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Abstract: We utilized a CO2 laser to carve long-period fiber gratings (LPFGs) on polarization-
maintaining fibers (PMFs) along the fast and slow axes. Based on the spectra of LPFGs written along
two different directions, we found that when LPFG was written along the fast axis, the spectrum had
lower insertion loss and fewer side lobes. We investigated the temperature and twist characteristics
of the embedded structure of the LPFG and Sagnac loop and ultimately obtained a temperature
sensitivity of −0.295 nm/◦C and a twist sensitivity of 0.87 nm/(rad/m) for the LPFG. Compared to
the single LPFG, the embedded structure of the LPFG and Sagnac loop demonstrates a significant
improvement in temperature and twist sensitivities. Additionally, it also possesses the capability to
discern the direction of the twist. The embedded structure displays numerous advantages, including
easy fabrication, low cost, good robustness, a wide range, and high sensitivity. These features make it
highly suitable for applications in structural health monitoring and other related fields.

Keywords: long period fiber grating; polarization-maintaining fiber; Sagnac interferometer; temperature
and twist sensor

1. Introduction

Temperature and twist are two important evaluation parameters in the engineering
application field, as traditional temperature and twist sensors, based on electromagnetic
phenomena, are bulky, heavy, and usually difficult to integrate with monitored structures.
Therefore, optical fiber sensors for temperature and twist have been widely studied due to
their unique advantages, such as high sensitivity, strong anti-electromagnetic interference,
low cost, minor size, remote sensing, and high flexibility [1–3]. In recent years, optical
fiber sensors for temperature and twist have been widely reported based on LPFGs [4–8],
the Mach–Zehnder interferometer (MZI) [9–11], and Sagnac interference (SI) [12–14]. For
instance, Lu et al. proposed a helical sensor based on LPFG to measure temperature
and twist [4]. The highest sensitivity of twist was −0.654 nm/(rad/m) in the range of
−12.6~12.6 rad/m, and the sensitivity of temperature was 66.8 pm/◦C from 30 to 150 ◦C.
Zhang et al. fabricated a novel LPFG formed by tilted-arc grids (TA-LPFG) in normal
simple-mode fiber [5]. The maximum sensitivity of twist is 0.514 nm/(rad/m) in the twist
range of −18~18 rad/m, and the highest sensitivity of temperature is 0.0542 nm/◦C from
25 to 80 ◦C. Among these structures, their sensitivities are relatively low and the measured
ranges of twist are narrow. A sensor was fabricated by cascading two opposite helical
LPFGs, which improved the sensitivity of the twist [6]. This structure achieves a high tor-
sion sensitivity of 4.67 nm/(rad/m) in the range of −15.63~15.63 rad/m and temperature
sensitivity of 0.8 nm/◦C in the range of 27 to 100 ◦C. In addition, to obtain a double inverse
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helix LPFG and three transmission peaks in a certain wavelength range, they required a so-
phisticated control device. This suggests that the preparation of double-inverse helix LPFG
is complex. Guo et al. presented a torsion sensor based on double-helix LPFG in tapered
PMF [7]. They obtained a twist sensitivity of −2.28 nm/(rad/m) from −36 to 36 rad/m
and a temperature of −0.106 nm/◦C in the range of 25~120 ◦C. But the fabrication of
