
Citation: Davey, C.P.; Shakeel, I.; Deo,

R.C.; Salcedo-Sanz, S. Deep Learning

Based Over-the-Air Training of

Wireless Communication Systems

without Feedback. Sensors 2024, 24,

2993. https://doi.org/10.3390/

s24102993

Academic Editors: Jose F. Monserrat

and Changchuan Yin

Received: 14 March 2024

Revised: 19 April 2024

Accepted: 6 May 2024

Published: 8 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Learning Based Over-the-Air Training of Wireless
Communication Systems without Feedback
Christopher P. Davey 1,* , Ismail Shakeel 2 , Ravinesh C. Deo 1,* and Sancho Salcedo-Sanz 3

1 School of Mathematics, Physics and Computing, University of Southern Queensland,
Springfield, QLD 4300, Australia

2 Spectrum Warfare Branch, Information Sciences Division, Defence Science and Technology Group (DSTG),
Edinburgh, SA 5111, Australia; ismail.shakeel@defence.gov.au

3 Department of Signal Processing and Communications, Universidad de Alcalá,
28805 Alcalá de Henares, Madrid, Spain; sancho.salcedo@uah.es

* Correspondence: christopher.davey@unisq.edu.au (C.P.D.); ravinesh.deo@unisq.edu.au (R.C.D.)

Abstract: In trainable wireless communications systems, the use of deep learning for over-the-
air training aims to address the discontinuity in backpropagation learning caused by the channel
environment. The primary methods supporting this learning procedure either directly approximate
the backpropagation gradients using techniques derived from reinforcement learning, or explicitly
model the channel environment by training a generative channel model. In both cases, over-the-air
training of transmitter and receiver requires a feedback channel to sound the channel environment
and obtain measurements of the learning objective. The use of continuous feedback not only demands
extra system resources but also makes the training process more susceptible to adversarial attacks.
Conversely, opting for a feedback-free approach to train the models over the forward link, exclusively
on the receiver side, could pose challenges to reliably end the training process without intermittent
testing over the actual channel environment. In this article, we propose a novel method for the
over-the-air training of wireless communication systems that does not require a feedback channel to
train the transmitter and receiver. Random samples are transmitted through the channel environment
to train a mixture density network to approximate the channel distribution on the receiver side of the
network. The transmitter and receiver models are trained with the resulting channel model, and the
transmitter can be deployed after training. We show that the block error rate measurements obtained
with the simulated channel are suitable for monitoring as a stopping criterion during the training
process. The resulting method is demonstrated to have equivalent performance to the end-to-end
autoencoder training on small message sequences.

Keywords: deep learning; feedback-free training; trainable wireless communications systems;
over-the-air training; neural networks

1. Introduction

Messages in a wireless communication system are sent from a transmitter over the air,
via a channel environment, to a receiver whose aim is to recover the original message. A
simplified depiction of such a wireless communications system is shown in Figure 1. The
channel environment is significant in this type of communications system, as it distorts
the message with perturbations such as noise and fading effects. These channel effects,
along with imperfections within the electronics of both the transmitter and the receiver,
present a challenge to the recovery of the original message. To improve accuracy at the
receiver, the transmitter can code message bits to enable error correction at the receiver. It is
also responsible for modulating the message bits and converting the modulation to a radio
frequency (RF) signal suitable for sending over the wireless channel. At the receiver, the
distorted RF signal must be detected, demodulated, and decoded in order to recover the

Sensors 2024, 24, 2993. https://doi.org/10.3390/s24102993 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24102993
https://doi.org/10.3390/s24102993
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4742-9635
https://orcid.org/0000-0001-5512-8843
https://orcid.org/0000-0002-2290-6749
https://orcid.org/0000-0002-4048-1676
https://doi.org/10.3390/s24102993
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24102993?type=check_update&version=1

Sensors 2024, 24, 2993 2 of 21

original sequence of bits. Each of these steps is conventionally defined as separate signal
processing blocks that are optimised independently of one another [1].

Figure 1. A simplified view of a wireless communications system. The transmitter takes in a K
bit binary message M and codes and modulates the message producing transmitter symbols z(t).
These symbols are transmitted over a channel that produces noise and outputs symbols s(t). The
receiver is responsible for correcting the channel distortions and producing an estimate for the
original message M̂.

End-to-end deep learning (DL) for wireless communications systems has been pro-
posed as an alternative design approach to that of block-based traditional design [1]. The
primary advantage of DL over block-based design is the potential to perform end-to-end
optimisation over observations of a complex channel environment. Especially where the
channel environment may be too complex to be expressed mathematically. However, in [1],
the channel environment is assumed and described by a differentiable channel transfer
function that does not necessarily capture the description of a true channel environment.
Instead of assuming a channel function, it is preferable to jointly optimise the DL-based
transmitter and receiver over examples produced by the true channel. However, in DL
this poses a genuine challenge. The backpropagation algorithm, which modifies the pa-
rameters of the model, cannot occur between the transmitter and receiver. This is because
the calculation of the gradient for the model parameters cannot be determined without a
differentiable channel function.

To overcome this limitation, over-the-air learning (OAL) methods have either applied
gradient approximation [2,3] or trained a separate generative channel model to enable
end-to-end backpropagation [4,5]. The primary limitations of gradient approximation
are the requirement to sample several perturbations through the channel at each training
iteration and continuous feedback of the receiver error. Continuous feedback increases
channel usage and exposes the training process to eavesdropping and data poisoning attack
by adversary communications systems [6]. In the generative channel modelling approach,
the generative adversarial network (GAN) has been widely adopted to approximate the
wireless channel distribution [4,5,7]. However, GAN training requires two models to
learn a channel approximation, a generator and a discriminator model, and proceeds in
two stages. First, by training the discriminator to recognise true channel symbols versus
those produced by the generator model, and second by training the generator to fool the
discriminator. This adversarial training regime adds complexity to the overall training
process for the transmitter and receiver.

In our prior work, we proposed a disjoint OAL algorithm that trains the transmitter
with a local receiver by imitating the errors made at the remote receiver [8]. The local
receiver relied on a feedback channel to supply the remote error information. However, as
in gradient approximation, the feedback channel increases channel use and is vulnerable to
eavesdropping and data poisoning attack during training.

Reliance on continuous feedback is a vulnerability for the overall security of OAL of
DL-based wireless communications systems. To realise OAL on energy-constrained devices
such as in the internet of things (IoT), it is important to avoid complex training procedures

Sensors 2024, 24, 2993 3 of 21

which require training multiple models. Both of these considerations motivate the work in
this article with the following aims:

• To simplify the training procedure for OAL learning of transmitter and receiver, by
proposing an alternative to gradient approximation and eliminating the requirement
for the use of a feedback channel, as well as by developing a simple channel model
that does not require adversarial training against a discriminator, while still learning
an accurate approximation of the observed channel distribution.

• To reduce the vulnerability of OAL training to eavesdropping and adversarial attacks
by removing the use of a feedback channel and preventing transmission of information-
carrying symbols over the true channel environment that could be intercepted and
altered during training.

Motivated by these challenges, in this article, we investigate a method for OAL in
wireless communication systems that can be performed on the receiver side. The proposed
approach does not require continuous feedback and requires training only a single model
to approximate the distribution of the true channel. Additionally, we determine that
intermittent evaluation of the transmitter and receiver using the resulting channel model is
a suitable method for determining training stopping criteria and provides a measurement
appropriate for monitoring of the learning process.

The key contributions of this article are:

• We propose an iterative OAL algorithm for the development of a transmitter, receiver,
and channel model § that does not require continuous feedback between transmitter
and receiver.

