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Abstract: With the flourishing development of the Internet of Things (IoT), federated learning has
garnered significant attention as a distributed learning method aimed at preserving the privacy
of participant data. However, certain IoT devices, such as sensors, face challenges in effectively
employing conventional federated learning approaches due to limited computational and storage
resources, which hinder their ability to train complex local models. Additionally, in IoT environ-
ments, devices often face problems of data heterogeneity and uneven benefit distribution between
them. To address these challenges, a personalized and fair split learning framework is proposed for
resource-constrained clients. This framework first adopts a U-shaped structure, dividing the model
to enable resource-constrained clients to offload subsets of the foundational model to a central server
while retaining personalized model subsets locally to meet the specific personalized requirements of
different clients. Furthermore, to ensure fair benefit distribution, a model-aggregation method with
optimized aggregation weights is used. This method reasonably allocates model-aggregation weights
based on the contributions of clients, thereby achieving collaborative fairness. Experimental results
demonstrate that, in three distinct data heterogeneity scenarios, employing personalized training
through this framework exhibits higher accuracy compared to existing baseline methods. Simulta-
neously, the framework ensures collaborative fairness, fostering a more balanced and sustainable
cooperation among IoT devices.

Keywords: Internet of Things; federated learning; split learning; personalized model; data hetero-
geneity; collaborative fairness

1. Introduction

In recent years, with the rapid advancements in the Internet of Things (IoT) and
distributed computing driven by big data, IoT devices have been extensively deployed.
Particularly in the Industrial Internet of Things (IIoT) domain, a multitude of sensor devices
are dispersed across various locations for the purpose of network data collection. However,
aggregating network big data to centralized servers may potentially infringe upon the
data privacy of individual enterprises or clients, potentially leading to the formation of
multiple data silos [1]. To address the challenges stemming from the development of IoT
and the application-related “data silos” phenomenon, federated learning (FL) [2] has gained
increasing attention as a distributed learning method. FL allows multiple participants
to collaboratively train a shared global model without sharing raw data, thus ensuring
the protection of participant data privacy. However, in IoT environments, some resource-
constrained IoT devices cannot easily train complex local models using traditional FL
methods due to limitations in computational and storage resources.

Split learning (SL), as an evolved form of FL, proves to be more suitable for resource-
constrained IoT devices [3]. SL allows one to split complex client-side local models, of-
floading most of the computational tasks of the model to a central server while retaining
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only subsets of the model at the client end. This method effectively reduces the computa-
tional and storage burden on IoT devices, making them more adaptable to resource-limited
environments. In addition, in complex IoT environments, there are also issues of data
heterogeneity and uneven distribution of benefits among devices. On the one hand, data
heterogeneity manifests as each device being influenced by its environment and indi-
vidual preferences, resulting in a unique data distribution and significant differences in
data volume. For instance, in the realm of sensors, distinct sensor devices exhibit unique
data distributions and noticeable disparities in data volume due to differences in sensing
capabilities and deployment environments. Due to data heterogeneity, models trained
through SL may have difficulty in effectively capturing common features of different data
types across devices, which may lead to the degradation of the model’s performance on
a specific device or even prevent affected devices from participating in SL training [4].
On the other hand, the uneven distribution of benefits emerges due to imbalances in data
quality and scale among devices. Some smaller-scale IoT entities, despite having lesser data
volume, possess more representative or higher-quality data, playing a crucial role in model
training. However, despite their substantial contributions, these entities often receive less
benefit compared to larger-scale entities [5]. Such an imbalance might hinder these smaller
entities from achieving expected outcomes during the training process, prompting them to
opt out of cooperation, leading to the termination of SL training. Hence, in complex IoT
environments, a mechanism is needed to address the issues encountered in SL training,
catering to device-specific requirements while ensuring fairness.

To address the aforementioned issues, a personalized and fair split learning framework,
termed Split Learning with Personalized Fairness (SplitLPF), has been proposed. The
framework begins by splitting the model into a three-segment U-shaped structure during
model training. In this structure, the central server acts as the offloading entity, undertaking
the burden of intensive computational tasks to facilitate the training of intricate models
on resource-constrained client devices. Simultaneously, client devices retain personalized
model subsets locally to cater to the specific individualized needs of different clients,
enhancing their ability to address the challenges posed by data heterogeneity. Furthermore,
during the model-aggregation phase, the central server adopts an optimized aggregation
weight methodology. This method ensures fair benefit distribution among various clients
in federated learning by reasonably allocating model-aggregation weights based on client
contributions, utilizing estimations derived from differences in dataset sizes and gradient
directions. This approach incentivizes the active participation of contributors in the model-
training process, thereby achieving collaborative fairness.

The main contributions of this paper are as follows:

(1) This paper proposes a personalized U-shaped split architecture, designed to fulfil
specific individualized requirements of different clients in complex IoT environments
while effectively training sophisticated models on resource-constrained client devices;

(2) This paper introduces a model-aggregation method based on contribution estimation.
By estimating the contribution size of each client, the aggregation weights of the
model are reasonably assigned to ensure a fairer distribution of benefits among
different clients;

(3) The experimental results demonstrate that our proposed framework not only exhibits
high accuracy in its personalized training approach under different data heterogeneity
scenarios, it also ensures fairness in collaboration and promotes more balanced and
sustainable cooperation among clients.

2. Background and Related Work
2.1. Distributed Learning in the IoT

In the realm of the IoT, distributed learning has emerged as a pivotal technology,
offering effective solutions for handling large-scale dispersed sensor and device data. In
this context, distributed learning methods such as federated learning and split learning
and their variants play significant roles in IoT [6]. These methods underscore privacy
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preservation [7], decentralization [8], and resource efficiency [9], holding promise to propel
the development of IoT, fostering intelligent decision-making and enabling the realization
of data-driven applications.

2.1.1. Federated Learning

In an FL system, two primary entities can be divided: there are the data owners
collaborating in model training, referred to as clients, and there is the model owner who
is responsible for coordinating the training process and model aggregation, termed the
central server [10]. Let N = {1, 2, ..., K} represent a set containing K clients, each of which
possesses its local dataset Dk(k ∈ K), constituting the entire dataset D = ∪K

k=1Dk. The FL
system is shown in Figure 1a. The FL system in the initial phase of model training, and
the central server first initializes the model and broadcasts the initial global model to the
selected clients. Subsequently, each selected client employs its local dataset to train its
local model, uploading the trained model parameters (gradients) to the central server. The
central server aggregates all received client gradients, producing a new global gradient,
ultimately using this global gradient to update all clients’ models. This local training
and global aggregation process iterate in a loop until the global model converges, thereby
completing the entire model-training process. However, some resource-constrained IoT
devices face challenges in effectively utilizing traditional federated learning methods to
train complex local models.

Figure 1. Comparison of distributed learning. (a) Federated Learning; (b) Parallel Split Learning;
(c) SplitFed learning; (d) SGLR.

2.1.2. Split Learning and Its Variants

To address the challenge of resource constraints, SL proposes to use servers to col-
laboratively train local models without the need to scale down the model and obtain raw
data from the client [11]. SL involves dividing the complete model ω into client-side ωC
and server-side models ωS. The parallel split learning (PSL) system is shown in Figure 1b,
where each client performs forward propagation steps in parallel during PSL training
until a specific clipping layer is reached. The output of this cut layer is then transmitted
to the server, where the remaining part of the model undergoes forward propagation to
generate prediction results. The training loss is computed on the server using labels and
predicted values. Subsequently, a backward propagation step is performed on the server
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until it reaches the cut layer [12]. Afterwards, the gradients are sent back to the respective
clients, enabling parallel execution of backward propagation on the first segment of the
model (the client-side model). This process iterates until the final model is obtained. In this
configuration, there is no need for data or weight aggregation to accomplish the training of
complex models. However, in certain configurations, appropriate variants of SL are applied,
some of which involve operations such as aggregating model weights and aggregating
intermediate data [13–15]. In weight aggregation-based SL, clients transmit their local
model weights to a trusted third party for the aggregation of these weights. For instance, in
SplitFed learning [13] as illustrated in Figure 1c, the model is divided into two segments
and trained in a manner similar to PSL. After each client completes a training round, its
local model weights are transferred to the server, which employs the FedAvg aggregation
method to integrate these local models. Joshi et al. [14] proposed the SplitFed learning
framework SFPL with positive labels to improve the deep learning model training for
resource-constrained IoT clients. In intermediate data aggregation-based SL, intermediate
data like activations or gradient information from different clients are aggregated. For
instance, in SGLR [15] shown in Figure 1d, the server aggregates local gradients from clients
instead of model parameters. Additionally, SGLR divides the learning rate into server-side
and client-side learning rates, adjusting them separately to support parallelism among
multiple clients. SGLR effectively reduces the volume of shared information among clients
and mitigates client decoupling issues [16].

