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Abstract: This paper addresses the problem of feature encoding for gait analysis using multimodal
time series sensory data. In recent years, the dramatic increase in the use of numerous sensors, e.g.,
inertial measurement unit (IMU), in our daily wearable devices has gained the interest of the research
community to collect kinematic and kinetic data to analyze the gait. The most crucial step for gait
analysis is to find the set of appropriate features from continuous time series data to accurately
represent human locomotion. This paper presents a systematic assessment of numerous feature
extraction techniques. In particular, three different feature encoding techniques are presented to
encode multimodal time series sensory data. In the first technique, we utilized eighteen different
handcrafted features which are extracted directly from the raw sensory data. The second technique
follows the Bag-of-Visual-Words model; the raw sensory data are encoded using a pre-computed
codebook and a locality-constrained linear encoding (LLC)-based feature encoding technique. We
evaluated two different machine learning algorithms to assess the effectiveness of the proposed
features in the encoding of raw sensory data. In the third feature encoding technique, we proposed
two end-to-end deep learning models to automatically extract the features from raw sensory data. A
thorough experimental evaluation is conducted on four large sensory datasets and their outcomes
are compared. A comparison of the recognition results with current state-of-the-art methods demon-
strates the computational efficiency and high efficacy of the proposed feature encoding method.
The robustness of the proposed feature encoding technique is also evaluated to recognize human
daily activities. Additionally, this paper also presents a new dataset consisting of the gait patterns of
42 individuals, gathered using IMU sensors.

Keywords: gait analysis; human activity recognition; time series sensory data; feature encoding;
classification

1. Introduction

Gait refers to the movement patterns of an individual’s walk. It encompasses the
rhythm, speed, and style of movement which require a strong coordination of the upper
and lower limbs. The process of gait analysis involves evaluating an individual’s walking
pattern to assess their biomechanics and identify any abnormalities or inefficiencies in their
movement [1]. It has been an active research area over the last few years due to its utilization
in numerous real-world applications, e.g., clinical assessment and rehabilitation, robotics,
gaming, entertainment, etc. [2,3]. The quantitative gait analysis has also been explored
as a biometric modality to identify a person [4]. The gait analysis has several advantages
over other existing modalities; in particular, it is unobtrusive and difficult to steal or falsify.
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Gait analysis is a challenging task because it involves the complex coordination of human
skeletal, muscular, and nervous systems. Additionally, the gait can be affected by a wide
range of factors, such as age, injury, disease, and environmental conditions. This results in
intra-personal variations, which are always greater than inter-personal variations.

The gait data can be gathered via a variety of sensing modalities that can be broadly
divided into two groups: using sensing modalities [5] and using visual cameras [3]. Figure 1
illustrates these sensing modalities that can be used for data gathering. Each of these
modalities have their own strengths and limitations, and researchers choose to use single or
a combination of several modalities to capture gait data based on their research questions
and goals. Vision-based systems have been extensively used in the gait analysis due to
their higher precisions however, their use raises confidentiality and privacy concerns [6].
Conversely, the digital sensors such as inertial measurement units (IMU), and pressure
sensors have been also used to collect the gait data. These tiny sensors can easily be
embedded in our environment, including walking floor, wearable devices, and clothes.
Furthermore, a few of such sensors are already embedded in our daily used digital gadgets,
e.g., smart phones, smart watches, and smart glasses [7]. These devices generate data in
the form of pressure signals, velocity, acceleration, and positions which can be used to
represent the gait.

Gait Data Collection

Optical, Color, Reflective

Using Visual Sensor

MarkerlessUsing Marker

Camera

Using Sensing Modalities

WearableFlooring

Pressure Sensor Motion Sensor

Figure 1. A set of sensing modalities that can be used for gait data collection.

Analyzing gait requires the use of sophisticated tools and techniques. Since the gait
comprises continuous time series data, we need to extract a set of relevant features from
these raw data to represent gait patterns. There are several approaches in the literature
to extract features, and they can be categorized into three groups: (1) handcrafted [8],
(2) codebook-based [9], and (3) automatic deep learning-based [10] feature extraction
approaches. The handcrafted features are usually a few statistical quantities, e.g., mean,
variance, skewness, kurtosis, etc., that are extracted from raw data based on the prior
knowledge of experts in the application domain. Later, these features are fed to machine
learning algorithms for classification. Typically, they are simple to implement and are
computationally efficient; however, they are designed to solve a specific problem and are
not robust [7]. The codebook-based feature learning techniques follow the channel of Bag-
of-Visual-Words (BOVWs) approach [11] to compute gait features. Specifically, they employ
clustering algorithms, e.g., k-means, to build a dictionary (also known as codebook) using
the gait sub-sequences from raw data. The data are grouped based on their underlying
similarities, and the clusters’ centers are known as “codewords”. Later, a histogram-
based representation is computed for other sequences by tying them to the closest-related
codeword. Codebook-based techniques are proven to be robust as they can capture more
complex patterns in the gait data; however, they are computationally expensive [12]. Deep
learning-based techniques automatically compute discriminative features directly from the
input data using artificial neural networks (ANNs). A deep network usually comprises
several layers where each layer consists of artificial neurons. After obtaining input, a specific
feature map is computed by the neurons in each layer and then forwarded to the next
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layer for further processing, and so forth. Finally, the network’s last layers generate highly
abstract feature representations of the raw sensory data. A few examples of deep learning
approaches for gait analysis are convolutional neural networks (CNNs) [13], recurrent
neural networks (RNNs) [14], and long short-term memory networks (LSTMs) [15]. Deep
learning-based approaches can automatically learn complex features from raw data and
are adaptable to new datasets and scenarios; however, they are computationally much
more expensive and require a huge amount of labeled instances to optimally choose the
hyperparameters’ values of the deep network. The entire process is greatly hampered by
the lack of prior information necessary to encode the appropriate features in the application
domain and the choice of the best parameters for the machine learning algorithms [7].

This paper presents a systematic evaluation of numerous feature learning techniques
to encode multimodal time series sensory data for gait analysis. Furthermore, the proposed
feature encoding techniques also explored to recognize the human daily activities which
were recorded using sensory data too.Specifically, we presented three different encoding
techniques to recognize the walking styles. In the first technique of handcrafted features,
we computed eighteen different statistical quantities from the raw sensory data, and they
are fused together in a single feature vector to obtain the high-level representation. In
the second feature learning technique, we build a codebook using k-means clustering
algorithm, and the high-level feature representation is obtained using Locality-constraint
linear encoding (LLC) [16]. In both of the aforementioned techniques, we explored the
effectiveness of Support Vector Machines (SVMs) and Random Forest (RF) as machine
learning algorithms to recognize different walking styles. Third, we presented two deep
learning models, a CNN and an LSTM, which employed raw sensory data as input to
recognize walking sequences. The effectiveness of the proposed features was assessed
on four datasets, namely Gait-IMU, MHEALTH [17], WISDM [18], and UCI-HAR [19].
An extensive experimental evaluation of different feature encoding techniques was carried
out along with different values of hyperparameters, and the recognition scores were
compared with recent state-of-the-art approaches. The proposed framework establishes
a solid foundation and generic framework to encode any time series multimodal sensory
data. We believe that the raw time series sensory data of other sensing modalities such as
SensFloor, skin temperature sensors, and electrocardiograms (ECGs) can also be encoded
using the proposed approaches to perform recognition tasks. The proposed framework
can be employed in numerous emerging fields and technologies, including healthcare and
rehabilitation, sports, assistive living, and others. The major contributions of the proposed
manuscript are as follows:

• A comparative study of three different feature encoding techniques is presented.
• A comprehensive review of the existing techniques is presented, and their benefits

and drawbacks are discussed.
• The effectiveness of various machine learning methods is evaluated in order to classify

the multimodal sensory data.
• The computational analysis of different feature encoding techniques is presented.
• The robustness of the proposed technique is assessed on several applications, including

walking styles, human activities, etc.
• A rigorous evaluation of all the feature encoding techniques is carried out on four

large datasets.
• A large gait dataset that is collected using IMU sensors is proposed.

