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Abstract: This work addresses assessing air quality and noise in urban environments by integrating
predictive models and Internet of Things technologies. For this, a model generated heat maps for
PM2.5 and noise levels, incorporating traffic data from open sources for precise contextualization.
This approach reveals significant correlations between high pollutant/noise concentrations and their
proximity to industrial zones and traffic routes. The predictive models, including convolutional
neural networks and decision trees, demonstrated high accuracy in predicting pollution and noise
levels, with correlation values such as R2 of 0.93 for PM2.5 and 0.90 for noise. These findings highlight
the need to address environmental issues in urban planning comprehensively. Furthermore, the
study suggests policies based on the quantitative results, such as implementing low-emission zones
and promoting green spaces, to improve urban environmental management. This analysis offers a
significant contribution to scientific understanding and practical applicability in the planning and
management of urban environments, emphasizing the relevance of an integrated and data-driven
approach to inform effective policy decisions in urban environmental management.

Keywords: air quality; urban noise; urban planification

1. Introduction

Air quality in urban environments has become critical in public health and urban
planning. Air quality measurement and modeling have historically relied on ground-based
monitoring networks, which provide valuable data but are often limited in geographic
scope. The rapid growth of urban areas has given rise to environmental and quality-of-life
challenges. The most pressing problems are air quality and noise pollution. Air pollution,
characterized by the presence of fine particles (PM2.5), volatile organic compounds (VOCs),
and nitrogen oxides (NOx), among other pollutants, has harmful effects on human health
and the environment [1,2]. On the other hand, noise pollution, measured in terms of
noise levels, can also negatively affect the health and well-being of people living in urban
environments [3,4].

Concern about these problems has led to the implementation of regulations and
policies to control polluting emissions and reduce city noise levels [5]. However, the
complexity of these environmental challenges requires more comprehensive approaches
to understanding and addressing their interactions [6,7]. Recent studies have integrated
satellite approaches to overcome these limitations, offering a broader perspective on air
pollution [8]. However, these methods face challenges in capturing urban pollutants’
detailed temporal and spatial dynamics [9].

Despite advances in satellite technology and modeling, there remains a significant
gap in the comprehensive understanding of urban air quality. Although accurate under
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controlled conditions, laboratory studies often do not reflect the complexity and variability
of natural urban environments [10]. Furthermore, current predictive models, although
practical, usually do not effectively integrate the diversity of pollution sources and their
interaction with dynamic urban factors [11].

Furthermore, incorporating emerging technologies, such as the Internet of Things
(IoT), has opened new possibilities to dynamically and in real-time monitor and model air
quality. These advances represent a shift toward a more holistic approach, combining data
from multiple sources and technologies for a complete understanding of urban pollution
patterns [12]. However, adopting these technologies also introduces new challenges, such
as effectively integrating and analyzing large volumes of data and the precise calibration of
a sensor network.

This work comprehensively addresses air quality and noise in urban environments.
This proposal is based on two fundamental pillars: multidisciplinary environmental data
and traffic data [13]. This work uses the appropriate technology to measure and record
these data continuously. This includes air quality sensors that monitor PM2.5, VOCs, and
NOx, as well as noise sensors that record noise levels at different locations in the city [14,15].
Vehicle traffic is one of the primary sources of air and noise pollution in cities.

Integrating these pillars provides a holistic view of air quality and noise in the city. It
also allows the identification of critical areas that require attention and specific mitigation
measures [16,17]. Predictive models, such as convolutional neural networks (CNNs) and
decision trees, are used to develop a robust predictive framework. This allows us to
understand the current situation and foresee how these problems could evolve in the future
under different urban scenarios [18,19].

The results of this work support the negative influence of urban sources, such as indus-
trial areas and heavy traffic routes, on air quality and noise. This highlights the importance
of addressing these issues comprehensively and the need to implement specific mitigation
strategies in critical areas. Additionally, a significant correlation was identified between air
quality and noise levels in the monitored areas of the city. This underlines the importance
of addressing these problems jointly in urban planning [20]. The information provided by
our research is essential to make informed and strategic decisions in managing air quality
and noise in urban environments, contributing to healthier and more sustainable cities.

2. Materials and Methods

The generation of environmental and urban data in the city is used to develop the
method. In addition, information on industrial areas and traffic routes, the generation
of PM2.5 and noise heat maps, and the integration of environmental and traffic data are
included. This information allows the evaluation of predictive models for air quality and
noise levels, highlighting the performance metrics used.

2.1. Review of Similar Works

Numerous studies have addressed the topic from various perspectives in urban en-
vironmental monitoring, using multiple methodologies and technologies. Reviewing the
existing literature, we found that a common approach involves using IoT sensor networks
to collect data on factors such as air quality and noise in urban environments. These studies
have been fundamental to understanding how pollution and other environmental factors
affect city life [21].