The model partitioning employed in the aforementioned SL and its variants has some-
what increased communication costs due to the transmission of intermediate data during
the model-training process, which needs to be exchanged in each iteration, resulting in
higher communication overhead. To mitigate the communication cost in SL, Chen et al. [17]
proposed an asynchronous training scheme based on loss, where gradients are transmitted
at specified intervals and quantized using 8-bit floating-point before transmission, thereby
reducing the communication cost of SL. Oh et al. [18] introduced a communication-efficient
SL framework called SplitFC, utilizing adaptively compressed intermediate features and
gradient vectors based on varying dispersion levels in vectors. They combined adaptive
feature dropping and adaptive feature quantization as compression strategies to minimize
communication overhead. Lin et al. [19] presented an efficient PSL framework, EPSL, which
aggregates the last layer’s activation gradients during backpropagation. They conducted
joint optimization on EPSL’s subchannel allocation, power control, and layer pruning to
reduce communication costs. While most methods for reducing communication costs adopt
techniques like value quantization and feature compression, these may significantly impact
the accuracy of the global model. However, in [20], the number of communications is
reduced and the model quality is improved by transmitting more information and smaller
synthetic data. This paper is inspired by that, and lightweight synthetic data transfer is
chosen to alleviate some communication pressure.

2.2. Distributed Learning Challenges and Strategies in IoT
2.2.1. Challenges to Distributed Learning in the IoT

In the complex IoT environment, SL model splitting proves effective at addressing
resource-constrained challenges. However, the complexity and specificity of the IoT en-
vironment poses additional challenges, notably data heterogeneity and uneven benefit
distribution. These challenges hold significant importance in both academic research and
practical applications.

Data Heterogeneity

In IoT environments, particularly in IIoT environments, the diversity among different
sensor devices, arising from variations in sensing capabilities, environmental conditions,
and data characteristics, results in significant differences in collected data. This diversity
poses challenges for traditional distributed learning methods, which commonly operate
under the assumption of data being identically and independently distributed (IID). Conse-
quently, there is a pressing need to explore novel methodologies to address the issue of data
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heterogeneity based on the assumption of non-independent and identically distributed
(Non-IID) data.

Uneven Benefit Distribution

The imbalance in data quality and quantity among different devices results in varied
benefits obtained from their contributions. However, fairness becomes particularly crucial
when engaging in data sharing and collaboration among multiple sensor devices. Given
that these devices are typically distributed across different locations and collect diverse
types of data, an effective collaborative approach is required to achieve integrated sensing
and analysis. Therefore, there is a need for fair model aggregation so that the contribution
of each device is justly recognized, thus effectively improving the problem of unequal
distribution of benefits and promoting a more balanced cooperative relationship.

2.2.2. Strategies to Distributed Learning in the IoT

In this subsection, we aim to review the representative techniques (strategies) proposed
to address the typical challenges of distributed learning in the IoT context. Given the
focal point of this paper on personalized fair SL, and the fact that SL-related work has
been discussed in detail earlier, this subsection will provide the necessary background
information on personalized processing and fairness design.

Personalized Processing

To address the challenges posed by the non-IID data, an effective strategy involves
personalized handling at both the data and model levels to mitigate data heterogeneity and
deliver high-quality personalized models for each client. Personalized FL encompasses var-
ious approaches, including those based on data, models, and architecture [21]. Data-based
methods aim to reduce the heterogeneity in client data distributions to alleviate client drift
issues. This approach can be realized using techniques such as data enhancement [22] and
client selection mechanisms [23]. Model-based approaches aim to learn a robust global
FL model while catering to personalized services for each individual client. This can be
achieved by learning global and local features of each client [24], leveraging historical
memory to learn global representations [25], and improving local models through transfer
learning [26]. Architecture-based methods focus on providing tailored and personalized
model architectures for individual clients. The approach can be implemented using tech-
niques such as parameter decoupling [27] and knowledge distillation [28], where parameter
decoupling mainly provides a personalization layer for each client.

In the realm of personalized SL, relatively fewer researchers have delved into this area.
Among them, Wadhwa et al. [29] proposed that PFSL, which employs transfer learning
for pre-training. Subsequently, by freezing certain shared layer weights and updating the
unfrozen ones, each client can train their model for varying numbers of epochs, thereby en-
abling personalized operations. Han et al. [30] proposed SplitGP, leveraging multi-output
neural networks to capture both generalized and personalized learning requirements.
This approach empowers client models to optimize for their respective primary tasks
during the training process, fostering robust personalized capabilities. However, the afore-
mentioned personalized SL methods predominantly focus on model-based approaches.
In this paper, we aim to adopt an architecture-based approach. We intend to meet cus-
tomized personalized requirements through the design of foundational and personalized
model architectures.

Fairness Design

Fairness design can effectively address the challenges posed by uneven benefits dis-
tribution. In this context, both model fairness and collaborative fairness have garnered
significant attention as distinct perspectives in fairness design. Model fairness concerns
whether the global model constructed in federated learning maintains fairness in its treat-
ment of different participants [31], aiming to enhance uniformity in performance across
all involved parties. On the other hand, collaborative fairness places greater emphasis on
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the cooperative interaction among participants in federated learning. This entails ensur-
ing equal opportunities for engagement and contribution among all participants during
training, alongside fair treatment of each participant’s contributions [32].

For model fairness, Hu et al [33] proposed the FedMGDA+ method, which performs
multi-objective optimization by optimizing the loss function of each FL client individually
and simultaneously to avoid sacrificing the model performance of any client. Cui et al. [34]
proposed a constrained multi-objective optimization framework, learning a model that
satisfies the fairness constraints of all clients with consistent performance by optimizing
the agent’s maximal function involving all objectives. Li et al. [35] proposed the Ditto
method, employing inter-client fine-tuning to minimize individual losses significantly.
They augmented this by adding regularization terms, bringing personalized models closer
to the optimal global model to achieve consistent model performance. In contrast to model
fairness, collaborative fairness garners higher attention due to its direct involvement with
collaboration and contributions among clients. Lyu et al. [36] proposed a collaborative
fairness framework using a reputation mechanism to gauge participant contributions,
converging toward different models to ensure fairness. Xu et al. [37] designed a gradient-
reward mechanism, in which fairness is ensured by sparsification to treat the aggregated
gradient downloaded by the server as an expected marginal contribution to each client.
However, in most collaborative fairness designs, more or less shapely values [38] were
used to participate in the contribution assessment, resulting in high computational cost.
Therefore, in this paper an approximation is used to measure the contribution size to
alleviate the computational pressure.

3. SplitLPF Frame

The paper introduces a personalized and fair SL framework termed SplitLPF, as
illustrated in Figure 2. In this framework, clients split the model and offload intricate
computational tasks to a central server; this flexible splitting enables tasks to be assigned
based on the characteristics of the device. During the model-training process, clients and
the central server collaboratively execute the foundational model training. Subsequently,
clients engage in more flexible personalized model training. This personalized training
helps to improve the accuracy and performance of devices (such as sensors), making them
better adapted to specific application scenarios and environments. During the model-
aggregation process, model weights are optimized based on client contribution estimations,
enabling the aggregation of split models. This ensures fairness among participants, provid-
ing an incentive for active participation in model training. To minimize communication
overhead, the framework adopts a lightweight synthetic data transmission method. The
SplitLPF framework amalgamates the strengths of both the central server and clients, effec-
tively leveraging resources to address challenges faced by resource-constrained devices in
complex IoT environments. Simultaneously, it ensures fairness in model training.

The design of the SplitLPF framework is divided into three components: model
partition, personalized training, and fairness mechanism guarantee. Subsequently, detailed
introduction will be provided for each of these components.

3.1. Model Split

In SL model training, it is common to split the model into two segments: the client-side
model ωC and the server-side model ωS. The bulk of computational tasks is offloaded to the
server-side model ωS to better accommodate the model training requirements of resource-
constrained devices. This approach simultaneously reduces the need for transmitting
sensitive data, consequently lowering the risk of client data exposure.
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Figure 2. SplitLPF framework.

