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Abstract: Self-assembly formation is a key research topic for realizing practical applications in
swarm robotics. Due to its inherent complexity, designing high-performance self-assembly formation
strategies and proposing corresponding macroscopic models remain formidable challenges and
present an open research frontier. Taking inspiration from crystallization, this paper introduces
a distributed self-assembly formation strategy by defining free, moving, growing, and solid states
for robots. Robots in these states can spontaneously organize into user-specified two-dimensional
shape formations with lattice structures through local interactions and communications. To address
the challenges posed by complex spatial structures in modeling a macroscopic model, this work
introduces the structural features estimation method. Subsequently, a corresponding non-spatial
macroscopic model is developed to predict and analyze the self-assembly behavior, employing the
proposed estimation method and a stock and flow diagram. Real-robot experiments and simulations
validate the flexibility, scalability, and high efficiency of the proposed self-assembly formation
strategy. Moreover, extensive experimental and simulation results demonstrate the model’s accuracy
in predicting the self-assembly process under different conditions. Model-based analysis indicates
that the proposed self-assembly formation strategy can fully utilize the performance of individual
robots and exhibits strong self-stability.
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1. Introduction

The initial inspiration for swarm robotics derives from the incredible self-organizing
swarms observed in nature, such as bird flocks [1], fish schools [2], and crystallization [3].
Such natural swarms formed by numerous simple units are completely distributed and de-
centralized, achieving complex collective behavior solely through simple local interactions
rather than external or central controls [4]. This spontaneous phenomenon is defined as
self-organization, and its characteristics, including scalability, flexibility, and robustness,
serve as critical indicators for developing swarm robotics [5–8]. As a result, the focal point
of the field of swarm robotics is to develop a swarm of simple robots. They can go beyond
the capabilities of individual robots and effectively collaborate to achieve higher-level
collective objectives [6]. Over the past two decades, swarm robotics has gradually evolved
into a mature field, engaging researchers worldwide in its development. A comprehensive
exploration of fundamental swarm behaviors, such as aggregation [9], foraging [10], and
collective exploration [11], has been undertaken. The characteristics of these swarm behav-
iors are also analyzed by modeling microscopic [12,13] and macroscopic [14–16] models.
Through these investigations, a more profound comprehension of swarm robotics and its
prospective applications has been achieved.

Self-assembly is a reversible process in which pre-existing simple entities sponta-
neously form an ordered spatial structure without external intervention [17,18]. In the field
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of swarm robotics, self-assembly formation is considered a fundamental research topic and
holds significant potential for practical applications [19]. These applications encompass
the self-assembly control of the satellites [20,21], the programmable self-assembly mat-
ter [22,23], and advanced manufacturing rooted in self-assembly [24]. Consequently, this
challenging and meaningful problem has attracted the attention of researchers worldwide
striving to develop high-performance self-assembly swarm robotics. In 2014, Ruben-
stein et al. designed distributed local interaction rules for swarm robotics based on the
finite-state machine (FSM) and achieved self-assembly formations by organizing a motion
chain [25]. However, this approach operated in a single-threaded mode, resulting in ex-
tremely low efficiency. Following this, Yang et al. proposed a self-assembly formation based
on a distributed algorithm by implementing two parallel motion chains [26,27]. Although
this policy improved the efficiency, the high parallel potential of swarm robotics was not
fully exploited. Additionally, Divband Soorati et al. designed swarm robotics to achieve the
self-assembly of a tree formation [28]. Since father nodes constrained the growth of child
nodes, the efficiency of the self-assembly was also hindered. In 2019, Zhu et al. defined
four rules of collective behavior to form a square formation [29]. While this algorithm
showed high parallelism and efficiency, its robustness was limited by the global leader.
Zheng et al. [30] and Deshmukh et al. [31] discussed the self-assembly formation based on
the density-feedback method, showing great scalability and high parallelism. However,
the density-feedback laws relied on off-line global pattern planning [30] or a centralized
controller [31], which conflicted with the flexibility and robustness of swarm robotics.
The graph-based method was applied in a small-scale self-assembly by Klavins [32] and
Mong-ying et al. [33]. Nevertheless, this control policy might face the challenge of dimen-
sional explosion when applied to large-scale swarm robotics. Similarly, automated design
methods were typically limited to small-scale self-assembly [34,35]. The potential field
approach [36–38] might achieve distributed and high-efficient self-assembly formation.
As the potential field only constrained robots to a specific area rather than certain posi-
tions, forming a formation with lattice structures was challenging. The above research on
self-assembly of swarm robotics is summarized in Table 1. While the above research is
valuable and offers essential guidance for exploring self-assembly formations, the potential
of swarm robotics has yet to be realized. Indeed, crystallization is an exciting self-assembly
phenomenon in nature, where the free particles efficiently and spontaneously form crystals
with a periodic arrangement of atoms [39–41]. This phenomenon may contain the key
principles for designing high-performance self-assembly formation strategies.

Table 1. An overview of research on self-assembly of swarm robotics.

Reference Authors Research
Achievements Methods Limitations

Ref. [25] Rubenstein et al.

Swarm robotics
organized a single

motion chain to achieve
self-assembly

formation.

The FSM method
Extremely low efficiency

resulted from only
single-threaded mode.

Refs. [26,27] Yang et al.

Swarm robotics
organized two parallel

motion chains to
achieve self-assembly

formation.

The FSM method
Low efficiency resulted

from only double-threaded
mode.

Ref. [28] Divband Soorati et al.

Swarm robotics
self-assembled to the
tree-like formation to

search for bright areas.

The FSM method
The constraints between
father and child nodes

limit efficiency.
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Table 1. Cont.

Reference Authors Research
Achievements Methods Limitations

Ref. [29] Zhu et al.
Swarm robotics

self-assembled to a
square formation.

The FSM method
The robustness is limited
due to designing a global

leader for swarm.

Ref. [30] Zheng et al.
Swarm robotics

self-assembled to the
specified formation.

The density-feedback
method

The flexibility is limited
due to rely on the off-line
global pattern planning.

Ref. [31] Deshmukh et al.
Swarm robotics

self-assembled to the
specified 2D formation.

The density-feedback
method

The robustness is limited
due to rely on a centralized

controller.

Ref. [32] Klavins et al.

Swarm robotics
achieved small-scale

self-assembly
formation.

The graph-based method Not suitable for large scale
self-assembly formation.

Ref. [33] Mong-ying et al.

Swarm robotics
achieved small-scale

self-assembly
formation.

The graph-based method Not suitable for large scale
self-assembly formation.

Ref. [34] Groβ et al.

Swarm robotics
self-assembled into a
small formation for
collective transport.

The evolutionary
algorithms

Not suitable for large scale
self-assembly.

Ref. [35] Sperati et al.
Swarm robotics

self-assembled into a
small-scale path.

The evolutionary
algorithms

Not suitable for large scale
self-assembly.

Ref. [36] Khaldi et al.
Swarm robotics

self-assembled to the
specified path.

The potential field methods
Unable to construct a
formation with lattice

structures.

Ref. [37] Cheah et al.
Swarm robotics

self-assembled to the
specified 2D formation.

The potential field methods
Unable to construct a
formation with lattice

structures.

The macroscopic model provides a crucial theoretical basis for studying swarm
robotics [4]. It can directly capture the critical features of swarm behavior and predict the
long-term behaviors of swarm robotics [42,43]. Hence, macroscopic models facilitate the
analysis of the underlying mechanisms driving swarm behavior [42,43]. These analysis
results can be further used to optimize the design of the swarm robotics and improve
the robot controllers. Generally speaking, macroscopic models can be subdivided into
non-spatial models and spatial models [4,43]. The non-spatial model is widely used, relying
on the assumption of spatial uniformity [44]. Based on the probabilistic finite-state machine
(PFSM), Martinoli et al. [14] and Konur et al. [45] presented the non-spatial model for the
collaboration-based stick-pulling swarm. The steady-state conditions and optimal collabo-
ration rate were further discussed. Schmickl et al. [46] used the non-spatial model based
on the stock and flow diagram to analyze the feedback loops of the aggregation behaviors.
Liu et al. proposed a non-spatial model for foraging behaviors using PFSM [16]. On this
basis, Song et al. found the optimal decision rules of the foraging behaviors [10]. The above
research demonstrates that non-spatial models are usually very adept at analyzing the
driving mechanism of swarm behavior besides the predicted ability. The spatial model
is another significant macroscopic approach for studying swarm robotics, being mathe-
matically grounded in the Fokker–Planck or diffusion-reaction equations [7,47,48]. Since
the spatial model characterizes the ensemble of trajectories for a swarm within a specific
area and time, its predictions can be visualized to directly depict the anticipated shape
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of the swarm robotics [4,7]. Schmickl et al. [46] and Prorok et al. [49] discussed spatial
models in aggregation and coverage behaviors, respectively. They demonstrated little
difference between spatial and non-spatial models in long-term predictions. Although the
predictions of the non-spatial models are more visually intuitive, it is difficult to identify the
driving mechanisms of swarm behaviors [46]. Meanwhile, due to the difficulty in obtaining
analytical solutions, the applications of spatial models may be constrained [7].

Although macroscopic models have been applied extensively to study various swarm
tasks and have shown great significance, modeling a macroscopic model for self-assembly
formation remains a relatively underexplored area. Whether it is a spatial or non-spatial
model, a key aspect of modeling is constructing the state transition functions (or state
transition probabilities) between states [14,46]. To the authors’ knowledge, two widely used
methods for constructing the state transition function are the data statistics method [50–53]
and the geometrical estimation method [14,16]. However, in all current studies on modeling
macroscopic models for self-assembly formation, the state transition functions are often
reduced to experiment-based free parameters [14] using the data statistics method [50–53].
Since the free parameters fail to explain the inner mechanisms of the state transitions, the
scientific value of the macroscopic model becomes limited. The state transition function,
based on the geometrical estimation method, holds the potential to elucidate its transition
mechanisms. However, this method is only suitable for situations where state transitions
are only influenced by the geometric description of the robot’s sensing area and the density
of the robots, e.g., stick-pulling [14], aggregation [46], and foraging [16]. In self-assembly
formation, the state transition is also affected by the spatial structural features of the
formation besides the robot’s sensing area. These complex spatial structures introduce
strong nonlinearity to the state transitions. Therefore, the geometrical estimation method
cannot be used to construct state transition functions for the self-assembly formation.

Designing a high-performance self-assembly formation strategy to achieve the two-
dimensional (2D) shape formation with lattice structures and presenting a corresponding
macroscopic model is challenging and meaningful for advancing swarm robotics. In this
paper, a high-performance distributed self-assembly formation strategy is introduced,
drawing inspiration from crystallization processes. To convert the macroscopic swarm
behaviors to multiple simple collaborative tasks, five states, i.e., free, moving, building,
growing, and solid, are defined for robots inspired by the crystallization’s phase transition
processes (see Figure 1a and Table 2). Corresponding behavioral rules are designed for each
robot state. Additionally, the concepts of unit cells and nucleation in crystallization are
incorporated into self-assembly formation to initiate the self-assembly process and facilitate
lattice formation, respectively. Consequently, robots in various states can autonomously
collaborate and communicate locally, allowing them to form user-specified 2D shape
formations with lattice structures. Notice that designing a self-assembly formation strategy
for swarm robotics is not a thorough reproduction of the crystallization process due to
the difference between robots and crystal. To implement the proposed self-assembly
formation, Waxberry robots running within a grid ground and the embodied simulator are
developed. Meanwhile, a non-spatial macroscopic model is proposed for the self-assembly
formation. Here, the master equations of this model are created based on the stock and flow
diagram. To solve the limitations of the geometric estimation and data statistics methods,
the structural features estimation (SFE) method is proposed to construct the model’s state
transition functions. Through defining the basic six structural types and analyzing their
features, the state transition functions that have the potential to explain the transition
mechanisms are constructed. Real-robot experiments and embodied simulations verify the
proposed model’s predictive capability for self-assembly formation across various shapes,
scales, and system parameters.
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posed into several simple cooperative tasks among robots in different states. (b) The Wigner–Seitz 
unit cell in the parallelogram lattices. The unit cell is introduced for self-assembly to achieve the 
formation with lattice structures. (c) Nucleation. Nucleation in crystallization suggests that self-
assembly formations also require a special robot to trigger this process. 
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tures in modeling macroscopic models. Compared with the data statistics method, the 
SFE method possesses the potential to delve into the mechanisms underlying swarm be-
haviors. Meanwhile, the proposed method overcomes the limitations of the geometric 
estimation method in scenarios with spatial structures. Besides the self-assembly for-
mation, the proposed method is also significant in modeling other swarm tasks involv-
ing complex spatial structures. Thirdly, a non-spatial macroscopic model is modeled for 
the proposed self-assembled formation based on the stock and flow diagram and SFE 
method. Compared to simulations, the proposed model can quickly and accurately pre-
dict the whole macroscopic dynamic results. This predictive capability is an important 
guarantee for the realization of practical applications of self-assembly formation, espe-
cially in large scale tasks. Furthermore, the analysis based on the model indicates that 
shorter building time consumed by a single robot means a higher forming efficiency. It 
points out ways of optimizing the efficiency of the self-assembly formation. 