For example, some studies have focused on deploying sensor networks to precisely
monitor levels of pollutants such as PM2.5 and NOx, providing valuable real-time air
quality data. These projects have demonstrated the effectiveness of using low-cost, easily
implemented technology to obtain critical environmental data [22,23]. Additionally, other
work has explored the use of advanced data processing algorithms to interpret large envi-
ronmental data sets, allowing researchers and policymakers to gain a deeper understanding
of ecological patterns and trends [23].
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This work builds on these previous studies and seeks to advance the field by inte-
grating more advanced IoT technologies and developing sophisticated algorithms for data
analysis. Unlike previous studies that might have focused on specific aspects of environ-
mental monitoring, this proposal aims to provide a holistic and systematic approach [24].
This includes not only the collection of environmental data but also its detailed analysis to
inform urban management policies and strategies better [25,26].

The contribution of this work to the phenomenon under study not only expands the
scope of the data collected, but also improves the accuracy and usefulness of the analysis of
this data. In doing so, we hope to offer new perspectives and solutions to urban environmen-
tal challenges, thereby creating healthier and more sustainable cities [27,28]. Additionally,
our focus on optimizing and automating data collection and analysis represents a significant
advance in the efficiency and effectiveness of urban environmental monitoring.

2.2. Monitoring Platform Design

Open data available on the web from recognized sources, such as the Urban Data
Platform of the European Commission, France’s National Address Base, and the Open Data
Barometer, are used to design the urban environmental monitoring platform. These sources
offer valuable and updated information on urban variables, integrated into the platform
developed to enrich the analysis and understanding of city environmental challenges.

2.2.1. Platform Architecture

Figure 1 shows the block diagram of the urban environmental monitoring platform,
detailing its structure, composed of four main layers: the IoT Sensor Layer, the Communi-
cations Network, the Storage Server, and the Data Analysis System [29,30]. The diagram
illustrates the structure and data flow of our urban environmental monitoring platform.
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The sensor layer is responsible for collecting environmental data in real-time. These
data are transmitted over a network that uses efficient technologies such as
LoRaWAN [31,32]. The cloud-based storage server manages and stores large volumes
of collected data. The data analysis system processes and interprets this information using
advanced algorithms, which improves decision-making related to the urban environment.
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2.2.2. Selection of IoT Technologies

For implementing the urban environmental monitoring platform, a range of IoT
technologies has been carefully selected based on their efficiency, accuracy, and relia-
bility. The air quality sensors will be optical for PM2.5 and PM10 particles and elec-
trochemical for gases such as NOx and SOx, providing essential data on atmospheric
pollution [33]. The infrared sensors will measure the levels of CO and CO2, while the
specific devices for ozone will give us information about this gas critical for public health
and environmental quality [34].

Regarding noise pollution, calibrated microphones will offer us precise measurements
of noise levels, allowing us to address this omnipresent urban pollutant effectively [35].
For data communication, technologies such as LoRaWAN and NB-IoT, ideal for low-
power, long-range IoT data transmission, and networks for applications requiring real-time
transmission and support for a high density of connected devices, were chosen [36–38].

The cloud infrastructure, selected for its scalability and robustness, serves as the core
for data storage and processing, using big data tools to manage and analyze the large
volumes of information collected [39,40]. This is complemented by data visualization
software and machine learning algorithms to interpret the data and generate predictive
models that inform and improve urban environmental planning and response decisions.
Each of these components ensures maximum operational consistency and energy efficiency,
thus ensuring high-quality data collection and meaningful insights.

In selecting IoT technologies for our study, in addition to efficiency, accuracy, and
reliability, the specific suitability of each sensor for complex urban environments was
considered. Sensor calibration was performed using recognized standards in controlled
environments to ensure accuracy in detecting contaminants and noise levels. This included
exposing the sensors to known pollutant concentrations and decibels in a range that reflects
actual urban conditions.

The sensor placement and deployment strategy were determined to capture a complete
pollution and noise profile. The sensors were placed at strategic points, such as high-traffic
intersections, residential and commercial areas, and near industrial emission sources,
providing a comprehensive and detailed perspective of urban environmental conditions.

For validation, data collected by the sensors were compared to reference measurements
obtained using conventional methods. This cross-validation was carried out in multiple
locations and different environmental conditions, thus guaranteeing the reliability of the
sensors in various urban situations.

Additionally, a regular maintenance and recalibration protocol was implemented
for the sensors, considering factors such as sensor degradation over time and significant
environmental changes, ensuring data consistency and accuracy over time.

Integrating these data into the urban environmental monitoring platform, combined
with cloud infrastructure, big data, and machine learning algorithms, ensures high-quality
data collection, and facilitates its analysis, model generation, and accurate predictions.

2.3. Data Collection and Processing

The study was conducted in a simulated city representative of a typical urban envi-
ronment, with clearly defined residential, commercial, and industrial areas. To obtain a
diverse and representative sample of environmental conditions, 150 IoT sensors were de-
ployed in multiple strategic locations. Data from the sensors distributed in these areas were
collected and analyzed over 6 months, providing data on air quality and noise levels. This
approach allowed us to capture a detailed image of environmental patterns in a complex
urban context.