Consider a system with a single central server and N clients; each client has its own
private dataset (local dataset) {D1, D2, ..., DN}, and Dk denotes the dataset owned by the
k-th participant. Similar to FL model training, the goal of SL training is to collaboratively
determine an optimal model ω∗ through the cooperation of clients and the central server,
fulfilling the minimization of the loss function as shown in Equation (1):

min
ω

F(ω) = min
ω

∑N
k=1 pkFk(ω) (1)

where pk denotes the weight of participant k local model when aggregated at the central
server, satisfying pk ≥ 0 and ∑N

k=1 pk = 1. It is commonly set as pk =
|Dk |

∑N
k=1 |Dk |

, where Fk(ω)

denotes the local loss function of participant k. This function is further defined as the sum
of the loss functions between the client-side model ωC and the server-side model ωS, as
illustrated by Equation (2):

Fk(ω) =
1
|Dk|∑x∈Dk

(ℓC(x; ωC) + ℓS(Ak; ωS)) (2)

where ℓC(�) and ℓS(�) denote the loss functions of the client-side models and server-side
models, respectively. Ak denotes the intermediate result (such as activation), Dk denotes
the client-side dataset, and x denotes the local data. In SL, clients train the model up to its
splitting layer using raw data and then transmit the intermediate results (activation data
Ak) from this splitting layer to the server. The server employs the received intermediate
results from clients to train the remaining layers of the model, completing the forward
propagation of the model. Subsequently, the server conducts backpropagation up to the
splitting layer and forwards the intermediate results (gradient g) to the clients. Utilizing the
gradient, each client performs its backpropagation on the split model, iteratively updating
it to accomplish the entire model training. Each client k updates the client-side model based
on the local gradient information as shown in Equation (3):

ωt+1
C,k = ωt

C,k − ηt∇FC,k(ω
t
C,k) (3)
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where ωt
C,k denotes the local model of client k in round t, ηt denotes the learning rate in

round t, and∇FC,k(�) denotes the gradient of the local model of client k. The server updates
the server-side model according to Equation (4):

ωt+1
S,k = ωt

S,k − ηt∇FS,k(ω
t
S,k) (4)

where ωt
S,k denotes the server model updated for round t based on the intermediate results

of client k, and ∇FS,k(�) denotes the gradient of the server model. In resource-constrained
environments, some devices may have difficulty in transmitting large volumes of data
(such as activations) for long periods of time due to unstable network connections, limited
bandwidth, and low device performance, and thus they may not be able to effectively
participate in model training. However, in this paper we address the communication pres-
sure by substituting bulk data transmission with lightweight synthetic data. In distributed
learning, model compression primarily occurs at two main places: the local model update
transmission from the client to the server in the upstream, and the global model update
transmission from the server to the client in the downstream [39]. Similar to compression
work, we replace model updates with synthetic data in both upstream and downstream
data transmission. In the conventional SL model training, Ak is upstream transmission
data, ∇FS,k(�) is downstream transmission data, and clients k and servers attempt to find
synthetic data Dsyn

Ck and Dsyn
Sk as replacements for transmission data. The most intuitive

approach is to minimize the distance metric between the model generated using synthetic
data and the model generated from real data [40]. Therefore, we optimize the synthetic
data using the objective function of the ℓ2 distance between simulated model weights and
real model weights, employing stochastic gradient descent (SGD) to generate appropriate
lightweight synthetic data Dsyn, as shown in Equation (5):

Dsyn ← SGD(Dsyn;∇ f (ωraw; ωsyn)) (5)

where ωsyn = M(Dsyn; ω) denotes the model generated using synthetic data, M(�) denotes
the model update function, and ωraw denotes the model generated using real data. ∇ f (�)
denotes the loss function based on the ℓ2 distance. Subsequently, the server involved in
upstream communication and the client involved in downstream communication can use
this synthetic data to recover local activation data or gradient information. The server
and client use the same process as the generation of Dsyn to recover the original data Draw.
This communication scheme has been widely applied in the literature [40–43], and specific
details are not further elaborated on in this paper. In comparison to large batches of real
data, lightweight synthetic data, while having the same input dimensions, achieves similar
feature representations to large batches of data in smaller batches and can be recovered as
real data with less computation. Based on the experimental observations in Section 4.4, we
find that the use of lightweight synthetic data transmission reduces the communication
cost by almost approximately 24% compared to the existing personalized fair SL.

3.2. Personalized Training

In complex IoT environments, model partitioning effectively alleviates the computa-
tional burden on resource-constrained clients and enhances prediction accuracy to some
extent. However, in IoT environments, particularly in IIoT domains, various types of sensor
devices may possess different sensing capabilities, disparate data distributions, and varying
data volumes, exacerbating the problem of data heterogeneity. This data heterogeneity
issue can potentially impact model performance. In extreme scenarios, data types, data
distributions, or even data contents among different sensor devices might be entirely dis-
similar. Under such circumstances, it is difficult to use SL model training methods to handle
this heterogeneity effectively. In this context, personalized training becomes paramount.

In the model training phase, this paper further subdivided the traditional SL to form a
three-stage U-shaped structure. The client-side retains the input and output layers locally
and performs the computation of the loss function, while the central server performs



Sensors 2024, 24, 88 9 of 30

the complex hidden layer computation. The specific process of training is as follows:
during each global iteration, individual clients compute the first part (front part) of the
model and upload the intermediate data to the central server in parallel. Leveraging
more robust computational capabilities, the central server swiftly conducts corresponding
forward propagation, completing the second part (middle part) of the model training.
During this period, the clients and server collaborate to achieve the generalization phase of
model training. Subsequently, the central server sends the results back to the client, which
executes the SGD optimization algorithm to compute the prediction results, loss values,
and gradients based on the respective local learning rates to complete the personalization
phase training (back part) locally. Then, clients utilize the gradients to update their local
parameters and transmit them back to the central server. The central server uses the
gradient results to update the intermediate model parameters and sends the results back
to the clients. Finally, the clients update the parameters of the first part of the model. In
this process, clients and servers first complete the base model training, after which the
clients independently execute personalized model training aimed at optimizing the model
to better adapt to the characteristics of diverse devices, thereby enhancing the model’s
performance and adaptability. Throughout the personalized training, clients retain label
data locally, preventing other clients and servers from inferring model specifics or local
data through label data. This ensures the enhancement of model training efficiency while
safeguarding data privacy.

The client-side model ωC training can be further broken down into two components:
base model training ωCB and personalized model training ωCP. Each round of update of
the base model and personalized model is represented as Equations (6) and (7):

ωt+1
CB,k = ωt

CB,k − ηt∇FCB,k(ω
t
CB,k) (6)

ωt+1
CP,k = ωt

CP,k − ηt
k∇FCP,k(ω

t
CP,k) (7)

where ∇FCB,k(�) and ∇FCP,k(�) denote the model gradient for client k base model and
personalized model training, respectively. ηt

k is the local learning rate of client k in round
t, and ηt denotes the global learning rate in round t. During personalized training, the
pseudo-code for the client to perform the model update locally is shown in Algorithm 1.

3.3. Fairness Mechanism

Personalized training exhibits significant advantages in addressing data heterogeneity
issues in complex IoT environments. However, in the typical model-training process, the
aggregation of model parameters typically relies on the dataset’s size to allocate weights
for achieving a weighted average model aggregation. This approach may lead to the
uneven distribution of benefits, making it challenging for smaller-scale devices possessing
high-quality data to achieve expected outcomes during model training. This leads to
smaller devices opting out of the collaboration and terminating model training. This poses
a serious threat to the process of collaborative learn as the contribution of each device is
not negligible. To address this challenge, the introduction of mechanisms for collaborative
fairness is necessary.

Collaborative fairness aims to ensure the fair recognition of each device’s contribution.
However, the size of the dataset by itself is insufficient to provide enough information to
accurately reflect the contribution of each local client. Therefore, relying solely on dataset
size-based weighted aggregation might not be the optimal aggregation strategy.
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Algorithm 1 ClientUpdate

Input: Dk: local dataset; N: number of clients; ηt: global learning rate; ηt
k: local learning

rate; Yk: the true labels;
Output: ωt

CP,k: personalized model; ωt
CB,k: base model;

1: Procedure ClientForwordProp(ωt
CB,k):

2: if epoch t = 0 then
3: Set the local activations At

CB,k = ∅;
4: else
5: Dsyn

Sk ←ServerUpdate()// Receive data transmitted by the server;
6: Recover the global ω̂t

CB based on Dsyn
Sk ;

7: end if
8: Forward propagate the local data Dk to the ωt

CB,k cutting layer and obtain the local
activations At

CB,k;
9: Generate synthetic data Dsyn

Ck based on At
CB,k, |Dk|, and ωt

CB,k;
10: Send the synthetic data Dsyn

Ck to the central server;
11: Wait for ClientBackProp(ωt

CP,k) to complete;
12: end procedure
13: Procedure ClientBackProp(ωt

CP,k):
14: Dsyn

Sk ←ServerUpdate() // Receive data transmitted by the server;
15: Recover At

S,k and dAt
S,k based on Dsyn

Sk ;
16: if state = Personalized training then
17: Forward propagation with At

S,k on ωt
CP,k;

18: Calculate Ŷk and loss calculation with Yk and Ŷk;
19: Back-propagation calculate ∇ℓC(ω

t
CP,k);

20: Generate Dsyn
Ck using dAt

CP,k := ∇ℓC(At
S,k; ωt

CP,k) and send it to the server;
21: Update the personalized model ωt+1

CP,k ← ωt
CP,k − ηt

k∇ℓC(ω
t
CP,k);

