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Abstract: Apples are widely cultivated in the Republic of Korea and are preferred by consumers for
their sweetness. Soluble solid content (SSC) is measured non-destructively using near-infrared (NIR)
spectroscopy; however, the SSC measurement error increases with the change in apple size since
the distance between the light source and the near-infrared sensor is fixed. In this study, spectral
characteristics caused by the differences in apple size were investigated. An optimal SSC prediction
model applying partial least squares regression (PLSR) to three measurement conditions based on
apple size was developed. The three optimal measurement conditions under which the Vis/NIR
spectrum is less affected by six apple size levels (Levels I–VI) were selected. The distance from the
apple center to the light source and that to the sensor were 125 and 75 mm (Distance 1), 123 and
75 mm (Distance 2), and 135 and 80 mm (Distance 3). The PLSR model applying multiplicative scatter
correction pretreatment under Distance 3 measurement conditions showed the best performance
for Level IV-sized apples (R2

pre = 0.91, RMSEP = 0.508 ◦Brix). This study shows the possibility of
improving the SSC prediction performance of apples by adjusting the distance between the light
source and the NIR sensor according to fruit size.

Keywords: apple size; soluble solid content; visible near-infrared spectroscopy; partial least squares
regression; optimal distance

1. Introduction

In 2020, fruit consumers in the Republic of Korea prioritized fruit quality over price
to a greater degree than that in 2018 [1,2]. Apples are the most cultivated fruit among the
country’s representative fruits and are popular among consumers [3]. Currently, apple
importation is banned in the country. Thus, selecting high-quality local apples is crucial
because of the inevitable future competition with imported apples [4,5].

The criteria for selecting apples can be broadly divided into external and internal
qualities. The external quality can be classified into size, color, weight, shape, and external
defects, whereas the internal quality can be classified into sugar content, acidity, moisture
content, and internal defects [6]. Various studies have measured the internal quality of
fruits, such as the soluble solid content (SSC), using near-infrared (NIR) spectroscopy. NIR
spectroscopy can quickly and non-destructively determine and sort the internal quality
of fruits [7].
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NIR spectroscopy is a technique that measures transmitted or reflected light when an
NIR sensor with a wavelength range of 700–2500 nm is applied to fruits, measuring SSC
through partial least squares regression (PLSR) [8]. Although multiple linear regression
(MLR) and principal component regression (PCR) have been used as SSC prediction models,
PLSR has been widely used. PLSR is a method for finding latent variants to effectively
describe concentration changes using both concentration and spectral data from samples,
allowing multiple response variables to be simultaneously modeled while effectively
handling multicollinearity and noisy independent variables [9]. The application of NIR
spectroscopy to fruit quality analysis involves a reflectance mode that uses reflected light
for irradiated light, a full transmittance mode that uses transmitted light inside the fruit,
and a semi-transmittance mode that uses only a part of the fruit [10]. Recently, the full
transmittance mode has been used to sort the SSC of fruits, and the mode speedily measures
the overall SSC of fruits. However, the full transmittance mode varies in the spectrum
because of the changes in the path length or scattering caused by differences in the sample
size [11]. This variation reduces the accuracy of the SSC predictions [12]. Therefore, studies
have been conducted to improve the accuracy of PLSR models for fruit SSC prediction,
primarily by performing spectral preprocessing, and to reduce this disturbance [13].

In developing an SSC prediction model, Suh et al. [10] found that the internal re-
flectance mode and transmittance mode (90◦, 180◦) are excellent for pear spectroscopy,
and the coefficient of determination of the cross-validation (R2

cv) and root mean square
error of prediction (RMSEP) of the PLSR model without pretreatment were 0.777 and
0.38 ◦Brix, 0.643 and 0.48 ◦Brix, respectively. The RMSEP of the multiplicative scatter
correction (MSC) pretreatment application model showed that the internal reflectance
mode was 0.37–0.57 ◦Brix, and the transmittance mode (90◦) was 0.39–0.51 ◦Brix. Shin [14]
investigated the SSC prediction of melons using NIR spectroscopy. Among the various
pretreatments performed, range normalization is the pretreatment with the best prediction
performance, with an R2

cv of 0.755 and RMSEP of 0.89 ◦Brix. Luo et al. [15] developed a
sugar prediction PLSR model using three wavelength bands and five pretreatments of navel
oranges. The model with standard normal variate (SNV) pretreatment in the wavelength
band of 450–1800 nm showed optimal performance with R2