Data collection and processing is based on integrating multiple open data sources and
IoT instrumentation deployed throughout the urban environment. Data from the European
Commission’s Urban Data Platform, the French national address database, and the Open
Data Barometer enrich our analysis with contextual and comparative information.
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Specifically, selected IoT sensors collect environmental data such as particle concen-
trations and noise levels. These data are quantitative, with volumes anticipated to be
considerable, given the granularity and frequency of measurements required for detailed
analysis. For example, particle sensors could generate up to 10 GB of data weekly, updating
every hour, while microphones could generate around 2 GB of data with updates every
half hour.

In data acquisition, a differentiated sampling frequency for each type of sensor is
established and optimized to capture relevant short- and long-term environmental varia-
tions. This varied frequency allows for detailed, real-time air quality and noise analysis in
different urban areas. The geographic coverage of the sensors covers a diversity of urban
areas, from residential to industrial and commercial areas, thus ensuring the collection of
data representative of the city. Additionally, real-time filtering and verification protocols
are implemented to ensure the quality and accuracy of the data collected. This included
data normalization to ensure consistency between different sensors and cross-validation
with standard measurement methods, strengthening the reliability of the data set.

Processing these data begins with a cleaning phase to correct or remove outlier reads,
followed by normalization to allow meaningful comparisons between data sets and lo-
cations. The processed data will be stored in a centralized repository, where big data
techniques and machine learning algorithms will process the information to identify trends,
patterns, and correlations. Table 1 shows a summary of the data used.

Table 1. Data sources and characteristics.

Data Source Type of Data Estimated Volume Update Frequency

PM2.5/PM10 sensors Quantitative 10 GB/day Hourly
NOx/SOx sensors Quantitative 5 GB/day Hourly

Noise Microphones Quantitative 2 GB/day Every 30 min
National Database Space 1 update Annual

Urban Data Platform Miscellaneous 50 GB Biannual
Open Data Barometer Evaluative 1 update Annual

Open data complement the data collected by sensors, providing a broader context for
interpreting the data and helping to validate the prediction and analysis models developed.
The processing methodology will be designed to be scalable and adaptable to adjust to
emerging needs and the evolution of data collection technologies.

This work effectively integrated traffic data and other relevant urban elements with
environmental data collected by sensors. Tools such as geographic information systems
and extensive data analysis platforms such as Hadoop and Spark are used in data integra-
tion. These tools allow for a compelling fusion of traffic data and other urban indicators
with environmental data. We use parallel processing algorithms to efficiently handle the
volume and complexity of data efficiently, ensuring accurate and detailed integration.
This multifaceted approach allows for developing more effective and sustainable urban
planning strategies.

The representativeness of the collected data is carefully evaluated to ensure that they
accurately reflect actual urban conditions. Variations in urban distribution, population
density, and industrial activity are considered to ensure the generalizability of the results.
However, it is essential to recognize the limitations inherent in using IoT sensors and
simulation models. These include potential biases in sensor placement and constraints on
representing the full complexity of the urban environment. These factors were critically
analyzed to understand their impact on the study’s conclusions and formulate recommen-
dations for future research and practical applications.

Effective management of data collected through IoT sensors is crucial to this work.
With the use of Hadoop and Spark, a scalable data storage system was implemented to
manage the vast amount of information collected efficiently. These platforms enabled
fast and secure processing, which is essential for real-time analysis. Big data techniques
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were applied to analyze these data, including machine learning algorithms and statistical
analysis. This approach allowed us to extract meaningful patterns and correlations from
the data, which was unattainable with traditional methods due to the complexity and
magnitude of the data. However, several challenges were faced, such as data integrity and
processing efficiency. To overcome these issues, we established rigorous data verification
and filtering protocols and processing optimizations to improve the speed and accuracy
of analysis.

The use of IoT technologies for environmental monitoring involves facing various
challenges. One of the main obstacles was the accurate calibration of the sensors. For
example, PM2.5 sensors required periodic calibrations to counteract the drift caused by
environmental factors such as humidity and temperature. We implement regular calibration
protocols and compare data to reference sensors to ensure accuracy.

Data integrity was another significant challenge. Noise sensors were subject to external
interference that could affect accuracy. We use data filters and statistical analysis techniques
to address this to identify and correct potential errors.

Additionally, network reliability is crucial for effective data transmission. Network re-
dundancy systems and local data storage mechanisms were established to ensure continuity
in data collection and avoid data loss due to fluctuations in network connectivity.

Table 2 summarizes the key challenges faced in calibration and data collection with
different types of IoT sensors and the strategies implemented to address these issues. The
table provides a comprehensive view of how the accuracy and integrity of the data were
ensured, highlighting both the technical obstacles and the solutions applied to overcome
them in the context of urban environmental monitoring.

Table 2. Challenges and strategies in the implementation of IoT sensors for environmental monitoring.