• We discuss the application of the mixture density network (MDN) for the approxi-
mation of the channel transfer function. We also show the demonstration of approxi-
mation for several simulated channels, including the additive white Gaussian noise
(AWGN), Rician fading, Rayleigh fading, and power amplifier AWGN channels.

• We capture the simulated block error rate (BLER) for transmitter and receiver models
measured over the generative channel model and demonstrate that this measurement
correlates well with the BLER measured over the true channel environment, thereby
showing that the simulated BLER is suitable for use as the training stopping criteria
and for monitoring of the learning process.

• Finally, we demonstrate that the performance of the resulting transmitter and receiver
models is equivalent to or better than the end-to-end model that is trained with an
assumed channel model. This is shown for AWGN, Rician fading, Rayleigh fading,
and non-linear power amplifier distortions over AWGN simulated channels, thereby
matching the performance of more complex OAL methods that compare against the
end-to-end model in the literature.

In this article, we present the background for end-to-end learning and related work
in Section 2. In Section 3, we describe the system model and our proposed approach.
We present and discuss results for the proposed approach compared with the end-to-end
method in Section 4. In Section 5, we discuss limitations and simplifying assumptions
for the proposed method and describe how these may be addressed in Section 6.2, which
describes avenues for Future Work. Finally, we summarise our findings and conclude our
paper in Section 6.1.

2. Background and Related Work

The most commonly cited motivation for the use of DL in training a wireless communi-
cation system is for its potential as a data-driven method to jointly optimise both the receiver
and transmitter with respect to the distortions produced from the channel [1,4,5,7,9–14].
This motivation has spurred much investigation into the practical considerations required
to realise the goal of automated design. Notably, the end-to-end design was first presented
in [1], which demonstrated the application of the autoencoder (AE) model to the end-to-end
joint optimisation using backpropagation for the transmitter and receiver over an assumed

Sensors 2024, 24, 2993 4 of 21

channel. The AE structure is divided into an encoder or transmitter component, a differen-
tiable channel transfer function, and a decoder or receiver component. It is demonstrated to
learn an encoding that can produce a BLER similar to the conventional Hamming(7,4) code
over the AWGN channel [1]. The backpropagation training of wireless communications
systems suffers a significant flaw, however, and that is the requirement for end-to-end
differentiation must also assume a differentiable channel transfer function. This limitation
prevents the design method from being applied in physical channel environments.

The simplest way to address this limitation is to take a two-step approach: first, train-
ing the end-to-end system offline, and second, performing tuning of the receiver model in
the true channel environment. This procedure is demonstrated in [9], with a more realistic
channel function that includes upsampling, timing, phase, and frequency offsets. Incor-
porating these additional distortions in the channel function required additional design
considerations in the receiver model, which included a data preprocessing step to slice
windows of the incoming signal, a phase estimation, and general feature extraction layers
whose outputs were concatenated to feed into the receiver classifier [9]. The transmitter and
receiver architectures were trained end-to-end, and the receiver was tuned post-deployment
in both simulated AWGN and physical channels. The performance of the AE did not quite
match the conventional differential quadrature phase-shift keying (QPSK) modulation
but did demonstrate the first practical application of end-to-end training to OAL. Joint
optimisation of both the transmitter and receiver models remained elusive, however, since
only the receiver benefited from tuning in the deployed channel environment.

Gradient approximation methods were developed to enable optimisation for both the
transmitter and receiver in OAL without prior knowledge of the channel. Two notable ap-
proaches were developed, the first being derived from simultaneous perturbation stochastic
approximation (SPSA) [2] and the second based on Reinforcement learning (RL) policy
gradient methods [15]. Both methods require that the transmitter outputs are perturbed
multiple times to sample the loss from the receiver at several small displacements around
the transmitter outputs [2,15]. The SPSA method requires more sampling than the latter
method and does not scale well to longer messages or more complex transmitter models [3].
Both approaches did, however, demonstrate the feasibility of the method and achieved
performance equivalent to the joint end-to-end approach in AWGN and Rayleigh fading
channels. Subsequent work has advanced the use of the RL-based approach with appli-
cation to concatenated coding and demonstrating good performance on longer message
sequences, which addresses the short message limitation for symbol-wise classification
in end-to-end learning [10]. However, reliance on the feedback channel increases channel
use and the vulnerability to data poisoning during training, and multiple forward passes
through the transmitter in each single training epoch can be avoided with an appropriate
proxy channel model.

A DL channel model can be applied to learn the physical channel environment directly
from observations without assuming a model for the true channel. Once trained, the
channel model acts as a proxy to support backpropagation in the end-to-end training for
transmitter and receiver models. GAN training methods have been adopted for their ability
to approximate a distribution given noisy inputs. A variational AE generator was applied
in [5] to receive transmitter outputs and approximate the channel distribution for several
channels. The variational AE generator maps the transmitter symbols to the parameters
for an internal normal distribution and uses samples from the inner distribution to map
into the channel distribution. This method enables the model to approximate the stochastic
quality of the channel [5]. The method is shown to approximate several channels, including
AWGN, a non-Gaussian Chi-squared channel effect, and a non-linear channel over AWGN,
which includes a hardware amplifier [5]. While this article demonstrated the potential
application for modelling channels using the GAN, it did not consider how to apply the
resulting channel model in the end-to-end training regime.

Instead of sampling with a variational AE, the context information produced by
transmitting pilot symbols was applied to help the generator approximate the channel

Sensors 2024, 24, 2993 5 of 21

function in [4]. The resulting conditional GAN is trained on simulated AWGN and Rayleigh
fading channels, and then used as a proxy for the true channel to train the transmitter
and receiver [4]. The resulting performance was very close to the Hamming(7,4) code
on the AWGN channel and was similar to coherent detection in the Rayleigh fading
channel [4]. Refs. [4,5] train the AE with the adversarial learning algorithm where a
separate discriminator aims to differentiate between true and generated samples and the
generator aims to fool the discriminator into misclassifying generated samples [4]. However,
one problem in adversarial training is that the generator model can suffer from mode
collapse, where it confines generated results to a smaller area of the broader distribution
to consistently fool the discriminator and subsequently fails to perform generalisation in
modelling the extent of the target distribution [16].

The Wasserstein generative adversarial network (WGAN), which modifies the adver-
sarial loss function, is proposed to improve training stability and address the issue of mode
collapse for GAN training [17]. A WGAN model is trained on the receiver side without
the need for continuous feedback in [7]. The target data set is first constructed by using
a pre-trained transmitter to send a batch of transmissions through the channel. Once the
batch has been collected, the WGAN can be trained with adversarial learning, and the
resulting generator can be used to train a transmitter and receiver end-to-end. Instead of
applying symbol-wise decoding, the approach used bit-wise decoding in a manner similar
to [10]. The authors demonstrated one of the first instances where the GAN approach
was applied in a physical channel to train the transmitter and receiver. However, when
experimenting with the more dynamic time delay channel, the WGAN did not converge
due to mode collapse, indicating that generative methods are challenged when learning
more complex channels [7].

A conditional GAN that is trained on both transmitter symbols and received pilot
symbols is proposed in order to generate more complex time-varying channel distribu-
tions in [11]. The method extends the work in [4] to longer codes using convolutional
neural network (CNN) layers and proposes an iterative training algorithm for transmitter,
GAN, and receiver. By including the pilot symbols as well as the transmitter symbols,
the generator model is able to more closely match the channel effects observed during
training [11]. Evaluation of the resulting system in simulated AWGN, Rayleigh fading,
and frequency-selective fading channels demonstrates similar performance to that of an
end-to-end AE trained with an assumed channel. However, the transmitter, channel, and
receiver models are trained in an iterative manner [11], indicating a high channel usage
during the training procedure similar to the RL method.