22: else
23: Calculate ∇ℓC(ω

t
CB,k) using dAt

S,k;
24: Update the base model ωt+1

CB,k ← ωt
CB,k − ηt∇ℓC(ω

t
CB,k);

25: end if
26: end procedure

In this case, a viable aggregation strategy involves fairly distributing benefits by con-
sidering the contribution levels of the clients comprehensively. It might be beneficial to
incorporate the discrepancy between local clients and the global model into the considera-
tion for benefit distribution. Intuitively, certain clients with high-quality data provide more
trustworthy and informative gradient information, enabling the model to update parame-
ters more accurately and converge faster towards the global optimum, which results in a
model whose gradient direction is closer to that of the global model. Consequently, clients
whose gradient direction is more similar to that of the global model might contribute more
significantly to the global model. This implies that the contribution level of clients might
be related to the similarity of their gradient direction with the global model’s gradient
direction. Hence, gradient direction disparity could serve as a useful supplementary metric.
In other words, considering both dataset size and gradient direction disparity for assessing
contribution levels seems more comprehensive. Section 3.5 provides theoretical analysis
about this; it promotes fairness in benefit distribution through contribution estimation. The
measurement of fairness could be defined as follows:

Definition 1. If the test performance distribution of model ω1 is more uniform than that of model
ω2, which is expressed as: std(Fk(ω1)) < std(Fk(ω2)), it is said that model ω1 is fairer than model
ω2, where Fk(�) represents the test loss on client k, and std(�) denotes the standard deviation.



Sensors 2024, 24, 88 11 of 30

The specific implementation steps of the fairness mechanism based on contribution
estimation are as follows.

First, in order to reflect the gradient direction discrepancy, cosine similarity is used for
measurement. In the t-th round, the discrepancy between client k and the global model is
as shown in Equation (8):

dk = cos(∇Fk(ω
t
k),∇F(ωt−1)) (8)

where ∇Fk(ωk) denotes the local gradient of client k, and ∇F(ω) denotes the global gradi-
ent. The global gradient can be expressed as: ∇F(ω) = ∑N

k=1 pk∇Fk(ωk), where pk denotes
the aggregation weights of the model.

Then, the discrepancy values are further normalized as shown in Equation (9):

d̄k =
|dk|

∑N
k=1 |dk|

(9)

Finally, the aggregation weights of the model are optimized according to the size of the
client’s contribution, and the optimized aggregation weights are as shown in Equation (10):

pk = αnk + (1− α)d̄k (10)

where α is a hyperparameter and nk =
|Dk |

∑ k=1N |Dk |
denotes the dataset size. In Equation (10),

there is a free-rider attack by some clients that are small and in the opposite direction
of the global model training, making the aggregation weights negative, and this can be
circumvented using the ReLU function. Therefore, it can be normalized as shown in
Equation (11):

pk =
R eLU(pk)

∑N
k=1 R eLU(pk)

(11)

The central server can aggregate the global model based on the optimized model
weights, denoted as: ω̂ = ∑N

k=1 pkωk. The pseudo-code for the server-side model update
process is shown in Algorithm 2.

Algorithm 2 ServerUpdate

Input: Ct: client set; ηt: global learning rate;
Output: pt

k: optimized model-aggregation weights;
1: Initialize ω0

S;
2: for each client k ∈ Ct in parallel do
3: Dsyn

Ck ←ClientUpdate() //Receive data transmitted by the client;
4: Recover At

CB,k, dAt
CP,k and ωt

CB,kusing Dsyn
Ck ;

5: Forward propagation with At
CB,k on ωt

S,k and obtain the activations At
S,k;

6: Back-propagation calculate ∇ℓS(ω
t
S,k) using dAt

CP,k;
7: Calculate dt

k using Equation (7) //where ∇Fk(ω
t
k)← ∇ℓC(ω

t
CP,k);

8: Normalize dt
k using Equation (8) and collect the client dataset sizes nk;

9: Calculate the optimized model-aggregation weights pt
k using Equation (9);

10: Model aggregation ω̂t
CB = ∑N

k=1 pt
kωt

CB,k;
11: Generate Dsyn

Sk based on At
S,k, dAt

S,k, and ω̂t
CB, and send it to the clients;

12: Update the server model ωt+1
S,k ← ωt

S,k − ηt∇ℓS(ω
t
S,k);

13: end for
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3.4. SplitLPF Algorithm Analysis

The pseudo-code for the training process of SplitLPF as shown in Algorithm 3.

Algorithm 3 SplitLPF

Input: E: global iteration times; N: number of clients;
Output: ωt

CP,k: personalized model; pt
k: optimized model-aggregation weights;

1: Split the model into ωCB, ωS, ωCP;
2: for t← 1 to E do
3: for k← 1 to N in parallel do
4: ClientForwordProp(ωt

CB,k) // Client forward propagation;
5: ServerUpdate(ωt

S,k) // Updates to the offloading model for the central server;
6: ωt

CP,k ←ClientBackProp(ωt−1
CP,k) // Client-side personalized training and back

propagation;
7: pt

k ←ServerUpdate(dAt
CP,k) //Server-side back propagation with aggregation

of client-side base models and update of server-side models;
8: ClientBackProp(dAt

S,k) //The client performs back propagation and updates
the local model;

9: end for
10: end for

3.4.1. Complexity Analysis

In the training process of SplitLPF, each client trains the local model and sends it to
the server (line 4), with a time complexity that equals o(1). The central server forward
propagates to update the intermediate model (line 5), with a time complexity that equals
o(N). Each client performs personalized training and back propagates it (line 6), with a
time complexity that equals o(1). The central server back propagation aggregates client-
side base models and updating server-side models (line 7), with a time complexity that
equals o(N). The client back propagates and updates the local model (line 8), with a time
complexity that also equals o(1). Thus, the total time complexity of one model update
for client k is o(2N). The total time complexity of SplitLPF is o(N2E) through the cycle
iteration. In terms of space complexity, SplitLPF additionally stores wt, Dsyn and ηt, and
they are both fixed-size parameters. Therefore, SplitLPF also has the same space complexity,
o(N), with SL as well.

3.4.2. Total Cost Analysis

Assume that N is the number of clients, P is the total data size, C is the size of the
activations that pass through the model trimming layer when considering one input sample
from a single client, S is the total synthetic data size, R is the rate of communication between
the client and the server, T is the time taken for one forward and backward propagation on
the full model with dataset of size P, T1 is the time to generate synthetic data based on real
data, Tagg is the time required to perform the model aggregation, |W| is the the size of the
full model, and β is the ratio of the full model size available to the client in SL/SplitFed,
i.e., |WC| = β|W|, since clients download and upload client model updates before and
after training respectively. Therefore, the size of each client communication becomes 2β|W|.
Based on the above assumptions, we compare the per-client communication cost, total
communication cost, and total model training time in different approaches, as shown
in Table 1.



Sensors 2024, 24, 88 13 of 30

Table 1. Total cost analysis of the different approaches for one global epoch.

Methods Communication Cost Per Client Total Communication Cost Total Model Training Time

FL 2|W| 2N|W| T + 2|W|
R + Tagg

SL 2PC
N + 2β|W| 2PC + 2βN|W| T +

2βN|W|
R + 2PC

R

SplitFed 2PC
N + 2β|W| 2PC + 2βN|W| T +

2β|W|
R + 2PC

NR + Tagg

SplitLPF 4S
N 4S T + 2T1 +

4S
NR + Tagg

3.5. Fairness Theory Analysis

This subsection will delve into exploring the convergence bounds of model training.
Subsequently, based on this exploration, the effects of aggregation weights pk, dataset size
nk, and local and global gradient discrepancy dk on convergence are obtained, and it is
further concluded that dataset size nk and gradient direction discrepancy dk should be
taken into account when determining the aggregation weights pk.

Given the personalized model partitioning employed in this paper, for the sake of sim-
plicity in analysis, we will only consider the influence of client base models during model
aggregation, i.e., ωk ← ωCB. Assumptions such as local objective function smoothness and
bounded variance of the gradient used in the literature [44–47] are first employed in order
to analyze the convergence of the model.

Theorem 1. Assuming the objective function is L-smooth and the gradients have bounded variance,
when we set the global learning rate η < 1

L , the upper bound of convergence of the optimization is
shown in Equation (12):

min
t

E||∇F(wt)||2 ≤ 2
1− 4(H + 2K)

[
1

ηT
(F(w0)− Finf)

+ 2HB +
2AH

N ∑N
k=1 dk + K(σ2 + 4(A ∑N

k=1 pkdk + B))]
(12)

where H = N ∑N
k=1 (nk − pk)

2, K = L2

γ ∑γ
τ=0

2η2τ

(1−4η2L2τ)
, A and B are both positive constants,

and Finf and σ2 correspond to the bounded scalar and variance of gradients, respectively.