2. Related Work

Gait analysis is a fundamental tool in biomechanics that allows for both quantitative
and qualitative assessment of human movement. It involves the analysis of the spatiotem-
poral parameters, kinematics, and kinetics of gait, which are important indicators of the
locomotion function [20–22]. This paper mainly emphasizes on gait analysis using mul-
timodal time series sensory data. The existing techniques employed either a pressure
sensor [23–25] or an IMU [26,27] to encode walking patterns. In recent years, a large num-
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ber of algorithms has been presented to investigate the movement of human body parts
for clinical and behavioural assessment. They can be broadly divided into three groups,
as depicted in Figure 2. In the following, a brief summary of a few techniques from each
group is presented.

Raw Sensory Data

Codebook-based 

Approaches

Handcrafted Feature-

based Techniques

Deep Learning-based 

Approaches 

Figure 2. Classification of existing feature encoding techniques using sensory data based on their
underlying computing methods.

2.1. Handcrafted Feature-Based Techniques

These set of techniques either compute several statistical measurements on input data
(e.g., average, variance, skewness) or extract more complex gait characteristics, which may
include stride length, joint angles, and other related features. In the context of machine
learning, handcrafted features refer to manually designed features that are extracted from
raw data and used as input to a classifier [8,28–30]. For instance, the technique proposed
in [31] extracted several statistical quantities on input data (e.g., mean, median, mode,
standard deviation, skewness, and kurtosis) to show the gait fluctuation in a patient with
Parkinson’s. They employed Fisher Discriminant Ratio to determine the most discrimina-
tory statistical feature. A comparative study of different handcrafted features is proposed
in [28] for the early detection of traumatic brain injury. The authors employed the location
and accelerometer sensory data of a smartphone to extract nine gait features, including coef-
ficient of variance, step count, cadence, regularity in step, stride, etc. Similarly, the authors
of [32] extracted standard deviation, skewness, kurtosis, and bandwidth frequency features
from the accelerometer data of an IMU sensor mounted on the subject’s lower back to
distinguish between normal and stroke gait patterns. The study presented in [33] extracted
thirty-eight statistical quantities, including maximum, minimum, average, spectral energy,
etc., to monitor and quantify various human physical activities using a smartphone’s IMU
sensory data. Similarly, the technique proposed in [34] employed frequency domain fea-
tures to assess gait accelerometer signals. The approach proposed in [35] analyzed the gait
sensory data using adaptive one-dimensional time invariant features.

These techniques appear simple in implementation; however, they are highly based
on expert knowledge in the application domain. Additionally, they are designed to solve a
specific problem and are not robust.

2.2. Codebook-Based Approaches

These techniques follow the work-flow of the BOVWs approach to encode the raw
sensory input data into its compact but high-level representation. In particular, the input
data are clustered based on similar patterns using a clustering algorithm (e.g., k-means) to
create a dictionary. The cluster centers in the dictionary are known as codewords which
describe the underlying variability in the gait data. Later, a final representation of the raw
gait input data is achieved by estimating the distribution of these codewords in the gait
sequence. This results in histogram-like features (where a histogram bin represents the
occurrences of a specific codeword) which are fed to a classification algorithm for further
analysis. For instance, the authors of [7,36] employed sensory information from commonly
used wearable devices to identify human activities. They built a codebook using a k-means
clustering algorithm, and the final gait representation is achieved using a simple histogram-
binning approach. Similarly, the technique proposed in [37] employed IMU sensory data
from smartphones and smartwatches to recognize Parkinson’s tremor using a codebook-
based approach. In [38], research was carried out to recognize the human gait phase using
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two sensors: an accelerometer and a gyroscope. A codebook-based approach was explored
to extract gait features from the raw sensory data. Similarly, the authors of [39] presented
an approach to determine the best working positions for various movement phases and
to guide the performer on how to keep them while performing physical activities. They
explored a k-means clustering codebook to encode the different working postures for
each phase of movement. In [40], a separate codebook is constructed to each sensor
modality, including accelerometer, gyroscope, and magnetometer. The resulting features
were concatenated to form a compact and high-level feature vector to classify human
daily activities using SVM with a radial basis function (RBF) kernel. The technique in [41]
presented a visual inertial system to recognize daily activities using two RGB-D (red,
green, blue, and depth) detectors with a wearable inertial movement unit. They employed
codebook-based technique on different sensing modalities to compute the desired features.
In [12], a detailed comparison of different codebook-based feature encoding approaches is
presented to recognize gait.

These techniques are proven to be robust, to some extent, as they can capture more
complex patterns in the gait data; however, they are computationally expensive [12].
Additionally, this process of codebook computation may need to be performed again if new
classes are added in the dataset [42].

2.3. Deep Learning-Based Approaches

Lately, automatic deep learning-based feature extraction approaches have been largely
explored in different classification tasks due to their robustness in automatic feature extrac-
tion, generalization capabilities, and convincing recognition results. A deep network is
typically an end-to-end architecture that can learn complicated patterns and relationships
in input data using a fully automated feature extraction process. In particular, it comprises
many layers of interconnected neurons. The network’s intricate and iterative structure
allows for the learning of high-level features from input data as it passes it through (i.e.,
the weight adjustments of neurons and back-propagation of errors [43]). Numerous auto-
matic feature learning-based techniques on gait analysis have been proposed in the past;
convolutional neural networks (CNNs) [44] and long short-term memory (LSTM) [45]
are a few examples to quote. For instance, the authors of [44] presented an IMU-based
spectrogram technique to categorize the gait characteristics using a deep CNN. The authors
of [46] explored a CNN to extract the appropriate high-level feature representation from
pre-processed time series input data. They turned the input data into two-dimensional (2D)
images where the y-axis represents various features and the x-axis represents the time.

Since a CNN is typically designed to process imagery data, a few other networks
have also been explored to analyze gait [47–49]. For instance, the authors of [45] employed
window-based data segmentation to classify gait sequences using a multi-model long short-
term memory (MM-LSTM) network. To compute features from each window, the MM-
LSTM network accepts input gait data that have been segmented into several overlapping
windows of equal length. The authors of [50] employed recurrent neural networks (RNNs)
for gait analysis. The method for calculating gait mechanics using an artificial neural
network (ANN) with measured and simulated inertial measurement unit (IMU) data is
suggested in [51]. The authors concluded that more precise estimations of gait mechanics
can be obtained by combining the ANN with both simulated and actual data. In [52], a
comprehensive overview of different deep learning models is presented to monitor the
human gait.