double-helix LPFG is more complicated with a high cost. Dai et al. presented a PMF-LPFG,
which was fabricated by polishing periodic complementary grooves on the principal axis
of the stress of polarization-maintaining fiber [8]. The highest sensitivity of the twist was
0.81 nm/(rad/m) from −5.70 to 5.70 rad/m, and the highest sensitivity of temperature
was 0.075 nm/◦C in the range of 30~120 ◦C. Since the areas where PMF is polished are very
large, the structure is greatly fragile. Therefore, it is not suitable for measurement in com-
plex environments. Liu et al. presented an MZI by sandwiching a segment of the seven-core
fiber (SCF) between two segments of multimode fibers (MMFs) [9]. This sensor has a twist
sensitivity of −400 pm/(rad/m) in the range from 4.758 to 40.439 rad/m and temperature
sensitivity of 123 pm/◦C between 30 and 100 ◦C, respectively. Li et al. proposed the fiber
structure by cascading with the pre-twist single-mode multimode-single mode (T-SMS) [10].
The highest sensitivities of twist and temperature are 0.32 nm/(rad/m) in the range from
−11.67 to 16.27 rad/m and 71.8 pm/◦C in the range from 20 to 75 ◦C, respectively. Ma et al.
proposed a sensor based on a polished multimode single-mode multimode (MSM) [11].
It has the highest twist sensitivity of 0.196 nm/(rad/m) from −14.27 to 14.27 rad/m and
temperature sensitivity of 0.072 nm/◦C between 30 and 150 ◦C. All these structures have
the following common problem: the measurement ranges of the twist are narrow, and the
process of fabrication is complicated. In addition, sandwich structures are relatively fragile,
which is not conducive to being used in complex engineering environments. Htein et al.
presented a sensor based on a Sagnac interferometer constructed with two semicircular-
hole fibers (TSHFs) [12]. They obtained the highest twist-sensitivity of 5.01 nm/◦C in the
range of 40.36~65.86 rad/m and temperature-sensitivity of −0.16 nm/◦C from 40 to 160 ◦C.
The sensor is suitable for twist measurements in a small range. Song et al. proposed a
twist sensor composed of the SI and PM-elliptical core fiber (PM-ECF) [13]. They acquired
the maximum twist-sensitivity of 18.60 nm/(rad/m) between −4.36 and 4.36 rad/m and
temperature-sensitivity of −0.43 nm/◦C from 27.3~90 ◦C. They said that higher twist angles
can cause measurement errors, so the twist angle is limited to −4.36~4.36 rad/m. Shao et al.
proposed a torsion and temperature sensor by inserting two sections of high-birefringence
(HiBi) fibers into the Sagnac loop [14]. They obtained a higher temperature sensitivity of
−17.99 nm/◦C and proved that the fringe visibility and torsion angle conformed to the
sine relationship. This study shows that temperature sensitivity can be greatly improved
by inserting the HiBi fiber into the Sagnac loop. Inspired by Ref. [14], in this paper, we
inserted the LPFG written along the fast axis into the Sagnac loop, and the sensitivities of
temperature and twist were significantly promoted compared with the single LPFG. The
temperature and twist sensitivities were improved by about 2 and 22 times, respectively.
Furthermore, through the analysis of wavelength drift direction, the sensor could distin-
guish the direction of twist. Due to its easy fabrication, low cost, firmness, wide range, and
high sensitivity, the proposed sensor has a wide application in the inspection of structural
health, such as the monitoring of oil and gas pipelines, health, and so on.