A detailed proof is provided in Appendix A.
Considering stricter boundary conditions typically corresponds to superior optimiza-

tion outcomes. Hence, this paper delves into exploring the impact of the parameter
aggregation weight pk on the upper-bound conditions. From Theorem 1, it is apparent that
the weight pk is primarily correlated with H, which corresponds to the three components
in the convergence bounds. To shrink the bounds, consider optimizing pk to minimize the
upper bound. As a result, a concise expression for the relationship between the aggregation
weight pk, the dataset size nk, and the discrepancy dk between the local and global gradient
can be derived.

Lemma 1. Assuming η < 1/L, for more stringent upper bounds, the aggregation weight pk can
be characterized as shown in Equation (13):

pk ∝ nk + Jdk (13)

where J is a positive constant.

Detailed proofs can be found in Appendix B.
In stricter upper limits, the aggregation weight pk correlates with the dataset size

nk and the discrepancy dk between local and global gradients. For resource-constrained
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devices, the dataset size is typically relatively smaller. Therefore, further adjustments
in the contributions of nk and dk can lead to the optimal model weight. Optimizing
Lemma 1 appropriately results in the expression for the aggregation weight in this paper,
i.e., pk = αnk +(1− α)dk, as shown in Equation (10). Thus, fine-tuning the hyperparameters
α provides an optimal selection for model performance.

4. Experiment and Result Analysis

The performance of SplitLPF in IoT environments was evaluated through experi-
ments. Consider a typical IoT application scenario as shown in Figure 3. In general, IoT
scenarios usually contain both strong devices (resource-rich clients) and weak devices
(resource-constrained clients). Weak devices typically possess limited computational and
storage resources, such as sensors and RFID tag cards. In contrast, strong devices have
more computational and storage capabilities, capable of handling more complex tasks and
algorithms, such as NVIDIA Jetson Nano and cloud servers. The experiments simulated a
multi-machine deployment to adapt to the distributed environment requirements of split
learning. To better manage resources and reduce unnecessary waste, a configuration com-
prising 10 commonly used IoT devices (including four Raspberry Pi, four STM32 boards,
and two NVIDIA Jetson Nano) and one central server was chosen. In this configuration, the
scaled-down Raspberry Pi and STM32 boards emulated weak devices, while the NVIDIA
Jetson Nano emulated a strong device. In the experiment, the hardware environment of
IoT devices encompassed CPU Cortex-A53, Cortex-M0, and Cortex-A57 ARM, with RAM
capacities of 1G and 2G. Operating systems included Raspbian GNU/Linux10 (buster),
FreeRTOS, and Ubuntu 18, with Python 3.7 as the development language. The central
server (a laptop) featured an Intel i5-13500HQ CPU, 32GB RAM, 1TB ROM, and GPU
RTX4060, and it ran on Windows 11. Software environment comprised Pycharm as the
development environment and Python 3.9 as the programming language. In order to
validate the effectiveness of SplitLPF, this paper conducts experiments on Fashion-MNIST
(FMNIST), Extended MNIST (EMNIST), and CIFAR-10 datasets, all of which use the Py-
Torch framework for training deep learning models. These experiments aim to demonstrate
the performance of SplitLPF under different datasets.

Figure 3. Experimental scenario setup in IoT simulated environment.

4.1. Datasets

The experiment evaluated the proposed framework using three popular datasets.
FMNIST and CIFAR-10 datasets contain images from 10 categories each, while EMNIST, an
extension of MNIST, includes 62 categories. All three datasets were divided into a training
set and a test set using a standard data splitting approach. To simulate data heterogeneity
seen in real-world scenarios, we used three forms of non-IID data segmentation for each
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dataset, as shown in Figure 4. Unbalanced Data Distribution (UDD): This scenario sim-
ulated uneven data distribution by altering the number of label categories within client
datasets. In this case, a different number of labeling categories are distributed among
different clients, i.e., weak clients usually have fewer labeling categories than strong clients
but not less than one. For instance, among 10 clients, different subsets of label categories
were allocated to each client, as illustrated in Figure 4a,d,g. Unbalanced Data Size (UDS):
Data size was allocated to clients based on a power-law rule, creating a scenario where
some clients had fewer data sizes while others had more. All clients possessed all label
categories, but weak clients typically had less data than strong clients. For example, for the
CIFAR-10 dataset with 10 clients, 500, 1000, 2000, and 4000 data are assigned to 4, 3, 2, and
1 clients, as shown in Figure 4b,e,h. Unbalanced Data Distribution and Size (UDDS): We
use the Dirichlet distribution [48] DirN(β) for data partitioning, where N is the number
of clients and β determines the degree of non-independent homogeneous distribution,
i.e., the smaller the value of β, the more unbalanced the data distribution. In this way,
the scenario of uneven data distribution and data size between clients is simulated. For
example, the Dir10(0.5) distribution for 10 clients is shown in Figure 4c,f,i. Across these
simulated heterogeneous data scenarios, the weak client is significantly weaker than the
strong client in terms of both data distribution and data size, and these simulated scenarios
mimic, as much as possible, the different data heterogeneity scenarios that may occur in
real IoT environments.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 4. Three non-IID forms of FMNIST, CIFAR-10, and EMNIST; (a) FMNIST UDD; (b) FMNIST
UDS; (c) FMNIST UDDS; (d) CIFAR-10 UDD; (e) CIFAR-10 UDS; (f) CIFAR-10 UDDS; (g) EMNST
UDD; (h) EMNST UDS; (i) EMNST UDDS.
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4.2. Baseline and Experimental Setup

The paper compares SplitLPF with state-of-the-art methods focused on personalization
and fairness, including FedPer [49], which employs an architecture-based personalized
federated learning method combining base and personalized layers; FedPAC [50], which
achieves personalized federated learning through feature alignment and collaborative
classifiers; FedCI [51], which employs client evaluation and uses evaluation outcomes as
fairness-aware aggregation weights in federated learning; Ditto [35], an expandable feder-
ated multi-task learning framework that achieves fair federated learning through personal-
ization; SplitGP [30], a personalized splitting learning method capable of capturing both
generalization and personalization functionalities; and PFSL [29], a personalized fair split-
ting learning approach that combines transfer learning with lightweight personalization
and cooperative fairness. Additionally, the comparison includes the benchmark federated
learning method, FedAvg, and the federated splitting learning method, SplitFed [13]. For
the model settings, a convolutional neural network (CNN) consisting of three convolutional
layers and three fully connected layers was employed to process the FMNIST and EMNIST
datasets. For the CIFAR-10 dataset, a ResNet18 neural network with a depth of 18 was
used. In the split learning scenario, we offload most of the computational tasks of the
model to the central server, and the number of front, middle, and back layers in the model
structure is allocated based on the computational latency and computational complexity.
Among them, the back part of the model retains the last layer of full connectivity with
dropout operation to avoid model inference. SGD was utilized for model optimization
during training, with an initial global learning rate set to η = 0.05 and a momentum change
rate of 0.9. In terms of parameter settings, the training batch size was set to B = 128, the
local iterations for all methods were set to e = 2, and the global iterations were set to E = 100.
The default weight coefficient was set to α = 0.5, and the non-identical distribution degree
β was set to 0.5. In the personalization settings, the local learning rate ηc was dynamically
adjusted based on the model accuracy achieved by each client during training.

4.3. Evaluation Index

To compare the performance of SplitLPF with other methods in terms of personal-
ization and fairness, this paper employed a variety of evaluation metrics, including Test
Accuracy and Personalized Accuracy: this metric is used to assess the model’s performance
by comparing the test accuracy achieved during model training; Scaled Pearson Correlation
(PC) [52]: this metric is used to compare the test accuracy φ obtained when clients train
independently with the test accuracy θ obtained when they collaborate through fairness
mechanisms in FL, and it is calculated as PC = Cov(φ,θ)

σφσθ
, where Cov represents covariance

and σ represents standard deviation; and Jain’s Fairness Index (JFI) [53]: this metric is used
to compare the accuracy distributions of N clients on a local dataset and combine their

accuracy scores into a vector s , which is denoted as JFI = (∑N
i=1 si)

2

N ∑N
i=1 s2

i
. In the literature [52,53],

PC and JFI are used to assess method fairness. In addition, this paper calculates the stan-
dard deviation of test performance between clients according to Definition 1 to further
measure fairness.

4.4. Analysis of Experimental Results

To validate the performance of SplitLPF, a comparison was made against other state-
of-the-art methods across three datasets. The average test accuracy of model training under
three distinct data heterogeneity scenarios is shown in Table 2.