The studies show that deep learning-based feature encoding techniques are effective
tools for analyzing gait and have the potential to explore the underlying mechanics of
gait. They provide automatic end-to-end learning; however, they also require complex
computational resources and a huge amount of training data.
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3. Overview of the Proposed Method

This paper presents a systematic evaluation of three different feature learning tech-
niques to recognize the different walking styles using sensory data. The gait sequences
were recorded using a set of IMU sensors. In the first method, we present eighteen dif-
ferent handcrafted features to represent a gait sequence. Secondly, we built a codebook
using a k-means clustering algorithm, and the high-level gait features are obtained using
locality-constrained linear coding (LLC). We evaluated two machine learning algorithms,
namely SVM and RF, to validate the effectiveness of the aforementioned proposed features.
Third, we employed two deep neural networks, namely CNN and LSTM, to automatically
compute the discriminative gait features from raw sensory data. The proposed feature
learning techniques were evaluated on four large datasets, and their results were compared
with existing state-of-the-art techniques.

4. Proposed Feature Learning Techniques

This paper aims to present a comparative study of several feature extraction ap-
proaches to encode multimodal time series data for gait analysis. This section presents
three different feature learning techniques to recognize walk styles using IMU sensory data.
In the following, we briefly describe each technique.

4.1. Handcrafted Features

These features are computed either using a few simple statistical quantities (e.g.,
variance, skewness, etc.) or complex frequency domain-based features directly from raw
sensory data [53]. We computed eighteen different handcrafted features and fused them
together (via simple concatenation) to form a single vector representation. In the following,
a short description of each feature is explained.

• Maximum: Let M be a set of values. Max(M) will result in mi s.t. Then mi ∈ M is the
maximum value of that set.

• Minimum: Similarly, Min(M) will result in mi s.t. Then mi ∈ M is the minimum value
of the set.

• Average: Suppose a dataset M comprises n numbers, the average can then be com-
puted as:

Average(M) = µ =
∑n

i=1 mi

n
(1)

• Standard deviation: It is the average deviation of data points from the distribution
center (i.e., µ) and can be calculated as:

StdDev(M) = σ =

√
∑n

i=1(mi − µ)2

n − 1
(2)

• Zero crossing: This feature determines how many times the specified set of values
have zero crossings in the data [53]. Specifically, it can be considered a location on
a mathematical function’s graph where the axes intercept, that is, when the graph
crosses zero in either direction.

• Percentiles: This feature represents the number below a specific percentage
of values in data. Specifically, a qth percentile would be a value in the dataset such that,
at most, (100 × q)% of the data points fall below this value and
100 × (1 − q)% of the values fall above. That is, the 25th percentile (also known
as the first quartile) reveals a feature whose value is greater than 25% and less than
75% in the dataset. Similarly, the 50th and 75th percentiles are represented by sec-
ond and third quartiles, respectively. In the proposed technique, we computed three
distinct percentiles features: (1) percentile 20, (2) percentile 50, and (3) percentile 80.

• Interquartile range: The first quartile value is subtracted from the third quartile value
to obtain the interquartile range.
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• Kurtosis: This feature is a measure to quantify the variations in the tails of a distribu-
tion from a normal distribution [54]. A large value represents a higher extremity of
deviation, i.e., outliers. It can be formulated as:

Kurtosis = ∑(mi − µ)4

nσ4 (3)

• Skewness: Skewness describes the dataset’s divergence from the normal distribution.
That is, it measures the asymmetry of normal distribution in either direction.

skewness(M) = µ̃3 =
∑n

i=1(mi − µ)3

nσ3 (4)

• Auto-correlation: It is a numerical quantity to measure the similarity between the data
at time t1 and a lagged version of data in a temporal direction (at time t2). Conceptually,
it estimates the correlation between the current data and previous values [55]. It can
be formulated as:

Rk =
∑n−k

i=1 (mi − µ)(mi+k − µ)

∑n
i=1(mi − µ)2 (5)

• Order mean values: To compute order mean values, the data are arranged in an
ascending order. The smallest value in the sorted dataset corresponds to the first-order
statistic. The second-order statistic is the next smallest number, and so on. In the
proposed technique, we computed four distinct features using order mean values:
(1) First-Order Mean (FOM), (2) Norm of FOM, (3) Second-Order Mean (SOM), and
(4) Norm of SOM. We employed two of the mostly used norm techniques: L1 (i.e.,
Manhattan distance) and L2 (i.e., Euclidean distance).

• Spectral entropy: The spectral entropy (SEP), which gauges a signal’s spectral power
distribution, is based on the Shannon entropy idea. The time-based signal was trans-
formed into its frequency spectrum using the Fourier transform. The standardized
power distribution in the frequency domain is taken into account as a probability
density function to calculate the signal’s Shannon entropy:

SEP = −
n

∑
i=1

F̂(n)× logF̂(n) (6)

• Spectral energy: Since various sensory data can be used to assess walking patterns
in the recorded data, they may be considered as a function whose amplitude varies
with time. Similar to SEP, the time-based signal was transformed into its frequency
spectrum using the Fourier transform, and the signal energy distribution over the
frequency was calculated using the spectral energy formulation:

SE =
n

∑
i=1

F(n)2 (7)

where F(n) is the amplitude of frequency content. It may be formulated using normal-
ized frequency spectra:

F̂(n) =
F(n)

∑n
i=1 F(n)

(8)

All the abovementioned feature quantities were computed on each walk pattern and
they were fused together in a single row to form a feature vector representation.

4.2. Codebook-Based Feature Encoding

The codebook-based feature encoding technique has shown excellent recognition re-
sults in numerous applications of gait recognition [9], image classification [56], and activity
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analysis [57]. It follows the BOVWs channel, which has two main steps: (1) codebook
computation and (2) feature encoding. The complete process is illustrated in Figure 3, an
and explanation of each task is outlined in the following.

(a) Codebook Computation (b) Feature Encoding

Codewords

Codeword Assignment

Figure 3. An illustration of codebook-based feature encoding technique.

4.2.1. Codebook Computation

In the first step, the input data are distributed into groups based on their underlying
similar patterns using a clustering algorithm to create a dictionary. Usually, the codebook
is constructed using unlabeled data. Each of the cluster center in the dictionary is known
as a codeword, which describes the underlying variability in the gait data. We divided
the continuous time series sensory data into equal-length sub-sequences using a window-
sliding approach. In particular, a window of size w is moved at every l−th sensory
data point with a small overlap between neighboring sub-sequences. We grouped all the
segmented sub-sequences into different k clusters using a k-means clustering algorithm.
The clustering method was run ten times to choose the best clusters with the minimum
sum of Euclidean distances between the data and the centers of their respective clusters.
Assuming that {xm, m = 1, . . . , M} are the sub-sequence, ck is the set of k clusters, and rmk ∈
{0, 1}, the distance is computed as:

minJ (rmk, ck) =
M

∑
m=1

K

∑
k=1

rmk∥xm − ck∥2
2 (9)

That is, the objective in Equation (9) is to minimize the cost function J on rmk and ck
values. The optimal number of clusters k is chosen empirically.

