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Abstract: The accelerated development of technologies within the Internet of Things landscape has
led to an exponential boost in the volume of heterogeneous data generated by interconnected sensors,
particularly in scenarios with multiple data sources as in smart cities. Transferring, processing, and
storing a vast amount of sensed data poses significant challenges for Internet of Things systems.
In this sense, data reduction techniques based on artificial intelligence have emerged as promising
solutions to address these challenges, alleviating the burden on the required storage, bandwidth,
and computational resources. This article proposes a framework that exploits the concept of data
reduction to decrease the amount of heterogeneous data in certain applications. A machine learning
model that predicts a distortion rate and its corresponding reduction rate of the imputed data is
also proposed, which uses the predicted values to select, among many reduction techniques, the
most suitable approach. To support such a decision, the model also considers the context of the data
producer that dictates the class of reduction algorithm that is allowed to be applied to the input
stream. The achieved results indicate that the Huffman algorithm performed better considering the
reduction of time-series data, with significant potential applications for smart city scenarios.

Keywords: Internet of Things; artificial intelligence; edge intelligence; machine learning; urban
sensing

1. Introduction

The exponential growth in data production is placing a significant strain on computing
elements, encompassing storage, network infrastructure, processing power, and security [1–3].
This is primarily due to massive heterogeneous data from multiple sources in the age of the
Internet of Things (IoT), which is particularly significant for many smart city applications [4,5].
As they are mostly expected to be comprised a myriad of smart urban services [6], with data
being generated by sensors, wearable devices, connected vehicles, social media, and external
systems, the resulting scenario will be defined by the generation of huge amounts of data,
on a daily basis [7,8]. In order to address the potential systems degradation resulting when
handling the processing, storage, and distribution of such data, efficient mechanisms to assure
data reduction (DR) are highly necessary, fostering investigation efforts in this area.

Preprocessing the produced data prior to its transmission to servers emerges as a
promising solution to tackle data production issues. This preliminary processing step plays
a crucial role in the context of IoT due to the heterogeneous and often large-scale data
production. This processing handles unstructured, semi-structured, and structured data,
making them available to be stored and used by applications. Hence, ensuring data quality
in sensing environments that can be reached by introducing data preprocessing techniques
becomes indispensable [9,10].
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Efficient data management in sensor-based applications is a complex and challenging
task, especially when they are required in real-time applications [11]. Unpredictable
parameters associated with sensor data make this process even more difficult. Actually,
such required efficiency is relevant for the network’s architectural configuration, which
is particularly critical in wireless sensor networks, an important component of many IoT-
based applications. Therefore, the limited availability of processing, memory, and energy
resources in such networks has demanded intelligent data management to increase their
usability in a lot of emerging monitoring scenarios.

In IoT systems, DR techniques such as data compression (DC), data filtering, and data
aggregation are commonly utilized when trying to ensure that applications handle only
relevant data. However, the adoption of such DR techniques may significantly impact
system performance due to their associated computational costs, with important differences
in introducing DR techniques according to architectural IoT layers. Introducing it closer
to their data production, for example, into sensors, or even edge devices, might bring
advantages compared to approaches that implement it far from its production. In the first
place, network performance might be increased, usually reducing network bandwidth
latency and avoiding congestion at the gateway. On the other hand, introducing it as far
as possible from its origin requires transmitting raw data to the cloud, leading to network
congestion due to large-scale data transmission. Therefore, to maintain system performance
and prevent delays caused by transmitting large data loads to cloud servers, it is essential
to implement DR techniques closer to the data production sources [12].

Many computational advantages can be reached by introducing DR techniques to
handle raw data at the edge of the network; network latency reductions, computational
storage savings, energy cost reductions, and device lifetime increases are just some of
them. Bandwidth network latency in the gateway also can be reduced, thereby eliminating
I/O bottlenecks in network connections [1]. It usually happens due to the fact that these
components are overused with raw data injection. In this context, many works have
proposed DR solutions operating at the edge of IoT systems with the aim of reducing the
total amount of transmitted data, with varying performance levels [13–20]. With increasing
complexities in this area, however, new promising solutions are highly welcome.

In a different perspective, DR could be achieved by leveraging Artificial Intelligence
(AI) mechanisms. When doing so, there would be many ways to achieve DR, which could
be (i) directly applied closer to the data source, (ii) introduced on the fog layer that has more
computing power than edge devices, or (iii) in the cloud, where computational processing
power is usually superior to the edge. All of these configurations might bring advantages
and drawbacks to the applications as a whole, particularly for smart city scenarios, although
moving processing closer to the edge may not be straightforward.

This article evaluates relevant parameters and proposes a new method that focuses
on data volume reduction while preserving data quality, potentially benefiting IoT-based
smart city applications in multiple scenarios. A multi-tier framework that can handle
(huge amounts of) heterogeneous data without compromising data integrity or meaning
is proposed, exploiting both data clustering and Machine Learning (ML) inferences. Such
a combined solution for the defined scenario has not been proposed before, to the best of
our knowledge.

The contributions of this article are threefold and defined as follows:

• A proposal to perform optimized DR for heterogeneous IoT sources in real-time,
acting closer to the physical world to decreasing bandwidth demands and overall
energy consumption;

• Definition of an innovative multi-tier framework that exploits different AI algorithms
to fine-tune DR algorithms, achieving higher efficiency;

• Support the development of IoT-based applications by the adoption of a reference
sensor-edge-fog framework, particularly targeted at DR for smart city scenarios;

This article is organized as follows. Section 2 discusses related works, whereas
Section 3 presents the proposed framework, including its definition for each architectural
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layer. The experimental configurations, encompassing contexts, scenarios, environment,
algorithms, and datasets, are outlined in Section 4. Section 5 presents the achieved evalua-
tion results and envisioned applications in this area. Finally, Section 6 concludes this article
and outlines some future steps.

2. Related Works

This section introduces the current state-of-the-art and outlines the key research points
that have influenced our work in multiple ways. Numerous authors have investigated
DR frameworks that operate at the edge of IoT systems intending to decrease the total
transmitted data volume. The discussed papers are then some important contributions in
this broad research area.