v of 0.8514 and RMSE of 1.1649.
Kawano et al. [12] non-destructively measured the SSC of satsuma mandarins using an NIR
transmittance spectrum, in which the wavelength affected by the fruit diameter was 844 nm.
After applying a second-order differential to a value of 844 nm and normalizing the result,
the PLSR analysis resulted in an R of 0.989 and SEP of 0.32. Tian et al. [16] investigated
the optimal apple SSC prediction through spectroscopic analysis using Vis/near-infrared
(Vis/NIR) and pretreatment applications. PLSR was used for model development, and
a total of 322 apples were used: the correlation coefficient of the cross-validation (Rcv)
was 0.8545, and the root mean square error of the cross-validation (RMSECV) was 0.5730
without pretreatment. Optimal preprocessing was performed with mean normalization
and 11-point smoothing, where the correlation coefficient of prediction (Rpre) was 0.8744
and RMSEP was 0.5332.

Although previous studies have improved the accuracy of the SSC prediction model
by applying spectral preprocessing, changes in the optical path corresponding to changes
in the size of the fruit have not been considered because the location of the light source and
NIR sensor are fixed when measuring the spectrum of the fruit. Because the sizes of fruits
vary and the difference in diameter for each sample is large, the change in the NIR spectral
signal also considerably influences the outcome. This phenomenon reduces the accuracy of
fruit SSC prediction during high-speed sorting. Therefore, it is necessary to determine the
distance between the optimal light source and the NIR sensor for each fruit size.

This study aimed to determine the optimal distance between the light source and NIR
sensor based on the apple size for predicting apple’s SSC and develop a PLSR model for
predicting SSC for apple size based on the determined distance. Particularly, the spectral
distance characteristics between the light source and the NIR sensor were analyzed based
on the apple size, and various forms of spectral preprocessing were applied.
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2. Materials and Methods

In this study, the first experiment (Experiment 1) aimed to select the optimal distance
between the light sources and sensors that had less influence on apple size, while the
second experiment (Experiment 2) aimed to develop a PLSR SSC prediction model for each
apple size at the selected optimal distance.

2.1. Experimental Samples

The apple of the Fuji cultivar (Malus pumila) used in this experiment was purchased
from the Chungju Agricultural Products Processing Center (APC), and its size was classified
using the Korean Agricultural Product Standard Notice (Table 1). The weight, diameter,
and height of all samples were measured after purchase, and the average weight, diameter,
and height of the apples are listed in Table 2. The apples were stored in a refrigerator at
4 ◦C, and tempering was performed in a laboratory at 20 ± 1 ◦C for more than 5 h to reduce
the effect of the temperature before the spectral signal measurement experiment.

Table 1. Size classification of apples in standard specifications of agricultural products.

Level 3 4 5 6 7 8

Weight (g) 375 ≥
300 ≥ 250 ≥ 214 ≥ 188 ≥ 167 ≥
375 < 300 < 250 < 214 < 188 <

Table 2. Characteristics of apple samples.

Level

I II III IV V VI

Experiment 1

Number of samples (n) 3 3 3 3 3 -

Average weight (g) 390 325 292 240 197 -

Average of maximum diameter (mm) 106.59 103.32 94.43 86.74 80.71 -

Average height (mm) 84.99 82.37 75.33 73.2 66.1 -

Experiment 2

Number of samples (n) 82 57 72 60 70 70

Average weight (g) 398 318 285 223 195 182

Average of maximum diameter (mm) 99.16 90.17 88.23 80.80 78.92 75.63

Average height (mm) 86.78 83.07 79.64 73.96 70.32 68.90

The samples in Experiment 1 were classified from Levels I to V according to weight,
and three apples for each level were used. The average weights were 389.75, 324.62, 291.9,
240.22, and 197.14 g, in descending order of magnitude.

The samples in Experiment 2 were classified from Levels I to VI according to their
weights, and 82, 57, 72, 60, 70, and 70 apples from Levels I to VI were used. The aver-
age weights were 398.02, 318.41, 258.16, 223.19, 194.55, and 182.28 g, from the largest to
the smallest.

