larger than that of the LSVE algorithm. The BR-CMCRA and LESE algorithms’ trends
are similar, which can reflect the influence of ES to a degree. In addition, the difference in
values between the two algorithms can reflect the influence of SeVs to a degree.
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Figure 5. The average throughput of each TaV versus the number of TaVs.

As shown in Figure 6, the ratio of TaVs executing tasks in different modes are given,
which can reflect the execution tendency of TaVs’ tasks under these algorithms. The LSVE
algorithm and the LEA algorithm have only one execution mode. The execution ratio is
100%, so they are not drawn in Figure 6. The BR-CMCRA algorithm includes Loc + SeV
execution mode and Loc + SeV + EdgeV execution mode, and tasks in the BR-CMCRA
algorithm tend to be executed in Loc + SeV + EdgeV execution mode because tasks executed
in more entities may improve performance. In addition, the two curves of the BR-CMCRA
algorithm do not intersect, which means the Loc + SeV + EdgeV execution mode has
obvious advantages. Similar to the BR-CMCRA algorithm, the two curves of the LSVLESE
algorithm also do not intersect. The LSVLESE algorithm includes Loc + SeV execution
mode and Loc + Edge execution mode, and tasks in the algorithm tend to be executed in
Loc + SeV execution mode. The number of TaVs that ES can provide computation resources
for is constant, and each TaV can be served by a corresponding SeV. Unlike the BR-CMCRA
algorithm and the LSVLESE algorithm, the two curves of the LESE algorithm have a point
of intersection. The LESE algorithm involves Loc execution mode and Loc + Edge execution
mode. When the task number is less than 35, tasks tend to be executed in Loc + Edge mode.
ES can provide services for TaVs at this time. However, when the task number is more
than 35, tasks tend to be executed in Loc mode because ES’s computation resources are
insufficient. When the task number is near 35, the ratio of the Loc execution mode is equal
to that of the Loc + Edge execution mode.

As shown in Figure 7, the lost rate of each execution mode in each algorithm is
simulated. The lost rate of the BR-CMCRA algorithm is approximately equal to 0, which
means the tasks of all TaVs can be executed within its delay. Compared with the BR-
CMCRA algorithm, the LSVLESE algorithm changes Loc + SeV + EdgeV execution mode
into Loc + Edge mode, causing the lost rate of the LSVLESE algorithm to be slightly higher
than the BR-CMCRA algorithm. Without the help of ES, the lost rate of the LSVE algorithm
is higher than the BR-CMCRA and LSVLESE algorithms and ranges from 1% to 2%. The
LEA algorithm, which executes tasks locally, has the highest lost rate. In addition, the
lost rate of the BR-CMCRA algorithm, LSVLESE algorithm, LSVE algorithm, and LEA
algorithm are all relatively stable. On the contrary, the lost rate of the LESE algorithm
increases rapidly, and that of the LESE algorithm in Loc + Edge execution modes even
exceeds the LEA algorithm. Because ES fails to decrease the task processing time to less than
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limited latency, the lost rate of the LESE algorithm mainly comes from Loc + Edge. Similarly,
the lost rate of the LSVLESE algorithm mainly comes from the Loc + SeV execution mode.
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Figure 6. The ratio of each execution mode versus the number of TaVs.
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Figure 7. The lost rate versus the number of TaVs.

6. Conclusions

A best-centralized edge computing resource allocation scheme based on response is
proposed, and a pre-allocation mechanism is adopted to select the computation resources
for TaVs with the best benefit. However, the channel state information is relatively stable
in our proposed scheme. In future work, we will consider the change of channel state
information and offloading strategy caused by the mobility of vehicles. In addition, when
TaVs have multiple task to be executed, the asynchronous offloading of multiple TaVs is
worth considering.



Sensors 2024, 24, 69 17 of 18

Author Contributions: Conceptualization, X.L. and J.Z.; methodology, X.L. and M.Z.; software,
X.L. and Y.L.; investigation, X.L.; resources, J.Z.; writing—original draft preparation, X.L., R.W. and
Y.H.; writing—review and editing, X.L., J.Z., M.Z. and Y.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

VECNs vehicle edge computing networks
IoV Internet of Vehicles
ES edge server

BR-CMCRA
a best response-based centralized multi-TaV computation resource
allocation algorithm

SeV service vehicle
TaV task vehicle
QoS quality of services
CSV candidate SeVs
EPG exact potential game
V2X vehicle-to-everything
V2V vehicle-to-vehicle
V2I vehicle-to-infrastructure
ITS intelligent transportation systems
VEC vehicular edge computing
LSVE Local + SeV execution algorithm
LESE Local + Edge execution algorithm
LSVLESE Local + SeV and Local + ES execution algorithm
LEA Local execution algorithm
NE Nash equilibrium
BS base station
RSU roadside unit
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