2. The Fabrication of PM-LPFG

The Panda PM1300-XP was obtained from Thorlabs Inc., and the transverse section
microscope photo and schematic diagram are presented in Figure 1a,b. There are three
different regions as follows: a germanium-doped core, the two boron-doped stress regions,
and silica cladding. It has a core diameter of 8.0 µm, a cladding diameter of 125.0 µm,
a stress-applying parts (SAPs) diameter of 36.0 µm, and a Numerical Aperture (NA) of
0.12. The distance between the centers of two SAPs is about 28.5 µm. Figure 1c shows
the schematic diagram of the experimental fabrication of LPFG. It consists of a 10.6 µm
CO2 laser (48-1, SYNRAD) and two fiber holders. In addition, a horizontal microscope is
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used to observe the writing process in real-time. The transmission spectrum of the grating
is monitored using a broadband light source (BBS, Golight, SLED LIGHT SOURCE) and
an optical spectrum analyzer (OSA, AQ6370D, Yokogawa) with a resolution of 0.02 nm.
In step 1, a PMF with a length of 20 cm was used to determine the fast or slow axis via a
special PMF coupling system (PMF-425P-OHV). In step 2, the PMF was spliced between
two single-mode fibers (SMFs), and a part of the PMF coating was stripped off along the
axial direction. In step 3, the bare section of the PMF was exposed to the CO2-laser beam.
Simultaneously, we rotated the fast or slow axis of the PMF to face upwards. In step 4, one
side of the PMF was clamped using a fiber holder, while the other end was fixed and affixed
with a weight of 20 g to ensure the straightness of the PMF during the writing process. In
step 5, we adjusted the focal plane of the laser to align with the exposed fiber using the
red-light indication of the co-optical axis. In step 6, the laser beam was controlled to scan
PMF using a line-by-line technique at a controllable speed. Simultaneously, a microscope
was used to observe the scanning process in real-time.
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Figure 1. (a) The microscope photo of the transverse section for PMF; (b) Schematic diagram of
the transverse section for PMF; (c) The schematic diagram of the experimental fabrication and
measurement setup of LPFG.

In our work, the average power of the CO2 laser and the frequency of the laser pulses
were 2.78 W and 20 kHz, respectively. Figure 2a,b display the transmission spectra of
two LPFGs that were irradiated along the fast and slow axis, respectively, under various
scanning cycles. The grating pitch for both LPFGs is 595 µm, and the length is 29.75 mm,
which corresponds to 50 grating periods. In Figure 2a, after 1 scanning cycle, the depth
of the resonance dip is 7.4 dB. With the increase in the scanning cycle, the depth of the
resonance dip gradually increases. When the scanning cycle reaches 7, the depth of the
resonance dip is 13.5 dB. In Figure 2b, when the scanning cycle increases, the depth of
the resonance dip also increases from 8 to 18.8 dB. Furthermore, there are no new dips
observed in the spectral range of 1400–1650 nm as the scanning cycles increase. After
7 scanning cycles, the depth of the resonance dip reaches its maximum value. If the number
of scanning cycles is increased further, the depth gradually decreases. This phenomenon
suggests that the formant mode is over-coupled. The LPFG, which is written along the fast
axis, exhibits a formant depth of 13.56 dB at 1506.4 nm, where its core fundamental mode
is coupled to the LP14 cladding mode. For the LPFG written along the slow axis, the core
fundamental mode is coupled to the LP13 cladding mode and the resonance peak, with
a formant depth of 18.76 dB, located at 1500.54 nm. Figure 3a,b display the microscopic
images of PMF before and after laser inscription. After laser inscription, the surface of
PMF exhibits some small grooves. The mechanism of writing LPFG on PMF (PM-LPFG)
using the CO2 laser is mainly to release residual stress in SAPs. When PMF is irradiated
along the fast axis, the laser can directly impact both the core and SAPs [15]. Under the
same power, the refractive index modulation is more significant for the LPFG written along
the fast axis. In the case of the same period, the resonance peak wavelength of the LPFG
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written along the fast axis is longer than that of the LPFG written along the slow axis.
Comparing the spectra of gratings written along the fast and slow axes, we observed that,
when written along the fast axis, the spectrum exhibits smaller insertion loss and fewer
side lobes. Such a spectrum can avoid the interference of other dips and is beneficial for
wavelength demodulation in sensing measurements. We also fabricated three PM-LPFGs
with periods of 585 µm, 590 µm, and 600 µm, respectively. The total lengths of these
PM-LPFGs were 29.25 mm, 29.5 mm, and 30 mm. Similarly, all three PM-LPFGs were
formed through seven scanning cycles. Figure 4 shows the transmission spectra of four
PM-LPFGs fabricated along the fast axis, with the curves representing PM-LPFG1 (600 µm),
PM-LPFG2 (595 µm), PM-LPFG3 (590 µm) and PM-LPFG4 (585 µm) from top to bottom.
As seen in the figure, the resonance peaks gradually shifted towards longer wavelengths as
the period increased, which is consistent with the behavior of regular single-mode LPFGs.
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3. The Sensing Characteristics of Single PM-LPFG