2.2. Spectra Collection and SSC Measurement

An NIR spectroscopy device was used to measure the Vis/NIR spectra, and it con-
sisted of a light source, a sample fixing part, and a spectral sensor, as shown in Figure 1a.
A 12 V, 100 W tungsten–halogen lamp was used as the light source, and the light source was
placed at the equatorial position of the apple. The spectral sensor was connected to a spec-
trometer (USB4000; Ocean Optics, Dunedin, FL, USA) via a fiber optic cable. Spectroscopic
measurements were performed after 1 h of light stabilization.
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Figure 1. (a) Vis/NIR spectrum measurement system for apples and (b) mark of maximum diameter
of apple.

In Experiment 1, the spectra were measured at an integration time of 200 ms, and the
values of ten measurements were averaged. The point corresponding to the maximum
diameter of the apple was measured three times by allowing light to penetrate, and then an
average spectrum of the three measurements was produced. In Experiment 2, the spectra
were measured at an integration time of 100 ms, and the values of five measurements were
averaged. The spectra were measured once in four directions (0◦, 90◦, 180◦, 270◦) according
to the maximum diameter (0◦) of the apple, and the average spectrum in the four directions
was used. For rapid measurement considering the application of an online system, the
integration time and average time were differently set from Experiment 1, and the spectrum
was measured in four directions to reflect the influence of the size of the apple and the
measurement area of the apple.

After measuring the spectra, four directions of the spectrum-measured apple were cut
to make nectar using a mixer, and the juice was extracted using a filter. A refractometer
(PAL-3; ATAGO, Tokyo, Japan) was used to measure the SSC in four directions per apple.
The resolution of the refractometer used was 0.1 ◦Brix at 0.1 ◦C, and the accuracy was
±0.1 ◦Brix.

The measured spectrum was configured at intervals of approximately 0.2 nm with a
wavelength of 470 to 1150 nm. The light source and Vis/NIR sensor were placed at the
center of the height of the apple in all experiments.

2.3. Analysis of Spectral Characteristics and Selection of Appropriate Distance between Light
Source and Vis/NIR Sensor (Experiment 1)

In Experiment 1, the spectral characteristics were investigated based on the distance
between the apple surface, light source, and Vis/NIR sensor. As the size of the apple
changed, the distance between the apple surface, light source, and Vis/NIR sensor varied.
The spectral signal was measured by changing the position of the light source and Vis/NIR
sensor around the apple to determine the characteristics of the spectrum that occurred as
this distance changed. The light source was measured at distances of 60, 70, 80, 90, and
100 mm from the apple surface (Figure 2). When the light source was closer than 60 mm,
the apple was burned, and the spectral signal was weak when it was farther than 100 mm;
therefore, these distances were excluded. Vis/NIR sensors were used for measurements
at distances of 20, 25, 30, 35, and 40 mm from the apple surface. When the distance of
the sensor was less than 20 mm from the surface of the smallest apple, the large apple
collided with the Vis/NIR sensor, and the spectral signal weakened when it exceeded
40 mm; therefore, these distances were excluded.
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Figure 2. Design of distance between light source, apple, and NIR sensor for NIR signal acquisition.

The intensity of light with a wavelength of 714.17 nm, mainly representing the max-
imum value among the various wavelengths, was used to analyze the tendency of the
distance change between the light source and Vis/NIR sensor in the measured spectra. For
the intensity of light measured by the distance between the light source and the Vis/NIR
sensor, the coefficient of variation (CV) was used to obtain the distance range of the light
source and the Vis/NIR sensor that was the least affected by the distance change between
the light source and the Vis/NIR sensor. The CV is a unitless constant that represents the
degree of variation with respect to the mean of the population; the lower it is, the more
uniform it is. CV is the standard deviation (SD) divided by the mean, as expressed in
Equation (1).

CV =
SD

Mean
(1)

The distance range between the light source and the Vis/NIR sensor was defined
to include all sizes of apples used in the experiment. The maximum diameter difference
between the largest and smallest apples used was approximately 30 mm (radius difference
of approximately 15 mm); therefore, the light source and the Vis/NIR sensors were defined
at 20 and 15 mm intervals, respectively (Table 3). Figure 3 illustrates the CV calculations for
each section. After averaging the CV for each section calculated for each level, the three
lowest values were selected as the appropriate distance between the light source and the
Vis/NIR sensor.

Table 3. Distance range between light source and apple and between apple and Vis/NIR sensor.