Rather than generating the channel distribution directly, the authors in [13] use a
residual connection to learn the distribution of the differences between transmitter symbols
and the received symbols output by the channel. The method residual aided generative
adversarial network (RA-GAN) is trained on simulated channel data via an iterative
training scheme and evaluated against a GAN-based model [13]. Evaluation in the AWGN,
Rayleigh fading, and a ray-tracing-based channels demonstrates performance close to the
optimal end-to-end AE training scheme and is close to the performance for both WGAN-
and RL-based methods [13]. The approach simplifies the structure of the GAN, as well
as introduces an additional regularisation term. However, the approach shares the same
disadvantage as the other GAN-based training methods.

Each of the GAN-based methods requires a separate discriminator neural network
that is used to train the generator during the adversarial training procedure. Adversarial
training is a two-step procedure where the discriminator is first trained to classify true
channel observations versus the generated samples, and secondly, the discriminator is used
to train the generator to produce samples closer to the true observations [11]. After training
the channel model, the discriminator is discarded. However, if considering training OAL
on embedded IoT devices, there will be limitations to the capabilities of hardware platforms,
unlike host driven software defined radio (SDR). It is preferable to reduce the number of

Sensors 2024, 24, 2993 6 of 21

models, which each requires training iterations; therefore, a single-channel model that can
accurately approximate the channel distribution is preferable.

Difficulty with training stability for the GAN model has been quoted as a motivation
for the different variations that have been applied in the literature [4,7,13]. An alternate
single-channel model, the diffusion-denoising probabilistic model (DDPM). is adopted
in [14], primarily to address the issue of mode collapse in the GAN method and because it
has shown excellent performance in the image generation domain. The DDPM learns the
parameters for the variance of a forward noising process where Gaussian noise is repeatedly
added starting from the original input, and a reverse process which learns to restore the
original data from the noise [14]. However, the denoising procedure is slow, requiring
multiple recursive steps, hence a variation of the approach denoising diffusion implicit
model (DDIM) is proposed to trade-off between accuracy and time [14]. Two approaches of
training are adopted for comparison: the pre-trained approach trains the channel generator
model before using it in the end-to-end training procedure, and the iterative approach
interleaves training of channel generator, transmitter, and receiver [14]. Evaluation of
the trained transmitter and receiver models is carried out with a K = 4, N = 7 code in
the simulated AWGN, Rayleigh fading, and non-linear amplifier AWGN channels [14].
Pre-training was demonstrated to have the closest performance to the original end-to-end
training method, and 50 iterations for the DDIM method was shown to be a good trade-off
between accuracy and speed in comparison to the DDPM approach [14]. While diffusion
models have demonstrated excellent generative capabilities in the image domain, the
number of iterations to perform denoising adds to the latency during training, which is
a disadvantage for the application of this approach to OAL. The advantage of the GAN
is that after training, the channel can be simulated with a single forward pass. However,
the training complexity due to adversarial learning against a discriminator model is the
primary limitation for GAN-based methods in OAL. Therefore, a generative model that
does not require multiple passes to reconstruct the signal and that supports a simple
training regime is desirable for applications that may operate on embedded devices over a
physical channel environment.

MDNs combine conventional neural networks with a mixture density model to learn
an underlying generative mapping between input and target data [18]. The MDN trains
a neural network to approximate general distributions by learning the parameters for a
Gaussian mixture model [18]. In this manner, it is trained using conventional supervised
learning without the need for a discriminator or multiple applications of noise and is
a much simpler modeling framework than the GAN or diffusion-denoising models. A
standard network can be seen as learning the mean of the target mapping through the
least-squares loss, and the MDN instead models the parameters for the distribution of multi-
valued continuous target variables [18]. This advantage over standard neural networks
makes the MDN suitable for use in optimization problems, which may include non-unique
solutions for different parameters [19]. This has led to the application of MDN to parameter
estimation for inverse problems [20–22] and to simulation of physical processes [23].

Parameter estimation in the wireless environment is especially challenging due to
noise and fading as well as other distortions such as timing, frequency, and phase offsets.
However, the MDN has been demonstrated to enable accurate estimation for localisation of
wireless sensor network devices in an environment featuring both AWGN and fading effects
in [20]. The MDN has also been demonstrated to provide accurate approximation for the
distributions of latency measurements taken in a 5G wireless AWGN environment [21]. In
a related domain, the MDN was applied to the estimation of direction of arrival for acoustic
signals also within an AWGN environment, and was shown to capture an accurate model
of the uncertainty due to the channel [22]. In the radar domain, the MDN is demonstrated
as an effective data-driven method to approximate radar sensor measurements for distance,
velocity, and orientation of a moving vehicle [23]. In this scenario, a transmitted chirp
signal is distorted by channel perturbations and noise as well as fading and the Doppler
effect [23].

Sensors 2024, 24, 2993 7 of 21

In this article, we propose a method for OAL without feedback, thereby reducing the
channel use and opportunity for data poisoning attacks. A MDN channel model is trained
by observing transmitted random uniform noise over the true channel environment. The
MDN can be trained in a supervised manner to approximate the true channel distribution
without use of a discriminator for adversarial training and is able to learn without the need
of multiple forward passes or repeated noise correction in each epoch.

3. Methodology
3.1. System Model

In our work, we assume a single input single output (SISO) wireless communications
system. A K bit binary message M is coded with an N bit code and modulated at the
transmitter to produce a set of complex transmitter symbols z ∈ C. Experiments are carried
out with K = 8 bits and N = 8 symbols. The transmitter symbols are transferred over the
wireless channel, which we simulate as a transfer function r(t) = h(z(t)). The channel
adds noise and other perturbations such as fading. In this article, training is carried out at
a fixed signal to noise ratio (SNR) of 6 dB, and evaluation is performed over the SNR range
of 0 dB to 15 dB. The receiver is responsible for detecting the signal, correcting distortions,
demodulation, and decoding to produce an estimate of the original message M̂. In our
system, we assume perfect synchronisation; therefore, we do not add additional effects
such as time delay, phase, or carrier frequency offset. The set of channels that are applied
in this article are described in Section 3.5.

The developed AE-based transmitters and receivers learn to produce an uncoded
modulation. Therefore, we include the BLER for uncoded binary phase shift keying
(BPSK) to provide a reference for the optimal performance of an uncoded modulation. The
difference in the performance is due to the ability of the AE to learn to utilise the entire
in-phase and quadrature (IQ) space in the learnt constellation as opposed to using only two
symbols available to BPSK modulation.

3.2. Joint End-to-End Approach

The joint end-to-end approach, based on the AE from [1], is depicted in Figure 2. This
approach is trained end-to-end and incorporates a differentiable channel function h(y) as
part of the model. The transmitter inputs consist of the one-hot encoded vector for the K
bit message M. The one-hot encoding indicates the ith message as a one in i ∈ 2K index
positions, where all other positions j ̸= i are set to 0. The output at the receiver is a vector
of 2K probabilities p(y|r) conditioned on channel symbols r where ∑2K

i=1 p(yi|r) = 1. This
is facilitated by the softmax activation p(yi|r) = exp(li)/ ∑2K

j exp(lj) where l is learnt by
the receiver neural network. The index for the maximum probability is mapped to the
corresponding index of the original message Mindex = arg max p(y|r). Under this regime,
the end-to-end model is trained against the cross-entropy (CE) loss shown in Equation (1).
p(ytrue) is represented as the one-hot encoding for the true messages and p(y|r) is softmax
output produced by the receiver. In our work, we consider this joint model the baseline AE
model, which has assumed knowledge of the channel environment, and we compare our
proposed method to this model.