The rest of this paper is organized as follows. In Section 2, the distributed self-
assembly formation strategy inspired by crystallization is proposed and verified. In Sec-
tion 3, the mathematical description of the macroscopic model is introduced. In Section 
4, the validation of the proposed model and discussions are expounded. Lastly, the con-
clusions of this paper are drawn in Section 5. 

2. The Self-Assembly Formation Inspired by Crystallization 
2.1. Crystallization and Inspiration 

Crystallization is a natural self-assembly process in which free solute particles (e.g., 
atoms, ions, or molecules) are arranged into highly ordered structures, resulting in a 

Figure 1. Three critical characteristics in crystallization. (a) The phase transition of the crystallization.
Inspired by the phase transitions, the complex self-assembly formation task can be decomposed into
several simple cooperative tasks among robots in different states. (b) The Wigner–Seitz unit cell in
the parallelogram lattices. The unit cell is introduced for self-assembly to achieve the formation with
lattice structures. (c) Nucleation. Nucleation in crystallization suggests that self-assembly formations
also require a special robot to trigger this process.

Table 2. The definition of states of robot inspired by crystal growth.

The Phenomena of Crystal Growth The States of Robot

The free solute particles Free robots
The solute particles in the diffusion process Moving robots

The solute particles entering kinks Building robots
The atoms making up the crystal surface Growing robots

The atoms inside crystal Solid robots

The main contributions of this paper are summarized in the following three aspects.
Firstly, a high-performance distributed self-assembly formation strategy inspired by crys-
tallizations is proposed for homogeneous swarm robotics. Since the design of a swarm-
robotics cooperative mechanism in self-assembly formation is inspired by crystallization,
swarm robotics shows excellent flexibility, scalability, and high efficiency. These advantages
are demonstrated by real-robot experiments and simulations. Secondly, the SFE method
is proposed to address the challenges posed by complex spatial structures in modeling
macroscopic models. Compared with the data statistics method, the SFE method possesses
the potential to delve into the mechanisms underlying swarm behaviors. Meanwhile, the
proposed method overcomes the limitations of the geometric estimation method in sce-
narios with spatial structures. Besides the self-assembly formation, the proposed method
is also significant in modeling other swarm tasks involving complex spatial structures.
Thirdly, a non-spatial macroscopic model is modeled for the proposed self-assembled
formation based on the stock and flow diagram and SFE method. Compared to simulations,
the proposed model can quickly and accurately predict the whole macroscopic dynamic
results. This predictive capability is an important guarantee for the realization of practical
applications of self-assembly formation, especially in large scale tasks. Furthermore, the
analysis based on the model indicates that shorter building time consumed by a single
robot means a higher forming efficiency. It points out ways of optimizing the efficiency of
the self-assembly formation.

The rest of this paper is organized as follows. In Section 2, the distributed self-assembly
formation strategy inspired by crystallization is proposed and verified. In Section 3,
the mathematical description of the macroscopic model is introduced. In Section 4, the
validation of the proposed model and discussions are expounded. Lastly, the conclusions
of this paper are drawn in Section 5.

2. The Self-Assembly Formation Inspired by Crystallization
2.1. Crystallization and Inspiration

Crystallization is a natural self-assembly process in which free solute particles (e.g.,
atoms, ions, or molecules) are arranged into highly ordered structures, resulting in a crystal
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with a periodic arrangement of atoms [39–41]. Driven by the laws of physics, free solutes
spontaneously assemble into a crystal through local interactions without external controls.
This phenomenon signifies a set of high-performance self-assembly rules. Consequently,
it becomes feasible to devise a high-performance distributed self-assembly formation
strategy for swarm robotics to create a 2D shape with lattice structures by emulating the
crystallization process. Here, three critical characteristics in crystallization are worth noting,
offering inspiration for self-assembly formation.

Firstly, crystallization is a phase transition [54]. Through diffusion (i.e., mass transfer),
the free solute particles are transported from the solution to the growing crystal surface
(see Figure 1a). According to the Kossel–Stranski model [55], the particles attached to the
kinks are incorporated into the crystal by forming new bonds with crystal atoms on the
surface, resulting in crystal growth. Indeed, the crystallization process can be regarded as
cooperating task finished by the particles in different phases or states. This phenomenon
suggests to us that the complex self-assembly formation can be decomposed into multiple
simple collaborative tasks performed by robots in different states.

Secondly, the unit cell is the fundamental building block of the crystal and defines
atoms’ basic arrangement and repetition [56]. It is the key to generating periodic latticed
structures. Here, Figure 1b shows the definition of the unit cell according to Wigner–Seitz
in the parallelogram lattices [56]. Therefore, introducing the unit cell for self-assembly is
the key to achieving the formation with lattice structures. Under the above inspirations of
the crystallization’s characteristics, the self-assembly formation strategy is introduced in
Section 2.2.

Thirdly, crystallization begins in nucleation. Nucleation may occur spontaneously
from the solvated phase or be artificially induced [57]. When the radius of nucleus r exceeds
its critical radius, the crystal growth begins based on this stable nucleus (see Figure 1c). It
is not hard to find that a stable point is essential for self-assembly.

The above characteristics can provide inspiration for designing the self-assembly
formation of swarm robotics. However, due to the difference between crystals and robots,
many unique crystallized mechanisms are not applied in the self-assembly formation
of swarm robotics, such as the equilibrating crystallization process, the driving force of
crystallization based on thermodynamics, and so on. Thus, designing the self-assembly
formation strategy for swarm robotics is not a thorough reproduction and imitation of the
crystallization process.

2.2. The Distributed Self-Assembly Formation Strategy for Swarm Robotics

For the self-assembly formation considered in this paper, all robots are initially dis-
tributed on the ground randomly and uniformly. This paper sets the density of robots on
the ground as 0.2 by default. Generally, the number of robots is more than sufficient for
self-assembly formation. Each robot has a low ability; they only know their position and
can communicate with neighboring robots in a small local area. Note that direct communi-
cation has the advantages of portability and has a lower cost than stigmergy [58]. After
giving the user-specified shape, robots will assemble into this formation by interacting
with neighbors without relying on external control and global information. The details are
designed as follows.

As introduced in Section 2.1, the inspiration drawn from crystal growth provides
a framework for designing self-assembly formation. To decompose the complex self-
assembly formation task into several simple cooperative tasks, five states are defined for
robots inspired by the crystallization’s phase transition (see Table 2). Inspired by the free
solute particles, the free robot is designed to provide the available materials for self-assembly
formation. Like solute molecules in the diffusion process, the moving robot is responsible
for transporting itself to the growth boundary of the formation. The particles attached
to the kinks inspire the design of the building robot, which occupies a specified position
to enter and expand the formation. The growing and solid robots correspond to atoms on
the surface of and inside the crystal, respectively. Considering the differences between
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crystallization and self-assembly formation, the growing robot should provide the specified
positions and recruit free and moving robots to these positions, promoting the expansion
of formation. The solid robots no longer do anything, like the atoms inside the crystal.
In addition, more sub-states are also defined for robots based on different criteria, out of
consideration for modeling the macroscopic model. See Figure 2 and Section 3 for more
details. As shown in Figure 1b, based on the Wigner–Seitz unit cell in the parallelogram
lattices, the cross-arranged unit cells are designed for self-assembly formation to achieve
the shape with lattice structures. Here, the unit cell is defined as a square grid with two
unit lengths, allowing a building, growing, or solid robot to be positioned at its center (see
Figure 3). The cross-arranged unit cells stipulate the arrangement of the robots in the
formation and provide a basis for the growing robot to specify where it needs to be built.
Referring to the definition of the cross-arranged unit cells (see Figure 3), each growing
robot positioned in a unit cell has four neighboring unit cells. Within this context, the
growing state is subdivided into three distinct sub-states, i.e., G1, G2, and G3, based on
the conditions of neighboring unit cells (see Figure 2). As shown in Figure 4, the G1, G2,
and G3 states indicate that this growing robot has one, two, and three neighboring filled
unit cells, respectively. The unit cell filled by growing or solid robots is defined as the
filled unit cell; otherwise, it is the empty unit cell. These sub-states of the growing state
are necessary for modeling the macroscopic model of self-assembly formation. For more
details, see Section 3. In addition, inspired by the nucleation in crystallization, two robots
will be selected as the initial growing robots and positioned at the coordinates (x0, y0)
and (x0, y0 + 2) according to the cross-arranged unit cell’s definition (see Figure 5). x0
and y0 can be assigned any value. The configuration of two growing robots can trigger
self-assembly and benefit subsequent modeling macroscopic models. Other robots will be
configured as free robots and placed in the arena randomly and uniformly, similar to solute
particles (see Figure 5). Then, the self-assembly formation will start automatically. The
detailed control strategy of the robots in different states is introduced as follows.
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Figure 2. The definitions of robot’s states. (a) The main states of robots (b) The sub-states of
building robots depend on birth time. (c) The sub-states of growing robots depend on the number
of neighboring filled unit cells. (d) The sub-states of growing robots depend on birth time. (e) The
sub-states of growing robots depend on working modes.
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Figure 5. The initial conditions of the self-assembly formation and the specified initial growing robots
inspired by nucleation. Two initial growing robots should be positioned at the coordinates (x0, y0)

and (x0, y0 + 2). x0 and y0 can be assigned any value. Here, (x0, y0) is set as (0, 0).

When a growing robot is generated within a unit cell, its four neighboring unit cells
that share an edge with its unit cell will be defined simultaneously (see Figure 3). Unit cells
not yet filled by growing or solid robots are defined as empty; otherwise, they are defined
as filled. Table 3 introduces the classifications and definitions of unit cells. Therefore, like
the atoms on a growing crystal surface, the growing robots can recruit others to occupy
their neighboring empty unit cells to expand the formation. Specifically, the growing robot
selects one of the neighboring empty unit cells as an available empty unit cell. The selected
one should be closest to the coordinate origin and not occupied by building robots. The
coordinates of the available empty unit cell’s center are then broadcast to recruit free robots.
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As shown in Figure 6a, when the growing robot first broadcasts its selected coordinates at
time step t, this broadcast only impacts the free robots. After receiving recruitments, the
free robot turns into the moving state and selects the nearest available empty unit cell as its
target position, moving towards it. During the move, the moving robot will not actively
change its target position. To avoid self-assembly downtime, the moving time parameter
TM is defined. Thus, moving robots may turn into free robots due to exceeding the moving
time parameter TM. Furthermore, as the growing robots’ broadcasts are public, multiple
moving robots may hold the same target position. Hence, the competitive mechanism is
applied based on the distance to the target position and ID number. As shown in Figure 6b,
moving robots numbered 1, 3, and 6 share the same target position. The moving robot closest
to the target position with the lowest ID number value can win the competition. Thus, in
Figure 6b, the moving robots numbered 3 and 6 fail in the competition and will degenerate
into free robots. The moving robot numbered 1 wins the competition and moves towards
its target position. The moving robot that arrives at its target position will translate into a
building robot (see Figure 6c). The building robots located in unit cell will wait for a few
time steps (i.e., building time parameter TB) to simulate the time-consuming of assembly
and building work. Whereafter, they will become the growing robots, resulting in the
expansion of the formation. If the currently selected available empty unit cell is occupied
by a building robot, the growing robot will continue to choose a new available empty unit
cell and broadcast for it. When all neighboring unit cells are filled unit cells, this robot
completes its task and transitions from the growing state into the solid state. As shown in
Figure 7, the finite-state machine (FSM) shows the whole control flow of the individual
robot in the proposed self-assembly formation.