In [14], the authors introduced a data handler framework with a primary objective
of data volume reduction. Their approach involved a thorough analysis of established
DR methods, including techniques like data sampling, piecewise approximation, selective
forwarding, Perceptually Important Points (PIP), and change detection. Additionally, the
authors proposed the creation of three algorithms specifically designed to facilitate the
real-time reduction of time series input elements, all of which are founded on the concept
of PIP. Overall, this concept proved to be a key factor in achieving effective data volume
reduction at the edge.

Incorporating AI at the edge of IoT systems to enhance DR efforts has also been ob-
served. In [21], authors proposed a method based on Actor-Critic with Temporal Difference
Off-Policy (ATOC) reinforcement learning. This method was designed to make decisions
regarding the forwarding or dropping of sensor data to reduce communication overhead on
the edge. The solution involves a controller, specifically implemented as a neural network,
that governs data flow based on sensor information. Initially, sensing data are sent to
an edge module, which evaluates whether executing ML tasks with the given data are
resource-intensive or not. If the module determines that performing ML tasks at the edge
is advantageous, the tasks are carried out there. By leveraging AI-driven decision-making,
that framework seeks to optimize data handling and processing between the edge and the
cloud, contributing to improved DR and communication efficiency.

Indeed, several studies have leveraged the capabilities of AI to address DR challenges
in the context of IoT. The work [22] focuses on DR at the edge using AI techniques. It
presents a framework that employs feature selection and extraction mechanisms to reduce
the amount of data generated by sensors. The authors of [23] propose a solution that
combines cloud and edge computing for data analytics. They implement a DR strategy
on the edge, followed by data transmission to the cloud for further processing using
Autoencoders (AE). That approach achieves around 50% DR with minimal accuracy impact.
The authors of [24] present a framework that employs AE deployed at the edge to perform
DC on raw data. The goal is to transform high-dimensional data into compact forms,
reducing data volume without significant loss of information. In all these works, different
strategies are employed to achieve efficient DC.

A Systematic Literature Mapping (SLM) was conducted in [12], addressing DR so-
lutions at the edge of IoT systems. That article aimed to understand the intricacies and
distinctive attributes of implementing DR within resource-constrained devices deployed at
the edge of the network, highlighting the increasing importance of reducing the volume
of data generated at the edge-sensing layer. In general, it suggests a growing recognition
of the benefits and significance of managing data volume directly at the point of data
generation within IoT architectures.

The authors of [25] introduced deep learning models to the fog with the goal of
enhancing video transmission while simultaneously minimizing data use through the
extraction of video features. Their resolution technique effectively distinguished particular
and potentially significant regions with high precision, whereas lower-quality data were
utilized for areas of lesser importance. The authors used the DeepLabV3+ model to
extract the features of the video, getting 45% higher average speed while comparing with



Sensors 2024, 24, 358 4 of 20

Resnet-101. After identifying the salient zones of the video, they are transmitted to the
compression phase. The authors argue that a reduction in 71.02% of a system delay is
reached. Initially, the IoT sensor cameras capture images and videos sending than to a
server (e.g., Personal Computer (PC)), which is categorized as a fog node. There, they
perform feature extraction functions while discarding redundant information to save space
and reduce data volume. They also introduced an energy function to support such demands.
Finally, before transmitting to the data center which is located on the cloud, the authors
implemented a compression approach to the data, the High-Efficiency Video Coding
(HEVC), which is a lossy compression codec algorithm. Therefore, the data transmitted
over the network was reduced, resulting in up to 71% system reduction delay.

The framework model introduced at the edge, based on auto-encoders [24], is focused
on the application of the DC DR technique to the raw data received from sensors. By
utilizing this approach, it guarantees that the initial data can undergo preprocessing prior to
being transmitted to the cloud. This results in the transformation of high-dimensional data
into more condensed data. The autoencoder’s encoder component is concentrated on DR
and runs on the edge, whereas its decoder component is focused on image reconstruction
and classification and operates on the cloud. In their work, the authors put forth three
potential solutions: Edge, Cloud, and Edge+Cloud. After the image data from the IoT
camera is transferred to the edge buffer, the edge approach compresses the data before
transmission to the cloud. By utilizing this approach, the final performance of the system
is notably enhanced as the network cost of the edge–cloud connection is reduced. The
approach that is known as Edge+Cloud, or the hybrid approach, ultimately acknowledges
that the buffer is completely full. The data that are received in this instance are transmitted
unadulterated and without any form of compression to the cloud. In the author’s solution,
the experiment was simulated and evaluated using the SimPy [26] discrete-event simulator.
The author’s evaluation also presented different buffer size configurations that impacted
the total bandwidth consumed results.

Researchers in [27] proposed a compression scheme that is introduced at the edge to
reduce the signal size before its transmission over the network. They combined a Convo-
lutional Denoising Autoencoder (CDAE) and LSTM focusing on signal compressing and
denoising to reduce the transmission cost. The author’s solution is built considering three
fundamental requisites, which are (i) compression efficiency, (ii) reconstruction quality,
and (iii) energy consumption. As the author’s solution is constructed considering the
constrained memory and energy resources devices, the reduction in the energy consump-
tion is primordial when implemented in IoT scenarios. The author’s proposed solution
is composed of the introduction of an LSTM network at the end of the encoder section of
the CDAE for reconstructing the ECG signal. It also introduces a method that denoises the
sensing ECG data from its noise version with better accuracy than previous research.

In [28], the authors proposed a feature selection DR approach for ML at the fog
layer focusing not only on reducing the data volume transmitted to the cloud but also
on optimizing the model learning capabilities. The attribute analysis techniques used to
reach the reduction used by the authors were Gain Ratio Attribute Evaluation, Info Gain
Evaluation, CF Subset Evaluation, and Principal Component Analysis. The configuration
parameters for the aforementioned algorithms were 0.5 for feature parameters, and only
the Principal Component Analysis technique was configured with a variance of 95% in all
the other cases. The metrics used by the researchers to analyze the results are composed of
Precision and Recall in the form of an F-measure. The author’s solution reduced 50% of
the total features, providing results where the obtained set performance was increased or
similar to the full set of features while the ML model performance was not significantly
affected by the reduced features.