4.2.2. Feature Encoding

This explains the process to encode the raw sensory data into its final representation,
which is usually computed by estimating the distribution of these codewords in the gait
input sequence. To this end, we employed locality-constrained linear coding (LLC) to
encode the gait sub-sequences into a single high-level representation. LLC belongs to the
category of reconstruction-based encoding techniques [12]. It emphasizes the decoding
process’ characteristics such that the feature v is enforced in order to reassemble the sub-
sequence x [16]. Rather than sparsity, LLC uses the locality constraint to map each gait
sub-sequence x into its own local coordinate system. Specifically, it projects each sub-
sequence x into its local coordinate system using the locality constraint [58]. This constraint
can be applied by reducing the distance between x and the codes used to reconstruct it.
In order to calculate the coding coefficient, an encoded vector v is generated for x such that
the gait sub-sequence x is identical to the product of C and v (i.e., Cv). It thus solves the
following optimization problem:

v = arg min
v

∥x − Cv∥2
2 + λ∥d ⊙ v∥2

2, s.t.1Mv = 1, (10)

where x represents gait sub-sequence, C = {Ck, k = 1, . . . , K} is codebook, λ is the regular-
izer parameter whose value is set to 0.01 [12], and ⊙ explains the member-wise product.
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The term d = (exp(dist(x, C)/σ)) in Equation (10) indicates the locality adaptor where σ is
applied to adjust the speed of weight decay d. Additionally, the dist(x, C) can be computed
as: ∥x − c1∥2, ∥x − c2∥2, . . . , ∥x − ck∥2. Since C is the k closest cluster to sub-sequence x,
a computational efficient LLC solution can be employed by selecting the k-nearest basis
vectors of sub-sequence x to minimize the term ∥x − ck∥2

2 in Equation (10). To this end, we
set the value of k to 5 empirically.

4.3. Classification

In the framework of handcrafted features and BOVWs, the final step is the classification
of gait sequences. We evaluated the performance of two well-known and mostly used
machine learning algorithms for classification: Support Vector Machine (SVM) and Random
Forest (RF). In the following, a brief summary of each classification tool is outlined.

4.3.1. Support Vector Machine (SVM)

We employed simple linear SVM implementation to recognize the aforementioned
computed feature representation. SVM has been used as a classification tool in numerous
recognition applications [57]. SVM follows the principle of margin maximization; it learns a
decision boundary (e.g., hyperplane) between the different classes. The data points closest
to the hyperplane are known as support vectors and have the greatest influence on the
adjustment of the hyperplane’s location. SVM learns the following optimization problem
to learn an optimal hyperplane:

min
w

1
2
∥w∥2 + C

N

∑
i=1

ξi

s.t. yi(wTxi + b) ≥ 1 − ξi, ξi ≥ 0, ∀i

(11)

where w is the weight vector, C > 0 is a penalty to misclassification, and ξi = max(0, 1 −
yiwTxi)

2 is a loss function. The term yi = {−1,+1} is the label associated with training in-
stance xi. The objective of the SVM training is margin maximization, which is approximately
equal to minimizing the regularization term ∥w∥2. To optimally select the hyperparameter
C, a 10-fold cross-validation is performed. The proposed technique employed the imple-
mentation of the LIBLINEAR SVM library [59]. For multi-class classification, it employed
the one-vs.-rest strategy.

4.3.2. Random Forest (RF)

We also evaluated the effectiveness of RF [60] to recognize the high-level feature
representation of gait sequences. RF has also been proven to be an efficient classification
tool which can handle multi-dimensional features. It does not require any cross-validation,
runs efficiently on large datasets, and is capable to work with missing data (to some
extent). It is based on the principle of decision trees and generates ensemble learning,
which involves a lot of classification trees to solve complex problems. For classification,
the computed feature representation is passed in each of the forest’s tree. At the end of
every tree, it produces a classification score, known as “vote”. The predicted classification
with more votes is the object class. The complete process is illustrated in Figure 4. The
classification accuracy of Random Forest depends on the correlation of any two trees and
the strength of each individual tree.
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classification, the feature vector (computed from object) is put down in each of the forest’s tree. At 

the end of every tree, feature vector (i.e., object) got a classification score, known as “vote”. The 

predicted classification with more votes is the class of object. 

The classification trees are constructed using the random sub-sets of feature vectors. Let M be the 

total number of samples from feature vectors with pre-defined labels and N are the subsets selected 

randomly by replacement. These subsets will be used as the training set to grow the tree. Moreover, 

out of X variables in each feature vector, only Y variables are selected randomly and the best split is 

used to split the node. The Y number of variables will be same to grow all the trees of a forest. 

Similarly, each forest’s tree grows to the largest possible extent. The remaining M-N samples 

(almost one third of the total samples) are run down on the trees and few factors like classification 

accuracy; proximities etc. are computed.  

The classification accuracy of random forest depends on the correlation of any two trees and the 

strength of each individual tree. Increase in the correlation also increases the forest error rate and 

increase in the strength of each tree decreases the error rate. Both of these factors (i.e., correlation 

and strength) are based on the selection of random variable Y. The increase in Y increases the both 

factors and decrease in Y decreases the both. This is the only parameter to be optimized and needs 

to adjust in order to get the good classification results. The optimal value of Y can be found using 

oob (out-of-bag) data error rate. The oob error rate can be computed by putting down the 

remaining one-third cases (i.e., samples) of total data samples on each tree to get a classification 

results. At the end, the proportions of time that the predicted label is not the actual label are 

averaged over all the cases are the oob error estimate. The proximities are helpful in finding 

outliers, replacing the missing data and others. 

Random forest is proven as an efficient tool for classification, unexcelled in among all other 

classification algorithms, can handle multi-dimensional features without applying any dimensional 

reductionality technique, does not require any cross validation, runs efficiently on large database as 

well, does not over fit and  can be extended to un-labeled data for unsupervised clustering. 

Moreover, random forest is an effective method to estimate the missing data. Therefore, it 

maintains the accuracy even if the proportion of data is missing. A generated random forest can be 

saved for future use on other relevant data. Based on these characteristics, we used random forest 

as classifier to identify the classed of cracks in detected railway sleepers using our computed 

features.  
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Figure 4. An illustration of the Random Forest classifier.

4.4. Deep Learning-Based Feature Extraction Techniques

In recent studies, deep learning-based automatic feature extraction techniques have
been explored to analyze gait patterns due to their robustness and efficient feature ex-
traction, generalization power, and convincing recognition accuracies. These techniques
present an end-to-end deep architecture to learn high-level characteristics from raw sensory
data using a fully automated feature extraction process. They compute a high-level repre-
sentation of input data using the complex structure of the deep artificial neural networks.
In this study, we presented two end-to-end deep networks for gait analysis and activity
recognition: (1) convolutional neural network (CNN) and (2) long short-term memory
(LSTM). Each technique is briefly described in the following subsections.

4.4.1. Convolutional Neural Network (CNN)

A CNN is a deep network to learn high-level features directly from input data. Al-
though they are primarily designed to extract the high-level semantics in images or videos
to recognize objects, they are also proven to be effective in the classification of audio
and time series data. A CNN usually consists of several layers of artificial neurons, which
are mathematical functions that calculate the weighted sum of multiple inputs and output
an activation value (similar to biological neurons). Each layer of CNN accepts input from
the previous layer, computes a specific feature from it, and forwards it to the following
layer as input [61].