Table 3. Classifications and definitions of the unit cells.

Definition of Unit Cells Descriptions

Filled unit cell The unit cells are filled by growing or solid robots.

Empty unit cell The unit cells are not filled by growing or solid robots.

Available empty unit cell The empty unit cells selected by growing robots and are
allowed as target positions for free and moving robots.

Building unit cell The empty unit cells are allowed to be occupied by
building robots.

Priority building unit cell The building unit cells can be occupied by building
robots preferentially.

Non-priority building unit cell The building unit cells are occupied by building robots
non-preferentially.
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2.3. The Implementation of the Self-Assembly Formation

As shown in Figures 8 and 9, the Waxberry robots are designed to achieve the proposed
self-assembly formation, operating on a grid ground composed of unit square grids. The
name “Waxberry” is derived from a unique fruit in China. As shown in Figure 8b, each
Waxberry robot is equipped with two independent stepping motors. Under the control
of the motor driver, each robot wheel can independently rotate forward or reverse at
a specified speed. Thus, the Waxberry robot can move omnidirectionally based on the
differential steering control. Here, the unit length and unit area are defined as the side
length and area of a square unit grid, respectively. On the grid ground, the Waxberry robot
can navigate between the locating points positioned on the nodes of each square unit grid
(see Figure 9). Therefore, after obtaining its initial coordinates, the Waxberry robot can
accurately determine its real-time position by tracking its trajectory using the principles
of inertial navigation [59]. For simplicity, each movement from one locating point to any
of its eight adjacent points is referred to as one time step. The local communication range
of the Waxberry robot is limited to the area that the robot can reach in three time steps
(see Figure 9). The information exchanged among Waxberry robots includes the robot’s ID
number, state, present coordinates, and working information.

In this study, 15 Waxberry robots are manufactured. Each Waxberry robot is equipped
with an identical self-assembly strategy, as described in Section 2.2. Two different shape
formations are considered to test the proposed self-assembly strategy, i.e., the four-pointed
star and the hexagonal crystal shape formations (see Figure 10). The system parameters of
the self-assembly formation, i.e., building time parameter TB and moving time parameter
TM, are set as one step and four steps by default. As shown in Figure 10, under the
control of the proposed self-assembly formation strategy, 15 Waxberry robots autonomously
assemble into 2 different shape formations without relying on external controls and the
global leader. To verify the proposed self-assembly formation in a large-scale swarm, an
embodied simulator capable of accommodating thousands of agents is developed. This
simulator is programmed in MATLAB 2020, a high-level programming language designed
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for engineers and scientists. Using MATLAB’s powerful development capabilities, the
simulator allows a large number of agents to simultaneously emulate the functionalities
of the Waxberry robot. Each agent in the simulator can move, communicate, and make
autonomous decisions. Consequently, the proposed self-assembly can be further tested at
large-scale formations. Here, the formation scale is expanded to include about 300 robots,
1500 robots, and 3500 robots, respectively. Based on the proposed self-assembly strategy,
swarm robotics can successfully form the two considered shape formations. Figure 11
shows the self-assembly process when the formation is composed of about 300 robots.
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Sensors 2024, 24, 3081 11 of 40 
 

 

 
Figure 8. Waxberry and Waxberry robots. (a) Waxberry. (b) The battery and motors of the Waxber-
ry robot. (c) The electronic system of the Waxberry robot. (d) The 3D design of the Waxberry robot. 
(e) The swarm robotics is composed of multiple Waxberry robots. 

 
Figure 9. The foundational ability of the Waxberry robot. 

In this study, 15 Waxberry robots are manufactured. Each Waxberry robot is 
equipped with an identical self-assembly strategy, as described in Section 2.2. Two dif-
ferent shape formations are considered to test the proposed self-assembly strategy, i.e., 
the four-pointed star and the hexagonal crystal shape formations (see Figure 10). The 
system parameters of the self-assembly formation, i.e., building time parameter 𝑇𝑇𝐵𝐵 and 
moving time parameter 𝑇𝑇𝑀𝑀, are set as one step and four steps by default. As shown in 
Figure 10, under the control of the proposed self-assembly formation strategy, 15 Wax-
berry robots autonomously assemble into 2 different shape formations without relying 

Figure 9. The foundational ability of the Waxberry robot.



Sensors 2024, 24, 3081 12 of 39

Sensors 2024, 24, 3081 12 of 40 
 

 

on external controls and the global leader. To verify the proposed self-assembly for-
mation in a large-scale swarm, an embodied simulator capable of accommodating thou-
sands of agents is developed. This simulator is programmed in MATLAB 2020, a high-
level programming language designed for engineers and scientists. Using MATLAB’s 
powerful development capabilities, the simulator allows a large number of agents to 
simultaneously emulate the functionalities of the Waxberry robot. Each agent in the 
simulator can move, communicate, and make autonomous decisions. Consequently, the 
proposed self-assembly can be further tested at large-scale formations. Here, the for-
mation scale is expanded to include about 300 robots, 1500 robots, and 3500 robots, re-
spectively. Based on the proposed self-assembly strategy, swarm robotics can successful-
ly form the two considered shape formations. Figure 11 shows the self-assembly process 
when the formation is composed of about 300 robots. 

 
Figure 10. The self-assembly formation achieved by 15 Waxberry robots. (a) Self-assembly of a 
four-pointed star shape formation. (b) Self-assembly of a hexagonal crystal shape formation. 
Figure 10. The self-assembly formation achieved by 15 Waxberry robots. (a) Self-assembly of a
four-pointed star shape formation. (b) Self-assembly of a hexagonal crystal shape formation.

The above real-robot experiments and simulations demonstrate the proposed self-
assembly strategy’s high flexibility, scalability, and efficiency. The robots in different states
can self-assemble into various shape formations through local interactions and cooperation,
demonstrating flexibility in different shape conditions. Meanwhile, compared to the works
in Refs. [29–31], the proposed distributed self-assembly formation does not rely on a
global leader and pre-design global information. This allows swarm robotics more flexible
deployment capabilities, showing massive potential in practical applications. Additionally,
tests conducted at the formation scale, ranging from about 15 to 3500 robots, verify that
the proposed self-assembly strategy exhibits excellent scalability. Such scalability comes
from a fully distributed self-assembly strategy based on local interactions. That is, the
local environments of individual robots are similar, no matter how large the scale of the
swarm robotics. High forming efficiency is also one of the advantages of the proposed self-
assembly formation. Compared with the one or two parallel motion chains in Refs. [25–27],
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the proposed self-assembly formation shows remarkable parallelism capability, as all
growing robots contribute to the expansion of the formation. Indeed, as the formation grows
larger, the forming efficiency becomes higher due as there are more growing robots involved
in the construction. Thus, the proposed self-assembly formation shows a rare and precious
super-linear feature. This feature is analyzed in detail below.
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Figure 11. Self-assembly a formation comprising about 300 robots. (a) Self-assembly a four-pointed
star shape formation. (b) Self-assembly a hexagonal crystal shape formation. Green dots: free
robots. Blue dots: moving robots. Orange dots: building robots. Pink dots: growing robots. Red dots:
solid robots.

The super-linear feature is strong evidence for the high forming efficiency. That is, the
forming efficiency of the self-assembly increases with the scale of the formation [13]. It is a
rare and precious feature. The efficiency of the existing self-assembly formation designed
by Rubenstein et al. [25] and Yang et al. [26] remains constant and does not increase as
the formation scale becomes larger (see Figure 12). To analyze the super-linear feature,
the average number of robots joining the formation within one time step is defined as the
forming efficiency index ec. It can be expressed as follows.

ec =
m0

T
(1)

here, T represents the total time dedicated to the self-assembly formation, while m0 denotes
the number of robots positioned within the formation (i.e., the formation scale). As shown
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in Figure 12, whether forming the four-pointed star shape or the hexagonal crystal shape
formation, the simulation results show that the forming efficiency increases with the scale of
the formation. In the small-scale formation comprising about 15 robots, the efficiencies ec of
forming the four-pointed star shape formation and the hexagonal crystal shape formation
are 0.764 and 0.598, respectively. However, when the scale formation is expanded to about
3500 robots, the efficiencies ec are 13.418 and 14.455, respectively. The efficiencies of forming
the four-pointed star shape and the hexagonal crystal shape formations are increased by
1756% and 2417%, as the formation scale increases from about 15 to 3500 robots. The effi-
ciencies ec of self-assembly formation designed by Rubenstein et al. [25] and Yang et al. [26]
can be viewed as one and two, respectively, using robots of the same performance with-
out considering the preparation time. Although our proposed self-assembly formation
cannot show an efficiency advantage over the work in Refs. [25,26], the efficiency of the
proposed self-assembly formation is greater than 2 when more than 100 robots form the
formation (see Figure 12). In the formation comprising about 3500 robots, the efficiency of
the proposed self-assembly formation is 13.9 and 6.97 times more efficient than the studies
of Rubenstein et al. [25] and Yang et al. [26], respectively.
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3. Mathematical Description of the Macroscopic Model

The macroscopic model is an important mathematical tool for predicting and studying
swarm behaviors. This section develops a non-spatial macroscopic model for the proposed
distributed self-assembly formation. The master difference equations (i.e., the model’s
framework) are described in Section 3.1. The analysis for the structural features of the
shape formation is introduced in Section 3.2. Subsequently, all state transition functions in
this macroscopic model are estimated in Section 3.3 according to the structural features.
Lastly, the effects of the shape boundary’s constraints are shown in Section 3.4.

3.1. The Master Difference Equations

In this section, the non-spatial macroscopic model is developed to study the character-
istics of the proposed self-assembly formation’s swarm behaviors. Referring to Ref. [46],
a stock and flow diagram (see Figure 13) is created to depict the swarm behaviors of the
proposed self-assembly formation, utilizing the FSM depicted in Figure 7. The stocks,
represented by boxes in Figure 13, denote the average number of robots in various pre-
defined states at the macroscopic level. Arrows in Figure 13 depict flows, expressing the
number of robots transitioning between states. Such changes can be described by state
transition functions. Based on this stock and flow diagram, a set of difference equations in
the discrete-time domain can be derived to model the fluctuations in the average number
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of robots between different states. The framework of the macroscopic model is outlined
as follows.

NF(t + 1) = NF(t)− ΓF(t) + ΓF
M(t) + ΛF

M(t, TM) (2)

NM(t + 1) = NM(t)− ΓF
M(t)− ΓB

M(t)− ΛF
M(t, TM) + ΓF(t) (3)

NB(t + 1) = NB(t)− ΛG
B (t, TB) + ΓB

M(t) (4)

NG1(t + 1) = NG1(t) + ΛG1
B (t, TB)− ∆G2

G1(t)− ∆G3
G1(t)− ΩG1(t) (5)

NG2(t + 1) = NG2(t) + ΛG2
B (t, TB) + ∆G2

G1(t)− ∆G3
G2(t)− ΩG2(t) (6)

NG3(t + 1) = NG3(t) + ∆G3
G1(t) + ∆G3

G2(t)− ∆S
G3(t) (7)

NS(t + 1) = NS(t) + ∆S
G3(t) + ΩG1(t) + ΩG2(t) (8)

As shown in Table 4, NF(t), NM(t), NB(t), and NS(t) are the average number of
robots in state free, moving, building, and solid respectively at time step t. NG1(t), NG2(t),
and NG3(t) represent the average number of robots in state G1, G2, and G3 at time step
t. The definitions of the G1, G2, and G3 states can be found in Section 2.2 and Figure 4.
Furthermore, the total number of growing robots is expressed as NG(t).