The authors of [29] proposed a compression and learning framework aiming to im-
prove the coding rate and accuracy performance classification on images. They used a
specific Variational Auto Encoder (VAE) type for compression and classification. Their
solution uses latent vectors without reconstruction of the image to classify the images in
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the cloud. Their solution is motivated by the fact that the classification accuracy of an
image compressed by conventional codecs suffers at high compression ratios and also
demonstrates an increase in inference speed and accuracy degradation. It is composed of
an Autoencoder, a Probability Estimator (PE), and a classifier (CL). The ResNet network
was split into two parts, one as the encoder and the other as the classifier. The dataset used
for experimentation comprised JPEG images in which compression was reached through
different quality values.

The study [30] proposed an image compression framework built specifically for run-
ning in resource-constrained IoT devices. The solution uses a DNN that avoids inefficient
image transmissions being projected to low-memory and processing IoT devices. The
project of constructing a DNN or any other AI module aiming for its implementation in
accelerators and microcontrollers is challenging once there are many memory, storage,
computing, and energy constraints. Therefore, considering such factors, the authors used
the AutoML technique when constructing the DNN, which was constructed using the
Network Architecture Search (NAS) method. The results of its framework presented results
up to 3 and 4 times in image compression, whereas the energy efficiency traffic performance
was up to 2.5 times.

Overall, previous works have presented promising contributions to the use of AI-
based techniques for data reduction, but some important gaps remain. For instance, Table 1
summarizes the presented works according to their proposed DR technique, employed AI
algorithms, and the logical layer where such proposals were implemented for both elements.
We noticed that most data reduction solutions discussed herein use data compression as a
DR technique and AE was the AI solution. Actually, our approach innovates by performing
context-aware optimizations for better performance, supporting IoT applications in differ-
ent areas. Moreover, our solution allows several DR algorithms to be introduced into the
framework considering all the techniques (e.g., Data Compression, Data Prediction, Data
Sampling, etc.) presented in Table 1. This factor allows heterogeneous data to be treated
and processed in order to reduce their volume in IoT environments. Furthermore, our
work proposes an AI-based DR framework that predicts values for the metrics presented in
Section 3.6, filling the column that is missing in Table 1 as DR solution.

Table 1. Relation between DR and AI techniques in previous works, highlighting the conceptual layer
where each approach is applied.
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DNN CNN RNN AE RL

[21] 2019 ✓ ✓ ✓ ✓ ✓ ✓
[25] 2019 ✓ ✓ ✓ ✓
[23] 2019 ✓ ✓ ✓ ✓ ✓ ✓
[24] 2020 ✓ ✓ ✓ ✓ ✓
[30] 2020 ✓ ✓ ✓ ✓
[22] 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓
[27] 2021 ✓ ✓ ✓ ✓ ✓ ✓
[28] 2021 ✓ ✓ ✓ ✓
[29] 2022 ✓ ✓ ✓ ✓ ✓

3. Proposed Framework

Having a unique DR solution capable of handling all data types effectively in an
IoT environment seems to be an infeasible option. It happens because IoT systems, and
notably smart city applications, have a big heterogeneity of data and thus need particular
and individualized treatments. Conversely, offering a solution that exclusively caters to
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a single scenario and context, resulting in a specific data type, might also be unsuitable.
Therefore, in this article, we propose a context-based solution that switches among the
DR algorithms depending on (i) the predetermined context relevance of each data chunk,
(ii) the RR projection of each algorithm, and (iii) the portion of data distortion that is directly
related to its context relevance. For that, a comprehensive multi-tier framework is proposed,
allowing practical exploitation of the proposed solution.

The intended characteristics of the proposed approach are highlighted as follows:

• It considers heterogeneous workload data types. The solution is not fixed in one
data type; instead, it can handle any data towards reducing its volume without
compromising quality;

• It considers many DR algorithms as options to the model selection. Depending on
the used data, there are classes of reduction algorithms that perform better than
others. Hence, our solution is projected to select the algorithm that presents the best
parameters (e.g., reduction ratio and distortion), considering the context of reduction
quality that a data point is allowed to have;

• It uses multiple architectural layers in its implementation, being focused on computing
closer to the edge of the network. Doing so, it would reduce bottlenecks relating to
the transmission, storage, and retrieval of data;

• It considers the context and relevance of each data producer. As each producer is early
classified, the solution considers the importance of the data producer to select the
reduction algorithm that is the best fit;

• It is projected for implementation in multiple scenarios, not being restricted to one
domain since it is a generic framework;

• It includes an intelligent module to predict reduction performance and decrease data
distortion, increasing the processing performance. The selected model is responsible
to predict the metrics on the edge to avoid unnecessary computing, improving many
applications performance directly on the sensor or edge layers.

The next subsections present the proposed framework explaining the main modules
and their engineering traits and details, as well as the expected operation flow.

3.1. Conceptual Operation

The proposed multi-tier framework consists of three layers: the Sensor Layer, the Edge
and Fog Layer, and the Cloud Layer. It is worth noting that, in this work, the developmental
research centers around the edge layer, as DR is expected on it. Nevertheless, the entire
suggested data flow demonstrates a scenario where data are generated at the sensor layer
and subsequently utilized by the ultimate application at the cloud layer. The emphasis lies
on edge processing since managing diverse sensor data in proximity to its origin could
potentially enhance the performance of the IoT architecture. Actually, sending the raw
data from sensors to the cloud without preprocessing could lead to network bottlenecks,
heightened energy usage, device deterioration, and a range of other detriments that reduce
system performance.

Considering that our emphasis is on minimizing data at its source and maintaining its
quality, it is important to have this functionality as close as possible to the data production,
which is conceptually encompassed by the edge layer. Figure 1 illustrates the overall data
flow of the proposed framework.