Sensor Type Calibration Challenge Data Collection
Challenge

Implemented
Strategy

PM2.5 Sensor Drift due to environmental
factors

Data loss due to
network fluctuations

Periodic calibration,
network redundancy

Noise Sensor Variability in sensitivity External interference
affects accuracy

Use of reference
sensors, data filters

NOx Sensor Temperature sensitivity Outlier data due to
unusual peaks

Calibration with
environmental

standards, statistical
data analysis

2.4. Data Analysis and Algorithm Development

Data analysis and algorithm development are essential for turning large volumes of
raw data into actionable insights. The algorithms to be developed cover several areas of
data analysis:

Preprocessing of the collected data is carried out in several stages. Initially, the
data are subjected to cleaning that involves the elimination of outliers using statistical
methods such as the Tukey test or the analysis of standard deviations. Missing values
are treated using imputation techniques, such as mean imputation or k-nearest neighbors’
imputation, depending on the nature of the data [41]. Normalization is applied to the data
to homogenize the scale from different sources, using min–max normalization or Z-score
standardization methods.

For descriptive statistical analysis, measures of central tendency and dispersion are
used, and for exploratory data analysis (EDA), visual techniques such as histograms,
boxplots, and scatterplots are applied. Regression algorithms, classifiers such as sup-
port vector machines, and neural networks are used to predict pollution levels in predic-
tive modeling [42,43]. Clustering algorithms identify patterns in unlabeled data, such as
k-means or Density-Based Spatial Clustering of Applications with Noise (DBSCAN).
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The interpretation of the data is carried out through analyzing the outputs of these
models. At the same time, the visualization is facilitated through interactive dashboards
that allow users to explore the data using filters and controls. Time series are visualized
through line or area graphs. Each algorithm and visualization technique is selected and
customized to the specific needs of the analysis, ensuring that results are both technically
sound and accessible to end users, including decision-makers and the public.

Regarding the architecture of the CNNs, a model with multiple layers was used,
including convolutional layers for feature extraction, pooling layers for dimensionality
reduction, and finally, fully connected layers for classification. ReLU activation functions
were used for the convolutional layers and Softmax for the output layer. A maximum tree
depth was defined for decision trees, and entropy criteria were utilized for node splitting.

The CNN architecture consisted of three convolutional layers, each followed by a
pooling layer to reduce dimensionality. The convolutional layers had 32, 64, and 128 filters,
respectively, with a kernel size 3 × 3. Max pooling was used for the reduction layers. The
network ended up with two fully connected layers of 64 and 32 nodes.

A maximum depth of 10 levels was set for the decision trees, and the Gini impurity
criterion was used for splits. Parameter tuning was performed with a grid search, evaluat-
ing combinations of tree depth and number of leaf nodes. Five-fold cross-validation was
used to avoid overfitting and ensure the model’s generalization.

Parameter tuning was performed using cross-validation and grid search techniques
to find the optimal combination of hyperparameters. This approach ensured the gen-
eralization and effectiveness of the models. Validation and testing were carried out on
separate data sets, using metrics such as accuracy, sensitivity, and specificity to evaluate
model performance.

2.5. Implementation and Testing

Pilot tests and simulations of the proposed platform are carried out in different phases.

2.5.1. Pilot Tests in Urban Environments

The implementation process of the urban environmental monitoring platform begins
with selecting metropolitan areas with high population and traffic density, focusing on
regions with diverse environmental and topographic conditions. This will include both
educational and residential areas as well as industrial areas. Next, we deploy IoT sensors
that measure air quality and noise at strategic points, such as busy intersections, parks, and
proximity to industrial emission sources [44].

Once installed, the sensors continuously transmit data to the processing center. These
data include levels of air pollutants, noise decibels, and relevant meteorological parameters.
Ongoing monitoring and maintenance of these sensors will be essential to ensure the
integrity and accuracy of the data collected, which involves performing regular calibrations
and upkeep of the devices. Subsequently, we will use the collected data to evaluate both the
sensors’ efficiency and the analysis algorithms’ precision. This will include comparisons
with already established environmental monitoring stations and a detailed correlation
analysis between the different types of data collected [45]. Based on the results obtained
from these evaluations, we will make the necessary adjustments to both the sensor network
configuration and the data processing algorithms to improve the overall accuracy and
efficiency of the platform.

2.5.2. Computational Simulations

Mathematical models are used to simulate different environmental scenarios. For
example, for the dispersion of pollutants, the advection–diffusion equation is applied:

C(x, t) =
Q

(4πDt)1/2 exp

(
− (x − ut)2

4Dt

)
(1)
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where C(x, t) is the concentration of the pollutant at time t and position x, Q is the emission
source, D is the diffusion coefficient, u is the wind speed, and x is the distance from
the source.

2.5.3. Performance and Effectiveness Evaluation

For classification algorithms, accuracy, sensitivity (true positive rate), and specificity
(true negative rate) are evaluated using the confusion matrix. In addition, cross-validation
techniques, such as k-fold, are applied to validate the robustness of the predictive models.
To validate the accuracy of the algorithms, the model predictions are compared with
historical data and accurate observations. The determination coefficients R2 are used to
quantify how much of the variability in the observed data is explained by the model.
To evaluate the operation of the model, stress tests are carried out on the platform to
guarantee its operation under extreme conditions, such as high pollution levels or adverse
weather events.