From the Table 2, it is easy to see that SplitLPF presents satisfactory performance in
terms of test accuracy for different datasets in all three cases of data heterogeneity. Notably,
in all three datasets, adopting the UDDS scenario with Dirichlet distribution for data
partitioning showcased higher test accuracy compared to focusing solely on uneven data
distribution in UDD scenarios or differing data sizes in UDS scenarios. The reason for this
is that the data distribution and the number of data in the UDDS scenario are appropriately
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compensated for each client, so that each client has access to a certain number of data,
allowing the model to learn and adapt to different data features in a more comprehensive
way, thus improving the accuracy of the model on the test set. In addition, in Table 2,
the average test accuracy of SplitLPF exceeds that of the benchmark federated learning
method FedAvg, and for the benchmark method SplitFed with the same splitting strategy,
the test accuracy of SplitLPF is significantly higher than that of this benchmark as well.
This indicates the superior performance of SplitLPF in the experimental evaluation. The
enhanced performance of SplitLPF might stem from its utilization of optimized methods
for aggregating model weights, which effectively integrate pertinent information from
client devices, resulting in improved global model accuracy. In addition, consider that
in the model design, SplitFed will make the accuracy rate somewhat lower because it
needs noise to the uploaded gradients and labels to protect the privacy leakage during the
model-training process.

Table 2. Average test accuracy (%) of each method with different non-IID data.

Datasets FMNIST EMNIST CIFAR-10

Method UDD UDS UDDS UDD UDS UDDS UDD UDS UDDS

FedAvg 86.14 80.69 91.71 75.43 69.50 83.47 61.40 40.82 71.56

FedPer 86.19 81.98 91.72 76.12 70.24 82.92 61.97 40.94 71.72

FedPAC 86.78 82.37 92.14 76.38 70.58 85.64 62.73 43.77 72.16

FedCI 86.96 82.22 92.09 76.39 70.79 85.68 62.05 43.11 72.12

Ditto 86.70 81.28 91.60 75.82 70.23 85.48 61.76 42.92 72.11

SplitFed 85.67 78.77 88.44 67.63 66.23 81.52 59.61 40.02 70.84

SplitGP 86.30 82.13 91.93 76.23 70.72 85.09 61.66 42.59 71.67

PFSL 87.40 82.43 92.32 76.43 70.98 86.14 62.22 46.14 72.48

SplitLPF 87.28 82.95 92.85 76.88 71.86 87.15 62.96 46.97 72.88

Compared to other state-of-the-art methods, such as the FedPer, FedPAC, and SplitGP
methods for personalized settings, it can be seen from Table 2 that SplitLPF all performs
slightly higher than other personalized schemes. For instance, in the UDS scenario of the
FMNIST dataset, SplitLPF demonstrates average test accuracy improvements of 0.98%,
0.33%, and 0.82% for FedPer, FedPAC, and SplitGP, respectively. Therefore, compared with
existing methods, SplitLPF shows good performance under different datasets and data
heterogeneity conditions. A horizontal comparison among existing personalized methods
from Table 2 reveals that both FedPAC and SplitGP achieve higher average test accuracy
than FedPer. This is primarily attributed to FedPAC employing effective feature alignment
strategies and a robust classifier collaboration mechanism, which leads to a more consistent
feature space among different clients, facilitating better collaboration and integration
of information from various client sources. Meanwhile, SplitGP leverages controllable
parameters to adjust the boundaries between personalization and generalization, effectively
promoting collaborative training among clients. In contrast, while FedPer’s personalized
layer offers a certain degree of client customization, its integration capability might be
slightly lacking, resulting in a slightly lower average test accuracy compared to FedPAC
and SplitGP methods. PFSL, a split learning approach that considers both personalization
and fairness, demonstrates an average test accuracy close to that of SplitLPF and surpasses
other baseline methods. This can be attributed to PFSL’s utilization of transfer learning
strategies and freezing weights to achieve client personalization effectively, enabling it to
adapt efficiently to various data heterogeneity scenarios.
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In order to better demonstrate the effectiveness of personalization in SplitLPF, all the
personalization methods as well as the benchmark methods were simulated and compared
with SplitLPF. The experimental performance was evaluated on FMNIST and CIFAR-10
datasets, and the experimental results are shown in Figure 5. The experimental results are
depicted in Figure 5. It is evident from Figure 5 that SplitLPF outperforms other methods in
terms of personalized accuracy, while benchmark methods show relatively lower accuracy
in comparison to personalized methods. Among the personalized methods considered,
two split learning methods, PFSL and SplitGP, were assessed. Both adopted a model
partitioning strategy that aimed to adapt better to resource-constrained devices. It can
be observed from Figure 5 that both the methods perform well in terms of performance.
PFSL leverages transfer learning, enabling the model to utilize abundant source domain
data to assist in personalized training on resource-constrained weaker clients, thereby
enhancing the model’s generalization ability. Simultaneously, model partitioning allows
personalized training to focus more on specific tasks and data features at the client’s local
level, effectively boosting accuracy. Meanwhile, SplitGP, through parameter control, adjusts
the degree of personalization, enabling it to adapt to local data features on clients while
maintaining generalization over global data. This balance allows the model to better cater
to the requirements of different clients, consequently enhancing accuracy.

In order to validate the fairness achieved by SplitLPF through optimized model-
aggregation weights, Table 3 presents the comparative results between SplitLPF and other
baseline methods in terms of fairness metrics. Scaled Pearson Correlation (PC), Jain’s
Fairness Index (JFI), and standard deviation (Std) are employed in Table 3 as indicators
measuring fairness. Higher PC and JFI values alongside lower Std typically indicate a
more balanced and fair distribution of benefits within the evaluation. Observing Table 3, it
can be noted that SplitLPF achieves higher levels of fairness compared to other methods.
Specifically, on the FMNIST and EMNIST datasets, SplitLPF achieves a PC (%) of over 90,
indicating strong correlation. Moreover, the JFI (%) on all datasets exceeds 98. In addition,
the standard deviation of SplitLPF on the EMNIST and CIFAR-10 datasets is kept at a low
take. This means that the performance gap between different clients is small, and both
achieve good performance.

In fairness-driven distributed learning approaches such as FedCI, Ditto, and PFSL, it
is apparent from Table 3 that they show better performance than methods that focus on
personalization. The reason behind this phenomenon likely lies in the different strategies
adopted by these methods. In FedCI, fairness is achieved by fostering collaboration and
information sharing, ensuring that each participant obtains reasonable gains in federated
learning, thus enhancing overall fairness. Ditto achieves a higher level of fairness through
a personalization mechanism and a reasonable distribution of proceeds. In contrast, PFSL
maintains not only high levels of personalized accuracy but also superior fairness. This
illustrates that in method design, personalization and fairness can be compatible. Taking
inspiration from this, the present study optimizes both personalized models and fairness
methods, aiming to better satisfy the dual requirements of personalization and fairness.

In the fairness mechanism, the contribution weights of dataset size and gradient
direction disparity to model performance are adjusted by tuning the hyperparameter
α. Different values of the hyperparameter α will be attempted to assess the impact of
the contribution ratio of the dataset size and gradient direction disparity on SplitLPF’s
performance. The experimental results are presented in Figures 6 and 7. We can see that
Figure 6 evaluates the impact of hyperparameters α on the experimental results on the
FMNIST dataset, and Figure 7 evaluates the impact of hyperparameters on the experimental
results on the CIFAR-10 dataset. We controlled the value of the hyperparameter a between
[0–1], specifically taking values of 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and 0.9. For each of these values,
100 global iterations and two local iterations are conducted.
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Figure 5. Personalized accuracy of FMNIST and CIFAR10 under different non-IID data;
(a) FMNIST UDD; (b) FMNIST UDS; (c) FMNIST UDDS; (d) CIFAR-10 UDD; (e) CIFAR-10 UDS;
(f) CIFAR-10 UDDS.
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Table 3. The fairness index of each method is compared under different datasets.

Datasets FMNIST EMNIST CIFAR-10

Method PC JFI Std PC JFI Std PC JFI Std

FedAvg 85.15 93.92 17.47 87.69 97.54 7.91 73.87 93.89 6.47

FedPer 85.94 94.47 17.02 90.53 97.73 7.88 73.57 94.93 6.30

FedPAC 85.31 94.05 16.85 89.81 97.20 6.74 73.43 93.37 6.19

FedCI 88.35 95.20 16.15 92.07 97.72 5.24 75.20 95.18 4.66

Ditto 87.98 95.49 16.46 91.56 97.95 6.20 74.54 96.88 4.98

SplitFed 72.72 90.96 20.36 55.44 95.00 33.19 69.64 89.79 8.37

SplitGP 78.74 91.55 17.55 77.46 96.15 15.15 72.59 92.96 7.33

PFSL 89.43 96.16 15.03 94.51 97.96 3.06 76.45 95.45 3.27

SplitLPF 91.69 98.76 14.73 91.21 98.32 2.64 78.57 98.39 3.01

Figure 6. Model accuracy and loss of SplitLPF under different α conditions (based on FMNIST
dataset); (a) Performance of FMNIST under UDD; (b) Performance of FMNIST under UDS.