Initially, the sensor acquires environmental data by being strategically positioned
across distributed environments. Prior to transmitting the recorded data, it undergoes
initial compression using traditional algorithms like Huffman Coding [31], Run-length
Encoding [32], Arithmetic Coding [33], Lempel–Ziv–Welch, and Shannon–Fano Coding.
Based on the attributes of the raw data, a broad variety of compression algorithms could be
employed during this data-capturing step.
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Figure 1. Conceptual organization of the proposed multi-tier framework.

In such scenarios, multimedia data necessitate special considerations. Applying tradi-
tional codecs to compress multimedia data reduces the data’s quality, thereby impacting its
performance when utilized by AI models, as evidenced by studies such as [30,34]. To ad-
dress this issue, researchers are turning to deep learning approaches such as Convolutional
Neural Networks (CNN) and Deep Neural Networks (DNN) for handling this type of data.
As an example, in their work, the authors of [30,34] employed Deep Neural Networks
(DNN) to handle multimedia data. Opting to compress image data using traditional image
compression codecs before transmission is not advisable, as this approach leads to the re-
moval of crucial image structures that DNN models rely on. Furthermore, employing such
codecs to compress image data can result in a significant increase in inference error bounds.

Upon reaching the edge, the data generated by the sensor undergoes manipulation
through a fundamental sequence of five steps. Data decompression stands as the initial
manipulation that the data undergoes. At this stage, the data are usually ambiguous,
unclean, and unsuitable for storage and analysis. Every generated data point must be
temporarily stored in a data pool, facilitating downstream processes to systematically pass
it on to the subsequent stages of processing. Subsequent to this data-capturing phase, the
data-handling phase begins. The primary objective of this step is to transform the available
data into a succinct and efficient perspective.

The captured data undergoes data clustering and is then fed into an unsupervised ma-
chine learning model. At this point, DR methods, like DC, can exhibit improved efficiency
when dealing with clustered data, as discussed in [35]. The decision between choosing a
supervised or an unsupervised ML model was also influenced by the clustering module as
a determining factor. Furthermore, addressing data heterogeneity entails managing data
patterns and unforeseeable characteristics that would be explored by the ML model.

As this proposal needs a trained ML model to be deployed in the edge devices, it
is worth noting that the model is initially trained on the cloud or a different server with
ample processing power compared to the edge. It is common practice to use a robust
server rather than edge devices to train AI models due to its processing power, although
development trends in training on the edge are also being developed. The proposed
framework encompasses a set of DR techniques and algorithms designed to reduce the
dataset in terms of volume, complemented by a ML model. The ML model aims to decrease
data volume using various DR algorithms by initially adjusting three parameters: (i) context
relevance; (ii) Distributed Function Performance (DFP); and (iii) the Reduction Ratio (RR)
of each segmented data chunk.

As discussed before, having a unique DR solution capable of handling all data types
is not efficient. Our proposed context-based solution switches among the DR algorithms
depending on predetermined context relevance, the RR projection of each algorithm, and
the portion of data distortion that is directly related to its context relevance. Based on the
specified values, an ML model should determine the suitable DR technique that offers
superior overall performance for DR. In our solution, the context relevance of each data
producer needs to be established prior to gathering data from sensors. It will indicate the
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acceptable distortion variance the data can acquire after a reduction algorithm is applied to
the data chunk.

It is important to remark that data chunks that were classified with higher relevance
are not allowed to be reduced by lossy DR methods. This could compromise the quality of
data, which holds significance within a specific domain. Hence, this particular category
of data should be reduced using lossless DR algorithms, guaranteeing the potential for
original data reconstruction when needed. On the other hand, data chunks characterized
by moderate and low relevance can undergo reduction through lossy DR algorithms. The
rule governing this decision relies on the configuration parameters that are predetermined
before the ML prediction. The initial configurations are outlined in Table 2, serving as the
basis for subsequent evaluations.

Table 2. Distortion Function Performance (DFP) and Reduction Ratio (RR) Classification.

Relevance Very Low Low Moderate High Very High

DFP (%) x x1 x2 x3 x4
RR x′ x1′ x2′ x3′ x4′

3.2. Data Acquisition and Reduction

All data producers need to be configured based on one of the provided relevance levels
(e.g., Very Low, Low, Moderate, High, and Very High). As the relevance level increases, the
DFP value decreases, indicating a tolerance distortion for the data chunk. Table 2 illustrates
the correlations between metrics for the predicted data producers. On the one hand, it
is expected that the DFP classification consists of predetermined values that should be
adapted based on the model’s performance enhancement. These percentages are measured
within a range spanning from 0% to 100%. The singular predefined restriction is that the
DFP for the Very High relevance level must be set to 0%; thus, “x4” in Table 2 must be 0%.
On the other hand, RR metrics provide information about the extent to which the volume
of data might be reduced if a particular DR algorithm is applied to such a data chunk. Once
the model’s framework computes and predicts these metrics, it will choose a suitable DR
algorithm based on the comprehensive performance assessment. This selected algorithm
will be employed to reduce the data before transmitting it to the cloud.

Data loss distortion x% and x1% mean the acceptable distortion a data chunk can
perform; in such a case, it relates to the Very low and Low relevance, respectively. In smart
cities, nodes exhibit varying contexts with relevance spanning from Low to Very High due
to the heterogeneity of the produced data. Some contexts involve sensors reading data
with minimal variation (e.g., temperature), which do not need to be stored continuously.
Therefore, these readings can be categorized as very low or low-relevance data producers,
permitting some data loss in the reduction phase. For all relevance levels except very high,
both lossy and lossless DR algorithms can be used. However, in scenarios with extremely
high accuracy requirements, the use of lossy DR techniques might not be permissible.

The DR solution is implemented after the models’ consideration towards reducing the
data size of the clustered chunk data. Many DR techniques (e.g., data filtering, DC, data
sampling, etc.) could be applied to reduce data volume by the intelligent model depending
on the data characteristics. This is depicted in Figure 1 through a series of DR blocks
ranging from 1 to “ n”, signifying the existence of “ n” solutions for reducing data volume.

DR algorithms are categorized as either “ lossy” or “ lossless”. In the former, data
loss occurs during the reduction process, whereas, in the latter, the original data meaning
remains intact. In environments such as hospitals, airports, etc., data loss is impermissible;
thus, for those classes of environments, the lossy algorithms must be avoided.