Table 4. Description of notations in the master difference equations.

Notations Descriptions

NF(t) The number of free robots at time step t.
NM(t) The number of moving robots at time step t.
NB(t) The number of building robots at time step t.
NG(t) The number of growing robots at time step t.
NG1(t) The number of G1 robots at time step t.
NG2(t) The number of G2 robots at time step t.
NG3(t) The number of G3 robots at time step t.
NS(t) The number of solid robots at time step t.

ΓF(t)
The number of free robots becoming moving robots at time step t due to
receiving broadcasts.

ΓF
M(t)

The number of moving robots becoming free robots at time step t due to
failure in competition.

ΛF
M(t, TM)

The number of moving robots becoming free robots at time step t due to
running out of the moving time parameter TM.

ΓB
M(t)

The number of moving robots becoming building robots as they succeed in
competition and arrive at their target positions at time step t.

ΛG
B (t, TB)

The number of building robots becoming growing robots at time step
t after spending TB steps assembling the formation.

ΛG1
B (t, TB)

The number of building robots becoming G1 robots at time step
t after spending TB steps assembling the formation.

ΛG2
B (t, TB)

The number of building robots becoming G2 robots at time step
t after spending TB steps assembling the formation.

∆G2
G1(t) The number of G1 robots becoming G2 robots at time step t.

∆G3
G1(t) The number of G1 robots becoming G3 robots at time step t.

∆G3
G2(t) The number of G2 robots becoming G3 robots at time step t.

∆S
G3(t) The number of G3 robots becoming solid robots at time step t.

ΩG1(t)
The number of G1 robots becoming solid robots at time step t due to
constraints of shape boundary.

ΩG2(t)
The number of G2 robots becoming solid robots at time step t due to
constraints of shape boundary.

The state transition functions describe the changes in the number of robots transition-
ing between different states at time step t. The details are introduced as follows. ΓF(t)
represents the number of free robots that turn into the moving state upon receiving broad-
casts from growing robots. ΓF

M(t) represents the number of robots in the moving state that
degenerate into the free state due to failure in competition with other moving robots for
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the same target position. ΓB
M(t) represents the number of moving robots that succeed in

competition and arrive at their target positions. ΛF
M(t, TM) denotes the number of moving

robots that run out of the moving time parameter TM and become the free state. ΛG1
B (t, TB)

and ΛG2
B (t, TB) represent the number of building robots that transition into G1 and G2 states,

respectively, after spending TB steps assembling the formation. Their total number is ex-
pressed as ΛG

B (t, TB). When the building robots occupying the empty unit cells become the
growing robots, the existing growing robots will update their sub-states or translate into the
solid state. These transitions are denoted as ∆G2

G1(t), ∆G3
G1(t), ∆G3

G2(t), and ∆S
G3(t), respectively.

Additionally, ΩG1(t) and ΩG2(t) signify the count of G1 and G2 robots directly transition-
ing into solid robots due to due to the constraints of the shape boundary, respectively. At
this point, the framework of the proposed macroscopic model is described completely.Sensors 2024, 24, 3081 17 of 40 
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3.2. The Analysis for the Structural Features

In the proposed self-assembly formation, all growing robots collectively constitute
the growth boundary of the formation. The arrangement of growing robots based on the
cross-arranged unit cells inevitably creates intricate structures within the growth boundary,
causing strong nonlinearity for the state transitions. As shown in Table 5, the influence of
spatial structures renders traditional geometrical estimation methods ineffective in deduc-
ing corresponding state transition functions. Similarly, the data statistics method falls short
in elucidating the internal mechanisms of state transitions. Consequently, analyzing the
structural features within the growth boundary of the formation is an essential precondition
for constructing state transition functions capable of probing into the mechanisms of swarm
behaviors. Although the macroscopic model considers the features of spatial structures,
it remains non-spatial as the probability of these structural features affecting each robot
is uniform. Here, the definition and quantities of six basic structural types are discussed
to depict the structural features of the growth boundary. Subsequently, the distribution
characteristics of building robots within the empty unit cells provided by different struc-
tural types are discussed. The arrangement characteristics of the structural types are also
analyzed. Note that the distribution characteristics of building robots in empty unit cells
and the arrangement characteristics of structural types are regarded as independent in
probability. Additionally, some assumptions for the macroscopic model should be eluci-
dated to facilitate the discussion of structural features. As introduced in Section 2.2, all
robots share the same ability and an identical self-assembly strategy. In the task of the
self-assembly formation, all robots distributed across the arena randomly and uniformly
will experience free, moving, building, growing, and solid states and perform corresponding
tasks to complete the self-assembly. Therefore, based on the principle of equalitarianism
and the actual situations of self-assembly formation, the macroscopic model should satisfy
the following assumptions:

Assumption 1. The building efficiency of any unit cell remains constant both in terms of time
and space.
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Assumption 2. The formation expands at a consistent rate in all directions.

Assumptions 1 and 2 are consistent with the fact that the model is non-spatial. In
the structural features analysis, these assumptions can reduce the number of situations
that need to be discussed (see Section 3.2) and simplify the complexity of the model. Note
that the above assumptions are only for the self-assembly of swarm robotics and have no
bearing on crystallization.

Table 5. The comparison among the existing methods and our proposed method.

Applicable to Spatial
Structure Scenarios

Explaining the Inner
Mechanisms of the

State Transitions

Data statistics method [50–53] √ ×
Geometrical estimation method [14,16] × √

Structural feature estimation method √ √

3.2.1. The Definitions of Six Basic Structural Types

As shown in Figure 14, six basic structural types are defined based on G2 robots.
Each structural type comprises only one G2 robot, positioned on the leftmost side of the
structural type. Thus, the total count of structural types corresponds to the number of
G2 robots. The structural types consisting of only G2 and G3 robots can be classified as
Fa and Ra based on whether the angle between G2 and its neighboring growing robot to
the right is 180◦ (flat angle) or 90◦ (right angle) (see Figure 14a,c). When the structural
type Fa contains a G3 robot, it is subdivided into Fa2; otherwise, it is Fa1. Similarly, the
structural type Ra is also divided into Ra1 and Ra2. The situations involving structural
types that include more than one G3 robot are not considered in this paper since the G3
robot builds its neighboring empty unit cells with the same efficiency as other growing
robots (see Assumption 1). To simplify the analysis, G1 robots are only considered within
structural types Fa, i.e., structural types Fa1 and Fa2 (see Figure 14e,f). That is, we ignored
some of the rare structure types without reducing the accuracy of the model predictions.
Using these defined six basic structural types, the growth boundary’s structural feature can
be described precisely. The notations related to all state transition functions are explained
in Table 6.

Sensors 2024, 24, 3081 18 of 40 
 

 

that need to be discussed (see Section 3.2) and simplify the complexity of the model. 
Note that the above assumptions are only for the self-assembly of swarm robotics and 
have no bearing on crystallization. 

Table 5. The comparison among the existing methods and our proposed method. 

 
Applicable to Spatial 
Structure Scenarios 

Explaining the Inner Mechanisms of 
the State Transitions 

Data statistics method 
[50–53] √  

Geometrical estimation 
method [14,16] 

 √ 

Structural feature esti-
mation method √ √ 

3.2.1. The Definitions of Six Basic Structural Types 
As shown in Figure 14, six basic structural types are defined based on G2 robots. 

Each structural type comprises only one G2 robot, positioned on the leftmost side of the 
structural type. Thus, the total count of structural types corresponds to the number of G2 
robots. The structural types consisting of only G2 and G3 robots can be classified as 𝐹𝑎 
and 𝑅𝑎 based on whether the angle between G2 and its neighboring growing robot to the 
right is 180° (flat angle) or 90° (right angle) (see Figure 14a,c). When the structural type 𝐹𝑎 contains a G3 robot, it is subdivided into 𝐹𝑎 ; otherwise, it is 𝐹𝑎 . Similarly, the struc-
tural type 𝑅𝑎 is also divided into 𝑅𝑎  and 𝑅𝑎 . The situations involving structural types 
that include more than one G3 robot are not considered in this paper since the G3 robot 
builds its neighboring empty unit cells with the same efficiency as other growing robots 
(see Assumption 1). To simplify the analysis, G1 robots are only considered within struc-
tural types 𝐹𝑎, i.e., structural types 𝐹𝑎  and 𝐹𝑎  (see Figure 14e,f). That is, we ignored 
some of the rare structure types without reducing the accuracy of the model predictions. 
Using these defined six basic structural types, the growth boundary’s structural feature 
can be described precisely. The notations related to all state transition functions are ex-
plained in Table 6. 

  
Figure 14. Six basic structural types. The orange heavy solid line and orange dotted line represent 
the connection interfaces to the previous and next structural types, respectively. The black dotted 
arrows points to the neighboring empty unit cells of the growing robots. The green dotted boxes 
represent the building unit cells, which are the empty unit cells allowed to be occupied by the 
building robots. Hollow blue circles represent growing robots, solid blue circles represent solid ro-
bots, and solid gray circles represent building robots. 

Figure 14. Six basic structural types. The orange heavy solid line and orange dotted line represent the
connection interfaces to the previous and next structural types, respectively. The black dotted arrows
points to the neighboring empty unit cells of the growing robots. The green dotted boxes represent
the building unit cells, which are the empty unit cells allowed to be occupied by the building robots.
Hollow blue circles represent growing robots, solid blue circles represent solid robots, and solid gray
circles represent building robots.
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Table 6. Description of notations in all state transition functions.

Notations Descriptions

NFa(t) The number of structural types Fa.
NFa1 (t) The number of structural types Fa1.
NFa1∗ (t) The number of structural types Fa1∗ .
NFa2 (t) The number of structural types Fa2
NFa2∗ (t) The number of structural types Fa2∗ .
NRa(t) The number of structural types Ra.
NRa1 (t) The number of structural types Ra1.
NRa2 (t) The number of structural types Ra2.
Nbu(t) The total number of building unit cells.
Nbup (t) The total number of the priority building unit cells.
NBnew (t) The number of new building robots.
NBold (t) The number of old building robots.
σold The probability of old building robots in the priority building unit cell.
ϵold The probability of old building robots in the non-priority building unit cell.
σnew The probability of new building robots in the priority building unit cell.
ϵnew The probability of new building robots in the non-priority building unit cell.

τ
The probability of structural type Ra1 being on the left side of structural
types Ra2 and Fa.

τ∗ The probability of structural type Ra1 being on the left side of structural
type Ra1.

µRa1

The probability of the building robots in the building unit cell provided by
the G2 robots of the structural type Ra1.

µold
Ra1

The probability of the old building robots in the building unit cell provided
by the G2 robots of the structural type Ra1.

µnew
Ra1

The probability of the new building robots in the building unit cell provided
by the G2 robots of the structural type Ra1.

µRa2

The probability of the building robots in the building unit cell provided by
the G2 robots of the structural type Ra2.

µFa
The probability of the building robots in the building unit cell provided by
the G2 robots of the structural type Fa.

µold
Fa

The probability of the old building robots in the building unit cell provided
by the G2 robots of the structural type Fa.

µnew
Fa

The probability of the new building robots in the building unit cell provided
by the G2 robots of the structural type Fa.

ρnew
G1 The probability of the G1 robots in a new growing state.

ρnew
G2 The probability of the G2 robots in a new growing state.

σΛB

The probability of the robot transitioning from building to growing state
within the priority building unit cells.

ϵΛB

The probability of the robot transitioning from building to growing state
within the non-priority building unit cells.