The methods used to calculate the accuracy, sensitivity, and specificity of the algorithm
in detecting sabotage are:

• Precision: This metric evaluates the number of true positives (correctly identified
sabotages) relative to all identified positives (correct and incorrect).

Precision =
True Positives

True Positives + False positives
(2)

• Sensitivity (True Positive Rate): Measures the proportion of real sabotages the algorithm
correctly identifies.

Sensitivity =
True Positives

True Positives + False Negatives
(3)

• Specificity: Evaluates the proportion of normal operations that the algorithm correctly
identifies; that is, it does not incorrectly mark them as sabotage.

Speci f icity =
True Negatives

True Negatives + False positives
(4)

These metrics are calculated using the confusion matrix, which compares the algo-
rithm’s predictions with the actual data labels. Accuracy, sensitivity, and specificity provide
a comprehensive view of the algorithm’s performance.

3. Results

The results of this study reveal statistically significant correlations between high
pollution/noise areas and proximity to industrial zones and main roads in the simulated city.
A negative influence of urban sources on air quality and noise was observed, highlighting
the importance of adequate mitigation measures and urban planning. The predictive
models presented high levels of precision, with R2 values of 0.93 for PM2.5 and 0.90
for noise, which supports their usefulness in environmental management. The direct
correlation between air quality and noise levels underscores the need to address these
issues comprehensively in urban planning.

3.1. System Implementation

In the effective implementation of our urban environmental monitoring system. We
highlight the importance of accurate configuration and calibration of IoT sensors and com-
munications networks to ensure air quality and noise data collection in urban environments.
This implementation is crucial in obtaining relevant and accurate data, essential in analysis
and decision-making.
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3.1.1. Infrastructure Description

The infrastructure presented in Figure 2 is essential for the implemented urban envi-
ronmental monitoring system, as it allows for efficient ecological data collection. The use
of distributed IoT sensors and network technologies such as LoRaWAN and NB-IoT, along
with data processing on cloud platforms such as AWS and Google Cloud, is critical to the
accuracy and reliability of the results obtained from the system [46,47]. This configuration
ensures that the analyzed data reflects urban environmental conditions in real-time, which
is essential for the analyses’ validity.
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3.1.2. Implementation Process

The sensor network is deployed through a structured sequence that begins with strate-
gically selecting locations, as presented in Figure 3, ensuring optimal and representative city
coverage. After installation, each sensor is rigorously calibrated to validate measurement
accuracy. The collected data are transmitted to a central server, where it is processed and
analyzed, resulting in detailed reports that inform decisions about the urban environment.
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3.2. Identification and Characterization of Data

The environmental monitoring network collects data for specific pollutants such as
PM2.5, PM10, NO2, and CO, along with acoustic and meteorological measurements. These
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data provide an accurate understanding of urban air quality and ambient noise, which is
essential for informed environmental management decisions. Regarding data volume, the
sensors generate readings at regular time intervals, accumulating significant daily volumes
of data. For example, each sensor can generate approximately 1 KB of data per reading,
translating to around 1.44 MB per day if data are collected every minute. With sensors
deployed, collecting gigabytes of data in a single day is possible.

Table 3 details the volume and characteristics of the environmental data collected by
the sensor network. With 150 sensors for PM2.5 and PM10, collecting data every minute
with a precision of ±2.5 µg/m3, and 100 sensors for NO2 and CO, recording every 5 min
with a precision of ±2 ppb and ±0.1 ppm, respectively. They generate 1.44 MB and
288 KB of data daily. Noise is measured with an accuracy of ±1 dB, while temperature and
humidity are recorded every 10 min with a precision of ±0.5 ◦C and ±3%, each contributing
144 KB to the daily volume. Fifty sensors collect weather data, providing a detailed basis
for deep environmental analysis and predictive modeling.

Table 3. Volume and frequency of environmental data collected by the sensor network.

Datatype Unit of Measurement Collection Frequency Precision Daily Data Volume Total Sensors

PM2.5 µg/m3 Each minute ±2.5 µg/m3 1.44 MB 150
PM10 µg/m3 Each minute ±2.5 µg/m3 1.44 MB 150
NO2 ppb Every 5 min ±2 ppb 288 KB 100
CO ppm Every 5 min ±0.1 ppm 288 KB 100

Noise dB Each minute ±1 dB 1.44 MB 100
Temperature ◦C Every 10 min ±0.5 ◦C 144 KB 50

Humidity % Every 10 min ±3% 144 KB 50

Statistical techniques were implemented in data preparation to identify and rule out
anomalies based on proven methodologies [48,49]. These techniques were selected to
ensure that only erroneous or atypical data are removed, preserving the integrity and
authenticity of the actual data. Data normalization using the Z-score technique was applied
to standardize the data within each contaminant category, allowing for consistent statistical
analyses and predictive models without directly comparing different contaminants.