Typically, a CNN consists of three different types of layers: (1) convolutional, (2) pool-
ing, and (3) fully connected layers. The convolutional layer is considered an essential block
of CNN which performs convolutional operations using a certain number of filters with
their specified sizes. It convolves the filters on input data, extracts the useful features from
raw data, and passes the result to the next layer. The pooling layer plays a vital role in
reducing the dimensionality of input data by eliminating the number of feature points
in the output from the previous convolution layer. Specifically, the convolutional layer
identifies some important region of the input data, whereas the pooling layer conceals its
exact location and keeps the most important information. Finally, a fully connected layer
maps the extracted features to the final output, such as classification [62].

The proposed CNN follows the sequential layered approach with inputs as raw
sensory sequences. The network configuration is shown in Figure 5. More specifically, it
consists of three convolutional, two sub-sampling, one flattened, and one dense layer. The
input layer is followed by three Conv2D layers with 32, 64, and 128 filters, respectively.
Each Conv2D layer uses a kernel size of (3, 2), (2, 1), and (2, 1), respectively, and a ReLU
activation function. Two MaxPooling2D layers follow the first and second Conv2D layers
with a pool size of (2, 1), which reduces the spatial dimensions of the feature maps. The third
Conv2D layer is followed by a flattened layer. The output from the preceding layer is
flattened in this layer into a one-dimensional (1D) vector that can be fed into a dense layer.
Finally, a probability distribution across the available classes is produced by the dense layer
with Softmax activation function. The number of epochs is 27 with a batch size of 5.
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Figure 5. The proposed deep CNN consists of three convolutional, two sub-sampling, one flattened,
and one dense layer.

4.4.2. Long Short-Term Memory (LSTM)

The LSTM is a type of recurrent neural network (RNN) which is designed to learn
long-term dependencies, particularly in sequence prediction scenarios of time series data.
LSTM differs from other neural networks mainly due to the way it deals with information
over time. The data processing method used by traditional deep networks is feed-forward.
Contrarily, LSTM-based deep networks process data in a recurrent manner. That is, they
accept input data at one timestamp and produce an output at the following timestamp.
A typical RNN is unable to learn longer-term dependencies due to the “vanishing gradient”
or “exploding gradient” problem in back-propagation training. Contrarily, LSTM-based
deep networks use additional gates to limit this issue. These gates enable the network to
learn longer-term dependencies by controlling what the information in the hidden cell
is exported as output and to the next hidden state. LSTM-based deep networks employ
feedback connections to process the entire data sequence and have shown convincing
recognition results in the domain of speech recognition, activity classification, etc.

An LSTM architecture consists of four main components: (1) memory cell, (2) input
gate, (3) forget gate, and (4) output gate. The memory cell is the memory of the network
which is used to memorize the information from an earlier timestamp and the current one.
The input gate controls how the cell state is updated with the information from the current
timestamp. The output gate regulates what information is output from the cell state at
the current timestamp, while the forget gate controls what information from the previous
timestamp is maintained in the present timestamp, as depicted in Figure 6. All these gates
work on input x at timestamp t (i.e., xt) and the Yt−1 by following the equations:

ft = σ(W f · [Yt−1, xt] + b f )

it = σ(W f · [Yt−1, xt] + bi)

C̃t = tanh(WC · [Yt−1, xt] + bC)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t

ot = σ(Wo · [Yt−1, xt] + bo)

ht = ot ⊗ tanh(Ct)

where xt represents the input of the current timestamp, Yt−1 denotes the hidden state
of previous timestamp, W is the weight matrix associated with the hidden state, b are
the bias vectors for gates, Ct is the state of the cell at time t, σ indicates the activation
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functions to squeeze the input and output of the cell, and ⊗ represents the point-wise
multiplication operations. The initial part determines whether the information from the
earlier timestamp should be remembered or (if it is unnecessary and) can be ignored. Using
a sigmoid function, the forget gate determines which data from the previous cell state need
to be forgotten. It considers the values of Yt−1 and xt, and generates a value between 0 and
1. The cell attempts to learn new knowledge in the second section using the input provided
to it. With the help of point-wise multiplication operations of “sigmoid” and “tanh”, the
input gate regulates the information flow to the present cell state.

Input Layer

LSTM 
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LSTM 
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Figure 6. An illustration of the proposed LSTM-based deep network to classify the multimodal
sensory data.

First, the input gate layer selects the values that will be updated. Next, a vector
of potential new values C̃t (that could be added to the state) is created using a tanh
layer. Later, these two values are combined to update the cell state. The equation of
C̃t = tanh(WC · [Yt−1, xt] + bC) will be used to update the old cell state Ct−1 into the new
cell state Ct. Specifically, the old state is multiplied with ft to forget, and the product of it
with C̃t is added. This is the updated value, scaled by the amount by which we decided to
alter each state value. Finally, the output gate determines which data should be sent to the
following hidden state. Similarly to a simple neural network, the LSTM cells are organized
in layers. The output of the cell in each layer is forwarded to the cell in the next successive
layer. Finally, dense and Softmax layers are used in the network to accept the output of the
last layer for recognition.

5. Experiments and Results

This paper mainly emphasizes on a systematic evaluation of numerous feature learning
techniques to encode multimodal time series sensory data for gait analysis. However,
the proposed feature encoding techniques were also explored to determine whether they
could recognize human daily activities, which were also recorded using sensory data.
Therefore, we explored several datasets to assess the proposed features on both gait and
daily activities.

5.1. Dataset Description

The proposed feature encoding techniques are evaluated on four large sensory datasets,
and their details are briefly explained in the following:

• Gait-IMU dataset: The first dataset is collected in our APPS lab, located at the
University of Lübeck, Germany. The IMU data are collected using LPMS-B2 Se-
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ries (Advanced Realtime Tracking GmbH & Co. KG, Weilheim i.OB, Germany) de-
vices (https://www.lp-research.com, accessed on 20 August 2020) along with the
SensFloor sensor to analyze the gait patterns. A preliminary study on the analysis
of SensFloor sensory data for gait analysis has been published in [63]; however, IMU
data were not explored. Since an IMU consists of several sensors (e.g., accelerometer,
gyroscope, magnetometer), the collected multimodal sensory data can be used to
analyze gait in a more effective way. We sampled the IMU data at a fixed rate of
50 Hz. A total of 42 individuals participated in the gait collection. The four IMUs
were attached to different body parts as depicted in Figure 7. The first IMU was
attached at the sternum (chest), the second was at the lower abdomen (belt buckle),
the third was at the left ankle, and the forth was at the right ankle. The participants
performed six different walking styles: normal, slow, fast, blindfolded, dual task,
and post-UHR by walking back and forth 10 times. The SensFloor data were used
to identify the turning locations, and from there, a cut mark was placed to indicate
the start and stop times of a single trip. More detail about the SensFloor data can be
found in [63]. During data collection, we also observed a few missing data points
(i.e., NAN values) in recorded data perhaps due to sensor malfunctions, which were
covered using interpolation. However, we dropped the sequences having more than
30% NAN data points in the recorded sequences. This pre-processing makes the raw
data suitable to be used with the feature encoding techniques. A total of 238 cleaned
gait sequences are saved and freely available to the research community at https:
//drive.google.com/drive/folders/15sQTn3P2x3M1Em5o8yz1U784tomXDsJW (ac-
cessed on 20 August 2020).