L(p(ytrue), p(y|r)) = −
2K

∑
i=1

p(yi) log p(yi|r) (1)

In the literature for OAL methods, the joint end-to-end AE based on [1] serves as the
baseline comparative method. This is because, under simulation, the assumed channel
function provides the joint end-to-end AE with complete information of the simulated
environment and hence provides the optimal performance for the DL-based method. To
demonstrate the effectiveness of the proposed method our aim is to demonstrate equivalent
performance, since our proposed method does not have complete information about the
channel, it must rely on training a proxy model of the true channel environment to learn an
optimal constellation for that environment.

Sensors 2024, 24, 2993 8 of 21

Figure 2. The end-to-end network architecture where an assumed channel transfer function is defined
as a layer within the network architecture.

3.3. Proposed Approach

The transmitter and receiver blocks in our proposed approach differ from the original
AE in [1]. Instead of dense blocks, we define a residual block with skip connections
between the dense units, illustrated in Figure 3. The skip block in our architecture (shown
in Figure 3) consists of three dense blocks consisting of linear units, batch normalisation [24]
and a swish activation [25]. The first block scales incoming features so that they have a
compatible dimension for addition to the output of the final block. Skip connections,
also known as residual connections, mitigate vanishing gradients in deeper networks and
are indicated to form an ensemble of models by combining multiple paths through the
network [26]. Any number of skip blocks may be arranged in sequence in the network
architecture. In our model, we typically used one skip block per transmitter and receiver
network. Our choice of the swish activation is related to our choice of skip connections.
The ReLU activation is known to suffer from a vanishing gradient due to its exclusion of
negative values [27]. We chose the swish activation function to help mitigate the vanishing
gradient and complement the use of the skip blocks to aid in promoting learning during
backpropagation. Experimentally we have found the swish activation to outperform ReLU
activations, as indicated in [25]. Since the swish activation is unbounded for positive values,
batch normalisation is applied to reduce the impact of extremes in the activation values.

The L symbols, output by the transmitter, are scaled to emulate the energy constraint
of the transmitter hardware such that ||x||22 ≤ 1, shown in Equation (2). The tanh activation
function is applied at the output of the transmitter to ensure that the learnt transmitter
symbols remain within the range [−1, 1]. Instead of an assumed channel function, back-
propagation is enabled by the channel model, which is trained to approximate the true
channel during the proposed training procedure (described in Section 3.4). The channel
model connects transmitter and receiver models and acts as the proxy for the true channel
to allow training to take place on the receiver side. This allows the training to occur without
the need for feedback over the true channel, thereby reducing the opportunity for data
poisoning during the training of the transmitter and receiver. Once trained, the transmitter
weights can be transferred to the origin transmitter side to send messages across the true
channel. Tables 1 and 2 indicate the respective network dimensions for the transmitter
and receiver.

Sensors 2024, 24, 2993 9 of 21

z(t) =
x(t)√

∑L
i=1 x(i)2/L

(2)

Figure 3. The architecture of the transmitter and receiver networks containing the dense residual skip
block for feature extraction.

Table 1. The transmitter consists of four groups, input, skip block, a linear transformation, and an
output block. The number of units is specified for the dense layers, batch normalisation, and swish
activation preserve the same dimension of output as produced by the dense layer. The model was
trained to map an uncoded message of K = 8 bits to N = 8 IQ symbols.

Layer Units Uncoded 8 Bit Group

Input layer 2K Input

Dense layer 512 Skip block
Batch normalisation -

Swish activation -
Dense layer 64

Batch normalisation -
Swish activation -

Dense layer 512
Batch normalisation -

Swish activation -

Dense layer 2N 2N linear block
Linear activation -

Reshape [N, 2] layer -

Dense layer 2 Output [N, 2]
Tanh activation -

Energy normalisation -

To train the transmitter and receiver, we apply a channel MDN model. The channel
MDN model is trained in a supervised manner against observations of noise transmitted
through the true channel. Unlike the GAN, it does not require a separate discriminator
model and does not require multiple denoising steps in comparison to the diffusion mod-
elling approach. The resulting channel model is combined with the transmitter and receiver
during an end-to-end learning phase, where it emulates the true channel environment.
The MDN model estimates parameters for the mean and standard deviation θ =

{
µj, σj

}

Sensors 2024, 24, 2993 10 of 21

and mixing coefficients ϕj for j = 1 . . . J Gaussian distributions for each individual symbol
z(t) in L time-steps [18]. The resulting mixture of Gaussian distributions is combined to
generate a probability density over the channel outputs p(r(t)|z(t)) (Equation (3)). In our
implementation, each symbol may have a different mean and standard deviation, which
are produced by the main path of the network consisting of a skip block and dense linear
block illustrated in Figure 4.

Table 2. The receiver network consisted of three groups for input, feature learning (skip block), and
output. The dimensions of units are shown for each dense layer with subsequent layers producing
the same shape output as the preceding dense layer. The receiver was trained to map N = 8 IQ
symbols to the original K = 8 bit message.

Layer Units Uncoded 8 Bit Group

Input layer [N, 2] Input
Flatten layer -

Dense layer 512 Skip block
Batch normalisation -

Swish activation -
Dense layer 64

Batch normalisation -
Swish activation -

Dense layer 512
Batch normalisation -

Swish activation -

Dense layer 2K Output
Softmax activation -

Figure 4. The channel model estimates parameters for the mean and standard deviation of a normal
distribution for each transmitted symbol, and the estimate for channel effects is sampled from the
resulting distribution.

Our model is a simplification of the MDN since we use only one Gaussian distribution
and do not model coefficients [18]. However, we do learn separate mappings for each time-
step from z(t) to θ. While it is possible to extend the modelling approach to include more
than one set of Gaussian distributions, we found that estimating an individual mean and
variance for each IQ symbol was sufficient for the set of channels used in the evaluation.

p(r(t)|z(t)) =
J

∑
j=1

ϕj(z(t))N
(

µj(z(t)), σ2
j (z(t))

)
(3)

Sensors 2024, 24, 2993 11 of 21

The network is trained by minimising the negative log-likelihood (NLL) loss, shown
in Equation (4), where r(t)true are the true channel responses, z(t) are the transmitter
symbols, and θ are the distribution parameters learnt by the MDN. A linear activation
is applied to the estimate for the mean, and a softplus activation [28] is added with a
small positive constant for the standard deviation. While this model is simpler than other
generative approaches such as the GAN and diffusion models, it performs well in enabling
the transmitter and receiver to learn modulation and coding that produces equivalent
or better BLER when compared with the end-to-end learning approach. Table 3 lists the
dimensions for each of the layers in the channel model.

L(r(t)true, z(t), θ) = − ln{p(r(t)true|z(t), θ)} (4)

Table 3. The channel model receives as input the transmitter symbols z(t) and learns to approximate
the distribution for the true instantaneous channel function r(t). The final layers learn the parameters
for the mean and standard deviation of a normal distribution around each IQ symbol in r(t).