A cleaning phase is initially performed to prepare and segment the data, including
eliminating outlier data and imputing missing values. Data normalization is then carried
out to ensure compatibility between different data types and sources. Once preprocessed,
the data are segmented into training and test sets. Typically, 70–80% of the total data are
allocated to training predictive models, while the remaining 20–30% are reserved for the
testing and validation phase of the models. These segregated data sets are essential to
develop and evaluate the accuracy and generalization of the predictive algorithms applied
in the study.

3.3. Results of Data Collection and Analysis

The results obtained from data analysis allow us to understand the current situation
of the urban environment. A dynamic profile of the urban atmosphere has been built
by monitoring key parameters such as air quality and noise. Figure 4 shows two graphs
representing the temporal variations of two environmental variables of a city for 3 days,
starting on 1 January 2023. The first graph shows the concentrations of PM2.5 particles
in micrograms per cubic meter, with oscillations reflecting the air quality variability. The
horizontal error bars in this graph indicate the precision of the measurements, providing a
confidence interval that reflects the possible variation in PM2.5 values due to the inherent
uncertainty in data collection. The second graph, which shows ambient noise levels in
decibels, also includes error bars that represent the variability and reliability of these
measurements. These error bars, calculated from the standard deviation of the collected
data, allow us to appreciate the observed trends and evaluate the influence of possible
disturbing factors or sporadic events in the urban environment. These graphs, with their



Sensors 2024, 24, 311 11 of 18

corresponding error bars, provide an accurate and transparent representation of the data
collected, essential for assessments of the city’s environmental health.
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Analysis of the collected data revealed significant trends in urban environmental
factors, with a positive slope of 0.8 for PM2.5 and a negative slope of −0.5 for noise
levels, indicating an increase in PM2.5 concentration and a decrease in noise levels over
time. The statistical significance of these trends was quantified through linear regression
analysis, with p values of 0.05 for PM2.5 and 0.03 for noise, evidencing its relevance in
the urban context studied. Diurnal patterns were identified in PM2.5 and PM10 levels,
which showed increases during peak traffic hours, typically between 7 and 9 am and 4
and 6 pm, suggesting a direct relationship between vehicular mobility and traffic quality
air. These variations were more pronounced in urban areas with high traffic density, such
as the city center and major transportation routes. Similarly, noise levels exhibited peaks
coinciding with heavy traffic hours and commercial activities. To statistically validate these
observations, t-tests were applied to compare the pollution means between weekdays and
weekends, revealing significant differences. In addition, analysis of variance (ANOVA) was
used to evaluate the differences between noise levels in different areas of the city, which
made it possible to detect regions with chronic acoustic problems.

Table 4 compares pollutant and noise measurements during weekdays versus week-
ends. It is observed that the averages of PM2.5 and PM10 are higher during weekdays,
with 15 and 25 µg/m3, respectively, compared to weekends, where the average decreases
to 12 and 20 µg/m3. This difference is statistically significant, as indicated by p values less
than 0.05. Similarly, moderate noise levels decrease from 55 dB on weekdays to 50 dB on
weekends, with a substantial p value less than 0.01, suggesting a notable variability in the
acoustic environment associated with the weekly cycle. In the choice of different thresholds
of statistical significance for noise and PM2.5, the stricter threshold of p < 0.01 for noise
reflects its more significant variability compared to PM2.5 particles. This approach ensures
the robustness of our findings, especially in an urban context where factors such as traffic
and commercial activities can significantly influence noise levels.

Table 4. Statistical comparison of air quality and noise between weekdays and weekends.

Parameter Average Working Days Half Weekends p Value t-Test

PM2.5 15 µg/m3 12 µg/m3 <0.05
PM10 25 µg/m3 20 µg/m3 <0.05
Noise 55 dB 50 dB <0.01

Figure 5 shows two heat maps representing a fictitious region’s average PM2.5 concen-
tration and average noise levels. On the PM2.5 map, areas with deeper red tones indicate
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higher concentrations of particles, suggesting possible sources of pollution or areas with
less atmospheric dispersion. In contrast, the noise map highlights the most significant
acoustic impact in intense blues, which could correlate with high urban or industrial activity
areas. By analyzing these maps, pollutant and noise distribution patterns that are critical
for environmental planning and implementing mitigation strategies can be identified.
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In the heat maps presented in Figure 5, the X and Y coordinates represent an abstract
space within an urban region, where the North–South. This arrangement allows the
spatial distribution of air and noise pollution to be visualized without reference to specific
geographical points, thus facilitating the identification of general patterns and trends.

3.4. Integrated Comparative Analysis of Environmental Data and Urban Sources

This analysis integrates PM2.5 and noise heat map data with geographic and traffic
information from open sources. Through this process, we seek to identify the existing cor-
relations between areas of high pollution and noise near industrial zones and traffic routes.