• MHEALTH dataset: The second dataset we used to assess the effectiveness of the
proposed feature encoding techniques is the MHEALTH (Mobile Health) dataset [17].
The dataset contains data on the body motions of ten volunteers of diverse profiles
engaged in twelve different physical activities (e.g., walking, jogging, running, jump-
ing, etc.). The recordings were made in a laboratory using four wearable sensors from
Shimmer2 (https://shimmersensing.com, accessed on 20 August 2020). The sensors
were attached on the chest, right wrist, and left ankle using elastic bands. The authors
captured the dataset at a fixed sample rate of 50 Hz for all the modalities. These sensors
capture the motion information of the human body in different aspects, namely accel-
eration, magnetic field orientation, and the rate of turn, which can effectively record
the dynamics of the body. This dataset is quite useful to not only analyze the walking
styles, but to also recognize the subjects’ daily activities.

• WISDM-AR dataset: The third dataset we used in this study was the Wireless Sensor
Data Mining (WISDM-AR) dataset [18]. The data of twenty-nine volunteers were
collected using a smartphone. While performing different daily activities, the sub-
jects were instructed to carry their Android smartphones in their front leg pockets.
The subjects performed different sets of activities, including walking, jogging, ascend
and descend stairs, etc., for a certain period of time. The authors captured the dataset
at a fixed sample rate of 20 Hz for all the modalities. Similar to the MHEALTH dataset,
this dataset is also used to analyze the walking styles and the subjects’ daily activities.

• UCI-HAR dataset: This dataset comprises the sequences of activities of daily living [19].
The data were collected using a Samsung Galaxy S II sensor, which was attached
to the waist of the participants during recording. Specifically, the data from the
smartphone’s gyroscope and accelerometer sensors were collected at a frequency of
50 Hz. The dataset consists of a total of 748,406 sample points from 30 participants
ranging in age from 19 to 48 years. The activity sequences are grouped into six classes,
namely sitting, standing, walking, walking downstairs, walking upstairs, and lying
down.

We performed different experiments to assess the performance of the proposed ap-
proaches. Similar to [64–67], we employed an overlapped and fixed-size sliding-window
approach in all the experiments. The window size is set to 128 with a 50 percent overlap

https://www.lp-research.com
https://drive.google.com/drive/folders/15sQTn3P2x3M1Em5o8yz1U784tomXDsJW
https://drive.google.com/drive/folders/15sQTn3P2x3M1Em5o8yz1U784tomXDsJW
https://shimmersensing.com
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(i.e., 128 data points/window is segmented) to compute the features. Details of the different
experiments on each of the dataset are explained below.

 
 
 
 
 
 
 

IMU-1 

 

 
IMU-2 

 
 
 
 
 
 
 
 
 
 
 

 

IMU-3 IMU-4 

Figure 7. An illustration of IMU placement in collected dataset to capture the motion information of
different body parts.

5.2. Analysis of Gait-IMU Dataset

The time series data of each walk were extracted using all the four IMU sensors.
The recorded gait sequences contain three-dimensional (3D) data for each sensor, i.e.,
accelerometer, magnetometer, and gyroscope. Due to limited instances in the dataset,
we employed only handcrafted and codebook-based feature encoding techniques. It is
important to mention that the proposed techniques were evaluated on the data of each
IMU sensor to assess their effectiveness individually.

5.2.1. Using Handcrafted Features

We extracted eighteen handcrafted features (Section 4.1) from each walking sequence
and they were fused together using feature-level fusion [57], i.e., through simple concatena-
tion. The features were computed from each of the sensor, i.e., accelerometer, gyroscope,
and magnetometer. Since each of the sensor generates 3D data, the final length of the
feature vector was 3 × 3 × 18. The feature vectors were divided into training and testing
sets with the ratio of 80 and 20, respectively. We trained the classifiers (SVM and RF) using
training instances, and the testing sequences were fed to classifiers. The recognition results
are summarized in Table 1. It can be shown that the proposed approach achieved a 100%
recognition rate on multiple IMUs, which reveals the effectiveness of the proposed feature
encoding technique. We further concluded that the best outcomes can be obtained even
with just one IMU on an ankle.
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Table 1. Recognition accuracies (%) of all IMU sensors with eighteen handcrafted features
and codebook-based features. The terms SVM and RF represent Support Vector Machine and Random
Forest, respectively. The best results are marked in bold.

IMUs
Handcrafted Features Codebook-Based Features

SVM RF SVM RF

IMU-1 92.6 92.6 81.5 88.9
IMU-2 96.3 100.0 88.9 96.3
IMU-3 96.3 96.3 92.6 85.2
IMU-4 100.0 100.0 91.7 95.8

Average 96.3 97.2 88.7 91.6

5.2.2. Using Codebook Approach

We computed a codebook for each type of sensory datum using its 3D sub-sequences.
In particular, we segmented a sub-sequence with a window of size w, representing a 3w-
dimensional vector. That is, the first, second, and third w represents the x, y, and z axes of
sensory data, respectively. The intuitive reason behind this segmentation approach is to
capture the correlation among three axes. The same sub-sequence segmentation approach
was used in the encoding of the final feature vector. We empirically set the value of w
to 64, and l to 8. It can be noted that we set a large overlapping with a small size of l,
considering the fact that a sufficient number of sub-sequences can be collected to capture the
temporal correlation in the sub-sequences. The number of clusters in codebook (i.e., k) was
empirically set to 32. The high-level feature representation of the segmented sub-sequences
was obtained using LLC encoding technique (Section 4.2.2) and it was fed to classifiers
(SVM and RF) for walking style recognition. The recognition results are summarized in
Table 1.

It can be observed from the recognition results that handcrafted features using RF
as classifier performs consistently better than the codebook-based features. Since the
dataset consists of only a few gait sequences, we cannot evaluate the deep learning-based
techniques on this dataset.

5.3. Analysis of MHEALTH Dataset

We performed three different types of experiments on the MHEALTH dataset to
evaluate the performance of the proposed techniques. Following the recommendation
in [17], all the IMU sensor’s data were fused together (i.e., descriptor level fusion [11]) and
used as input to feature learning algorithms. Details of the different experiments on each of
the dataset are explained in the following.

5.3.1. Using Handcrafted Features

To compute the handcrafted features, we followed the recommendation in [17] and
used the raw data of all the sensors with a window size of 20 × 23. To capture the body
dynamics comprehensively, the subject’s chest, right wrist, and left ankle were equipped
with sensors using elastic straps. By employing multiple sensors, we were able to mea-
sure various aspects of motion, including acceleration, rate of turn, and magnetic field
orientation. Therefore, they jointly provided a more comprehensive understanding of the
body’s movement. All the extracted handcrafted features were fused together, indicating
the final representation of the walk or activity. Finally, the features were fed to a classifier
for recognition. The recognition results are summarized in Table 2. It can be noticed that
the proposed handcrafted feature achieved the highest recognition rate of 99% using RF
as classifier.
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Table 2. Recognition accuracies (%) of different feature encoding techniques on MHEALTH and
WISDM-AR datasets. The terms SVM, RF, CNN, and LSTM represent Support Vector Machine,
Random Forest, convolutional neural network, and long short-term memory, respectively. The best
results are marked in bold.