3.2.2. The Calculation of the Quantities of Six Basic Structural Types

According to Assumptions 1 and 2, the shape of the formation’s growth boundary
must be a convex polygon before the shape boundary constraint is triggered. As shown
in Figure 15, the structural types Fa can bend the extension of the growth boundary by
90◦ in addition to increasing the length of the growth boundary. Therefore, based on the
basic geometric principles, a growth boundary allows for only four structural types of
Fa. The growth boundary can be understood as composed of four equal-length growth
edges originating from the structural type Fa. The simplest growth edge contains only a
structural-type Fa (see Figure 15a). Thus, the number of structural-type Fa is written as
NFa(t), i.e.,

NFa(t) = min(4, NG2(t)) (9)

where NG2(t) expresses the number of G2 robots. The number of structural types of
Fa1, Fa1∗ , Fa2, and Fa2∗ at time step t can be expressed as NFa1(t), NFa1∗ (t), NFa2(t), and
NFa2∗ (t), i.e.,

NFa1(t) = NFa(t)(1 − ρG3)(1 − ρG1) (10)
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NFa1∗ (t) = NFa(t)(1 − ρG3)ρG1 (11)

NFa2(t) = NFa(t)ρG3(1 − ρG1) (12)

NFa2∗ (t) = NFa(t)ρG3ρG1 (13)

where ρG1 is the probability of G1 robots in structural type Fa, which is defined as

ρG1 =
NG1(t)
NFa(t)

(14)

The ρG3 denotes the probability that structural types Fa and Ra contain a G3 robot.
Due to equalitarianism, ρG3 can be expressed as

ρG3 =
NG3(t)
NG2(t)

(15)

Here, NG2(t) represents the total number of all structural types. The number of the
structural type Ra can be written as NRa(t), i.e.,

NRa(t)= NG2(t)− NFa(t) (16)

Similarly, the number of structural types Ra1 and Ra2 is represented as follows.

NRa1(t)= NRa(t) (1 − ρG3) (17)

NRa2(t)= NRa(t) ρG3 (18)
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3.2.3. The Distribution Characteristics of Building Robots

The distribution of building robots within the empty unit cells provided by the struc-
tural types should be discussed since it plays a crucial role in the state transitions of building
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and growing robots. The empty unit cells allowed to be occupied by the building robots are
considered the building unit cells (see Table 3 and Figure 14). Therefore, the distribution
rules and classification of the building unit cells are determined first. Then, the sub-states
of building robots should be discussed further. Finally, the probability of different building
robots in different building unit cells can be determined.

As a prerequisite for estimating the number of building unit cells, based on a large
number of simulations and experimental results, the following two phenomena related to
empty unit cells deserve attention. Firstly, the building time parameter of building robots
considered in this work is very small (i.e., TB ≤ 4), usually less than the time required for
the robot to transition from free to building state. Therefore, in the case of a growing robot
with multiple empty unit cells (such as G1 and G2 robots), when it autonomously recruits a
building robot for the second empty unit cell, the building robot within its first empty unit cell
has already transitioned to the growing state due to completing its assembly works. As this
transition also triggers the original growing robot to undergo a state transfer, it is impossible
for a growing robot to actively recruit multiple building robots simultaneously without
triggering its state transition. Secondly, the empty unit cell shared by two neighboring
growing robots is typically closer to the coordinate origin than its neighbor. According to
the self-assembly strategy, growing robots prioritize selecting empty unit cells of this kind
and broadcast their coordinates to recruit free and moving robots. Consequently, empty
unit cells shared by two adjacent growing robots are more likely to be occupied by building
robots, thereby becoming the building unit cells. Under the premise of satisfying the above
phenomena, the simplified distribution rules for building unit cells are defined as follows
to minimize model complexity.

(I) Each growing robot is deemed to actively provide only one empty unit cell as the
building unit cell.

(II) The G1 robot must share the building unit cell with the G2 robot in the current
structural type.

(III) The building unit cells actively provided by the G2 robot should be unaffected by the
structural types on the left.

(IV) G2 robots preferentially select empty unit cells shared with adjacent growing robots of
the same structural types as the building unit cell.

Here, the total number of building unit cells can be written as follows.

Nbu(t) = NFa1(t) + 2NFa2(t) + NFa1∗ (t) + 2NFa2∗ (t) + NRa1(t) + NRa2(t) (19)

The green dotted boxes in Figure 14 represent the possible building unit cells. Note
that a building robot cannot become a G3 robot directly under current situations.

Indeed, a particular type of building unit cell, i.e., a priority building unit cell, is
given preference for occupation by the building robots. According to the self-assembly
strategy, once a building robot occupies a neighboring empty unit cell, the growing robot
will immediately broadcast the next suitable neighboring unit cell’s coordinates. It is not
hard to see that the corresponding building unit cell’s coordinates have been broadcast
before a growing robot is upgraded to the G3 sub-state. Consequently, the building unit
cells provided by G3 robots are designated priority building unit cells. In structural types
Fa1∗ and Fa2∗ , the simultaneous birth of two neighboring G1 and G2 robots from the
building state is typically not feasible. Thus, when a G1 robot sits next to a G2 robot, their
sharing building unit cell has been broadcast and should be treated as the priority. Besides
the proposed self-assembly strategy, the generation of priority building unit cells is also
related to the autonomous actions of robots. Estimating the priority building unit cell’s
number based only on the self-assembly strategy and structural features is prone to bias.
Considering the randomness of autonomous actions of robots, it is assumed that there are
ξ priority building unit cells exiting in structural types Ra1 to correct the estimate of the
priority building unit cell’s number. Note that the autonomous actions of robots are affected
by the external environment, i.e., the proportion of robots in different states within the
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swarm. As defined in Section 2.2, the building time parameter TB can change the survival
duration of the building and growing robots to change the proportion of robots in different
states within the swarm. Thus, based on the statistical result of simulations, Table 7 shows
the values of ξ under different building time parameters TB. The total number of the
priority building unit cells is written as follows.

Nbup(t) = NFa1∗ (t) + 2NFa2∗ (t) + NFa2(t) + NRa2(t) + ξ (20)

Table 7. The value of coefficients ξ and φ.

Building Time Parameter TB
(Unit: Steps) 1 2 3 4 ≥5

ξ 1.3 1.1 0.7 0.5 0.2
φ 0.62 0.74 0.76 0.78 0.8

ξ can be found in Equation (20). φ can be found in Equation (54).

Other building unit cells are considered non-priority building unit cells, except for
priority building unit cells.

Additionally, it is imperative to delve deeper into the sub-states of the building robot.
These sub-states can be used to distinguish the neighboring growing robot’s working modes.
This differentiation is crucial for constructing the state transition functions ΓF

M(t). Here,
the building robots transitioning from the moving robot at time step t − 1 are referred to
as the new building robots, while others are classified as old building robots (see Figure 2b).
According to Assumption 1 and the discussion of the priority building unit cells, old
building robots are given preference for occupying the priority building unit cells compared
to new building robots. Thus, the probability of old building robots being distributed in the
priority building unit cell is

σold = min(1,
NBold(t)

Nbup(t) + e0
) (21)

where e0 is a value of 10−5 to avoid miscalculation. The NBold(t) expresses the number of
old building robots at time step t, which can be written as follows.

NBold(t) = NB(t)− NBnew(t) (22)

where NBnew(t) is the number of new building robots at time step t, which is equal to
ΓB

M(t − 1) (see Equation (3)). The probability that the old building robots are distributed in
the non-priority building unit cell is

ϵold =
NBold(t)− σoldNbup(t)
Nbu(t)− Nbup(t) + e0

(23)

The probabilities of the new building robot distributed in the priority building unit cell
and the non-priority building unit cell are

σnew = min (1 − σold,
NBnew(t)

Nbup(t) + e0
) (24)

ϵnew =
NBnew(t)− σnewNbup(t)
Nbu(t)− Nbup(t) + e0

(25)

3.2.4. The Arrangement Characteristics of Six Basic Structural Types

The arrangement of these structural types is another key factor affecting the state
transitions. Note that the arrangement characteristics of the structural types and the
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distribution characteristics of the building robots are probabilistically independent of each
other. According to the analysis of building robot distributions within building unit cells, the
structural type Ra1 plays a unique role. As shown in Figure 16, when a growing robot is born
in the building unit cell provided by the structural type Ra1, both the G2 robot in the current
structural type Ra1 and another G2 robot in the right structural type will update to G3
robots simultaneously. That is, the structural type Ra1 can affect its adjacent right structural
types. This is a special feature that other structural types don’t have. Therefore, the key
of the arrangement analysis is to estimate the probability that the left side of the focused
structural type is structural type Ra1. Here, based on the principle of equalitarianism,
all structural types Ra1 are evenly allocated to four growth edges and are arranged after
the starting structural type Fa. Then, the structural types Ra2 have an equal probability
of appearing in all vacancies generated by structural types Fa and Ra1 (see Figure 17).
Utilizing permutation and combination theory [60], we can calculate the probability of
structural type Ra1 being on the left side of structural types Ra2 and Fa as follows.

τ = min (1,
NRa1(t)

NFa(t) + NRa2(t)
) (26)

where NFa(t) + NRa2(t) represents total number of the vacancies generated by structural
types Ra2 and Fa. The probability that a structural type Ra1 is on the left side of another
structural type Ra1 is

τ∗ =
max (0, NRa1(t)− NFa(t)− NRa2(t))

NFa(t) + NRa2(t)
(27)Sensors 2024, 24, 3081 24 of 40 
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3.3. The State Transition Functions Based on the SFE
3.3.1. The State Transition Function ΓF(t)

The ΓF(t) represents the number of free robots transitioning to the moving state due to
receiving recruitments of the growing robots. It is written as follows.

ΓF(t) = S0d0 − NM(t)− NB(t) (28)

where S0 represents the total communication area created by all growing robots. Note that
the communication range of a growing robot can also cover the formed formation. This area
will not be taken into consideration for S0 (see Figure 18). Within this communication area,
d0 denotes the robot’s density, which is defaulted to 0.2 (see Section 2.2). S0d0 represents
the total number of robots. Furthermore, all moving and building robots are situated within
the total communication area, enabling interaction with growing robots. Therefore, ΓF(t)
can be expressed by Equation (28).
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Figure 18. The definition of the independent communication ranges of growing robots. Blue solid 
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Figure 18. The definition of the independent communication ranges of growing robots. Blue solid
dots: G1 robot’s independent communication ranges. Dark blue solid dots: G2 robot’s independent
communication ranges. Light blue solid dots: G3 robot’s independent communication ranges.

The total communication area S0 created by all growing robots is the key to constructing
the state transition function ΓF(t). As shown in Figure 9, the communication range of a
robot can be regarded as 7 × 7 position points. Due to the defined cross-arrangement, there
will be some overlap in the communication ranges of two neighboring growing robots (see
Figure 19). To avoid repetitive computation, Equation (29) is proposed to calculate the total
communication area based on the structural types. It can be written as follows.

S0 = α1NFa1(t) + α2NFa1∗ (t) + α3NFa2(t) + α4NFa2∗ (t) + α5NRa1(t) + α6NRa2(t)− α0DG2 (29)

To calculate the coefficients α0 to α6, the independent communication ranges of grow-
ing robots that do not overlap are defined artificially. Solid dots in Figures 18 and 19
denote a unit area. As shown in Figure 18, dark-blue solid dots indicate that indepen-
dent communication ranges of the G2 robots in structural types Fa and Ra are twelve and
eighteen unit areas, respectively. The blue and light-blue solid dots represent the distinct
communication domains of the G1 and G3 automatons, encompassing sixteen and six units
of area, correspondingly. Based on the above definitions, the independent communication
ranges provided by six basic structural types are summarized in Table 8 (i.e., α1 to α6).
However, if the left side of the focused G2 robot corresponds to the structural type Ra1,
the focused G2 robot’s two neighboring empty unit cells may be occupied by two building
robots simultaneously (see Figure 19). In such cases, the focused G2 robot will go dormant
and stop broadcasting, causing the reduction of the total communication area. According
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to the growing robot’s working modes, the growing robot that doesn’t broadcast available
empty unit cell coordinates is defined as the dormant growing sub-state (see Figure 2e).
Although the overlapped communication area between neighboring growing robots can
compensate for some of the losses, a dormant G2 robot can still lead to a reduction in the
communication area by four unit areas (see Figure 19).