Layer Units Uncoded 8 Bit Group

Input layer [N, 2] Input

Dense layer 512 Skip block
Batch normalisation -

Swish activation -
Dense layer 64

Batch normalisation -
Swish activation -

Dense layer 512
Batch normalisation -

Swish activation -

Dense layer 512 Skip block
Batch normalisation -

Swish activation -
Dense layer 64

Batch normalisation -
Swish activation -

Dense layer 512
Batch normalisation -

Swish activation -

Dense layer [N, 4] Distribution Parameters
Mean branch [N, 2]

Standard Deviation branch [N, 2]
Mean Linear activation -

Standard Deviation Softplus activation -

Sample Normal distribution [N, 2] Output

3.4. Training Procedure

An overview of the training procedure is illustrated in Figure 5, where in stage 1,
the initialisation of the training procedure requires that both an origin transmitter and
remote receiver share the same random seed. This is used to draw continuous IQ samples
of desired block length K from the uniform distribution S ∼ U([−1, 1]). We emphasise that
the random sequence S is not an information-carrying modulation. In stage 2, the random
sequence is transmitted from the origin transmitter to the remote receiver, producing
channel symbols R. A batch size of 128 blocks is collected prior to training the channel
model. Backpropagation is applied in stage 3 to train the remote channel model against the
true channel symbols R using the NLL loss. Stage 4 performs end-to-end training of the
transmitter and receiver on the receiver side using the trained channel model, without the
need for a feedback channel.

Sensors 2024, 24, 2993 12 of 21

In stage 4, the weights of the channel model are frozen so that they are not updated.
A batch size of 32 random K bit message blocks M is generated prior to performing
backpropagation on the end-to-end version of the model, with the channel model acting as
the true channel proxy. The procedure is repeated until convergence, which is indicated
by the validation loss (a validation batch size of 32 random K bit message blocks is used
to measure this loss for the stopping condition). This process is repeated for 1600 steps
in each training epoch with up to a maximum of 300 epochs. After a single epoch, the
simulated channel block error rate (BLERsim) is calculated against the proxy channel model
for monitoring purposes. In our experiments, we have also calculated BLER against the
true channel to measure the correlation between the BLERsim and the BLER. We observe
that while the BLERsim has higher variance, it is well correlated with the BLER and is a
suitable indication of expected model performance at the current SNR of the channel. In
our experiments, we trained on a simulated channel at an SNR of 6 dB.

Figure 5. Schematic view of the proposed OAL procedure, without feedback. Stage 1 samples random
values from the uniform distribution using a shared seed. Step 2 transmits the random values S over
the true channel to receive channel symbols R. Step 3 trains the remote channel model on input S and
back propagates against true channel symbols R. In Step 4, the channel model weights are frozen,
and training via backpropagation for message M is performed using the remote channel model as a
proxy for the true channel.

3.5. Simulated Channel Environments

To investigate the performance of the model, we train on four instantaneous channel
functions, an AWGN channel, a Rayleigh fading channel, a Rician channel with Rician
factor equal to 4, and a non-linear power amplifier with an additive white Gaussian Noise
(PA-AWGN) channel. Each of these functions includes an additive noise component as
shown in the AWGN channel Equation (5).

r(t) = z(t) + n(t) (5)

The Rayleigh and Rician fading channels scale the transmitter symbols z(t) with fading
coefficients a(t) Equation (6). However, they each differ in how the fading coefficients
are calculated.

r(t) = a(t)z(t) + n(t) (6)

Sensors 2024, 24, 2993 13 of 21

In the Rayleigh fading channel, the fading coefficients are drawn from a complex
standard normal distribution a ∼ CN(0, 1) and their argument is scaled and multiplied
with a phased waveform a(t) = 1√

2
|a|ejψ, in our case we assume a zero phase ψ = 0.

The Rician fading channel function r(t) in Equation (6) draws its scaling coefficients
from a complex normal distribution with parameters µ and σ, a ∼ CN(µ, σ2). The mean
µ =

√
K

(2(K+1)) and standard deviation σ =
√

1
(2(K+1)) are parameterised by the Rician

factor K, which we define as K = 10. The lower the value for K, the Rician fading
appears to become similar to Rayleigh fading, and for higher values of K, Rician fading
resembles AWGN.

In the PA-AWGN channel, we apply a solid-state high-power amplifier (SSPA) to
translate transmitter symbols prior to the AWGN channel. Equation (7) shows the Rapp
model [29] with parameters for the limiting output amplitude A0, amplifier gain ν, and
smoothness p. In our experiments, these are set to A0 = 1, ν = 1, and p = 5. The transmitter
symbols are then transformed by the amplifier function, as shown in Equation (8).

g(A) = ν
A(

1 +
[(

νA
A0

)2
]p)1/2p (7)

z′(t) = g(|z(t)|)ej∠z(t) (8)

Since in this article we simulate the channel, we parameterise the function with the
ratio of energy per information bit to the noise power spectral density Eb/N0 in dB and
a parameter for the code rate K/N. We use the code rate to convert to the ratio for the
energy per symbol to noise power spectral density Es/N0 dB = Eb/N0 dB + 10log10(K/N)
and use the linear form Es/N0 = 10Es/N0 dB/10 to estimate the separate components
Es = ∑L

t=1 z(t)2/L and N0 = Es/(Es/N0). The noise variance σ2 = N0/2 is then used to
draw the complex Gaussian noise parameter n(t) ∼ CN(0, σ2). Once the noise is deter-
mined, it can be applied to the channel transfer function.

We trained and evaluated our proposed method and the joint end-to-end method
against each of these channels. The joint approach is based on the model defined in [1] and
includes the instantaneous channel transfer function as part of the network architecture. In
this approach, there is no requirement for an iterative training algorithm, and the training is
performed by backpropagation over a maximum of 300 × 12 epochs, with a batch size of 32
K = 8 bit messages. The Adam optimisation algorithm [30] is applied in both approaches,
and we leverage stochastic weight averaging (SWA) [31] every 10 epochs with a cyclical
learning rate schedule [32] having a minimum learning rate of 0.0001 and maximum
of 0.001.

4. Results and Discussion

While the baseline end-to-end joint and proposed iterative methods take different
approaches to training, once trained, the transmitter and receiver can be separated from the
end-to-end model and deployed separately for testing. In the iterative method, the channel
model is not required for deployment and is used only during training. Both approaches
are evaluated by transmitting generated random K = 8 bit message blocks and transmitting
over each of the simulated channel transfer functions. The BLER is calculated for each block
at varying SNR between 0 to a maximum of 15 dB. In this section, we present results for
both methods, as well as the uncoded BLER maximum likelihood decoding performance.

The performance of both methods under each channel is presented in Figure 6, and is
compared with uncoded BPSK for reference. Even though the proposed iterative method
has been trained on a generated model, while the joint method is trained with an assumed
channel function, there is very little difference between the performance of both. The
PA-AWGN channel is an exception, however. The proposed method outperforms the joint
method, which appears to have an error floor in higher SNR. Each of the DL methods

Sensors 2024, 24, 2993 14 of 21

achieves gains over the uncoded BPSK modulation. This is because the uncoded BPSK
modulation represents the 8 bit sequence with 8 symbols, each chosen from one of two con-
stellation points. For example, −1 + 0j for 0 and 1 + 0j for 1. Whereas the DL methods can
map each one of the 2K messages to any arrangement of 8 symbols in the IQ space. The DL
methods learn this mapping by minimising the error in message recovery subject to the
distortions introduced by the channel.

The joint end-to-end model has been trained with full information of the simulated
channel environment, due to the assumed channel layer. In contrast, our proposed ap-
proach trains a separate channel model to act as a proxy for the true channel environment,
given observations of random noise. The RL, GAN and diffusion approaches outlined in
the literature compare solutions with variants of the canonical joint end-to-end learning
method [4,7,9,11,13–15]. This is to demonstrate equivalent or better performance against
the model, which is trained with the assumed channel function. Doing so indicates that the
method learns an optimised code based on the observations without prior knowledge of
the channel. The BLER performance for our proposed approach indicates that the resulting
channel model provides an accurate representation of the true channel environment. This
approximation enables the transmitter model to learn an optimised code for the target
channel environment.