The temperature and twist characteristics of PM-LPFG1 were investigated using the
experimental setup shown in Figure 5. One side of PM-LPFG1 is fixed on a fiber holder,
while the other side is fixed on a rotating fixture (HFR007, Thorlabs). The distance between
the two fiber holders, denoted as L, is 10 cm, and the degree of twist is denoted as θ.
Therefore, the twist rate can be expressed as θ/L. The PM-LPFG1 was placed inside an
oven with a temperature resolution of 0.01 ◦C. The temperature was controlled within the
range of 30 to 65 ◦C, with increments of 5 ◦C. The sensor was kept at each temperature for
5 min, and the corresponding values from the OSA were recorded. Additionally, the twist
response was examined by rotating the PM-LPFG1 from 0 to 31.5 rad/m, with increments
of 1.75 rad/m. Figure 6a demonstrates that the temperature sensitivity is 0.137 nm/◦C, and
the inset displays the evolution spectrum of the resonance peak from 30 to 65 ◦C. As the
temperature increases, the wavelength of the resonance dip undergoes a redshift. Figure 6b
illustrates the relationship between the twist rate and wavelength, but the linearity between
the twist and wavelength is not ideal. The low-temperature sensitivity of single PM-LPFG1
is attributed to the low thermal expansion coefficient of the PMF, which results in minimal
length changes when the temperature varies. The reason for the low twist sensitivity is
that most of the stress within the fiber is released, and the laser-induced changes in fiber
size and shape are relatively small. When the twist is applied to a single PM-LPFG1, the
effective refractive index difference and period variation are minimal.
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4. The Sensing Characteristics of Embedded Structure of LPFG and Sagnac Loop

The Sagnac loop has the advantage of high sensitivity, so we considered combining
the PM-LPFG1 with the Sagnac loop to form a Sagnac interferometer (SI). Figure 7 shows
the schematic of the Sagnac interferometer sensing system. In this setup, a beam of light
emitted from a broadband source (BBS) was directed into a 3 dB (2 × 2) optical coupler
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(OC), which split the beam into two, propagating in opposite directions. When the two
beams recombined at the coupler, interference occurred due to the relative phase difference
introduced by the PMF. The resulting interference spectrum was recorded using an OSA. For
the temperature measurement, the sensor was placed inside a temperature-controlled oven
for accurate measurements. For the twist measurement, a highly precise rotating fixture
was employed to twist the sensor. The all-fiber polarization controller (PC) was utilized
to optimize the interference spectral pattern for enhanced accuracy. Figure 8a shows the
transmission spectrum of the embedded structure consisting of PM-LPFG1 and the Sagnac
loop. The interference spectrum of the Sagnac loop was modulated by PM-LPFG1, resulting
in a significant decrease in spectral intensity near the resonance peak of PM-LPFG1. The
interference spectrum exhibits a free spectral range (FSR) of 20 nm near 1506.3 nm. And
the interference dip reached a maximum contrast of 31.32 dB at 1526.9 nm. Figure 8b
illustrates the Fast Fourier Transform (FFT) of the interference spectrum for the embedded
structure, revealing two prominent excited polarization modes. The spatial frequencies of
these two excited modes were 0.026 nm−1 and 0.046 nm−1, with corresponding amplitudes
of 4.885 and 4.006, respectively. By analyzing the sensing response of different interference
valleys, we found that the interference valley with a smaller interference contrast and
stronger intensity was not subjected to an external noise impact, which is convenient for
twist demodulation. Therefore, we selected the interference valley at 1506.3 nm to monitor
temperature and twist variations, which is denoted as dip A. Meanwhile, the resonance dip
of the LPFG1 at 1596.5 nm is denoted as dip B.
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5. Sensor Principle

For the Sagnac interference, the transmission optical intensity I can be expressed as
follows [16]:

I =
I0(1 − cos φ)

2
(1)
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where I0 is the intensity of the input light and φ represents the phase difference, which is
formed when two beams of transmitted light are modulated by the birefringence of PMF.
And the phase difference is related to the length L of PMF and the birefringence B [17].