Table 8. The value of coefficients a0 to a6.

α0 α1 α2 α3 α4 α5 α6

4 18 36 24 42 12 18
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Figure 19. The effects of the dormant G2 robot for total communication area. Gray solid dots: the 
portion of the communication ranges overlap between a G2 robot and its neighboring growing ro-
bots. Black fork: The reduction of the total communication area. 

Based on the definitions of the structural types, the calculation of the dormant G2 
robots is determined by Equation (30). 

𝐷𝐷𝐺𝐺2 = 𝐷𝐷𝐺𝐺2
𝑅𝑅𝐹𝐹1 + 𝐷𝐷𝐺𝐺2

𝑅𝑅𝐹𝐹2 + 𝐷𝐷𝐺𝐺2𝐹𝐹𝐹𝐹  (30) 
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𝑅𝑅𝐹𝐹2, and 𝐹𝐹𝐹𝐹, respectively. The quantity of dormant G2 robots within structural types 𝑅𝑅𝐹𝐹1, 
i.e., 𝐷𝐷𝐺𝐺2

𝑅𝑅𝐹𝐹1, can be mathematically expressed as follows. 
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where the value of 𝜏𝜏∗ is determined by Equation (27). The 𝜇𝜇𝑅𝑅𝐹𝐹1 is the overall probability 
of the building robot being assigned to the building unit cell provided by the G2 robot of 
the structural type 𝑅𝑅𝐹𝐹1. It is represented in Equation (32). 

𝜇𝜇𝑅𝑅𝐹𝐹1 = 𝜇𝜇𝑅𝑅𝐹𝐹1
𝑜𝑜𝑜𝑜𝑜𝑜 +𝜇𝜇𝑅𝑅𝐹𝐹1

𝑛𝑛𝑛𝑛𝑛𝑛 (32) 

here, 𝜇𝜇𝑅𝑅𝐹𝐹1
𝑜𝑜𝑜𝑜𝑜𝑜  and 𝜇𝜇𝑅𝑅𝐹𝐹1

𝑛𝑛𝑛𝑛𝑛𝑛 denote the overall probability that the building unit cells provided 
by the G2 robot of structural type 𝑅𝑅𝐹𝐹1 are occupied by old and new building robots, re-
spectively. According to the structural features analysis in Equations (19)–(25), 𝜇𝜇𝑅𝑅𝐹𝐹1

𝑜𝑜𝑜𝑜𝑑𝑑  and 
𝜇𝜇𝑅𝑅𝐹𝐹1
𝑛𝑛𝑒𝑒𝑛𝑛 can be written as follows. 

𝜇𝜇𝑅𝑅𝐹𝐹1
𝑜𝑜𝑜𝑜𝑑𝑑 =

𝜉𝜉𝜎𝜎𝑜𝑜𝑜𝑜𝑑𝑑 + (𝑁𝑁𝑅𝑅𝐹𝐹1
(𝑡𝑡) − 𝜉𝜉)𝜖𝜖𝑜𝑜𝑜𝑜𝑑𝑑

𝑁𝑁𝑅𝑅𝐹𝐹1
(𝑡𝑡) + 𝑒𝑒0

 (33) 

𝜇𝜇𝑅𝑅𝐹𝐹1
𝑛𝑛𝑒𝑒𝑛𝑛 =

𝜉𝜉𝜎𝜎𝑛𝑛𝑒𝑒𝑛𝑛 + (𝑁𝑁𝑅𝑅𝐹𝐹1
(𝑡𝑡) − 𝜉𝜉)𝜖𝜖𝑛𝑛𝑒𝑒𝑛𝑛

𝑁𝑁𝑅𝑅𝐹𝐹1
(𝑡𝑡) + 𝑒𝑒0

 (34) 
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Figure 19. The effects of the dormant G2 robot for total communication area. Gray solid dots: the
portion of the communication ranges overlap between a G2 robot and its neighboring growing robots.
Black fork: The reduction of the total communication area.

Based on the definitions of the structural types, the calculation of the dormant G2 robots
is determined by Equation (30).

DG2 = DRa1
G2 + DRa2

G2 + DFa
G2 (30)

where DR1
G2, DR2

G2, and DF
G2 denote the number of dormant G2 robots in structural types Ra1,

Ra2, and Fa, respectively. The quantity of dormant G2 robots within structural types Ra1,
i.e., DRa1

G2 , can be mathematically expressed as follows.

DRa1
G2 = NRa1(t)τ

∗µRa1 µRa1 (31)

where the value of τ∗ is determined by Equation (27). The µRa1 is the overall probability of
the building robot being assigned to the building unit cell provided by the G2 robot of the
structural type Ra1. It is represented in Equation (32).

µRa1= µold
Ra1

+µnew
Ra1

(32)

here, µold
Ra1

and µnew
Ra1

denote the overall probability that the building unit cells provided by
the G2 robot of structural type Ra1 are occupied by old and new building robots, respectively.
According to the structural features analysis in Equations (19)–(25), µold

Ra1
and µnew

Ra1
can be

written as follows.

µold
Ra1

=
ξσold + (NRa1(t)− ξ)ϵold

NRa1(t) + e0
(33)

µnew
Ra1

=
ξσnew + (NRa1(t)− ξ)ϵnew

NRa1(t) + e0
(34)
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where e0 can be found in Equation (21). Similarly, the number of dormant G2 robots within
structural types Ra2 and Fa, i.e., DRa2

G2 and DFa
G2, can be written as follows, respectively.

DRa2
G2 = NRa2(t)τµRa1 µRa2 (35)

DFa
G2 = NFa(t)τµRa1 µFa (36)

where τ can be found in Equation (26). µRa2 and µFa represent the overall probability of the
building robot distributing in the building unit cell provided by the G2 robot in structural
types Ra2 and Fa, respectively. They are written as follows.

µRa2 = σnew + σold (37)

µFa = µold
Fa +µnew

Fa (38)

here, σold and σnew are shown in Equations (21) and (24). The µold
Fa and µnew

Fa are the overall
probability of old building and new building robots distributing in the building unit cells
provided by the G2 robot in the structural type Fa. As analyzed in Equations (19)–(25), µold

Fa
and µnew

Fa can be expressed as

µold
Fa =

(NFa1∗ (t) + NFa2∗ (t))σold + (NFa1(t) + NFa2(t))ϵold

NFa(t) + e0
(39)

µnew
Fa =

(NFa1∗ (t) + NFa2∗ (t))σnew + (NFa1(t) + NFa2(t))ϵnew

NFa(t) + e0
(40)

3.3.2. The State Transition Function ΓF
M(t)

The ΓF
M(t) signifies the count of moving robots transitioning into free robots when they

fail in competition with others for the same target position. This state transition function
can be expressed as Equation (41).

ΓF
M(t) = NM(t)γ f (41)

where γ f is the probability of the moving robots failing to compete for the target position.
Indeed, γ f is closely related to the working modes of the growing robots. Here, the growing
robot that can provide an independent available empty unit cell for moving robots is re-
garded as being in the working growing sub-state, recorded as Gw (see Figure 2e). According
to the proposed self-assembly strategy, some available empty unit cell coordinates only
impact the free robots, not the moving ones. If the provided available empty unit cells
are shared or do not affect the moving robots, the growing robot is considered to be in the
activated growing sub-state (see Figure 2e). Each available empty unit cell affecting moving
robots is shared by n0 moving robots, i.e.,

n0 =
NM(t)
NGw(t)

(42)

where NGw(t) is the number of working growing robots. Therefore, the success and failure
rates of moving robots competing to obtain a target position are γs and γ f , i.e.,

γs =
1
n0

(43)

γ f = 1 − 1
n0

(44)

The failure probability γ f relies on the count of working growing robots NGw(t).
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According to the structural features, the calculation of the working growing state num-
bers for G1, G2, and G3 robots proceeds as follows. To determine G1 robots in the working
growing state, two probabilistically independent events should be discussed. The first event
is the probability of the G1 robot in new growing state. Here, the robot transformed from the
building to the growing state at time step t − 1 is defined as the new growing robot at time
step t, or it is regarded as the old growing robot (see Figure 2d). Following the proposed
self-assembly strategy, the broadcasts of the new growing robots exclusively impact the free
robots and not the moving robots. Thus, all new growing robot is in activated growing state.
The probability of the G1 robot in a new growing state is expressed as ρnew

G1 , i.e.,

ρnew
G1 =

ΛG1
B (t − 1, TB)

NG1(t)
(45)

here, ΛG1
B is introduced in Section 3.3.4. The second event is the distribution characteristics

of building robots within the building unit cells. Note that the possible building unit cell
not occupied by a building robot will be preferentially selected as the available empty unit
cell. Here, two situations should be considered. In the first situation, the building unit
cell provided by a G1 robot is not occupied by a building robot. Note that this building
unit cell must be shared by the neighboring G2 robot (see Section 3.2.3). Although the
focused G1 robot and its neighboring G2 robot broadcast the building unit cell’s coordinates
simultaneously, only the G2 robot is usually considered the working growing state to avoid
double counting. However, if the G2 robot is in a new growing state, the focused G1
robot could be considered the working growing robot. In addition, as G1 robot has three
neighboring empty unit cells. Thus, when its building unit cell is occupied, the focused G1
robot will be in the working growing state. Thus, NF

G1w
(t) is expressed as follows.

NFa
G1w

(t) =
[
NFa1∗ (t) + NFa2∗ (t)

]
(1 − ρnew

G1 )[(1 − σold − σnew)ρ
new
G2 + σold] (46)

where
[
NFa1∗ (t) + NFa2∗ (t)

]
expresses the total number of the G1 robot in structural types

Fa1∗ and Fa2∗ . The second terms on the right-hand side of Equation (46) indicate the dis-
cussed first events. Two sub-terms in the third term represent the discussed two situations
in the second events, respectively. ρnew

G2 can be found in Equation (47).
Similarly, two probabilistically independent events need to be discussed to calculate

the number of G2 robots in the working growing state. The first event is the probability of
the G2 robots in a new growing state, i.e.,

ρnew
G2 =

ΛG2
B (t − 1, TB)

NG2(t)
(47)

The second event is the structural features involving the arrangement characteristics
of the structural types and the distribution characteristics of building robots within different
building unit cells (See Section 3.2). Through a comprehensive analysis of the structural
features, the G2 robot may be in the working growing state under the following three situa-
tions. The first situation is that the building unit cell provided by the focused G2 robot is
not occupied by a building robot. Under this situation, the focused G2 robot is in the working
growing state, providing an available empty unit cell for free and moving robots. The second
situation is that an old building robot occupies the building unit cell provided by the focused
G2 robot, and the left structural type of the focused G2 robot is not the structural type Ra1.
Note that the G2 robot has two empty unit cell. According to the definition of the building
robot’s distribution, the focused G2 robot cannot actively use its second neighboring empty
unit cell as a building unit cell (see Figure 14). Since the structural type on the left is not Ra1,
the focused G2 robot can monopolize its second neighboring empty unit cell and work as a
working growing robot to broadcast its second neighboring empty unit cell’s coordinates. In
the third situation, an old building robot occupies the focused G2 robot’s building unit cell,
and the left structural type is Ra1. As shown in Figure 16, the focused G2 robot’s second
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neighboring empty unit cell plays the role of the building unit cell of the G2 robot of the
structural type Ra1. When the building unit cell of the G2 robot of the structural type Ra1
is not occupied, the G2 robot of the structural type Ra1 is prioritized as the working growing
robot rather than the focused G2 robot to avoid double counting. However, if the G2 robot
of the left structural type Ra1 is in the new growing state and its building unit cell is not
occupied, the focused G2 robot will be seen as a working growing robot. Additionally, a
new building robot occupying a building unit cell indicates that the corresponding G2 robot
completed a recruitment task at time step t − 1. Hence, the G2 robot cannot function as a
working growing robot, as its broadcasts can only impact the free robots at time step t. Based
on the above discussions, the number of G2 robots in structural type Ra1 in the working
growing state can be expressed as NRa1