Furthermore, it appears beneficial for enhancing the model to store local information
about the DR algorithms used for the data chunk reduction. Hence, a local data storage
system responsible for storing these reduction decisions is reserved to be implemented at
the edge. The reduced data are then transmitted to the cloud layer.
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High-level information data are stored in the cloud. At this stage, raw data are not
stored in the cloud; instead, the information is preprocessed, categorized, cleaned, and
adapted for storage. Lastly, the application utilizes these data for its intended purpose. The
cloud-stored data can also be leveraged for retraining purposes. Cloud storage typically
boasts more robust capabilities than edge storage, making this module crucial for fulfilling
such requirements. Within this context, retraining holds the potential to enhance the
model’s performance.

3.3. Sensor Flowchart

Sensors are commonly distributed throughout environments to capture data regarding
a relevant occurrence. The sensors flowchart of the proposed framework is depicted in
Figure 2.

Wake Up

Sensor Node

Measure a
new value X

No Sleep

Compress X to X'

Yes

Transmit X'

Edge Node

Loop

Yes

No

Offload a DR
compression algorithm

Is X different
 from Y?

Is X a valid
value?

Figure 2. Sensor data transmission flowchart.

A sleep–wake cycling mechanism that leads to increased energy consumption in com-
parison to an “all-times-on” system is usually employed in this kind of system. As soon as
the data are read, the sensor enters an active state, measuring a new value, X, which is then
compared to the last recorded data, Y. Considering that X and Y are data readings, when
X equals Y, it indicates that the new X data does not provide extra information compared
to the previous one. This situation prompts a decision to abstain from transmitting this
X data, thereby conserving resources. Conversely, when X and Y differ from each other,
the validity of the X data are assessed to eliminate potential outliers or corrupted data
before transmission. In instances where the X data are confirmed as valid, it undergoes
compression as ’X and is subsequently dispatched to the edge.
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3.4. Edge Flowchart

The flowchart in Figure 3 outlines most of the procedures involved in edge data pro-
cessing. As soon as the data reach the edge, the compressed X data undergo decompression,
reverting to their original X form, and are then archived within a data pool.

Edge Node

Decompress X' to X

Send X to a
storage pool

Cloud Node

Sensor data

Cluster the data X

Transmit X'[n]

Estimate the DFP and RR by
feeding X to the ML model

Is a lossy
DR(DFP) <

x1%

Is a lossy
DR(DFP) <

x%

Is the relevance 
Low?

Is the relevance 
Very Low?

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Report block error!

No

No

No

No

No

Yes

Is the relevance 
Moderate?

Is the relevance 
High?

Is a lossy
DR(DFP) <

x2%

Is a lossy
DR(DFP) <

x3%

Is the relevance 
Very High?

No

Yes

Store the projection information
about the reduced dataset

Select a Lossless DR
algorithm with the higher RR

and reduce X to X'[n]

Select the DR algorithm with the
higher RR that respect the previous

condition and reduce X to X'[n]

Figure 3. Edge data transmission flowchart.

The following are the main reasons for the created data pool.

1. It must have the capacity to retain all generated sensor data without any loss. In IoT
scenarios, there is a prodigious influx of data, and, for certain data types like multime-
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dia, their size can increment exponentially. Moreover, certain contexts, such as health
and airport data, are crucial, with data loss being unacceptable and inadmissible;

2. The data pool needs to be designed to store heterogeneous data captured from diverse
environments. Sensors producing heterogeneous data exhibit distinct data traits
that necessitate preservation and proper handling through their respective modules.
Hence, if any module issue occurs, the data should be securely stored and sustained
within the data buffer;

3. Finally, it should facilitate synchronous data provision to the clustering block, effec-
tively managing transmission throughput and local storage capacity to avert over-
whelming situations. Depending on the data transmission configuration, data might
need to be organized into transmission blocks, and having a specific local for that can
significantly enhance performance.

Following the temporary retention of the generated data chunks, they are directed to
the clustering phase. In this stage, the data are structured, segmented, and categorized for
utilization as input by an unsupervised ML model. Typically, unsupervised ML models
exhibit good performance when applied to clustered data, as opposed to unorganized
data. Hence, the clustering of heterogeneous data holds significant importance within
this solution.

Upon completion of the clustering process, the model undertakes the task of assessing
crucial DR attributes of the clustered dataset, considering various DR methodologies. Using
the data chunk as input, the model provides estimations for both attributes of each DR
algorithm (e.g., DFP and RR). The former provides a distortion rate for each DR algorithm,
whereas the latter quantifies the potential reduction in data volume for each technique.
DFP serves as the guiding metric for selecting the appropriate DR algorithm, and its
determination is directly tied to the data’s relevance, as outlined in the preceding section.
This metric operates based on the subsequent set of rules:

• Each data chunk is assigned a predefined relevance value that falls into one of five
classes: Very Low, Low, Moderate, High, and Very High;

• The ML process will make predictions for the DFP and RR parameters of all “n”
DR algorithms;

• Based on the projected Distortion value, an appropriate DR algorithm—either Lossy or
Lossless—will be selected, ensuring that the acceptable threshold of distorted data is
upheld during the DR process;

• If a lossy DR algorithm is available to the data chunk, and it respects the pre-established
distortion, it will be employed for DR; a lossless DR algorithm will be utilized if not;

• Historical ML projections can potentially be stored in the local edge storage and later
used for retraining purposes.

Following the model’s predictions, a suitable DR algorithm is chosen to effectuate DR,
respecting both distortion and relevance parameters. The projected reduction outcomes
for all data chunks are archived within the local edge storage. In general, this data storage
feature offers intriguing possibilities: it can be used for retraining the projected model or
even reconstructing the original data. Therefore, it is important to store such projections
within this layer. Lastly, the data are transmitted to the cloud.

3.5. Cloud Flowchart

Figure 4 depicts the cloud flowchart of our framework. Within the cloud layer, a
reduced dataset is received, distinct from the originally generated raw data. At this step,
the data have been clustered, cleansed, and projected to provide reduction information for
the model. If the data had been previously stored, it necessitates removal; otherwise, they
may be stored within the cloud repository.