φ =
2πBL

λ
(2)

B =
∣∣∣n f − ns

∣∣∣ (3)

where n f and ns are the effective refractive indices of PMF at the fast and slow axes,
respectively. λ is the operating wavelength.

Interference dips may appear in the transmission spectrum when the phase difference
satisfies the formula φ = (2m + 1)π, and m is any integer. The wavelength of interference
dips can be expressed as follows [18]:

λ =
2BL

2m + 1
(4)

When the external temperature changes due to the thermal optical effect and thermal
expansion coefficient of PMF, the birefringence and length change with temperature. More-
over, the axial twist loaded into the fiber also changes the birefringence and length. And
temperature and twist sensitivities can be expressed by the following formula [19]:

ST1 =
dλ

dT
= λ(

∂B
B∂T

+
∂L

L∂T
) (5)

Sτ1 =
dλ

dτ
= λ(

∂B
B∂τ

+
∂L

L∂τ
) (6)

where ST1 and Sτ1 are the temperature and twist-sensing coefficient.
For the LPFG, since the core fundamental mode of LPFG is coupled to the higher

order cladding mode, the resonance dip of LPFG is formed on the existing interference
spectrum. According to the phase-matching condition, the resonance dip wavelength λres
can be described as follows [20]:

λres =
(

ncore
e f f − nclad

e f f

)
Λ (7)

where Λ is the grating period, and ncore
e f f , nclad

e f f are the effective refractive index of the core
mode and cladding mode of LPFG, respectively.

In order to simplify the analysis of the temperature and twist response of LPFG, the
variation in length is ignored. It can be considered that temperature and twist primarily
alter the effective refractive index of LPFG, resulting in resonance wavelength drift. And
the wavelength shift can be expressed as follows [21]:

ST2 =
dλres

dT
= λres(

gcore
1 ncore

e f f − gclad
1 nclad

e f f

∆ne f f 1
) (8)

Sτ2 =
dλres

dτ
= λres(

gcore
2 ncore

e f f − gclad
2 nclad

e f f

∆ne f f 2
) (9)

where gcore
1 and gclad

1 are the thermo-optic constants for the fiber core and cladding material.
gcore

2 and gclad
2 are photo-elastic constants for the fiber core and cladding material, respec-

tively. ∆ne f f 1 and ∆ne f f 2 represent the effective refractive index difference between the
core mode and cladding mode of LPFG, which is induced by temperature and twist change.
ST2 and ST2 are the temperature and twist sensing coefficients, respectively.
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6. Results and Discussion
6.1. Temperature Performance

The schematic of the temperature experiment, based on the embedded structure, is
shown in Figure 7. The temperature of the oven was set from 30 to 65 ◦C with intervals
of 5 ◦C. The embedded structure underwent testing, and the shift in wavelength showed
a good linear relationship with the change in temperature, as depicted in Figure 9a,b.
In these figures, the error bars represent the wavelength deviation observed during the
three temperature tests. Figure 9a illustrates that the temperature sensitivity of dip A is
−0.303 nm/◦C within the range of 30 to 65 ◦C. The inset shows the evolution spectrum
of dip A with temperature variation, where the wavelength shifts towards shorter wave-
lengths as the temperature increases. This change can be attributed to the decrease in
birefringence caused by the temperature increase [22], and, according to Equation (4), the
wavelength of interference dips also decreases. In Figure 9b, it can be observed that the
temperature sensitivity of dip B is −0.295 nm/◦C within the same temperature range.
The inset depicts the wavelength of dip B blueshifts with increasing temperature. This
phenomenon can be explained by the presence of two SAPs in the PMF, where the thermal
expansion coefficient of the cladding is larger than that of the core. As the temperature rises,
the refractive index modulation of the cladding becomes larger than that of the core [23],
resulting in a decrease in the resonance wavelength of the LPFG.
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6.2. Twist Sensor