0 1 2 3 4 5 6 7 8

Eb/N0 dB

10−5

10−4

10−3

10−2

10−1

B
L

E
R

Iterative Method (8,8)

Joint (8,8)

BPSK Uncoded

(a)

0 2 4 6 8

Eb/N0 dB

10−4

10−3

10−2

10−1

B
L

E
R

Iterative Method (8,8)

Joint (8,8)

BPSK (8,8)

(b)

0 2 4 6 8 10 12

Eb/N0 dB

10−3

10−2

10−1

100

B
L

E
R

Iterative Method (8,8)

Joint (8,8)

BPSK (8,8)

(c)

0 2 4 6 8

Eb/N0 dB

10−3

10−2

10−1

B
L

E
R

Iterative Method (8,8)

Joint (8,8)
(d)

Figure 6. Comparison of BLER performance in the four channel environments. Uncoded K = 8 bit
BPSK modulation is compared with the joint and the proposed iterative method in the (a) AWGN
channel, (b) Rician fading channel, (c) Rayleigh fading channel, and joint and iterative methods are
compared in (d) the PA-AWGN channel.

Sensors 2024, 24, 2993 15 of 21

During the training of the channel model, the origin transmitter samples are drawn
from the random uniform distribution s(t) ∼ U([−1, 1]) prior to transmitting over the
instantaneous channel function. The channel model does not learn from an information-
carrying modulation, as such it does not learn unique features specific to a given waveform.
While this could be a disadvantage, the BLER performance indicates that the channel model
provides a suitable approximation that enables the transmitter and receiver to jointly learn
an appropriate representation for the transmit symbols. In our evaluation, we review the
channel effect on a BPSK modulation and compare this with the estimates produced by the
channel model. The channel model is able to approximate distributions of the instantaneous
channel as shown in Figure 7. The intention of training on uniform IQ samples is to prevent
transmission of an intelligible information-carrying signal during the training procedure.
The resulting bimodal distribution for each channel function with the BPSK modulation is
approximated well by the trained channel model, which produces a mixture of Gaussians
with different scales and locations corresponding to the two modulation symbols.

(a) (b)

(c) (d)

Figure 7. Histogram of channel symbols for each instantaneous channel function and the trained channel
model at training SNR of 6 dB for random BPSK modulation. Comparisons are shown for the (a) AWGN
channel, (b) Rician fading channel, (c) Rayleigh fading channel, and (d) PA-AWGN channel.

The transmitter model, however, does not learn a conventional modulation; instead,
the transmit symbols make use of the IQ space more broadly. Figure 8 shows the histogram
for the instantaneous channel transfer function and the approximation given by the channel
model when provided with the learnt transmitter symbols. The channel model approxima-
tion is close to that of the true distribution when presented with a non-uniform modulation.

The question of when to stop training often relies on monitoring a performance metric
such as the validation loss, and once the metric ceases to decrease after a fixed number of
steps, the training cycle ceases. However, when the intention is to carry out training without
feedback over the true channel, training metrics may no longer be reliable for determining
whether the end-to-end system is learning under the true channel conditions. Outside
of the negative log-likelihood loss for the channel, it is desirable to be able to monitor a
performance metric which is a good indicator of the training progress of the end-to-end
system. Our intuition is that if the channel model is learning an accurate representation of

Sensors 2024, 24, 2993 16 of 21

the true channel transfer function, the BLER produced by evaluation of transmitter and
receiver via the channel model should reflect the BLER that would be produced over the
true transfer function. Evaluation of the transmitter and receiver was performed on both
the instantaneous channel transfer function as well as the channel model at the end of each
epoch. Figure 9 shows the monitored value of the BLER during training at the fixed SNR
of 6 dB. We note that, in general, the BLER corresponds well with that recorded on the
true channel, apart from the Rician fading channel, where the simulated BLER is lower.
However, the error signal correlates well in each channel and serves as a suitable proxy
measure during training (Table 4). It is also worth observing that the variance of the BLER
differs between the true and simulated channels. This is more visible in the Rician and
Rayleigh fading channels, which have a larger number of training epochs.

(a) (b)

(c) (d)

Figure 8. Histogram of channel symbols for each instantaneous channel function and the trained
channel model at training SNR of 6 dB for K = 8 bit messages transferred through the transmitter
model. Comparisons are shown for the (a) AWGN channel, (b) Rician fading channel, (c) Rayleigh
fading channel, and (d) PA-AWGN channel.

Table 4. Pearson ρc and Spearman’s rank ρs correlation coefficients for the BLER produced on true
and simulated channels. The high correlation as well as the error curves indicates a suitability for the
simulated channel model to act as a proxy for performance monitoring during training as well as
acting as a metric for the training stopping condition.

Channel Type ρc ρs

AWGN 0.94 0.89
Rician Fading 0.94 0.73

Rayleigh Fading 0.88 0.66
PA-AWGN 0.99 0.93

Sensors 2024, 24, 2993 17 of 21

(a) (b)

(c) (d)

Figure 9. Comparison between BLER performance on the instantaneous channel transfer function
and the simulated channel model recorded after each epoch of training. There is a high correlation
between BLER between the true transfer function and the simulated channel model. The monitored
BLER is shown in the (a) AWGN channel, (b) Rician fading channel, (c) Rayleigh fading channel, and
(d) PA-AWGN channel.

In the field, evaluation of the true channel function may not be feasible after each
epoch, hence monitoring performance will be reliant on the accuracy of the simulated
channel model. If monitoring of the true channel performance is required, it is possible to
intermittently deploy the transmitter weights to the origin side to evaluate performance
at irregular intervals rather than every epoch. This is to decrease the frequency at which
information-carrying transmissions are made during the training cycle and to maintain
burst communications decreasing the chance of intercept.

Generative models provide a suitable method for enabling backpropagation in OAL,
but the GAN method has been the subject of much research for learning in wireless
communication systems without an assumed channel. Instead of concentrating on the
GAN approach, we have instead proposed a simpler generative model capable of modelling
the channel output distributions as shown in our results. By demonstrating equivalent
performance to the joint end-to-end model, we are comparing our results to a model that
has full knowledge of the simulated channel environment. In doing so, we demonstrate that
the use of the MDN can provide a sufficient approximation of the true channel environment
to permit the learning of an optimal code for that environment.

Sensors 2024, 24, 2993 18 of 21

5. Limitations

As a generative model. the MDN is still vulnerable to mode collapse. Reasons for
mode collapse in the MDN model are described in [33], suggesting that the primary reason
is due to an imbalanced representation of data associated with modes in the training set.
The authors suggest that the mixture components associated with the dominant modes
represented in the data outweigh the other mixture coefficients and prevent variation in
learning solutions [33]. They introduce additional loss terms that help to penalise large
value weights and high variance parameters [33]. Our results did not suffer from mode
collapse. One limitation of our approach is that we are using a small code size, and we
are simulating a memoryless channel environment. In a real channel environment, certain
channel states may persist for longer and therefore become over-represented during the
training phase for the channel model. In a physical system, it may be more likely to
encounter mode collapse and would require an exploration of approaches to mitigate
this issue.

Additional limitations of our work include the assumption of ideal synchronisation.
While the work focuses on the use of the MDN as a simpler alternative to generative
modelling, scope remains for testing in more complex channels, which include timing,
phase, and frequency offsets. These would lead to the additional considerations of a
AE architecture suited to learning matched filtering and compensating for the additional
channel effects. In keeping the experiments simple, we have also restricted our work to a
short message length of K = 8 bits rather than investigating extension to longer codes.