Concerning the model, each instance of information storage in the high-level database
warrants an assessment of the necessity for model retraining. Upon confirmation, model re-
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training takes place, and the outcome is relayed to the edge for performance enhancements.
Lastly, an application can draw upon the database information for analytical or other tasks.

Cloud Node

Reduced Dataset?

Store X'[n]

Discard X'[n]Yes

No

Retrain the Model

No

Update the Edge
Model

There is a
need for retrain

the model?

Yes

Is the X'[n]
stored?

 

Figure 4. Cloud data transmission flowchart.

3.6. Framework Metrics Prediction

The study primarily focuses on the implementation of DR algorithms on the edge of the
network that focus on reducing transmission overhead. This reduction occurs considering
that the model’s main function is to predict some metrics, as discussed below. Considering
the quantity of existing DR algorithms in the literature and the heterogeneity of the data,
this is a challenging task. Therefore, the metrics discussed below are important for the
model prediction.

Directing attention towards the edge layer, after decompressing all the received data
from sensors, it is aggregated within a pool and subsequently employed as input for the
clustering process. The initial phase of experimentation is tied to the clustering procedure.
However, the principal evaluation of this layer is associated with the assessment of the RR
and DFP of the resulting data. Thus, the analysis should be directed towards the reduction
of these evaluation metrics.

According to [27], the evaluation of any compression technique can be carried out by
taking into account various metrics: Quality Score (QS), Compression Ratio (CR), Root
Mean Square Error (RMSE), Percentage Root Mean Square Difference (PRD), and Signal
to Noise Ratio (SNR). Considering we are experimenting with compression algorithms,
we selected the CR as RR metric to be used in this study. In the literature, various DFP
measurement variations are available. In this framework, in addition to the PRD, we
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employ the two most prevalent difference distortion measures metrics, namely, (i) the Mean
Squared Error (MSE) and (ii) the Mean Absolute Error (MAE).

In fact, the CR metric serves as the cornerstone for evaluating compression efficiency,
being calculated by dividing the size of the original data So by the size of the compressed
data Sc, as expressed in Equation (1).

CR =
So

Sc
(1)

The measurement of error between the original data and the signal that has been
reconstructed is known as PRD. This value, presented in Equation (2), serves as an indicator
of the quality of the reconstructed signal. Furthermore, it offers a quantification of the
error existing between the original data and the reconstructed signal. This measurement
consequently provides insights into the quality of the reconstructed signal.

PRD = 2

√
∑N

i=1(xi − yi)2

∑N
i=1(xi)2

× 100 (2)

Equation (2) outlines the computation of PRD. Here, xi represents the original sig-
nal values, and yi represents the corresponding values in the reconstructed signal. The
summation is carried out over N data points, and the result is multiplied by 100.

Lastly, the QS metric, presented in Equation (3), provides an expression of compression
efficiency by dividing the CR by the PRD.

QS =
CR

PRD
(3)

4. Evaluation Methodology

This section introduces the experimentation process and results that were developed
through this research. Actually, the optimal performance of the parameters outlined in
Section 3 is the main focus of the experimental evaluation in this work. In such a case, the
data producer relevance requirements are satisfied by the lowest DFP and highest RR. To
achieve that, the relevance of the data producer is merged with an acceptable data distortion
from the dataset towards reduction. Given that the framework solution comprises three
layers, an experimental projection would be provided for each of them.

A variety of metrics can be used to evaluate our proposed framework. Given that the
primary emphasis during this initial step is on the utilization of exclusively lossless DR
algorithms to achieve the reduction of time-series data, the assessment in this stage exclu-
sively utilizes the CR metric. The next subsections further discuss the defined evaluation
methodology and parameters.

4.1. Experimental Environment

In pursuit of a more adaptable platform, the experimental environment for evaluating
this framework encompasses the simulation within a Virtual Machine (VM). This VM is
equipped to simulate diverse sensor devices, as exemplified in [14], and facilitates virtual
interactions between sensors through a local network. For evaluating the sensing layer, we
programmed the compression algorithms presented in the next section towards identifying
better reducibility. The objective of this setup is to simulate the heterogeneous sensors
dispersed across the network, thereby validating the efficacy of the proposed framework.

From an experimental perspective, data transmissions should be managed to accom-
modate two potential scenarios, which will be considered as the evaluation reference in
this work:

• Scenario 1—Grouped Transmissions: sensor data transmissions occur by bundling a
specific batch of data together before transmission;
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• Scenario 2—Individual Transmissions: each sensor transmits data in real-time as soon
as they are read, as depicted by the sensor flowchart presented in Figure 2.

4.2. Evaluation Algorithms

The aim of this section is to identify the most effective compression algorithm to be
implemented within the sensor devices. Nonetheless, given the heterogeneous nature
of the selected scenario, we focus on sensor devices that generate text data. This data
format is chosen as it aligns with the predominant data type produced by a majority of IoT
technology sensors, specifically time-series data. According to [36], a substantial proportion
of data generated by IoT devices is in the form of time-series data. Time-series data are
characterized by an additional dimension, time, in contrast to tabular data, including
features and instances. This enables time-series data to incorporate more instances of data
points compared to tabular data.

In this experiment, five lossless compression algorithms tailored for compressing
sensor time-series data were employed:

• Arithmetic Coding [33];
• Huffman Coding [31];
• Lempel–Ziv–Welch [37];
• Run-length Encoding [32];
• Shannon–Fano Coding [38].

This particular phase of the framework intentionally excludes considerations of lossy
DR methods. The rationale behind this exclusion is two-fold. On the one hand, applying
lossy DR algorithms to compress text data are not conventionally sound. Lossy solutions
entail a trade-off between data quality and data volume reduction. In the case of text data,
a reduction in quality could lead to modifications in the message conveyed by the file,
potentially rendering it unintelligible. On the other hand, lossy DR techniques often require
extensive processing and analysis to identify features and patterns for removal, resulting in
a reduction of data size. However, sensors are constrained devices that can face limitations
when burdened with resource-intensive tasks. Thus, in this phase, the focus remains solely
on employing lossless compression algorithms.