Range I Range II Range III Full Range

Distance between light and apple (mm) 60–80 70–90 80–100 60–100

Range ii Range ii Full Range

Distance between apple and Vis/NIR sensor (mm) 20–35 25–40 20–40
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2.4. Development of Apple SSC Prediction Model (Experiment 2)

The PLSR model was applied to develop an optimal SSC prediction model for each
apple size at an appropriate distance between the light source and the Vis/NIR sensor
selected in Section 2.3. The calibration model for SSC prediction and the calibration dataset
(Prediction) were randomly divided into a 7:3 ratio for verification. The model was applied
to each of the three distances for each apple size, and the spectrum was measured in four
directions for each apple, resulting in the number of spectra within the dataset being four
times the number of apples. A calibration model for SSC prediction was developed using
70% of the calibration dataset. Cross-validation was performed, and the performance was
verified by applying the remaining 30% of the unknown verification dataset. Equation (2)
is used in the PLSR model and is given by

X = TPT + E,

Y = UQT + F,

U = TB + H

(2)

where X is an independent variable (spectral matrix); U is a score matrix that describes
the dependent variable Y; P is an eigenvalue matrix of the independent variable; Q is an
eigenvalue matrix of the dependent variable; E, F, and H are residual matrices; and B is a
regression coefficient of PLSR [17]. Unscrambler X (v10.4; CAMO SOFTWARE AS, Oslo,
Norway) was used to construct the PLSR model.

• Spectral preprocessing

In spectroscopic analysis, noise is caused by changes in the optical path because of the
size of the fruit, reflected and scattered light, and changes in the state of the spectroscopic
equipment. In this experiment, to reduce this effect, the location of the light source and the
sensor were adjusted to determine the appropriate distance; however, we minimized the
noise by preprocessing the spectrum. The maximum normalization, range normalization,
mean normalization, standard normal variate (SNV), and MSC methods were used for
preprocessing, which was performed using the Unscrambler X 10.4 software.

• Model evaluation

The performance of the SSC prediction model was evaluated using the coefficient of
determination of calibration (R2

cal), coefficient of determination of prediction (R2
pre), RMSEC,

and RMSEP. Each metric is expressed as follows:

R2
cal = 1 −

∑nc
i=1

(
ymi − ypi

)2

∑nc
i=1(ymi − ymean)

2 ,

R2
pre = 1 −

∑
np
i=1

(
ymi − ypi

)2

∑
np
i=1(ymi − ymean)

2 ,

RMSEC =

√
1
nc

nc

∑
i=1

(
ypi − ymi

)2,

RMSEP =

√√√√ 1
np

np

∑
i=1

(
ypi − ymi

)2,

where ypi and ymi are the predicted and measured SSC of the ith apple, respectively, and
ymean is the average value of the calibration set or prediction set. nc and np are the numbers
of apples in the calibration and prediction sets, respectively. The closer the R2

cal and R2
pre

values are to 1, the lower the RMSEC and RMSEP values. The smaller the difference, the
better the model.
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3. Results and Discussion
3.1. Transmittance Spectral Characteristics According to Apple Size and Light Source and Vis/NIR
Sensor Distance (Experiment 1)

The transmittance spectrum was measured at five distances between apples and light
sources for five levels (Levels I–V) of apple samples and five distances between apples and
Vis/NIR sensors. Figure 4 shows the transmittance spectrum of apples corresponding to
Level IV, indicating large absorption rates in the ranges of 640–700 nm and 700–900 nm.
Among the wavelengths corresponding to the visible light region, the absorption peak
at approximately 675 nm is related to pigment compounds, such as anthocyanin and
chlorophyll (a, b), in apple peel [18]. Moreover, absorption peaks at approximately 660, 745,
and 840 nm are associated with the third overtone of carotenoids and O-H stretching [19].
Wavelengths of approximately 750, 850, and 895 nm are associated with the third overtone of
C-H and H2O [20]. O-H and C-H bonds have been reported to be associated with SSC [21].
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Figure 4. Vis/NIR spectra of Level IV apple samples.

After measuring the transmittance spectra of three apples of size Levels I to V, the
average spectrum was calculated for each level. Figures 5 and 6 show the transmittance
intensity (Figure 7) at a wavelength of 714.17 nm, representing the maximum value in
the average spectrum for each apple level. Figure 5 illustrates the transmittance intensity
against the distance between the light source and the apple surface based on the distance
between the apple surface and Vis/NIR sensor. Figure 6 shows the transmittance intensity
against the distance between the apple surface and Vis/NIR sensor based on the distance
between the light source and the apple surface.