The removal of the feedback channel has reduced the opportunity for data poisoning
between the transmitter and receiver during training. However, there is still some potential
for data poisoning during stage 2 of the learning procedure, when random uniform IQ
symbols are transmitted over the true channel environment. This phase occurs as a regular
burst transmission during each training iteration. While it may be possible to mitigate
somewhat by reducing the regularity of this phase, the training of the channel model is
reliant on sampling of uniform noise through the true channel environment.

6. Conclusions and Future Work
6.1. Conclusions

In this article, we have proposed an alternate generative channel model for training
of transmitter and receiver OAL without relying on a feedback channel. We have shown
that the MDN is able to model the distribution of a stochastic channel environment. As
indicated by our results (Section 4), the proposed approach is able to produce an equivalent
BLER to the joint end-to-end model, without a prior assumption of the channel function.
We have demonstrated equivalent BLER performance for the K = 8 bit uncoded message
in the AWGN, Rician fading, and Rayleigh fading channels as well as in the PA-AWGN
channel. This is achieved without the need for a fixed channel model. Prior work has
focused on the GAN model to learn the channel distribution, and while this has been shown
to be effective, the training procedure does add complexity. We have demonstrated that
the simpler MDN model, requiring only one Gaussian distribution per channel symbol, is
a capable replacement for the GAN when modelling memoryless channels and does not
require the overhead of a discriminator model during training. We have also shown that
intermittent sampling of the end-to-end performance in terms of BLER is suitable for use
as a stopping condition during the training process. This allows training to occur entirely
on the receiver side without the need for feedback over the true channel, such as in RL
based methods. The MDN is advantageous for OAL learning, does not require complex
training regimes, and does not require multiple forward passes during inference (such as
in the diffusion model). Removal of the feedback channel prevents the opportunity for
data poisoning via feedback during the training process. The proposed approach is able to
approximate the channel distribution such that the transmitter and receiver were able to
learn an optimal code matching the performance of the joint end-to-end model.

Sensors 2024, 24, 2993 19 of 21

6.2. Future Work

The limitations identified in Section 5 present opportunities for future work. Ap-
plication to physical channel environments would necessarily require the addition of
synchronisation. This would require modifications to both the transmitter and receiver
architectures to support filtering and the ability to correct timing, phase, and frequency
offsets in the receiver. To this end, it is possible to investigate extending the AE-based
architecture to learn filtering, detection, and synchronisation. Conventional methods for
synchronisation have been optimised for specific forms of filtering and modulation, yet
it may be possible to combine data-driven and conventional approaches, such as in the
work on deep unfolding [34]. In addition, physical channels may exhibit a certain degree
of memory, as identified in [33], mode collapse in MDN is due to unequal representation
of states during training. Future work will need to investigate the properties of channels
with memory and investigate the effects on the MDN channel model as well as investigate
methods to mitigate the unbalanced representation of states within the training data. While
short codes have application in resource-constrained devices such as in the IoT, future work
would also be required to make suitable modifications to the transmitter and receiver archi-
tectures to support longer codes or integrate with concatenated coding methods. Scalability
due to message length and the challenges posed both to the architecture and to the sampling
requirements of the learning process are areas that require further work for the practical
application of DL methods to trainable wireless communications systems. Although the
feedback path is no longer a vulnerability, there remains some potential for data poisoning
the forward path during burst transmissions in stage 2 of training. Future work should
investigate methods to mitigate this potential vulnerability by reducing the frequency of
transmission, employing a low probability of detecting signalling as well as experimentally
investigating robustness of the proposed method to data poisoning attacks. SDR platforms
offer flexibility for defining novel wireless communications systems. The emergence of
embedded and edge device hardware platforms supporting the optimisation required for
the parallel computations required by DL will be necessary for translation of DL-based
methods from software experimentation to hardware implementation. However, trainable
wireless communication systems introduce a new paradigm where components of the sys-
tem are no longer static and must support methods for redeployment and reconfiguration
during operation.

Author Contributions: C.P.D.: Conceptualization; Data curation; Formal analysis; Investigation;
Methodology; Project administration; Resources; Software; Validation; Visualization; Writing—
original draft; Writing—review and editing. I.S.: Conceptualization; Resources; Project administration;
Supervision; Writing—review and editing. R.C.D.: Resources; Project administration; Supervision;
Writing—review and editing. S.S.-S.: Writing—review and editing; Resources. All authors have read
and agreed to the published version of the manuscript.

Funding: This research is supported by UniSQ-DSTG Postgraduate Research Scholarship 2021-2024
on the ’Design of Efficient Artificial Intelligence Algorithms for Future Communication Systems’.
It is funded by the Department of Defence, Commonwealth of Australia under DSP Scholarship
(Project-Based) Agreement 10254.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations
The following abbreviations are used in this manuscript:

Adam adaptive moment estimation
AE autoencoder

Sensors 2024, 24, 2993 20 of 21

AWGN additive white Gaussian noise
BLER block error rate
BLERsim simulated channel block error rate
BPSK binary phase shift keying
CE cross-entropy
CNN convolutional neural network
DDIM denoising diffusion implicit model
DDPM diffusion-denoising probabilistic model
DL deep learning
GAN generative adversarial network
IoT internet of things
IQ in-phase and quadrature
MDN mixture density network
NLL negative log-likelihood
OAL over-the-air learning
PA-AWGN power amplifier with an additive white Gaussian noise
QPSK quadrature phase-shift keying
RA-GAN residual aided generative adversarial network
ReLU rectified linear unit
RL reinforcement learning
SDR software-defined radio
SISO single input single output
SNR signal to noise ratio
SPSA simultaneous perturbation stochastic approximation
SSPA solid-state high-power amplifier
SWA stochastic weight averaging
WGAN Wasserstein generative adversarial network

References
1. O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575.

[CrossRef]
2. Raj, V.; Kalyani, S. Backpropagating through the Air: Deep Learning at Physical Layer without Channel Models. IEEE Commun.

Lett. 2018, 22, 2278–2281. [CrossRef]
3. Aoudia, F.A.; Hoydis, J. End-to-End Learning of Communications Systems without a Channel Model. In Proceedings of the 2018

52nd Asilomar Conference on Signals, Systems, and Computers, Grove, CA, USA, 28–31 October 2018; pp. 298–303. [CrossRef]
4. Ye, H.; Li, G.Y.; Juang, B.F.; Sivanesan, K. Channel Agnostic End-to-End Learning Based Communication Systems with Conditional

GAN. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December
2018; pp. 1–5. [CrossRef]

5. O’Shea, T.J.; Roy, T.; West, N. Approximating the Void: Learning Stochastic Channel Models from Observation with Variational
Generative Adversarial Networks. In Proceedings of the 2019 International Conference on Computing, Networking and
Communications (ICNC), Honolulu, HI, USA, 18–21 February 2019; pp. 681–686. [CrossRef]

6. Sagduyu, Y.E.; Shi, Y.; Erpek, T. Adversarial Deep Learning for Over-the-Air Spectrum Poisoning Attacks. IEEE Trans. Mob.
Comput. 2021, 20, 306–319. [CrossRef]

7. Dörner, S.; Henninger, M.; Cammerer, S.; Brink, S.T. WGAN-based Autoencoder Training Over-the-air. In Proceedings of the 2020
IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA,
26–29 May 2020; pp. 1–5. [CrossRef]