4.3. Considered Dataset

To emulate the sensor data readings on the sensor layer, the dataset outlined in [39]
has been chosen for utilization in the experiments. Although our framework is designed to
accommodate heterogeneous data transmissions, at this phase, text-based time-series data
have been chosen to illustrate the analysis of compression algorithms.

The chosen real-world time-series dataset encompasses temperature and humidity
monitoring readings. The data spans a period of 4.5 months, captured by IoT devices
equipped with appropriate sensors, and averages 19,735 readings over 10 min intervals
per wireless transmission. To create this dataset, the authors in [39] employed 9 Arduino
boards, each paired with an XBee radio transmitter (IEEE 802.15.4). Moreover, those devices
were strategically placed to collect data from the environment, which were then transmitted
to another XBee radio configured as a network coordinator (gateway) within a house. All
Arduino boards were battery-powered. More details about the configuration of the Arduino
boards and their actual deployment can be verified in [39].

Finally, this dataset is organized into two distinct configurations, which are discussed
in the next section. Although the dataset is more related to a smart home perspective, we
believe it represents a small instance of a smart city when concerning the existing challenges
and data heterogeneity.

5. Experiments and Results

After the careful definition of the proposed approach and detailed explanation about
the evaluation methodology, a series of experiments was conducted aimed at validating our
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work. First, the evaluation algorithms were considered for the defined dataset, demonstrat-
ing how efficient DR could be achieved. Then, discussions about the practical exploitation
of this framework in IoT scenarios are presented, especially focused on smart city applica-
tions. We believe that the discussed results are important contributions toward the practical
adoption of the proposed approach.

5.1. Numerical Results

As an initial evaluation step, we considered the exploitation of the proposed frame-
work taking a smart city scenario as reference. Smart cities are distinguished by the
existence of numerous data nodes that generate data at a substantial rate, leveraging
communication resources to address intricate daily tasks. The data generated within this
context can be generated from diverse source nodes, such as individuals, vehicles, resi-
dences, industries, hospitals, and much more, spanning different locations and operating
concurrently. Each of these sources contributes to an inherent significance to the extracted
data, thereby enhancing the contextual understanding of urban environments. With all
that said, we believe this is a potential IoT scenario for improvement when adopting an
efficient DR approach.

As aforementioned, we have analyzed the five evaluation algorithms within the
context of two well-defined data configurations, according to the defined parameters for
the construction of the employed datasets. In short, the configurations are:

• Configuration 1: nine sensor readings are stored per line in the CSV file, resulting in a
total of 19,735 readings, each approximately 549 bytes in size;

• Configuration 2: each CSV line contains the readings from a unique board. This
configuration yields a total of 177,615 data streams, each approximately 241 bytes
in size.

The data specifications for both Configuration 1 and 2 are exemplified in Table 3.

Table 3. Data structure presenting some samples with rounded values.

Header date, Appliances, lights, T1, RH_1, T2, RH_2, T3, RH_3, T4, RH_4, T5, RH_5, T6, RH_6, T7,
RH_7, T8, RH_8, T9, RH_9, T_out, Press_mm_hg, RH_out, Windspeed, Visibility, Tdewpoint, rv1,
rv2

Configuration 1 2016-01-11-17:00:00, 60, 30, 19.890, 47.597, 19.199, 44.789, 19.789, 44.729, 19.000, 45.567, 17.167,
55.200, 7.027, 84.257, 17.199, 41.627, 18.199, 48.899, 17.033, 45.530, 6.599, 733.500, 92.000, 7.000,
63.000, 5.299, 13.275, 13.275

Configuration 2 2016-01-17-13:50:00, 410, 0, 22.000, 38.229, 2.983, 765.417, 64.333, 2.000, 40.000, −3.250, 21.749,
21.749

For the two defined configurations, we aim to determine which algorithm presents
the highest CR, as this is the chosen evaluation metric. The results are presented in Table 4.

Table 4. Achieved numerical results for both scenarios.

Algorithm Configuration Original Compressed Compressed CR
Data (B) Data (B) File Avg. (B)

AC 1 11,637,491 2,991,552 151.58 3.89
Huffman 1 11,637,491 5,295,042 268.30 2.19

LZW 1 11,637,491 5,925,544 300.25 1.96
RLE 1 11,637,491 12,096,545 612.94 0.96
Sh-F 1 11,637,491 6,289,822 318.71 1.85

AC 2 52,218,939 28,926,912 162.86 1.80
Huffman 2 52,218,939 27,909,547 157.13 1.87

LZW 2 52,218,939 35,397,098 199.29 1.47
RLE 2 52,218,939 62,153,377 349.93 0.84
Sh-F 2 52,218,939 34,717,441 195.46 1.50
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The experiment was initiated by compressing the original data from both configura-
tions separately. For Configuration 1, the original data file size amounts to 11,637,491 bytes.
In this case, the compression process yielded interesting outcomes. The Huffman, LZW,
and Shannon–Fano algorithms demonstrated similarities in reducing the original data to
represent 45.50%, 50.92%, and 54.05% of the original file, respectively. Such algorithms
presented RRs of 54.5%, 49.08%, and 45.95% and CRs of 2.19, 1.96, and 1.85, respectively.
These outcomes reflect substantial compression efficacy, potentially contributing to time
and energy savings on resource-limited devices.

The Arithmetic Coding algorithm exhibited significant reduction performance, reduc-
ing the data to 25.71% of the original size, with an RR of 74.29% and a CR of 3.89. However,
this enhancement in compression came at the expense of increased processing time. While
other algorithms were executed within minutes, Arithmetic Coding’s processing times
extended into hours. It is important to note that, as the primary goal of this experiment
was to evaluate volume reduction, the latency introduced during this preprocessing was
not considered. Lastly, the Run-length Encoding (RLE) algorithm yielded the poorest
compression performance, increasing the data size by 3.94% and presenting a CR of 0.96.