3.4.1. Data Integration

PM2.5 and noise heat maps were combined with geographic and traffic data, allowing
air quality and noise to be linked to specific locations in the simulated city. Figure 6
represents an urban environment with various zones, including industrial areas (in red),
traffic zones (in blue), residential areas (in green), and parks (in brown). These zones
represent different aspects of the urban landscape and are essential for understanding how
pollution and noise levels vary throughout the city. This visualization provides a complete
overview of the city layout, allowing for a more detailed analysis of environmental factors
and their interaction in different urban areas.

3.4.2. Correlation Analysis

At this stage of the analysis, a statistical study is carried out to investigate possible
correlations between the highlighted areas of high pollution and noise levels in the heat
maps and their proximity to industrial zones and the busiest traffic routes in the city. This
approach identifies significant relationships between urban factors and environmental
quality in how industrial activities and traffic impact the urban environment.
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Table 5 has been supplemented with a correlation analysis to illustrate the relationships
between PM2.5 levels and noise near industrial areas and roads. A correlation coefficient
of 0.19 was found between PM2.5 levels and distance to industrial regions, indicating
a positive relationship, although not very strong. Likewise, the correlation coefficient
between noise levels and distance to roads is 0.015, suggesting no significant relationship
exists between these variables in our data set. These results highlight the complexity of
urban dynamics and the need to address multiple factors when planning interventions to
improve air quality and reduce noise pollution in urban environments.

Table 5. Environmental quality data and locations.

Location PM2.5
(µg/m3)

Noise
Level (dB)

Distance to
Industrial Area (km)

Distance to Traffic
Road (km)

PM2.5 Corr. vs.
Industrial Area

Noise vs.
Traffic Road

Residential 1 18 60 0.2 0.5 0.19 0.015
Residential 2 50 55 1.0 0.3 0.19 0.015
Commercial 3 20 58 0.3 0.8 0.19 0.015

Park 4 17 62 1.5 0.2 0.19 0.015
industrial zone 5 22 65 0.1 0.7 0.19 0.015

The results in the table show significant correlations between proximity to industrial
areas and traffic routes with higher levels of PM2.5 and noise in the simulated city. Locations
near industrial areas tend to have higher levels of pollutants and noise. These findings
underline the negative influence of industrial activities and traffic on air and acoustic quality
in the urban environment. This highlights the importance of implementing mitigation
measures and adequate urban planning to address these environmental problems and
improve the quality of life in the city.

3.5. Evaluation of Predictive Models

An evaluation of five predictive models for air quality and noise levels in the simulated
city. These models included CNNs, decision trees, linear regression, SVM, and logistic
regression. Each model was trained and evaluated using key performance metrics such as
accuracy, sensitivity, and specificity.

The results obtained and presented in Table 6 indicate that the models generally have
a high level of precision. The air quality model achieved 90% accuracy, meaning 90% of the
predictions were correct. Sensitivity, which measures the model’s ability to identify areas
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with high air pollution, was 88%. This means that the model efficiently detects areas with
air quality problems. The specificity, which assesses the ability to identify areas with good
air quality, was 92%, indicating a low number of false positives.

Table 6. Performance of predictive models for air quality and noise levels.

Model Precision Sensitivity Specificity

CNN 92% 89% 94%
Decision Trees 88% 86% 90%

Linear Regression 85% 82% 88%
SVM 91% 88% 93%

Random Forest 93% 90% 95%

An accuracy of 88% was obtained for the noise level model, suggesting a strong
ability to predict noise levels in the simulated city. The 85% sensitivity indicates that the
model efficiently detects noisy areas. The specificity was 90%, indicating a low rate of
false positives in identifying silent regions. A relevant aspect is the correlation identified
between these two models. A significant correlation was found between air quality and
noise levels, suggesting that places with high air pollution tend to have higher noise
levels. This relationship underlines the importance of addressing these problems jointly in
urban planning.

Regarding the impact of urban sources, the model results support the negative in-
fluence of these areas. Locations near industrial zones tend to have higher levels of
pollutants and noise, while areas near significant roads also experience negative impacts.
This information is essential for decision-making in urban planning and implementing
mitigation measures.

A multiple linear regression analysis was also performed to explore the causal rela-
tionships between traffic density, proximity to industrial areas, and pollution and noise
levels. Multiple linear regression analysis revealed a significant relationship between traffic
density, proximity to industrial areas, and pollution and noise levels. These findings sug-
gest that certain urban factors considerably impact environmental quality. Table 7 presents
the multiple linear regression analysis results, showing the relationship between specific
urban factors and environmental quality. Regression coefficients indicate the magnitude of
the impact of each variable, while p values and confidence intervals measure the statistical
significance and precision of these impacts.

Table 7. Multiple linear regression analysis for urban factors and environmental quality.

Variable Regression Coefficient p Value Confidence Interval

Traffic Density 0.65 <0.01 [0.55, 0.75]
Proximity to Industrial Zones 0.45 <0.05 [0.35, 0.55]

These results underline the importance of considering traffic density and the location
of industrial zones in urban planning. Implementing green zones and traffic regulations
could effectively mitigate adverse effects in areas identified as high risk. These measures
can contribute significantly to improving the quality of urban life.