8. Davey, C.P.; Shakeel, I.; Deo, R.C.; Salcedo-Sanz, S. Channel-Agnostic Training of Transmitter and Receiver for Wireless
Communications. Sensors 2023, 23, 9848. [CrossRef] [PubMed]

9. Dörner, S.; Cammerer, S.; Hoydis, J.; Brink, S.T. Deep Learning Based Communication Over the Air. IEEE J. Sel. Top. Signal
Process. 2018, 12, 132–143. [CrossRef]

10. Cammerer, S.; Aoudia, F.A.; Dörner, S.; Stark, M.; Hoydis, J.; Brink, S.T. Trainable Communication Systems: Concepts and
Prototype. IEEE Trans. Commun. 2020, 68, 5489–5503. [CrossRef]

11. Ye, H.; Liang, L.; Li, G.Y.; Juang, B.H. Deep Learning-Based End-to-End Wireless Communication Systems with Conditional
GANs as Unknown Channels. IEEE Trans. Wirel. Commun. 2020, 19, 3133–3143. [CrossRef]

12. Alawad, M.A.; Hamdan, M.Q.; Hamdi, K.A. Innovative Variational AutoEncoder for an End-to-end Communication System.
IEEE Access 2022, 11, 86834–86847. [CrossRef]

13. Jiang, H.; Bi, S.; Dai, L.; Wang, H.; Zhang, J. Residual-Aided End-to-End Learning of Communication System without Known
Channel. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 631–641. [CrossRef]

http://doi.org/10.1109/tccn.2017.2758370
http://dx.doi.org/10.1109/LCOMM.2018.2868103
http://dx.doi.org/10.1109/ACSSC.2018.8645416
http://dx.doi.org/10.1109/GLOCOMW.2018.8644250
http://dx.doi.org/10.1109/ICCNC.2019.8685573
http://dx.doi.org/10.1109/TMC.2019.2950398
http://dx.doi.org/10.1109/SPAWC48557.2020.9154335
http://dx.doi.org/10.3390/s23249848
http://www.ncbi.nlm.nih.gov/pubmed/38139691
http://dx.doi.org/10.1109/JSTSP.2017.2784180
http://dx.doi.org/10.1109/TCOMM.2020.3002915
http://dx.doi.org/10.1109/TWC.2020.2970707
http://dx.doi.org/10.1109/ACCESS.2022.3224922
http://dx.doi.org/10.1109/TCCN.2022.3161936

Sensors 2024, 24, 2993 21 of 21

14. Kim, M.; Fritschek, R.; Schaefer, R.F. Learning End-to-End Channel Coding with Diffusion Models. In Proceedings of the WSA &
SCC 2023; 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding,
Braunschweig, Germany, 27 February 2023; VDE: Frankfurt am Main, Germany, 2023; pp. 1–6. [CrossRef]

15. Aoudia, F.A.; Hoydis, J. Model-free training of end-to-end communication systems. IEEE J. Sel. Areas Commun. 2019, 37,
2503–2516. [CrossRef]

16. Goodfellow, I. Nips 2016 tutorial: Generative adversarial networks. arXiv 2016, arXiv:1701.00160. [CrossRef]
17. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference

on Machine Learning, PMLR, Sydney, NSW, Australia, 6–11 August 2017; pp. 214–223. [CrossRef]
18. Bishop, C.M. Mixture Density Networks. Technical Report, Aston University. 1994. Available online: https://research.aston.ac.

uk/en/publications/mixture-density-networks (accessed on 10 October 2023).
19. Unni, R.; Yao, K.; Zheng, Y. Deep Convolutional Mixture Density Network for Inverse Design of Layered Photonic Structures.

ACS Photonics 2020, 7, 2703–2712. [CrossRef] [PubMed]
20. Karoliny, J.; Etzlinger, B.; Springer, A. Mixture Density Networks for WSN Localization. In Proceedings of the 2020 IEEE

International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–5. [CrossRef]
21. Mostafavi, S.; Sharma, G.P.; Gross, J. Data-Driven Latency Probability Prediction for Wireless Networks: Focusing on Tail

Probabilities. In Proceedings of the GLOBECOM 2023–2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia,
4–8 December 2023; pp. 4338–4344. [CrossRef]

22. Khurjekar, I.D.; Gerstoft, P. Multi-Source DOA Estimation With Statistical Coverage Guarantees. In Proceedings of the ICASSP
2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19
April 2024; pp. 5310–5314. [CrossRef]

23. Li, H.; Kanuric, T.; Eichberger, A. Automotive Radar Modeling for Virtual Simulation Based on Mixture Density Network. IEEE
Sensors J. 2023, 23, 11117–11124. [CrossRef]

24. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456.
[CrossRef]

25. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941. [CrossRef]
26. Veit, A.; Wilber, M.J.; Belongie, S. Residual networks behave like ensembles of relatively shallow networks. Adv. Neural Inf.

Process. Syst. 2016, 29, 550–558. [CrossRef]
27. Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. A Comprehensive Survey and Performance Analysis of Activation Functions in Deep

Learning. Neurocomputing 2022, 503, 92–108. [CrossRef]
28. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April
2011; pp. 315–323. [CrossRef]

29. Rapp, C. Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal. ESA Spec. Publ. 1991,
332, 179–184. [CrossRef]

30. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [CrossRef]
31. Izmailov, P.; Podoprikhin, D.; Garipov, T.; Vetrov, D.; Wilson, A.G. Averaging weights leads to wider optima and better

generalization. arXiv 2018, arXiv:1803.05407. [CrossRef]
32. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017, pp. 464–472. [CrossRef]
33. Zhou, Y.; Gao, J.; Asfour, T. Movement primitive learning and generalization: Using mixture density networks. IEEE Robot.

Autom. Mag. 2020, 27, 22–32. [CrossRef]
34. Jagannath, A.; Jagannath, J.; Melodia, T. Redefining Wireless Communication for 6G: Signal Processing Meets Deep Learning

With Deep Unfolding. IEEE Trans. Artif. Intell. 2021, 2, 528–536. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://ieeexplore.ieee.org/document/10104549
http://dx.doi.org/10.1109/JSAC.2019.2933891
https://doi.org/10.48550/arXiv.1701.00160
https://proceedings.mlr.press/v70/arjovsky17a.html
https://research.aston.ac.uk/en/publications/mixture-density-networks
https://research.aston.ac.uk/en/publications/mixture-density-networks
http://dx.doi.org/10.1021/acsphotonics.0c00630
http://www.ncbi.nlm.nih.gov/pubmed/38031541
http://dx.doi.org/10.1109/ICCWorkshops49005.2020.9145035
http://dx.doi.org/10.1109/GLOBECOM54140.2023.10437281
http://dx.doi.org/10.1109/ICASSP48485.2024.10446097
http://dx.doi.org/10.1109/JSEN.2022.3223765
https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.48550/arxiv.1710.05941
https://proceedings.neurips.cc/paper_files/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf
http://dx.doi.org/10.1016/j.neucom.2022.06.111
https://proceedings.mlr.press/v15/glorot11a.html
https://ui.adsabs.harvard.edu/abs/1991ESASP.332..179R
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1803.05407
http://dx.doi.org/10.1109/WACV.2017.58
http://dx.doi.org/10.1109/MRA.2020.2980591
http://dx.doi.org/10.1109/TAI.2021.3108129

	Introduction
	Background and Related Work
	Methodology
	System Model
	Joint End-to-End Approach
	Proposed Approach
	Training Procedure
	Simulated Channel Environments

	Results and Discussion
	Limitations
	Conclusions and Future Work
	Conclusions
	Future Work

	References

