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Abstract: Aspect-based sentiment analysis is a fine-grained task where the key goal is to predict senti-
ment polarities of one or more aspects in a given sentence. Currently, graph neural network models
built upon dependency trees are widely employed for aspect-based sentiment analysis tasks. How-
ever, most existing models still contain a large amount of noisy nodes that cannot precisely capture
the contextual relationships between specific aspects. Meanwhile, most studies do not consider the
connections between nodes without direct dependency edges but play critical roles in determining the
sentiment polarity of an aspect. To address the aforementioned limitations, we propose a Structured
Dependency Tree-based Graph Convolutional Network (SDTGCN) model. Specifically, we explore
construction of a structured syntactic dependency graph by incorporating positional information,
sentiment commonsense knowledge, part-of-speech tags, syntactic dependency distances, etc., to
assign arbitrary edge weights between nodes. This enhances the connections between aspect nodes
and pivotal words while weakening irrelevant node links, enabling the model to sufficiently express
sentiment dependencies between specific aspects and contextual information. We utilize part-of-
speech tags and dependency distances to discover relationships between pivotal nodes without direct
dependencies. Finally, we aggregate node information by fully considering their importance to obtain
precise aspect representations. Experimental results on five publicly available datasets demonstrate
the superiority of our proposed model over state-of-the-art approaches; furthermore, the accuracy
and F1-score show a significant improvement on the majority of datasets, with increases of 0.74, 0.37,
0.65, and 0.79, 0.75, 1.17, respectively. This series of enhancements highlights the effective progress
made by the STDGCN model in enhancing sentiment classification performance.

Keywords: sentiment analysis; aspect sentiment analysis; graph neural network; structured
dependency tree

1. Introduction

With the exponential growth of information on the Internet, extracting public opinion
tendencies has become an important task. To achieve this, sentiment analysis of the
information is necessary. Aspect-Based Sentiment Analysis (ABSA) is a fine-grained task in
sentiment analysis that aims to predict sentiment polarities (e.g., positive, neutral, negative)
of specific aspects in a sentence. Compared to document-level and sentence-level sentiment
analysis, aspect-based analysis can more precisely extract sentiment polarities of specific
aspects in a sentence, thus better capturing user viewpoints. For example, for review “The
food is extremely tasty, but the service is dreadful”, opposite sentiment polarities are expressed
for the two aspects, “food” and “service” in the sentence: a positive sentiment is expressed
towards the food, while a negative sentiment is expressed towards the service.

The key to aspect-based sentiment analysis lies in extracting relationships between
aspect and corresponding opinion words to infer the sentiment polarity of the aspect. Tra-
ditional aspect-based sentiment analysis [1] utilizes sentiment lexicons to assign different
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sentiment polarities or scores to opinionated words, and conducts aggregation based on
the assigned weights to obtain overall sentiment tendencies. However, this approach
requires constructing and maintaining sentiment lexicons, which poses great challenges.
Some machine learning-based aspect sentiment analysis [2] uses hand-crafted features
to train classifiers, which demands extensive human efforts. In recent years, with the
development of deep learning, neural network models have received increasing attention
from researchers and found wide applications. Earlier studies [3] adopted RNN models to
capture sequential information in sentences for extracting semantic relationships between
aspects and opinion words. However, they suffered from problems like semantic informa-
tion loss and vanishing gradients. To address these limitations, LSTM networks [4,5] have
been widely employed for aspect-level sentiment analysis tasks and achieved better effects
in modeling long sequence data and capturing long-term dependencies. Recently, with the
advancement of graph neural networks, applying GCN and GAT to sentiment analysis has
become a hot topic receiving extensive attention.

Some researchers construct dependency graphs using dependency parsers and lever-
age graph neural networks to obtain neighbor node information in order to utilize syntactic
knowledge of the sentences for capturing relationships between aspects and contextual
information [6,7]. However, there are still some limitations with the current dependency
graphs. First, in the dependency parse tree, the edge weights between nodes are binary,
regarding nodes with dependencies as equally important without adequately differentiat-
ing relationships between nodes. Second, some noisy nodes may interfere with accurate
sentiment classification. This interference weakens the relationship between specific aspects
and sentiment words, making it challenging to precisely articulate the connection between
them. Third, some nodes in the dependency trees do not have direct dependency relation-
ships but play critical roles in determining aspect-level sentiment polarities. For instance,
as shown in Figure 1, the word “powerful” and aspect “product” are pivotal for deciding the
sentiment polarity of the aspect, but there is no direct dependency between them, thus their
important relationship can be easily overlooked. However, many existing studies have
overlooked the relationships between nodes that are crucial for determining the sentiment
relationship of specific aspects.