The intensity of the NIR signal decreased as the distance between the light source
and the apple increased, as shown in Figure 5. In addition, the difference in the intensity
values of the NIR signal was larger as the distance between the light source and the apple
increased compared with that of the apples of other levels in Level V, the smallest apple
(Level V: 15.2%, Levels I–IV: 2.6–10.0%).

As shown in Figure 6, the intensity of light increased at Levels II, III, and V as the
distance between the apple surface and the NIR sensor increased. In addition, the difference
in signal strength value was larger as the distance between the apple surface and the near-
infrared sensor increased compared with that of the apples of other levels in Level V, which
was the smallest apple (Level V: 11.8%, Levels I–IV: 1.5–7.3%).

Hence, the smaller the size of the apple, the greater the distance between the apple
and the light source, and the greater the distance between the apple and Vis/NIR sensor,
the greater the influence on the transmittance signal. In addition, the transmittance signal
decreased as the light source moved farther away, whereas as the Vis/NIR sensor moved
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farther away, the transmittance signal increased. Thus, a difference in the transmittance
signal appeared when the distance between the light source and the Vis/NIR sensor
changed, which we determined would affect the SSC measurement of the apple.
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3.2. Selection of Appropriate Distance between Light Source and Vis/NIR Sensor According to
Changes in Apple Size

The measured intensity value was divided by the distance range of the light source
and the Vis/NIR sensor, as shown in Table 3, to determine the appropriate distance between
the light source and the Vis/NIR sensor based on changes in the apple size. The CV was
calculated for each level. Table 4 shows the CV for each level calculated for each distance
range as an average value, and the ranking is based on the low value of the CV. As shown in
Table 4, when the distance range of the light source or Vis/NIR sensor was used as a whole,
most results were poor with the highest CV. The wider the distance range in which the light
source or Vis/NIR sensor was located, the greater the deviation of the measured spectral
signals. In addition, regardless of the distance range of the Vis/NIR sensor, the CV was low
in the order of distance ranges III, I, and I of the light source. This phenomenon occurred
possibly because the closer the light source was to the apple, the greater the difference in
the amount of transmitted light was. However, regardless of the distance range of the light
source, no clear tendency was observed in the distance range of the Vis/NIR sensor. This
result is observed because the transmittance spectrum was more affected by the distance
range of the light source than by that of the Vis/NIR sensor. The lowest CV appeared
when the distance between the light source and the apple surface was 80–100 mm and the
distance range between the apple surface and the Vis/NIR sensor was 20–35 mm. That is,
the corresponding distance range had the least change in the transmittance signal, even
when the distance between the light source and the Vis/NIR sensor changed because of
the change in the size of the apple. In addition, three distance ranges were selected as
appropriate distances between light sources and Vis/NIR sensors with a CV (%) of less than
5 (distance range of 80–100 mm between the light source and apple surface and 25–40 mm
between the apple surface and the Vis/NIR sensor, distance range of 70–90 mm between
the light source and the apple surface and 20–35 mm between the apple surface and the
Vis/NIR sensor).

The appropriate distance between the selected light source and Vis/NIR sensor is the
range of distance from the apple surface, and the position of the light source and Vis/NIR
sensor changes relative to the apple size changes. The distance measurement criteria of
the light source and Vis/NIR sensor were converted from the apple surface to the apple
center. The distance between the light source and the Vis/NIR sensor was converted to a
fixed distance by adding the radius of the largest apple (55 mm) among the samples to the
minimum distance range such that most apples were in each distance range regardless of
size (Figure 8). Therefore, the appropriate distance between the selected light source and
the Vis/NIR sensor is 135 mm for the light source and 75 mm for the sensor, 135 mm for
the light source and 80 mm for the sensor, and 125 mm for the light source and 75 mm for
Distances 1, 2, and 3, respectively.



Sensors 2024, 24, 316 10 of 17

Table 4. Average CV (%) for each distance range between light and apple and between apple and
Vis/NIR sensor.