Handcrafted Codebook Deep Learning

SVM RF SVM RF CNN LSTM

MHEALTH dataset 98.0 99.0 84.0 85.0 99.0 96.0
WISDM-AR dataset 89.0 94.0 77.0 79.0 97.0 94.0
UCI-HAR dataset 92.8 95.9 90.5 92.3 96.0 92.7

5.3.2. Using Codebook Approach

Similar to the Gait-IMU dataset, we computed a codebook using a k-means clustering
algorithm, and the high-level feature representation was obtained using an LLC encoding
technique. We recall that all the IMU sensor’s data were fused and used together as input
for codebook computation and feature encoding. A recognition rate of 85% was achieved,
as depicted in Table 2.

5.3.3. Using Deep Learning Approaches

We recall that two end-to-end deep learning models are presented to automatically
extract features from raw sensory data. In the following, the implementation details of each
model are presented.

CNN: We recall that the proposed 2D-CNN consists of one input layer, three convo-
lution layers, two sub-sampling layers, one flattened layer, and one dense layer. The first
convolution layer used 32 filters of size 3 × 2 , the second layer used 64 filters of size 2 × 1,
and the third layer used 128 filters of size 2 × 1. For each sub-sampling layer, the stride
factor was set to 2 × 1 to reduce the spatial dimensionality of the data. The convolution
layer’s bias term was set to true, the number of epochs was 27 with a batch size of 5,
and Rectified Linear Unit (ReLU) was used as an activation function. The network is build
using Keras framework [68] with tensor flow as back end [69].

To determine the best values for the hyperparameters of the presented deep network
(e.g., the number of layers, the activation function, etc.), we employed a multi-resolution
search strategy [70]. In particular, it chooses parameter values from a wider range in the
first phase and selects a few optimum configurations. The best values are then chosen from
a small search space near these values. For instance, we evaluated the performance of the
proposed deep network in a an increasing number of layers (conv2D and MaxPooling2D)
and stopped when the performance on the validation data reached at its peak. It was
empirically concluded that increasing the number of layers beyond five did not improve
the performance. We used the EarlyStopping callback mechanism to monitor the validation
loss, and the best weights were learned. We achieved a 99% recognition rate on MHEALTH
dataset, and the results are summarized in Table 2.

LSTM: The proposed LSTM-based deep network consists of four LSTM layers, one
flattened layer, and one dense layer. The model accepts an input tensor X with the shapes
of [batch_size, segment_time_size, no_of_features], which were set to 32, 200, and 3, respec-
tively. The model starts by initializing the weight W and bias b of the hidden layer and
output layer using random normal distributions. The input tensor X is then transposed and
reshaped to a 2D tensor of size (batch_size * segment_time_size, no_of_features), which is
fed to the hidden layer. The hidden layer applies the ReLU activation function to the input
tensor, and then splits the output into segment_time_size tensors.

Similar to CNN, the network is built using Keras framework [68] with tensor flow
as back end [69]. We stacked two LSTM cells on top of each other to form a multi-
layered LSTM. Specifically, the tf.contrib.rnn.BasicLSTMCell function is used to create
each LSTM cell with a hidden state size of 50 neurons and a forget bias term of 1.0.
The tf.contrib.rnn.MultiRNNCell function is used to create a multi-layered LSTM using
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two LSTM cells. The tf.contrib.rnn.static_rnn function is used to run the LSTM model over
the input sequence. The output for the last time step of the LSTM is extracted from the
output’s tensor using indexing and fed to the output layer. The output layer applies a
linear transformation to the input tensor, and the final output is obtained by multiplying
the result with W and adding b. A multi-resolution search [70] approach is used to learn
the optimal values for the hyperparameters of the proposed deep network (i.e., number of
layers, activation function, etc.). We used the EarlyStopping callback mechanism to monitor
the validation loss, and the best weights were learned. We achieved a 96.78% recognition
rate on MHEALTH dataset, and the results are summarized in Table 2.

The performances of the proposed feature encoding techniques are also assessed
with the existing state-of-the-art techniques and their accuracies are outlined in Table 3.
The recognition results reveal that the proposed feature encoding techniques outperform
the existing state-of-the-art techniques.

Table 3. Comparison of recognition results (%) of the proposed technique with the state-of-the-art
techniques on MHEALTH dataset. The best results are marked in bold.

Methods Year Accuracy

Halloran et al. [71] 2019 83
Khatun et al. [72] 2022 93
Davidashvilly et al. [73] 2022 87
Yatbaz et al. [74] 2021 97
Nematallahet al. [65] 2020 93

Proposed handcrafted features with RF 2023 99
Proposed deep CNN 2023 99

5.4. Analysis of WISDM-AR Dataset

The third dataset we used to assess the effectiveness of the proposed feature encoding
techniques is the WISDM-AR dataset [17]. A short description of each of the feature
encoding techniques is summarized below.

5.4.1. Using Handcrafted Features

Following the recommendation in [18], the subsets of each activity are used to extract
the handcrafted features in order to make a fair comparison. We computed the aforemen-
tioned eighteen handcrafted features and they were fed to a classifier (after fusion) for
recognition. The recognition results are summarized in Table 2. It can be observed that the
proposed handcrafted feature encoidng tehcnique achieved a recognition rate of 94%.

5.4.2. Using Codebook Approach

We computed the codebook using a k-means clustering algorithm for the WISDM-AR
dataset, and the activity sequences were transformed to high-level descriptors using the
LLC encoding technique. It achieved a recognition rate of 79%, as depicted in Table 2.

5.4.3. Using Deep Learning Approaches

We employed the same implementation of CNN- and LSTM-based deep networks as
explained in Section 5.3.3. The CNN achieved a recognition rate of 97%, whereas LSTM
achieved a recognition rate of 94%.

The performance of the proposed feature encoding technique is also compared with
the existing state-of-the-art techniques and their recognition scores are outlined in Table 4.
The proposed feature encoding technique outperforms the current state-of-the-art techniques.
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Table 4. Comparison of recognition results (%) of the proposed technique with the state-of-the-art
techniques on WISDM dataset. The best results are marked in bold.

Methods Year Accuracy

Xia et al. [64] 2020 95
Semwal et al. [75] 2022 90
Challa et al. [67] 2022 96
Xu et al. [76] 2018 91
Yin et al. [66] 2022 96

Proposed deep CNN 2023 97

5.5. Analysis of UCI-HAR Dataset

The forth dataset we used to assess the effectiveness of the proposed feature encoding
techniques is the UCI-HAR dataset [19]. We employed the leave-one-subject-out cross-
validation technique to validate the generalization power of the proposed techniques.
A short description of each feature encoding technique is presented below.

5.5.1. Using Handcrafted Features

Similar to previous experiments, we extracted eighteen handcrafted features from the
raw sensory data. All the features are concatenated to form a vector representation and fed
to classifier for recognition. The recognition results are summarized in Table 2. It can be
observed that the proposed handcrafted feature encoding technique achieved a recognition
rate of 95.9%.