The schematic of the twist experiment using an embedded structure is shown in
Figure 7. One end of the structure was fixed, while the other end was twisted by a rotating
fixture. Under an ambient temperature of 26 ◦C, the twist was applied by turning the rotat-
ing fixture from −180◦ to 180◦ with step of 10◦. Figure 10a,b depict the transmission spectra
evolution of 0◦~180◦ and 0◦~−180◦ for dip A. As the sensor was twisted clockwise (CW),
the wavelength of dip A exhibited a red shift with an increasing twist angle. Conversely,
when the sensor was twisted counterclockwise (CCW), the wavelength of dip A displayed
a blue shift with an increasing twist angle. Figure 11a,b illustrate the transmission spectra
evolution from 0◦ to 180◦ and from 0◦ to −180◦ for dip B. The wavelength variation trend
of dip B was similar to dip A with the variation in the twist angle. We conducted three
twist experiments using the proposed sensor within a month. In Figure 12a,b, the error
bar represents the wavelength deviation of the three twist tests. From the figures, it can be
observed that the repeatability of our sensor was satisfactory. As seen in Figure 12a, the
wavelength shift of dip A exhibits a linear relationship with the change in twist rate for
different twist ranges. Since the proposed sensor presents different sensitivities between
−31.5 rad/m and 31.5 rad/m, we divided the relationship curve into three linear parts
based on the variation trend of twist sensitivity. When the twist rate varies from −31.5 to
−7 rad/m, the sensor has a maximum sensitivity of 1.03 nm/(rad/m). When the twist
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rate increases to more than −7 to 15.75 rad/m, the sensitivity is 0.53 nm/(rad/m). Finally,
when the twist rate is in the range of 17.5 to 31.5 rad/m, the sensor has a sensitivity of
0.94 nm/(rad/m). Similarly, as shown in Figure 12b, the wavelength drift and twist rate
of dip B also exhibit a linear relationship for different twist ranges. Through linear fitting,
the twist sensitivity of dip B is calculated as 1.17 nm/(rad/m) from −31.5 to −7 rad/m,
0.36 nm/(rad/m) in the range of −5.25 to 15.75 rad/m, and 0.87 nm/(rad/m) from 17.5 to
31.5 rad/m, respectively. Furthermore, according to the linear fitting plot of the twist rate
and wavelength, we can observe that when the sensor is twisted (CW), the wavelength of
the interference peak shifts towards longer wavelengths, whereas when it is twisted (CCW),
the wavelength of the interference peaks shifts towards shorter wavelengths. Therefore,
the sensor can distinguish the direction of twist based on the direction of the wavelength
shift. The twisted sensing characteristics can be attributed to the evolution of the state of
polarization (SOP) caused by the twist-induced elliptical birefringence of the LPFG. This
elliptical birefringence alters the SOP of the core mode and cladding modes, leading to a
change in the effective refractive index between the core mode and cladding modes [24].
As shown in Equation (7), when the difference in the effective refractive index changes, the
resonance wavelength also varies. The rotation direction of the SOP is dependent on the
direction of the twist, allowing the proposed sensor to distinguish the direction of the twist.
In addition, for the twisted PMF, assuming that the change in fiber length and the variation
in instinct birefringence can be ignored, the change in the transmission wavelength can
be approximately expressed as ∆λ = ληbt∆τ, where bt is a constant that describes the
torsion-induced variation in the elliptical birefringence, ∆τ is the change in torsion angle,
and η = ng/B represents the elliptical birefringence ratio of the torsion-induced elliptical
birefringence (ng) to the sum of the fiber birefringence (B). When the PMF is twisted more,
the introduced elliptical birefringence is also larger. The increase in the twist leads to an
increase in η, and the twist sensitivity also increases accordingly [25].
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Compared with the single PM-LPFG1 in the third section, the temperature and twist
sensitivities of the embedded structure were significantly improved. Specifically, within the
same temperature and twist range, the temperature sensitivity of the cascading structure
increased by approximately 2 times, and the twist sensitivity increased by approximately
22 times. During the transmission process in the Sagnac loop, light beams can interact
multiple times with the LPFG, which may result in coupling between the core fundamental
mode and higher-order cladding modes. This mechanism can enhance the temperature
and twist sensitivities of PM-LPFG1. Furthermore, the temperature and twist sensitivities
of these two dips are different, indicating that this embedded structure has the potential to
be used for the dual-parameter sensing of temperature and twist.