To address the first issue, in [8], attention scores were introduced as weight matrices,
achieving favorable results. However, this method solely extracts information between
nodes from a semantic perspective, neglecting to accurately represent syntactic relationships
between nodes. Regarding the second issue, some methods reshape and prune dependency
trees to alleviate the aforementioned problems, mainly by taking the aspect as the central
node and retaining related nodes while removing irrelevant nodes [9,10]. This effectively
extracts information between the aspect and key words. However, it also damages the
syntactic dependency tree and leads to loss of syntactic information. Furthermore, key
words without direct edges to the aspect may be pruned, resulting in missing information
of pivotal key words. As shown in Figure 2, with the reshaped syntax structure, “a little”
no longer modifies the adjective “good” and “only” no longer modifies “a little”, thus losing
the negation meaning and causing incorrect positive sentiment prediction towards the
aspect by solely depending on the opinion word “good”. On the other hand, the words
“only”, “a”, and “little” do not have direct dependency edges to the aspect “food”, which
may lead to pruning of pivotal words like “only”, “a”, “little” reresenting double negation
and affect prediction of the aspect “food”’s sentiment. For the third issue, although some
models take into account sub-dependency relationships between nodes [11], they cannot
precisely capture pivotal word relationships and introduce more noise issues.
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Figure 1. An example to illustrate the usefulness of part-of-speech dependence. The dependencies can
be inferred by some key words in the sentence; we can easily guess that there is a strong dependence
between “product” and “powerful”.

The food tastes only a little good.

acompnsubj

Figure 2. An example sentence of the ABSA task from the restaurant reviews, which illustrates the
usefulness of the structured dependency tree in a sentence.

To address the aforementioned problems, this paper proposes a Structured Depen-
dency Tree Graph Convolutional Network (SDTGCN) model to analyze sentiment orien-
tations of specific aspects. Instead of reshaping and pruning the dependency tree, our
model adjusts the edge weights between nodes based on positional information, senti-
ment commonsense knowledge, part-of-speech tags, and syntactic dependency distances.
The SDTGCN model aims to explore relationships between crucial words. In a struc-
tured dependency tree, closer proximity to the aspect word generally has a greater impact,
making position information influential in aspect-level sentiment analysis. Furthermore,
sentiment common sense knowledge assigns different sentiment scores to words based on
their emotional tone, helping identify the sentiment tendency of contextually important
words. This assigns higher weights to emotionally stronger words and lower weights for
weaker ones. By leveraging sentiment common sense knowledge, we can uncover the
emotional tendencies of contextually important words. Moreover, we not only utilize part-
of-speech tags to obtain pivotal word information, but also further leverage part-of-speech
tags and dependency distances to discover relationships between nodes without direct
dependencies yet playing significant roles in determining aspect sentiment polarities. If two
words are both of crucial part-of-speech types for determining sentiment polarity and have
a close syntactic dependency distance, higher weights can be assigned to strengthen the
representation between these crucial words. For example, as shown in Figure 1, “product”,
“powerful” and “same” are all crucial words for determining sentiment polarity. However,
“product” and “powerful” have a close syntactic dependency distance, thus receiving higher
weights to enhance their dependency relationship. Conversely, “product” and “same” have
a distant syntactic dependency distance, resulting in lower weights and a weakened de-
pendency relationship. Therefore, the structured dependency tree effectively preserves
the syntactic relationships of the original text. Depending on the importance of each
word, different weights are assigned to specific aspects and other words, allowing for
a comprehensive expression of the relationship between specific aspects and contextual
information, thereby enhancing the model’s performance. Finally, we adopt a weighted
graph convolutional network to aggregate node information, aggregating different nodes
based on their importance to the context during the process, which can obtain more precise
final representations for aspects.

The main contributions of this paper are as follows:

1. We propose a structured dependency tree based on node weights, incorporating posi-
tional, sentiment commonsense, part-of-speech, and syntactic dependency distance
information to enrich the generic dependency tree. This enables sufficient extrac-
tion of relationships between aspects and corresponding opinion words. We further
aggregate node information using a weighted graph convolutional network.
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2. We utilize part-of-speech tags and dependency distances to discover connections be-
tween pivotal nodes without direct dependency edges in the trees, thereby analyzing
sentiment orientations of specific aspects.

3. Experimental results on five benchmark datasets demonstrate the effectiveness of our
proposed method in aspect sentiment analysis, outperforming existing state-of-the-art
approaches.

The remainder of this paper is organized as follows: Section 2 reviews related work.
Section 3 elaborates the proposed model. Experimental setup and results are presented in
Section 4. Finally, Section 5 concludes this paper and discusses future work.