5.5.2. Using Codebook Approach

We computed the codebook using a k-means clustering algorithm for the UCI-HAR
dataset, and the sequences were transformed to high-level descriptors using the LLC
encoding technique. It achieved a recognition rate of 92.3%, as depicted in Table 2.

5.5.3. Using Deep Learning Approaches

We employed the same implementation of CNN- and LSTM-based deep networks as
explained in Section 5.3.3. The CNN achieved a recognition rate of 96%, whereas LSTM
achieved a recognition rate of 94%.

The performance of the proposed feature encoding technique is also compared with
the existing state-of-the-art techniques and their recognition scores are outlined in Table 5.
The proposed feature encoding technique outperforms the current state-of-the-art techniques.

Table 5. Comparison of recognition results (%) of the proposed technique with the state-of-the-art
techniques on UCI-HAR dataset. The best results are marked in bold.

Methods Year Accuracy

Khan et al. [77] 2021 95.4
Xia et al. [64] 2020 95.8
Tong et al. [78] 2022 95.4
Perez et al. [79] 2021 94.7
Kolkar et al. [80] 2021 93.1

Proposed handcrafted features 2023 95.9
Proposed deep CNN 2023 96.0

5.6. Discussion and Computational Analysis

The main aim of this research is to present a comparative study of several feature
extraction approaches to encode multimodal time series data for gait analysis. To fulfill this
task, we gathered the gait sequences of 42 individuals in our APPS lab (located at the Uni-
versity of Lübeck, Germany) using IMU sensor LPMS-B2 Series devices. We presented three
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feature learning techniques to encode multimodal time series sensory data for gait analy-
sis. Among them, the proposed handcrafted feature extraction technique demonstrated
excellent recognition results on the collected dataset. To further verify the robustness of
the proposed feature encoding techniques, we performed another experiment to recognize
the activities of daily living. We assessed the performance of the proposed techniques on
four large activity datasets that are captured using different sensing modalities. A short
description of different sensing modalities in each of the dataset is summarized in Table 6,
and their recognition results are depicted in Figure 8. The results demonstrate that the
proposed feature encoding techniques can encode the raw data of different sensing modal-
ities. It establishes a solid foundation and generic framework to encode any time series
multimodal sensory data. We empirically concluded that the combination of accelerometer,
gyroscope, and magnetometer work well together to recognize human activities. The recog-
nition scores of different feature encoding techniques in Tables 1 and 2 have confirmed
that handcrafted feature encoding technique using RF and CNN-based feature learning
techniques outperformed the other remaining techniques. Furthermore, they also prove to
be superior in comparison with existing state-of-the-art techniques, as shown in Tables 3–5.
The excellent results demonstrate the applicability of the proposed techniques to work with
different modalities. We believe that the proposed feature encoding techniques establish
a solid foundation and generic framework to encode any time series multimodal sensory
data. That is, it is capable to work with different sensing modalities such as SensFloor, skin
temperature sensors, and electrocardiograms (ECGs); however, the classification of such
data is beyond the scope of this research and can be explored in future work.
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Figure 8. A summary of the recognition results of four datasets using all the encoding methods.
The terms HC, CB, DL, SVM, RF, CNN, and LSTM represent handcrafted features, codebook features,
deep learning features, Support Vector Machine, Random Forest, convolutional neural network,
and long short-term memory, respectively.

It is worth mentioning that the proposed technique is computationally inexpensive
and does not require any expensive specialized hardware (e.g., GPU) for execution. All the
experiments are performed on a machine with an Intel i5-4310U CPU with 16 GB RAM (Dell,
Siegen, Germany). We also analyzed the computational complexity of different feature
encoding techniques. Specifically, the average time for the encoding and classification of
one activity/gait sequence is recorded. The results are reported in Table 7. The deep CNN-
and LTSM-based features require an average time of 12.93 and 11.95 milliseconds (ms),
respectively. The codebook-based feature encoding techniques seem to be more efficient
and have an average of 10.5 ms for both feature encoding and classification; however, they
require the prior computation of a codebook (once), which is quite a complex process, and
require an additional 7.1 minutes to compute it. The proposed handcrafted feature encod-
ing techniques require an average of 13 ms for feature encoding and classification, and they
do not require any prior computation. It can be observed that the proposed techniques can
classify the activity sequences almost in real time without any need for an expensive GPU.
Among the three proposed feature encoding techniques, the handcrafted feature represen-
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tation is computationally efficient; however, these features lack exploratory capabilities,
rely on the domain knowledge of the researchers, and are application dependent [81]. It is
quite difficult to build a generic framework based on these features. Additionally, they may
not be scalable when used with different datasets and might show partiality toward certain
features. The deep learning-based approaches perform poorly and suffer with overfitting
(and underfitting) due to the limited number of instances in the dataset.

Table 6. A description of the different sensing modalities that were used to gather the datasets and
the obtained recognition results.

Dataset Data Collection Collection Rate Sensing Modalities Accuracy

Gait-IMU

The gait data are
collected using IMU
sensor LPMS-B2 Series
devices.

50 Hz
Accelerometer,
magnetometer,
and gyroscope

97.2

MHEALTH

The activity data are
collected using wearable
IMU sensors from
Shimmer2.

50 Hz
Accelerometer,
magnetometer,
and gyroscope

99.0

WISDM-AR
The activity data are
collected using a
smartphone.

20 Hz Accelerometer 97.0

UCI-HAR
The activity data are
collected using a
smartphone.

50 Hz Accelerometer,
and gyroscope 96.0

Table 7. Analysis of computational time in feature encoding and classification. The average com-
putation time for each of the encoding techniques is presented. The average feature encoding and
classification time is reported for a gait/activity sequence on a CPU machine. The time is computed
in milliseconds (ms).

Feature Encoding (ms) Classification Time (ms)

Handcrafted using SVM 5.07 8.98
Handcrafted using RF 5.07 9.44
Codebook using SVM 5.94 4.51
Codebook using RF 5.94 4.51
CNN - 12.93
LSTM - 11.95

6. Conclusions

This paper presents three different feature encoding techniques to recognize different
human walking styles using multimodal time series sensory data. The first technique
extracts eighteen handcrafted features directly from the raw sensory data. The second
technique follows the channel of Bag-of-Visual-Words (BOVWs) approach. The feature
representation of sensory data is obtained using codebook- and LLC-based feature encoding
techniques. For both of these feature representations, the performance of two different
machine learning algorithms is assessed. In the third feature encoding technique, two
different end-to-end deep learning models are presented to automatically extract the
features from raw sensory data. An extensive experimental evaluation of all the feature
encoding techniques is carried out on four large sensory datasets and their recognitions
results are compared. The experimental evaluation reveals that the proposed features are
quite robust and can be used to recognize human daily activities as well. A comparison
of the proposed encoded feature with the existing state-of-the-art techniques reveals its
superiority and effectiveness. This research also collected a large gait dataset using IMU
sensors that we have made available to the research community. In future, we plan to
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explore more deep learning models (especially hybrid models) to automatically extract the
features from raw sensory data.
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