Level I–V CV (%) Average
(Ranking)

Distance between Apple and NIR Sensor (mm)

Range i Range ii Full Range

(20–35) (25–40) (20–40)

Distance between
light and apple (mm)

Range I 5.275 5.057 5.160

(60–80) (9) (6) (8)

Range II 4.806 5.025 5.150

(70–90) (3) (5) (7)

Range III 4.457 4.760 5.022

(80–100) (1) (2) (4)

Full Range 5.764 5.651 5.799

(60–100) (11) (10) (12)
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3.3. Characteristics According to Size of Apple Sample (Experiment 2)

Figure 9 illustrates the SSC distribution of the 411 apples used in the development of
SSC prediction models by apple size according to the appropriate distance (Experiment 2).
Table 5 lists the number of apples used in the calibration model and those used in the
prediction model, and the mean and SD of SSC by the apple level. The number of apples
used in the model of calibration and prediction was randomly divided by 7:3. Additionally,
the spectrum was measured in four directions with 0-degree rotation of the maximum
diameter of the apples at 0◦, 90◦, 180◦, and 270◦; thus, the spectrum was measured as
many times as the number of apples multiplied by 4. The table also presents the number of
spectra. From Levels I to VI, the number of apples used in the model construction was 58,
40, 51, 42, 49, and 49, and the number of apples used in the prediction model was 24, 17, 21,
18, 21, and 21. The SSC ranges from Levels I to VI were 12.05–18.80 ◦Brix, 12.93–16.80 ◦Brix,
10.08–18.68 ◦Brix, 9.38–16.85 ◦Brix, 10.25–17.90 ◦Brix, and 10.70–16.45 ◦Brix, respectively.
The SD of SSC from Levels I to VI was distributed as 1.06–1.80.
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Table 5. The number and SSC distribution of apple samples for each level.

Level

I II III IV V VI

Number of samples
(Dataset)

Calibration 58 40 51 42 49 49

Prediction 24 17 21 18 21 21

Total 82 57 72 60 70 70

Number of Spectra

Calibration 232 160 204 168 196 196

Prediction 96 68 84 72 84 84

Total 328 228 288 240 280 280

SSC (◦Brix)
Avg. 1 15.10 14.93 14.38 13.68 14.57 13.86

SD 2 1.31 1.06 1.80 1.77 1.51 1.21
1 Avg.: average; 2 SD: standard deviation.

3.4. Development of SSC Prediction Model Based on Distance between Light Source and
Vis/NIR Sensor

An SSC prediction model for each apple size was developed using three appropriate
distances from the light source and the previously identified Vis/NIR sensor. The three
appropriate distances used resulted in the smallest changes in the transmittance spectrum
despite changes in the size of the apple. The SSC prediction PLSR model was developed
by measuring the transmittance spectrum at the corresponding distance for each level to
confirm the effect of apple size (i.e., the three appropriate distances for each level) on the
apple SSC prediction performance.

Transmittance spectra were measured in four directions (i.e., 0◦, 90◦, 180◦, and 270◦)
according to the area showing the maximum diameter of each apple. The average spectrum
measured in the four directions for each apple was used as the spectrum for each apple. The
apple SSC prediction models were developed by applying each of the eight preprocessing
types. The performance of the developed models was verified using unknown samples.
Tables 6–11 compare the results of the SSC prediction model developed for Levels I–VI by
the apple size and the model performance with preprocessing applied, showing the best
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performance for each selected distance. Figures 10 and 11 show the results and regression
coefficient of the model that performed best among the three distances. Figure 11 shows
that each model has a relatively large correlation at wavelengths of 745, 850, and 895 nm
related to sugar content. During preprocessing, the Savitzky–Golay first/second-order
derivatives showed extremely low performance and are not shown in the table.

For Level I, the SSC prediction model, which measured the transmittance spectrum at
Distance 1 among the three distance conditions and applied MSC pretreatment, showed the
best performance (Table 6). The R2

cal and RMSEC of the calibration model of this predictive
model were 0.9 and 0.414, respectively, and R2

pre and RMSEP were 0.68 and 0.769 ◦Brix,
respectively, as verified using unknown samples (Figure 10a). The performance of the
SSC prediction model was excellent in the order of Distances 2 and 3, and the optimal
preprocessing conditions occurred when the SNV was applied.

In Level II, among the three distance conditions, the PLSR SSC prediction model
without spectral preprocessing performed the best under Distance 2 conditions (Table 7).
The R2

cal and RMSEC of its calibration model were 0.96 and 0.223, and the factor was
13. In predicting using unknown samples, R2

pre and RMSEP were 0.72 and 0.615 ◦Brix,
respectively (Figure 10b). The performance of the SSC prediction model was excellent in
the order of Distances 1 and 3, and in all cases, preprocessing was not applied.