From the results in Figures 6 and 7, it can be observed that with different data het-
erogeneity and different datasets, SplitLPF’s performance is significantly better when α is
set to 0.4, 0.5, and 0.6 compared to when α is set to 0.1, 0.2, 0.8, and 0.9. Additionally, the
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performance is slightly lower when α is set to 0.1 and 0.9 compared to other values. This
indicates that relying solely on either local dataset size or the disparity between gradient
direction and the global gradient is not the optimal choice. Only by properly allocating the
weights for both factors and ensuring an appropriate contribution ratio between them, it is
more likely to obtain the best model weights and provide the optimal selection for model
performance. Based on this, we optimize the model performance by adjusting the value of
the hyperparameter α in order to better optimize the model performance.

In order to evaluate the resource consumption of SplitLPF, we compared several
split learning methods that introduce certain communication overheads due to model
partitioning. These include SplitFed, SplitGP, and PSFL, as well as the benchmark federated
learning method FedAvg. Figure 8 illustrates the comparison of these methods in terms of
time and communication overhead. From Table 1, it is evident that the communication in
the federated learning approach mainly comes from downloading and uploading models,
while the data communication in the split learning approach consists of transmitting
intermediate results and synchronizing client models. Therefore, the communication cost
incurred by FedAvg is significantly lower than that of SplitFed, SplitGP, PSFL, and SplitLPF.

Figure 7. Model accuracy and loss of SplitLPF under different α conditions (based on CIFAR-10
dataset); (a) Performance of CIFAR-10 under UDD; (b) Performance of CIFAR-10 under UDS.

In Figure 8b, the disparity in communication overhead resulting from training different
models can be observed. The vertical coordinates on the left side of the figure represent
the criteria for the communication overhead of different methods when training on the
CNN model, and the vertical coordinates on the right side represent the criteria for the
communication overhead of different methods when training on the ResNet18 model.
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Although SplitLPF incurs higher communication costs due to model partitioning, it employs
a lightweight synthetic data transfer approach. This method utilizes smaller batch data
to learn representative information from large-scale data effectively and can recover data
information efficiently, thereby reducing some communication load. Observing Figure 8b,
it is evident that compared to the existing personalized fair SL method PSFL, SplitLPF’s
communication overhead is reduced by approximately 24%.

In Figure 8a, the comparison of time expenditures for training over 20 rounds across
different methods is displayed. The power consumption of IoT devices intensifies as the
training time increases, and some resource-constrained devices may power down midway
due to load. Therefore, the selected training rounds were optimized to be the appropriate
choice. PFSL and SplitLPF exhibit reduced time expenditures compared to other split
learning methods. This is largely attributed to the fact that they employ the parallel training
of clients and that the servers effectively support the parallel processing of client data.
Moreover, SplitLPF’s time expenditure is slightly lower than PFSL, possibly due to the
increased efficiency resulting from reduced communication data volume. In summary,
compared to other split learning methodologies, SplitLPF demonstrates higher efficiency
and lower communication costs in terms of resource consumption.

Figure 8. Comparison of time overhead and communication overhead between different methods;
(a) Time overhead; (b) Communication overhead.

4.5. Extended Discussion
Privacy Analysis

In the proposed SplitLPF framework, each client undergoes specific personalized de-
sign to better adapt to the characteristics of different devices, enhancing model performance
and adaptability. The central server (referred to as the third party) only serves the role of
executing offloading computational tasks to participate in model training, without delving
into the detailed client-side operations or accessing information about their data labels.
Furthermore, when updating the client’s base model, a separate global learning rate is used
for model updates. In contrast, the update of the client personalized model is controlled by
the local learning rate. Clients locally store data labels and dynamic local learning rates.
Thus, unlike traditional two-phase split learning, in this framework, the server lacks access
to client data labels, significantly increasing the difficulty of model inversion attacks. In
addition, unlike the SplitFed learning approach, SplitLPF does not require data to be noised
during data transmission. Instead, lightweight synthetic data is used for transmission,
effectively reducing the risk of data leakage. In specific scenarios, a public-private key
encryption mechanism can be employed to further enhance data confidentiality, although
this might lead to a slight increase in communication overhead.
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5. Conclusions

In this paper, we propose SplitLPF, a personalized and fair split learning framework
for resource-constrained IoT devices, which aims to address the difficulty of resource-
constrained clients in traditional federated learning to efficiently train complex local mod-
els, as well as to deal with the challenges posed by the heterogeneity of data and the
uneven distribution of benefits in IoT environments. In the IIoT domain, data heterogeneity
arises from the diversity of sensing capabilities, environmental conditions, and data char-
acteristics of different devices. Traditional SL training methods may lead to performance
degradation in such a heterogeneous environment. On the other hand, benefit imbalance
manifests as some smaller devices contributing significantly but not receiving proportional
benefits during model training. This could lead to their withdrawal from cooperation,
endangering the entire learning process. The SplitLPF framework achieves improved adap-
tation to specific application scenarios for resource-constrained IoT devices through model
splitting, flexible task allocation, and support for personalized training. In terms of model
aggregation, an optimized model weight aggregation method is employed to ensure fair
benefit distribution by reasonably allocating the contribution proportion, thereby providing
the best model performance selection, and to achieve collaborative fairness. This promotes
a more balanced and sustainable collaboration. The experimental results demonstrate that
the SplitLPF framework achieves higher accuracy through personalized training methods,
even in scenarios with diverse data heterogeneity. Furthermore, the framework ensures
collaboration fairness, providing a more stable foundation for cooperation among IoT
devices. This research offers a novel approach to address distributed learning issues in the
IoT, with the potential for significant breakthroughs in IoT applications.

However, the study also has limitations. For instance, SplitLPF still incurs certain
communication overheads, particularly during the model segmentation and aggregation
phases, thereby increasing the communication burden. Additionally, the SplitLPF method
restricts the amount of shared information among different clients. This limitation might
hinder the model from fully utilizing the data features of all clients, potentially reducing
the model’s generalization ability. Therefore, the next step involves further addressing
the communication overhead issues posed by SplitLPF. We plan to consider integrating
more efficient communication technologies, such as the FedD3 framework [54], which
distills instances through the dataset, requires only one-time communication, and greatly
reduces communication costs. By introducing such efficient communication schemes, we
aim to effectively tackle the communication cost issue while enhancing the efficiency and
performance of distributed learning models, making SplitLPF adaptable to more different
scenarios. In future work, we also plan to enhance the generalization ability of the model
by improving the information exchange strategy. This improvement will be achieved by
augmenting non-private portions of the model parameters, feature summaries, or gradient
information. By doing so, the model can share partial information more extensively,
fostering increased communication and information sharing among the involved parties.
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Appendix A

Considering the simplified model training objective in this paper, the convergence
proof is provided below. First, the global objective function before optimization is defined as
∇F(ω) = ∑N

k=1 nk∇Fk(ω), where ∑N
k=1 nk = 1. Let Gk be the local accumulated stochastic

gradients, represented as Gk = 1
γ ∑γ

τ=1∇Fk(ω
(t,τ)
k ). For each round, the global model

update can be described as: wt+1 − wt = η ∑N
k=1 pkGk, where ∑N

k=1 pk = 1. This analysis
relies on assumptions related to local objective function smoothness and bounded gradient
variance, as found in the literature [44–47].

Proposition A1. (Smoothness). For each local objective function that is L-Lipschitz smooth, it has
for all k ∈ [1, N]: ||∇F(ωk+1)−∇F(ωk)|| ≤ L||ωk+1 −ωk||, its equivalence condition is:

∇F(ωk+1)−∇F(ωk) ≤ −⟨∇F(ωk), ωk+1 −ωk⟩+
L
2
||ωk+1 −ωk||2 (A1)

Proposition A2. (Bounded gradient and bounded variance). For each client i, the local stochastic
gradient is unbiased, i.e., E[Gk(x; ωk)] = ∇Fk(ω). Moreover, it possesses a bounded variance, i.e.,
E[Gk(x; ωk)−∇Fk(ω)] ≤ σ2.

Proposition A3. (Bounded discrepancy and bounded scalar). For each local objective function
∇Fk(ω), constants A and B greater than zero exist, such that: |∇Fk(ω)−∇F(ω)|2 ≤ Adk + B,
where dk represents the local-global discrepancy. The global objective function is bounded by Finf.