Analogous to the initial experimentation, results for Configuration 2 are also relevant,
where 177,615 time-series data streams, collectively totaling 52,218,939 bytes, underwent
compression. Huffman (53.45%), Arithmetic Coding (55.40%), Shannon–Fano (66.48%), and
LZW (67.79%) were the values for the original data representation, in addition to their CRs
equal to 1.87%, 1.80%, 1.50%, and 1.47%, respectively. However, the computational time
pattern observed in Configuration 1 persisted here. While Arithmetic Coding required over
a day to compress all stream files, the other algorithms were accomplished within minutes.
In contrast to Configuration 1, in Configuration 2, the Huffman algorithm exhibited the
best compression performance. Lastly, the Run-length Encoding (RLE) algorithm displayed
sub-optimal performance, increasing the data size to 19.02% with a CR of 0.84.

The objective of these experiments was to determine which compression algorithm
yielded the best CR for time-series data. The results revealed that both the Huffman and
Arithmetic Coding algorithms were top performers in terms of size reduction for both
configurations. In Configuration 1, the Arithmetic Coding algorithm presented superior
performance with a CR of 3.89, followed closely by the Huffman algorithm with a CR of
2.19. In Configuration 2, which more closely aligns with our model, the Huffman algorithm
showcased the best CR at 1.87, with the Arithmetic Coding algorithm following closely at a
CR of 1.80. Given that Configuration 2 is more representative of our model, the Huffman
lossless DR algorithm was selected for implementation within the sensor devices of our
proposed solution.

As a last remark, while the processing time of compression algorithms was not di-
rectly evaluated in this experiment, it remains crucial to minimize it in order to mitigate
latency during the transmission of sensor data. Such concern will be further evaluated in
future works.

5.2. Practical Applications and Envisioned Scenarios

In the rapidly evolving landscape of smart cities, the efficiency and sustainability of
IoT-based applications play a pivotal role in shaping urban development. Harnessing the
power of diverse and heterogeneous data sources, these applications provide valuable
insights to enhance city services, optimize resource utilization, and improve the overall
quality of urban life [5,6]. In this context, the advent of an innovative framework capable
of reducing the total amount of data to be transmitted over the network holds immense
promise for the future of smart city technologies.

As the core idea behind our approach lies in its ability to significantly diminish
the amount of data to be transmitted over the network, it not only reduces the demand
for transmission bandwidth but also incurs energy saving on different elements of the
considered systems, which are highly desired goals for smart cities in general [40,41]. As
smart cities continue to proliferate with a multitude of interconnected devices and sensors,
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energy efficiency becomes a critical consideration. Therefore, by alleviating the burden
on network infrastructure and the associated energy-intensive processes, our approach
emerges as a cornerstone for sustainable and eco-friendly smart city ecosystems.

Other major issues of the proposed framework lie in its adaptability to the inherently
heterogeneous nature of IoT-based applications, which is an expected reality for smart cities.
With a myriad of devices, sensors, and data streams contributing to the city’s operational
intelligence, managing this diversity efficiently is key to extracting meaningful insights. The
framework seamlessly operates for diverse data sources, optimizing the flow of information
closer to the data sources and ensuring that only reduced/compressed data are transmitted
across the network.

The following smart city applications are some examples that might directly benefit
from the proposed approach:

• Smart mobility: traffic monitoring systems in smart cities rely on real-time data from
various sources, including traffic cameras, sensors, and GPS devices. The proposed
approach can significantly reduce the amount of data transmitted for traffic analysis
and optimization, leading to faster decision-making for traffic management systems;

• Environmental monitoring: smart cities may deploy numerous sensors to monitor
air quality, pollution levels, and other environmental parameters. This way, the
framework can filter environmental data at the source, allowing for more efficient
utilization of resources;

• Public safety: surveillance cameras, IoT devices, and other sensors contribute to public
safety and emergency response systems. The proposed approach can streamline the
processing of surveillance data at the edge, enabling quicker detection and response
to potential security threats. This not only enhances public safety but also conserves
bandwidth and reduces energy demands;

• Sustainable waste disposal: these systems use sensors to monitor waste levels in bins
and optimize collection routes. Our proposal can minimize the data sent from waste
sensors, allowing for efficient and timely waste collection without unnecessary data
transmission.

This way, we believe that the proposed framework may represent a paradigm shift
in the development of IoT-based applications for smart cities, acting as an important
reference for new implementations. As cities continue to evolve into intelligent, connected
ecosystems, the amount of data to be transmitted, processed, and stored daily may be
huge. Then, our approach stands out as a viable solution for more efficient and scalable
management of data sensing in smart city applications.

6. Conclusions

Heterogeneous data are generated by a diverse range of sensor devices across various
contextual environments. These sensors are strategically situated to capture local digi-
tal/analog data, resulting in the generation of yottabytes of heterogeneous IoT sensor data
in smart city applications. Managing heterogeneous data, however, is not a straightforward
endeavor. However, prudent organization of generated data can alleviate access bottlenecks
and enhance data utilization.

Implementing data reduction methods to eliminate non-useful and duplicate data
holds several computational advantages, including conserving network bandwidth, re-
ducing energy consumption, optimizing storage utilization, and minimizing traffic costs.
Given the diverse possibilities and techniques inherent in implementing DR methods
within an edge–fog–cloud architecture, this research work advocates an edge AI-based DR
framework. Our proposed framework comprises three main modules (sensor, edge, and
cloud), each with distinct roles, being a valuable addition to the development of IoT-based
applications. Five compression algorithms were evaluated under two data production
configurations. The Huffman compression algorithm was chosen to be employed in the
first stage of the framework due to its strong performance. An unsupervised ML model was
also employed to reduce data volume while preserving data quality through the analysis
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of RR and distortion metrics. After experiments, an initial evaluation stage satisfactorily
indicated the applicability of the proposed approach in a real scenario.

In future works, the intended evaluations will also be composed of latency analy-
sis, as this directly impacts the feasibility of the proposed solution. Additionally, the
accuracy of the reduced data will be integrated into the cloud, enhancing the model’s
performance by effectively reducing data in a concise manner. Finally, larger datasets will
be considered, potentially taking data from large smart city systems, further validating the
proposed approach.
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