For Level III, the SSC prediction model exhibited the best performance under the
Distance 1 conditions (Table 8). When SNV preprocessing was applied, R2

cal and RMSEC
of the calibration model were 0.99 and 0.142, respectively, and the factor was 15. In
predicting with unknown samples, R2

pre and RMSEP were 0.74 and 0.822 ◦Brix, respectively
(Figure 10c). The performance of the SSC prediction model was excellent in the order of
Distances 2 and 3, and the optimal preprocessing methods were mean normalization and
SNV, respectively.

In Level IV, the PLSR SSC prediction model that applied MSC preprocessing under
Distance 3 conditions had the highest prediction accuracy (Table 9). The R2

cal and RMSEC of
the model were 0.99 and 0.195, and the factor was 12. In predicting with unknown samples,
R2

pre and RMSEP were 0.91 and 0.508 ◦Brix, respectively, showing the best performance
among all levels, as shown in Figure 10d. The performance of the SSC prediction model was
excellent in the order of Distances 1 and 2, and the optimal preprocessing was maximum
normalization and range normalization.

In Level V, the SSC prediction model that applied MSC preprocessing at Distance 3
among the three distance conditions showed the best performance, as shown in Table 10.
For this SSC prediction model, R2

cal and RMSEC of the calibration model were 0.90 and
0.487, and in predicting with unknown samples, R2

pre and RMSEP were 0.86 and 0.577 ◦Brix,
respectively (Figure 10e). The performance of the SSC prediction model was excellent
in the order of Distances 1 and 2, and the optimal preprocessing conditions were range
normalization and mean normalization.

Finally, at Level VI, the SSC prediction model that applied the SNV under Distance 1
showed the best performance (Table 11). By using this predictive model, R2

cal, RMSEC, and
the factor were 0.98, 0.154, and 15, respectively, and R2

pre and RMSEP were 0.89 and 0.596
◦Brix, respectively, in predicting with unknown samples. Figure 10f shows the performance
of the SSC prediction model was excellent in the order of Distances 3 and 2, and the optimal
preprocessing conditions were when mean normalization and MSC were applied.

As a result of developing the SSC prediction model considering the size of the apple,
MSC and SNV were the best preprocessing methods overall, and the higher the level, the
better the SSC prediction accuracy. In addition, the results of this study show better perfor-
mance than those of the study that did not consider changes in the distance between the
light source and the Vis/NIR sensor for the fruit size. The results of this study show better
performance than those of predicting the SSC of apples using the Vis/NIR (400–1100 nm)
spectrum as a reflection method (R2

pre = 0.82 and RMSEP = 0.5766) [22]. In the reflective
method, stray light is generated, and transmittance spectroscopy appears to yield better
results because it does not penetrate the entire fruit. [19]. In predicting SSC by measuring
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the spectrum excluding the center of the “Fuji” apple by developing an online transmittance
device using Vis/NIR, the study showed better results with R2

pre at 0.733 and RMSEP at
0.61% [20]. In a study predicting the SSC of apples through an online semi-transmittance
device using NIR, apples were divided into three stages considering only the diameter, and
SSC was predicted using the diameter. The results showed that the study performed better
when the apple diameter was 65–75 mm (similar in size to Level VI in this experiment),
with 0.886 for Rpre and 0.536% for RMSPE [23]. This study shows that the SSC prediction
performance may vary depending on the difference in the diameter of the fruit when the
positions of the light source and spectroscopic sensor are fixed.

Table 6. Level I—the best PLSR model results of predicting SSC of apples for three optimal distances
between the light source and the Vis/NIR sensor.

Level I
Preprocessing Factor

Calibration Prediction

Cal.: 58, Pre.: 24 R2
cal

RMSEC
(◦Brix) R2

pre
RMSEV
(◦Brix)

Distance 1 MSC 10 0.90 0.414 0.68 0.769

Distance 2 SNV 11 0.90 0.413 0.61 0.861

Distance 3 SNV 11 0.81 0.562 0.58 0.895

Table 7. Level II—the best PLSR model results of predicting SSC of apples for three optimal distances
between the light source and the Vis/NIR sensor.

Level II
Preprocessing Factor

Calibration Prediction

Cal.: 40, Pre.: 17 R2
cal

RMSEC
(◦Brix) R2

pre
RMSEV
(◦Brix)

Distance 1 Raw 13 0.97 0.202 0.70 0.619

Distance 2 Raw 13 0.96 0.223 0.72 0.615

Distance 3 Raw 11 0.93 0.301 0.66 0.738

Table 8. Level III—the best PLSR model results of predicting SSC of apples for three optimal distances
between the light source and the Vis/NIR sensor.