Proposition A4. (Conditional expectation). For a sequence of random matrices {Mt}T
t satisfying

the zero conditional expectation E[Mt|Mt−1, Mt−2, ..., M1] = 0 and the independence assumption
P[Mt|Mt−1, Mt−2, ..., M1] = P[Mt], there is E[||∑T

t=1Mt||2] = ∑T
t=1E[||Mt||2].
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Proof of Theorem A1. Next, we will present the derivation of the convergence process.
Given that the global gradient is smooth, based on proposition (A1), we can obtain:

F(wt+1)− F(wt) ≤ −
〈
∇F(wt), (wt+1 − wt)

〉
+

L
2
||wt+1 − wt||2

= −η
〈
∇F(wt), ∑N

k=1 pkGk

〉
︸ ︷︷ ︸

C1

+
Lη2

2
||∑N

k=1 pkGk||2
(A2)

According to ||a||2 + ||b||2 − ||a− b||2 − 2⟨a, b⟩ = 0, C1 is further expressed as:

C1 =
〈
∇F(wt), ∑N

k=1 pkGk

〉
=

1
2
||∇F(wt)||2

+
1
2
||∑N

k=1 pkGk||2 −
1
2
||∇F(wt)−∑N

k=1 pkGk||2︸ ︷︷ ︸
C2

(A3)

C2 can be expressed as:

C2 =||∇F(wt)−∑N
k=1 pkGk||2

= ||∑N
k=1 (nk − pk)∇Fk(wt) + ∑N

k=1 pk(∇Fk(wt)− Gk)||2
(A4)

According to ||a + b||2 ≤ 2||a||2 + 2||b||2 and Cauchy’s inequality, C2 is further ex-
pressed as:

C2 ≤ 2||∑N
k=1 (nk − pk)∇Fk(wt)||2 + 2||∑N

k=1 pk(∇Fk(wt)− Gk)||2

≤ 2
[
∑N

k=1 ||nk − pk||2
] [

∑N
k=1 ||∇Fk(wt)||2

]
︸ ︷︷ ︸

C3

+ 2 ∑N
k=1 pk ||∇Fk(wt)− Gk||2︸ ︷︷ ︸

C4

(A5)

According to ||a + b||2 ≤ 2||a||2 + 2||b||2, C3 can be expressed as:

C3 =∑N
k=1 ||∇Fk(wt)||2 = ∑N

k=1 ||(∇Fk(wt)−∇F(wt)) +∇F(wt)||2

≤ 2 ∑N
k=1 ||∇Fk(wt)−∇F(wt)||2 + 2 ∑N

k=1 ||∇F(wt)||2
(A6)

According to proposition (A3), C3 is further expressed as:

C3 ≤ 2 ∑N
k=1 (Adk + B) + 2 ∑N

k=1 ||∇F(wt)||2

≤ 2N(||∇F(wt)||2 + B) + 2A ∑N
k=1 dk

(A7)

In C4, according to proposition (A4), C4 can be expressed as:

C4 =||∇Fk(wt)− Gk||2 = ||∇Fk(wt)− 1
γ ∑γ

τ=0∇Fk(w(t,τ))||2

= || 1
γ ∑γ

τ=0 (∇Fk(wt)−∇Fk(w(t,τ))||2

=
1
γ ∑γ

τ=0 ||∇Fk(wt)−∇Fk(w(t,τ))||2

(A8)
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According to proposition (A1), C4 is further expressed as:

C4 =
L2

γ ∑γ

τ=0 ||w
t − w(t,τ)||2 =

L2

γ ∑γ

τ=0 η2||∑τ

λ=0 Gk(ω
(t,λ)
k )||

2

=
L2η2

γ ∑γ

τ=0 ||∑
τ

λ=0 (Gk(ω
(t,λ)
k )−∇Fk(ω

(t,λ))) +∇Fk(ω
(t,λ))||2︸ ︷︷ ︸

C5

(A9)

From ||a + b||2 ≤ 2||a||2 + 2||b||2 and proposition (A1) and (A2), C5 can be ex-
pressed as:

C5 ≤ 2 ∑τ

λ=0 ||Gk(ω
(t,λ)
k )−∇Fk(ω

(t,λ))||2 + 2 ∑τ

λ=0 ||∇Fk(ω
(t,λ))||2

≤ 2τσ2 + 2 ∑τ

λ=0 ||(∇Fk(ω
(t,λ))−∇Fk(ω

t))+∇Fk(ω
t)||2

≤ 2τσ2+4 ∑τ

λ=0 ||∇Fk(ω
(t,λ))−∇Fk(ω

t)||2+4τ||Fk(ω
t)||2

≤ 2τσ2+4τL2||ω(t,λ) −ωt||+ 4τ||∇Fk(ω
t)||2

(A10)

Integrating ||ω(t,λ) −ωt||2 from C5 into C4, we can obtain:

||wt − w(t,τ)||2 = 2η2τσ2+4η2τL2||ω(t,λ) −ωt||2 + 4η2τ||∇Fk(ω
t) ||2 (A11)

Transform it into:

||wt − w(t,τ)||2 =
1

(1− 4η2L2τ)
(2η2τσ2 + 4η2τ ||∇Fk(ω

t)||2) (A12)

||∇Fk(ω
t)||2 can be further derived from C3 to obtain C4:

C4 ≤
L2

γ ∑γ

τ=0
1

(1− 4η2L2τ)
(2η2τσ2 + 4η2τ||∇Fk(ω

t)||2)

≤ L2

γ ∑γ

τ=0
1

(1− 4η2L2τ)
(2η2τσ2 + 8η2τ(||∇F(wt)||2 + A ∑N

k=1 dk + B))
(A13)

Let H = N ∑N
k=1 ||nk − pk||2, K = L2

γ ∑γ
τ=0

2η2τ

(1−4η2L2τ)
; then, C2 can be expressed as:

C2 ≤ 4H(||∇F(wt)||2 + B) +
4AH

N ∑N
k=1 dk

+ 2 ∑N
k=1 pkK(σ2 + 4(||∇F(wt)||2 + A ∑N

k=1 dk + B))

≤ 4H(||∇F(wt)||2 + B) +
4AH

N ∑N
k=1 dk+

+ 2K(σ2 + 4(||∇F(wt)||2 + A ∑N
k=1 pkdk + B))

(A14)

Substituting C2 into C1 gives:

C1 =
1− 4(H + 2K)

2
||∇F(wt)||2 + 1

2
||∑N

k=1 pkGk||2

− 2HB− 2AH
N ∑N

k=1 dk − K(σ2 + 4(A ∑N
k=1 pkdk + B))

(A15)
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Integrate into:

F(wt+1)− F(wt) ≤ −η[
1− 4(H + 2K)

2
||∇F(wt)||2

− 2HB− 2AH
N ∑N

k=1 dk − K(σ2 + 4(A ∑N
k=1 pkdk + B))]

+
η(Lη − 1)

2
||∑N

k=1 pkGk||2

(A16)

when Lη − 1 < 0, i.e., η < 1/L , we can obtain:

F(wt+1)− F(wt) ≤ −η[
1− 4(H + 2K)

2
||∇F(wt)||2 − 2HB

− 2AH
N ∑N

k=1 dk − K(σ2 + 4(A ∑N
k=1 pkdk + B))]

(A17)

Translocation and according to proposition (A2) and (A3):

min
t

E||∇F(wt)||2 =
1
T ∑T

t=0 E||∇F(wt)||2

≤ 2
1− 4(H + 2K)

[
1

ηT
(F(w0)− Finf) + 2HB

+
2AH

N ∑N
k=1 dk + K(σ2 + 4(A ∑N

k=1 pkdk + B))]

(A18)

which completes the proof.

Appendix B

Proof of Lemma A1. To simplify the analysis, the convergent bounds in Theorem 1 are
represented as five terms, i.e, N1 = 2

1−4(H+2K) , N2 = 1
ηT (F(w0) − Finf), N3 = 2HB,

N4 = 2AH
N ∑N

k=1 dk, N5 = K(σ2 + 4(A ∑N
k=1 pkdk + B)), where H = N ∑N

k=1 ||nk − pk||2,
and it is evident that it consists of four parts related to the aggregation weights pk. When
there is a greater disparity between the dataset sizes nk and the aggregation weights pk,
the value of H increases, leading to larger values for N3 and N4, which can often amplify
the bounds. From N4 and N5, we can observe that having different dk values might help in
reducing the bounds. To minimize the bounds, we consider transforming the convergence
bound expression, N2 + N3 + N4 + N5/N1, into N2 + N3 + N4 + N5 − εN1, and then we
tackle the following optimization problem to achieve minimization:

Y(pk) =
1

ηT
(F(w0)− Finf) + 2HB +

2AH
N ∑N

k=1 dk+

K(σ2 + 4(A ∑N
k=1 pkdk + B))− 1− 4(H + 2K)

2
ε

(A19)

where ∑N
k=1 pk = 1 and pk > 0. For further optimization, we can set the derivative of Y(pk)

to zero to achieve the minimization, as follows:

Y′(pk) = 4BN(nk − pk) + 4A(nk − pk)∑N
k=1 dk + 4Adk + 4εN(nk − pk) = 0 (A20)

Consolidating, we obtain:

pk = nk +
Adk

BN + A ∑N
k=1 dk + εN

(A21)

This leads to:
pk ∝ nk + Jdk (A22)
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J is a constant greater than zero.
which completes the proof.
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