Finally, we compared the embedded structure with the sensors mentioned in the
introduction, and the results are presented in the following Table 1. We primarily compared
the twist range, twist sensitivity, and fabrication of various sensors. Our sensor has a larger
measurement range and higher sensitivity than those in Refs. [4,5]. Compared with the
double helix of LPFGs in Refs. [6,7], our sensor has the advantage of ease of fabrication
and low cost. The sensors based on MZI are complicated to fabricate and have a relatively
narrow measuring range and low twist sensitivity. The sensors of Refs. [12,13] have high
twist sensitivity, but their measurement range is limited. The proposed sensor has the
advantages of easy fabrication, low cost, good robustness, a wide range, and high sensitivity.
Based on these advantages, our sensor can be widely used in complex engineering.

Table 1. Comparison of optical fiber twist sensor performance.

Principle Ref Fiber
Structure

Twist Range
(rad/m)

Sensitivity
[nm/(rad/m)] Fabrication

LPFG

[4] H-LPFG −12.6~12.6 −0.654 Hard
[5] TA-LPFG −18~18 0.514 Easy
[6] Double inverse helix LPFG −15.63~15.63 4.67 Hard
[7] Double-helix LPFG in taper PMF −36~36 −2.28 Hard
[8] PMF-LPFG −5.7~5.7 0.81 Easy

MZI
[9] Sandwich structure in SCF 4.758~40.439 0.123 Hard

[10] T-SMS −11.67~16.27 0.32 Hard
[11] Polished MSM −14.27~14.27 0.196 Hard

SI

[12] SI and TSHF 40.36~65.86 47.17 Easy
[13] SI and PM-ECF −4.36~4.36 18.60 Easy

Our work SI and PM-LPFG
−31.5~−7
−5.25~15.75

17.5~31.5

1.17/1.03
0.53/0.36
0.94/0.87

Easy
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7. Conclusions

In conclusion, we wrote PM-LPFGs along the fast and slow axes using point-to-point
CO2 laser writing technology. According to the grating spectra, we found that the spectrum
of PM-LPFG, when irradiated along the fast axis, has smaller insertion loss and fewer side
lobes, which is more conducive to sensing and measurement. In addition, we also explored
the temperature and twist characteristics for single PM-LPFG and the embedded structure
of SI and PM-LPFG. The experimental results show that the temperature sensitivity of the
embedded structure is increased by about 2 times, and the twist sensitivity is increased by
about 22 times. Since the temperature and twist sensitivities of the two dips are different,
the embedded structure can be used for the dual parameter sensing of temperature and
twist. Meanwhile, it can also identify the direction of the twist. As the embedded structure
has the advantages of simple fabrication, low cost, strong structure, wide range, and
high sensitivity, it exhibits great potential applications in civil engineering infrastructure,
structural health monitoring, and so on.
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