Level III
Preprocessing Factor

Calibration Prediction

Cal.: 51, Pre.: 21 R2
cal

RMSEC
(◦Brix) R2

pre
RMSEV
(◦Brix)

Distance 1 SNV 15 0.99 0.142 0.74 0.822

Distance 2 Normalization
(Mean) 12 0.96 0.358 0.72 0.851

Distance 3 SNV 12 0.96 0.398 0.71 0.919

Table 9. Level IV—the best PLSR model results of predicting SSC of apples for three optimal distances
between the light source and the Vis/NIR sensor.

Level IV
Preprocessing Factor

Calibration Prediction

Cal.: 42, Pre.: 18 R2
cal

RMSEC
(◦Brix) R2

pre
RMSEV
(◦Brix)

Distance 1 Normalization
(Maximum) 11 0.97 0.319 0.85 0.705

Distance 2 Normalization
(Range) 11 0.93 0.467 0.86 0.772

Distance 3 MSC 12 0.99 0.195 0.91 0.508
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Table 10. Level V—the best PLSR model results of predicting SSC of apples for three optimal distances
between the light source and the NIR sensor.

Level V
Preprocessing Factor

Calibration Prediction

Cal.: 49, Pre.: 21 R2
cal

RMSEC
(◦Brix) R2

pre
RMSEV
(◦Brix)

Distance 1 Normalization
(Range) 14 0.97 0.251 0.80 0.730

Distance 2 Normalization
(Mean) 14 0.98 0.199 0.76 0.784

Distance 3 MSC 11 0.90 0.487 0.86 0.577

Table 11. Level VI—the best PLSR model results of predicting SSC of apples for three optimal
distances between the light source and the NIR sensor.

Level VI
Preprocessing Factor

Calibration Prediction

Cal.: 49, Pre.: 21 R2
cal

RMSEC
(◦Brix) R2

pre
RMSEV
(◦Brix)

Distance 1 SNV 15 0.98 0.154 0.89 0.596

Distance 2 MSC 11 0.90 0.337 0.76 0.841

Distance 3 Normalization
(Mean) 13 0.93 0.275 0.85 0.742
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This study showed better results than those of previous studies. These show that in
apple transmission spectroscopy, adjusting the positions of the light source and NIR sensor
depending on the size of the apple has a significant impact on SSC prediction performance.
In addition, it showed better performance in Levels IV–VI than in Levels I–III because the
amount of light transmitted increased as the size of the apple decreased, resulting in higher
signals. In the future, the development of an online Vis/NIR transmittance spectroscopy
device that changes the position of the light source and Vis/NIR sensor according to the
size of the apple and strengthens the light source will enable the development of a fast
and high-performance SSC sorter. In addition, if the distance between the light source
and Vis/NIR sensor is quickly adjusted based on the size of the apple, it is expected that a
combination of one light source and one sensor can develop a non-destructive SSC sorter
with higher performance than before for apples of various sizes. However, this study was
conducted on the Fuji cultivars of apples, and additional research is needed to verify if it
can be applied to various varieties as well.
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4. Conclusions

In this study, the optimal distance between the light source and the Vis/NIR sensor
that was not significantly affected by size was investigated, and the best SSC prediction
models using PLSR for the determined distance were developed. The three measurement
conditions under which the Vis/NIR signal was less affected by the apple size were 125
and 75 mm (Distance 1), 135 and 75 mm (Distance 2), and 135 and 80 mm (Distance 3).
The SSC prediction models were developed by applying PLSR to the three measurement
conditions for each apple size, and various preprocessing methods were applied to improve
the performance of the SSC prediction model. Optimal results were obtained when Levels I,
III, and VI were Distance 1; Levels IV and V were Distance 3; and Level 2 was Distance 2.
The best performance of these was the measurement of Level 4 apples at Distance 3, and
R2

pre was 0.91◦ while RMSEP was 0.508 ◦Brix when MSC was applied. The results of this
study demonstrate the possibility of improving the SSC measurement performance of
apples by adjusting the distance between the light source and the spectral sensor based
on the size of the fruit. In the future, research will be conducted to simultaneously apply
a shape detection system that uses not only the weight of the apple but also its diameter
and height, as well as a distance control system between the light source and the spectral
sensor based on the size of the apple.
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