G2w
(t), i.e.,

NRa1
G2w

(t) = NRa1(t)(1 − ρnew
G2 )

[(
1 − µRa1

)
+ µold

Ra1
(1 − τ∗) + µold

Ra1
τ∗(1 − µRa1

)
ρnew

G2

]
(48)

where NRa1(t) expresses the number of G2 robots in the structural type Ra1. Similarly, the
number of G2 robots in structural types Ra2 and Fa in the working growing state are written
as NRa2

G2w
(t) and NFa

G2w
(t), i.e.,

NRa2
G2w

(t) = NRa2(t)(1 − ρnew
G2 )

[(
1 − µRa2

)
+ σold(1 − τ) + σoldτ

(
1 − µRa1

)
ρnew

G2
]

(49)

NFa
G2w

(t) = NFa(t)(1 − ρnew
G2 )

[
(1 − µFa) + µold

Fa (1 − τ) + µold
Fa τ

(
1 − µRa1

)
ρnew

G2

]
(50)

As introduced in Section 3.2.3, the G3 robots cannot enter a new growing state, and
their only neighboring empty unit cells are the priority building unit cells by default. In
the structural types Fa2 and Fa2∗ , the G3 robot can use its building unit cell preferentially.
Thus, as long as a building robot does not occupy the building unit cell, the G3 robot in
the structural types Fa2 and Fa2∗ will remain in the working growing state. Based on the
structural features, the quantity is expressed as NFa

G3w
(t), i.e.,

NFa
G3w

(t) =
[
NFa2(t) + NFa2∗ (t)

]
(1 − σold − σnew) (51)

In the structural type Ra2, G2 and G3 robots share the building unit cell. When the
building robot does not occupy the building unit cell, the G2 robot is prioritized as the
working growing robot to avoid double counting. However, if the G2 robot is in the new
growing state, the G3 robot may be in the working growing state. It is expressed as follows.

NRa2
G3w

(t) = NRa2(t)(1 − σold − σnew)ρ
new
G2 (52)

Finally, the total number of the working growing robots is written as follows.

NGw(t) = NRa1
G2w

(t) + NRa2
G2w

(t) + NFa
G2w

(t) + NFa
G3w

(t) + NRa2
G3w

(t) + NFa
G1w

(t) (53)

3.3.3. The State Transition Functions ΓB
M(t) and ΛF

M(t, TM)

According to the self-assembly strategy, all failed moving robots in competition will
actively degrade to the free state. As shown in Equations (42) and (43), the number of
moving robots winning the competition equals to the number of available empty unit
cells, i.e., NGw(t). Based on Assumption 1, the probability of these winning moving robots
transforming into building robots at time step t can be regarded as a constant-coefficient
φ. Indeed, like the ξ in Equation (20), the value of the constant-coefficient φ is also closely
related to the autonomous actions of robots and is affected by the building time parameter
TB. Thus, based on lots of simulation results, the value of φ under different building time
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parameters TB is shown in Table 7. Then, the state transition function from moving robots
to building robots is written as in Equation (54), i.e.,

ΓB
M(t) = φNGw(t) (54)

The ΛF
M(t, TM) represents the number of moving robots transitioning into free robots

due to running out of the moving time parameter TM. It is equivalent to the number
of moving robots that have not changed their state during the time interval [t − TM, t].
Referring to Ref. [16], ΛF

M(t, TM) can be expressed as follows.

ΛF
M(t, TM) = ΓF(t − τm)∏t

k=t−τm+1 (1 − γ f − rB
M(t)) (55)

where ΓM(t − τm) represents the number of moving robots transformed from the free robots
at time step t − τm. γ f can be found in Equation (44). The rB

M(t) is the probability of moving
robots transforming into a building state at time step t. It is expressed as follows.

rB
M(t) =

ΓB
M(t)

NM(t)
(56)

3.3.4. The State Transition Functions ΛG
B(t, TB), ΛG1

B (t, TB), and ΛG2
B (t, τB)

The state transition function ΛG
B (t, TB) represents the number of robots transitioning

from building state to growing state at time step t. As introduced in Section 2.2, all building
robots generated at the t − TB will become the growing robots at time step t. Thus, the
ΛG

B (t, TB) is written as follows.

ΛG
B (t, TB) = ΓB

M(t − TB) (57)

As analyzed in Section 3.2.3, the old building robots are preferentially distributed in
the priority building unit cells. Thus, the robots transitioning from building to growing state
will be preferentially distributed in the priority building unit cells. Its probability can be
written as follows.

σΛB =
ΛG

B (t, TB)

Nbup(t) + e0
(58)

Correspondingly, the probability of these robots being distributed in the non-priority
building unit cells is as follows.

ϵΛB =
ΛG

B (t, TB)− σΛB Nbup(t)
Nbu(t)− Nbup(t) + e0

(59)

As shown in Figure 14, only the structural types Fa1 and Fa2 can create G1 robots.
Thus, the number of robots transforming from building to G1 state can be written as follows.

ΛG1
B (t, TB) = NFa1(t)ϵΛB + NFa2(t)

[
σΛB

(
1 − ϵΛB

)
+ ϵΛB

(
1 − σΛB

)]
(60)

Similarly, the G2 robots can born in the structural types Ra1, Ra2, Fa1∗ , and Fa2∗ . Note
that the structural type Fa2 provides two adjacent building unit cells. Thus, when two
building robots simultaneously occupy these two adjacent building unit cells, they will
become the G2 sub-state together. The number of robots transforming from building to G2
state can be written as follows.

ΛG2
B (t, τB) = σΛB

(
NRa2(t) + NFa1∗ (t) + 2NFa2∗ (t) + ξ

)
+ ϵΛB

(
NRa1(t)− ξ

)
+2NFa2(t)σΛB ϵΛB

(61)
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3.3.5. The State Transition Functions ∆G2
G1(t), ∆G3

G1(t), ∆G3
G2(t), and ∆S

G3(t)

As building robots transform into a growing state, the existing growing robots will
upgrade their sub-states or transform into the solid state. In the structural types Fa1∗ and
Fa2∗ , creating a growing robot will make the G1 robot update to the G2 robot. Thus, the
number of G1 robots updating to the G2 sub-state can be expressed in Equation (62) based
on the analysis in Equations (58) and (59).

∆G2
G1(t) = σΛB NFa1∗ (t) + 2σΛB(1 − σΛB)NFa2∗ (t)− Ω∗

G1(t) (62)

here, Ω∗
G1(t) represents the number of G1 robots that trigger the constraints of the shape

boundary and become the solid robot directly during the update of the sub-state. The G1
robots described by Ω∗

G1(t) belong to the old growing robots. However, it is also possible
that a growing robot triggering shape boundary constraints belongs to the new growing
robot. The new and old states of these growing robots depend on the specified 2D shape
and the stochastic factors in the self-assembly process. Thus, for generality and simplicity,
the Ω∗

G1(t) is defaulted to half of ΩG1(t), i.e.,

Ω∗
G1(t) = 0.5ΩG1(t) (63)

where ΩG1(t) can be found in Equation (72). As shown in Figure 14f, when two growing
robots are born in these two building unit cells simultaneously, the G1 robot in the structural
type Fa2∗ will directly update to the G3 state. Thus, ∆G3

G1(t) can be written as follows.

∆G3
G1(t) = σΛB

2NSF2∗ (t) (64)

Each structural type has a G2 robot. Thus, the number of G2 robots transforming into
G3 robots can be expressed as follows.

∆G3
G2(t) = σΛB

(
NFa1∗ (t) + NFa2∗ (t) + NRa2(t) + 2ξ

)
+ϵΛB

(
NFa1(t) + NFa2(t) + 2

(
NFa1(t)− ξ

))
− Ω∗

G2(t)
(65)

Here, Ω∗
G2(t) represents the number of old G2 robots that trigger the constraints of the

shape boundary and become the solid robot directly during the update of the sub-state.
Referring to Equation (63), it can be expressed as follows.

Ω∗
G2(t) = 0.5ΩG2(t) (66)

where ΩG2(t) can be calculated in Equation (71). G3 robots exist in the structural types
Fa2, Fa2∗ , and Ra2. Thus, the number of G3 robots transforming into solid robots can be
expressed as follows.

∆S
G3(t) = σΛB(NFa2(t) + NFa2∗ (t) + NRa2(t)) (67)

Note that G3 robot will not trigger the shape boundary constraints.

3.4. The Constraints of the Shape Boundary

The shape of the formation is the collective goal of the entire swarm robotics system,
specified and designed by the user. However, the shape boundary can partition the cross-
arranged unit cells, causing it to be incomplete. Thus, when situated along the shape
boundary, G1 and G2 robots transition directly to the solid state due to this incomplete unit
cell. The predefined shape allows us to quantify how the shape boundary constraints affect
the state transitions of the growing robots. The calculation results can serve as the initial
conditions for the macroscopic model.

Using the example of a four-pointed star shape formation comprising 285 robots,
68 robots are affected by the shape boundary (see Figure 20b). To simplify our analysis,
the robots containing two or three neighboring filled unit cells are considered the G2
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robots triggering the shape boundary constraints. Others are considered the G1 robots
triggering the shape boundary constraints. Thus, as shown the blue and red hollow circles
in Figure 20b, 60 G2 and 8 G1 robots trigger the shape boundary constraints. Additionally,
the number of growing robots affected by the shape boundary at time step t is assumed to
increase linearly as the total number of growing and solid robots increases. Here x(t) is used
to express the total number of growing and solid robots in the formed formation at time step
t. It is written as follows.

x(t) = NG(t) + NS(t) (68)

The following equations can express the relationship between the number of G2 robots
affected by the boundary and the total number of growing and solid robots x.

∫ x1
G2

x0
G2

kG2x + bG2 dx = nt (69)

kG2x0
G2 + bG2 = 0 (70)

where nt is the total number of G2 robots affected by the shape boundary. In this case, nt is
equal to 60. x0

G2 is the maximum number of growing and solid robots that can be accommo-
dated in the formed formation before the first G2 robot triggers the boundary constraints
(see Figure 20a). After the last G2 robot triggers the boundary constraints, the number of
robots in the formed formation is represented by x1

G2 (see Figure 20b). Here, the x0
G2 and

x1
G2 are 137 and 277, respectively. By simultaneously solving Equations (69) and (70), we

obtain kG2 = 3/490, and bG2 = −411/490. Therefore, the number of G2 robots affected by
constraints of the shape boundary at time step t can be expressed as follows.

ΩG2(t) =
∫ NG(t)+NS(t)

NG(t−1)+NS(t−1)
kG2x + bG2dx, x1

G2 ≥ x > x0
G2 (71)

Similarly, the number of G1 robots affected by constraints of the shape boundary at
time step t can be expressed as follows.

ΩG1(t) =
∫ NG(t)+NS(t)

NG(t−1)+NS(t−1)
kG1x + bG1dx, x1

G1 ≥ x > x0
G1 (72)

Taking Figure 20b as an example, the kG1, bG1, x0
G1, and x1

G1 are equal to 0.25, −69.25,
277, and 285.
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4. Verification and Discussion
4.1. The Verification of the Macroscopic Model

The prediction performance is the key indicator used to verify the proposed macro-
scopic model. In this section, we introduce the prediction error index (PEI) to assess the
model’s prediction accuracy. The PEI considers the prediction accuracy of moving, building,
growing, and solid states. Based on the Euclidean distance and relative error, the prediction
error index is defined as follows.