For the reliability of the predictive models, statistical metrics such as the MSE and the
RMSE offer a quantitative measure of the models’ errors. At the same time, the R2 and
adjusted R2 coefficients reflect the proportion of the data variance explained by the models.
These metrics allow the accuracy of each model to be evaluated and compared.

Table 8 presents key metrics to evaluate the accuracy of our predictive models. The
CNN shows an MSE of 0.04 and a RMSE of 0.20, indicating a low prediction error. This
model also has a high R2 of 0.93, demonstrating predictive solid ability. In contrast, the
decision tree, with an MSE of 0.06 and an R2 of 0.88, suggests slightly lower precision.
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The Random Forests present the best performance with an MSE of 0.03 and an R2 of 0.94,
indicating the most incredible precision and fit of the model to the data.

Table 8. Performance metrics for predictive models in urban environmental assessment.

Model MSE RMSE R2 Adjusted R2

CNN 0.04 0.20 0.93 0.92
Decision Trees 0.06 0.24 0.88 0.87

Linear Regression 0.07 0.26 0.85 0.84
SVM 0.05 0.22 0.90 0.89

Random Forest 0.03 0.17 0.94 0.93

4. Discussion

The results reveal significant correlations between high air pollution and high noise
levels, highlighting the negative impact of urban sources, such as industrial areas and
heavy traffic routes, on environmental quality. These findings are consistent with previous
research and underscore the need to comprehensively address air quality and noise in
urban planning [34].

In the first instance, it is essential to highlight the correlation identified between air
quality and noise levels in the city. This supports the notion that areas with high air
pollution also experience higher noise levels. This association is consistent with previous
research showing how urban sources, such as vehicular traffic and industrial activities,
contribute to air pollution and noise in urban environments [33,50]. The results of this study
reinforce the importance of addressing these two problems together in urban planning
since they are intrinsically related.

Furthermore, this study highlights the high accuracy of the predictive models devel-
oped to assess air quality and noise levels. The overall precision of the air quality model
was 90%, while for the noise level model, it was 88%. These accuracy rates are promising
and suggest that the models effectively predict and map environmental problem areas
in the city. Sensitivity and specificity are also essential metrics to consider. Sensitivity,
which measures the model’s ability to identify areas with high pollution or noise levels,
ranged between 85% and 88%, indicating that the models efficiently detect problem areas.
Specificity, which assesses the ability to identify areas with good air quality or low noise
levels, ranged between 90% and 92%, indicating a low false positive rate. These results
support the usefulness of the models in evaluating and monitoring environmental quality
in urban environments.

This study illustrates how an integrated approach that combines air quality and noise
monitoring with advanced technologies can significantly inform urban environmental
policies. The results suggest the need for more effective policies for traffic management,
industrial zoning, and the promotion of urban green spaces. We recommend considering
strategies such as low-emission zones and improved regulations in high-pollution areas.
These measures will not only enhance air quality and reduce noise pollution, but also
contribute to the general well-being of urban residents. The practical application of these
findings could significantly impact sustainable urban planning and public health.

In the context of urban planning, the findings of this study have significant implica-
tions [26]. Identifying critical areas affected by urban sources, such as industrial zones and
traffic routes, provides essential information for making informed decisions [51]. These
results can guide the implementation of mitigation strategies to reduce air and noise pollu-
tion in specific city areas. This is crucial to improve the quality of life of urban residents
and promote healthier and more sustainable environments [52,53].

Compared to previous studies in air quality and noise, this multidisciplinary ap-
proach and integration of geospatial and traffic data provide a deeper understanding
of the interaction between urban and environmental factors. While previous research
has addressed these issues independently, this study demonstrates how they are intrinsi-
cally linked and how urban activities influence air quality and noise [54]. This integrated
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perspective is essential to effectively address environmental challenges in ever-growing
urban environments.

5. Conclusions

This study has comprehensively addressed assessing air quality and noise levels in a
simulated city using heat map data and urban sources. The predictive models developed
have demonstrated high performance in predicting air quality and noise in different
locations in the city. A significant correlation between air pollution and noise has been
identified, underscoring the importance of addressing these issues in urban planning.

The results highlight the negative impact of urban sources, such as industrial areas
and heavy traffic routes, on environmental quality. Areas near these sources tend to
experience higher levels of pollutants and noise, requiring appropriate planning and
mitigation measures. Identifying critical areas affected by pollution and noise provides
valuable information for decision-making in urban management.

Regarding future work, the implementation of specific mitigation strategies in the
areas identified as critical is suggested. Additionally, real-time data collection could be
considered to improve the accuracy of predictive models. Another topic that will be
addressed as future work is exploring cities’ long-term sustainability and resilience in terms
of air quality and noise. This will involve a detailed analysis of how current interventions
could influence urban planning over decades, creating more sustainable and resilient
cities. Evaluating long-term strategies and their impact on public health and the urban
environment represents a fertile field for future research.
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