PEI =
1
T ∑T

t=1

∣∣NM
M (t)− NE

M(t)
∣∣+ ∣∣NM

B (t)− NE
B (t)

∣∣+ ∣∣NM
G (t)− NE

G(t)
∣∣+∣∣NM

S (t)− NE
S (t)

∣∣
nE(t)

(73)

where T is the total time of the self-assembly formation. NM
M , NM

B , NM
G , and NM

S are the
predicted number of moving, building, growing, and solid robots generated by the proposed
macroscopic model. NE

M, NE
B , NE

G, and NE
S are the average results of moving, building,

growing, and solid robots in multiple experiments. The experimental results may come from
simulations or real-robot experiments. nE(t) can be expressed as follows.

nE(t) = NE
M(t) + NE

B (t) + NE
G(t) + NE

S (t) (74)

In this section, the four-pointed star shape formation is selected to verify the prediction
performance of the proposed macroscopic model. The discussion of prediction performance
in the small-scale self-assembly formation uses the scenario shown in Figure 10a. Here,
15 robots are used to self-assembly formation. The values of building time parameter TB
and moving time parameter TM are set as one step and four steps, respectively. Here, both
the real-robot experiments based on Waxberry robots and simulations based on embodied
simulators are carried out. The real-robot experiment is repeated 10 times, and the simu-
lations is repeated 100 times. With the same system parameters and specified scale, the
prediction results of the whole self-assembly formation process are also calculated based
on the proposed macroscopic model. As shown in Figure 21, the predictions based on
the macroscopic model, the average results of 100 simulations and the average results of
10 real-robot experiments are represented by blue solid line, red dotted line, and green
solid line. The black line with dots represents the experiment result in Figure 10a. Figure 21
indicates that the proposed macroscopic model can accurately describe each state’s change
process. Compared with the average results of 10 real-robot experiments and the average
results of 100 simulations, the proposed model’s prediction error index for this small-scale
self-assembly formation is 14.17% and 12.20%, respectively, according to Equation (73).
Note that the predicted result of the macroscopic model is not a reproduction of a single
experiment. Instead, it directly feeds back the average results obtained in multiple exper-
iments under specified scenarios. Although some errors exist between the experiment
results of Figure 10a and the model’s predicted results, their dynamic trends are consistent.

Indeed, when the size of the specified shape formation is very small, the self-assembly
formation process is easily affected by random factors. The characteristics of the prediction
performance of the proposed model cannot be displayed clearly. Therefore, a large-scale
formation consisting of 300 robots is also used to verify the proposed model. The building
time parameter TB and moving time parameter TM are set as three steps and four steps, re-
spectively. After 100 simulations, the comparison between the simulation’s average results
and the model’s predictions is shown in Figure 22. The proposed model’s prediction error
index for this large-scale self-assembly formation is only 4.05% according to Equation (73).
As shown in Figure 22, the difference between the prediction and simulation results mainly
occurs in the second half of the self-assembly formation process. This is caused by the
constraints of the shape boundary being triggered. Indeed, the constraints of the shape
boundary may create other complex structural types not considered in Figure 14. Mean-
while, the impact of boundary constraints on the quantities of six basic structural types
is also ignored in Section 3.2.1. Therefore, the accuracy of the model’s prediction results
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will decrease after triggering the boundary constraints. When predicting the number of G1
robots, the error is particularly evident (see Figure 22f). However, since the number of G1
robots is generally very small, this does not significantly increase in the prediction error
index PEI .
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Figure 21. The analysis of the prediction performance of the macroscopic model in a small-scale
four-pointed star shape formation. Blue solid line: the prediction results of the macroscopic model.
Red dotted line: the average results of 100 simulations. Red shadow: distribution area of data in
100 simulations. Green solid line: the average results of 10 real-robot experiments. Green shadow:
distribution area of data in 10 real-robot experiments. The black line with dots: the experiment result
in Figure 10a.
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Figure 22. The analysis of the prediction performance of the macroscopic model in a large-scale 
four-pointed star shape formation. Blue solid line: the prediction results of the macroscopic model. 
Red dotted line: the average results of 100 simulations. Red shadow: distribution area of data in 
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Figure 23. The prediction error indexes of the model in different conditions. 

Figure 22. The analysis of the prediction performance of the macroscopic model in a large-scale
four-pointed star shape formation. Blue solid line: the prediction results of the macroscopic model.
Red dotted line: the average results of 100 simulations. Red shadow: distribution area of data in
100 simulations.

To assess the adaptability of the proposed macroscopic model, the prediction error
indexes are tested across various parameters using the four-pointed star and hexago-
nal crystal as formation shapes. The formation scale involves approximately 15 robots,
300 robots, 1500 robots, and 3500 robots, with the building time parameter TB set from
1 to 6 steps. Based on the analysis in Figure 21, the prediction error index of less than
20% is considered credible. As shown in Figure 23, the prediction error indexes of the
proposed model show a similar trend in the two shapes. The prediction error indexes
decrease with the scale of the formation in both shapes. These observations suggest that
the proposed model demonstrates high adaptability across different shapes and different
formation scales. Additionally, the proposed model proves effective in predicting the
change process of self-assembly (i.e., PEI < 20%) when the building time parameter TB is
less than five steps. Notably, when the TB is set to three steps, the prediction error index
reaches its lowest point. Especially when the formation scale is up to about 3500 robots,
the PEI is less than 4% in both shapes. However, the model exhibits poor applicability
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when the building time parameter exceeds four steps. This limitation can be attributed
to the distribution characteristics of building robots discussed in Section 3.2.3. As shown
in Figure 14, the proposed model considers only part of neighboring empty unit cells
as the building unit cells for building robots. Yet, with an increase in the building time
parameter, all neighboring empty unit cells have the potential to become building unit cells
and be occupied by building robots. Unfortunately, such scenarios are not accounted for in
the proposed model, leading to a decrease in its prediction performance. The preceding
analysis highlights that the proposed model shows excellent adaptability in predicting the
self-assembly formation across diverse shapes, scales, and system parameters.
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4.2. The Discussions

Compared to simulation and real-robot experiments, the macroscopic models can
more efficiently display swarm behavior under varying influence factors. In this Section,
we will discuss what factors affect the forming efficiency of the proposed self-assembly
formation by using the four-pointed star shape formation consisting of about 300 robots
as an example. Based on the proposed macroscopic model, the impact of the system
parameters, i.e., building time parameter TB and moving time parameter TM, should be
first discussed. As shown in Figure 24, the total time of the self-assembly formation will
increase with the building time parameter TB, regardless of the formation’s scale. It is
evident that the larger the formation scale, the more significant the impact of the building
time parameter on the forming efficiency. In the formation consisting of about 3500 robots,
reducing the building time parameter from 4 steps to 1 step resulted in a remarkable 28.5%
reduction in the time required for formation. In the formation consisting of about 15 robots,
a 16% reduction in total self-assembly time is observed when the building time parameter
decreases from 4 steps to 1 step.

The moving time parameter TM is used to avoid the downtime of the self-assembly
due to the fault of the moving robots. The effect of the moving time parameter on forming
efficiency is another concern, as more moving robots will be forced to degenerate into free
robots by reducing the moving time parameter. To analyze the impact of the moving
time parameter on forming efficiency, the proposed model calculates the self-assembly
process for moving time parameters from one step to four steps, respectively. The building
time parameter is defaulted to three steps. Note that the state transition function from
moving robots to building robots at time step t, i.e., ΓB

M(t), determines the forming efficiency.
Thus, ΓB

M(t) is selected to analyze the impact of the moving time parameter on forming
efficiency. As shown in Figure 25, the forming efficiency of the self-assembly formation is
almost constant, regardless of the value of the moving time parameter. Especially when the
moving time parameter is more than four steps, these curves of the state transition function
ΓB

M(t) values almost overlap. That is, the moving time parameter TM does not affect the
formation efficiency of the self-assembly formation. The reason for this counterintuitive
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result may come from the design of the proposed self-assembly formation strategy. As
introduced in Section 2.2, each target position is shared by multiple moving robots, meaning
high redundancy. Although some moving robots are limited by the moving time parameter
being forced to degenerate into free robots, their target positions will still be finished by
other moving robots.
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The simulation tests for the parameters TB and TM prove that the formation efficiency
of the proposed self-assembly formation exhibits monotonicity on the building time pa-
rameter TB and is independent of the moving time parameter TM. Indeed, the building
time parameter TB generally depends on the performance of a single robots. The faster
the building robot finishes its assembly work, the less time there is for the self-assembly
formation. However, the moving time parameter TM has nothing to do with the perfor-
mance of a single robot. These results illustrate that the proposed distributed self-assembly
formation strategy fully utilizes the performance of individual robots. The higher the
individual performance (i.e., reducing building time), the higher the forming efficiency of
the proposed self-assembly formation. This points out ways of optimizing the efficiency
of the self-assembly formation. Meanwhile, the analysis of moving time parameters TM
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indicates that the proposed self-assembly formation has strong self-stability. Parameters
unrelated to individual performance do not affect the swarm’s forming efficiency.

5. Conclusions

In this paper, a high-performance distributed self-assembly formation strategy is
proposed, inspired by crystallization. To convert the macroscopic swarm behaviors to
multiple simple collaborative tasks, five robot states, i.e., free, moving, building, growing,
and solid, are defined by imitating crystallization. Consequently, robots in different states
spontaneously formed a specified 2D shape formation with a lattice structure through local
interactions. The feasibility of the proposed strategy is verified using 15 Waxberry robots
to form the four-pointed star shape and hexagonal crystal shape. Further self-assembly
formation tests in different conditions and larger scales were also conducted, facilitated by
an embodied simulator. The fully distributed strategy and adaptation in different formation
shapes verify the flexibility of the proposed self-assembly formation. The scalability of the
strategy is confirmed through tests encompassing formations ranging from approximately
15 robots to 3500 robots. In addition, since all growing robots contribute to the expansion
of the formation, the proposed self-assembly formation exhibits high forming efficiency.
A rare and precious super-linear trend further demonstrates the high forming efficiency.
Specifically, as the formation scale increases from about 15 to 3500 robots, the efficiencies
of forming the four-pointed star shape and the hexagonal crystal shape formations are
increased by 1756% and 2417%, respectively. These results collectively affirm the flexibility,
scalability, and high efficiency of the proposed self-assembly formation strategy. The
proposed high-performance self-assembly strategy for swarm robotics holds significant
implications for advancing the practical applications of swarm robotics. For example, in
flood relief efforts, many aquatic robots can rapidly self-assemble into emergency floating
bridges based on the proposed self-assembly strategy. In intelligent warehouse systems,
multiple transport robots can self-assemble into different-sized transport equipment using
the proposed self-assembly strategy, enabling automatic adaptation to transport items of
varying sizes.

In addition, a non-spatial macroscopic model is further developed to predict and
analyze the swarm behavior. Following the stock and flow diagram generated by FSM,
the master equations of this model are created. To solve the challenges of constructing
the model’s state transition functions caused by the complex spatial structure, the SFE
method is first proposed. This method opens the door to modeling the model for the swarm
behavior affected by complex spatial structure. Here, we define six basic structural types
and discuss their characteristics in detail. On this basis, all state transition functions that
can explain the transition mechanisms are constructed. The simulations and experiments
show that the proposed model has excellent prediction performance (i.e., PEI < 20%) when
the value of the building time parameter TB is less than five steps. The analysis based on the
model demonstrates that it fully utilizes the performance of individual robots. A shorter
building time consumed by a single robot means a higher forming efficiency. Additionally,
the analysis of the moving time parameter TM verifies that the proposed self-assembly
formation has strong self-stability. Parameters independent of individual performance do
not affect the swarm’s forming efficiency.

Due to the lack of more Waxberry robots, the self-assembly formation has not been
tested on larger-scale real robots. Producing more Waxberry robots and completing the
test with larger-scale real robots is a focus of future research. Furthermore, although the
proposed macroscopic model can adapt to parameter changes within a certain range, this
adaptability is restricted to regions where the building time parameter TB is less than five
steps. Therefore, further improving the model so that it can be adapted to all scenarios is
another important research topic for the future.
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