2. Related Work
2.1. Aspect-Level Sentiment Analysis

Aspect-based sentiment analysis has become a hot research topic, as it can effectively
capture relationships between aspect and opinion words and extract fine-grained senti-
ment orientations. In recent years, numerous methods have been proposed for modeling
aspect sentiment analysis. Among them, many researchers leverage neural networks to
represent aspect information in sentences. Dong et al. employ RNNs to represent semantic
information in sentences [3]. Tang et al. utilize two LSTMs to capture relationships between
the aspect and its left/right contexts separately [4]. Majumder et al. identify aspects first
using a BiRNN-CRF model, and then enrich word embeddings with bidirectional GRU
hidden states for detecting aspect sentiment polarities [12]. The above models build se-
quential information of sentences, while attention-based models can focus on pivotal parts
of sentences. Some researchers employ an attention-based LSTM model concentrating on
relevant key information to the aspect [5,13]. Ma et al. introduce two attention mechanisms
for information interaction between the aspect and contexts [14]. Gu et al. incorporate posi-
tion information to assign higher weights to contexts closer to the aspect, and then apply
a bidirectional attention mechanism to extract relationships between the specific aspect
and contexts [15]. Some methods also utilize attention mechanisms, semantic relevance,
etc., to extract semantic information between the aspects and contexts in sentences [16,17].
Additionally, convolutional neural networks have been widely used in sentiment analysis
tasks. Xue et al. extract sentiment features from text using CNNs and gating mechanisms
and overcome LSTM sequence dependency and structural complexity by max pooling
along the sequence direction to filter unimportant sentiment information [18]. Ayetiran
presents an attention-based deep learning technique using CNNs and BiLSTMs to extract
high-level semantic features, which can effectively capture contextual feature representa-
tions of text [19]. These models demonstrate that deep neural networks can obtain effective
deep representations of sentences for aspect-level sentiment classification.

2.2. Graph Neural Networks

With the development of deep learning, graph neural networks have become a hot
research area, as they can represent non-structural data. Some surveys provide a detailed
introduction to the application of aspect-level sentiment analysis in graph convolutional
networks [20–22]. Some researchers construct a dependency tree using a dependency parser
and feed it into a graph convolutional network, which can sufficiently acquire the sen-
tence’s syntactic knowledge for extracting aspect-specific sentiment orientations. The graph
structure effectively extracts syntactic information from high-order neighborhoods, further
optimizing the accuracy and generalization performance of sentiment classification com-
pared to traditional neural network models [6,23,24]. Wang et al. propose a new method
to encode the syntactic information of sentences, primarily taking the aspect as the root
node, performing pruning and modification on the dependency tree, and then utilizing
dependency labels to construct a relational graph attention model for further expressing
relationships between the aspect and contexts. The method shortens the distance between
specific aspect words and opinion words, enhances the representation of specific aspects,
and utilizes dependency labels in the graph attention network to focus more on nodes and
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their relationships that significantly impact the graph, thereby further optimizing the repre-
sentational capacity of the graph structure [9]. Liang et al. integrate sentiment knowledge
into the syntax dependency tree, which is then fed into a graph convolutional network
to extract neighbor information. Compared to traditional syntactic dependency graphs,
this method more comprehensively considers complex relationships between nodes in the
text using commonsense knowledge, effectively strengthening the relationship between
specific aspects and opinion words and achieving better performance improvement [17].
Veyseh et al. introduce a novel aspect-level sentiment classification model based on gated
graph convolutional networks. The key idea of the model is to use a gating mechanism to
filter out irrelevant information, thereby uncovering crucial information related to aspect
words. This method not only improves the accuracy of information extraction, but also
helps the model gain a more comprehensive understanding of important information re-
lated to specific aspects in the text, thereby enhancing its performance in relevant tasks [25].
Zhao et al. construct a graph taking aspects as nodes, and apply graph convolutional
networks to extract inter-aspect sentiment dependencies for analyzing different aspects.
By exploring the interaction of information between different aspect words, this method
provides the model with more expressive features [26]. Lu et al. add a new gate on the
basis of the LSTM to control the influx of irrelevant contextual information to the aspect,
and then input it into graph convolutional networks for more precise aspect representations.
This method effectively improves sentiment classification performance by extracting key
information [27]. Xu et al. build a heterogeneous graph with sentence information, aspect
nodes and context, and utilize graph convolutional networks to acquire their relation-
ships, thereby sufficiently representing specific aspects. This method enriches traditional
single-syntax representations by constructing a heterogeneous graph with multi-faceted
information and achieves significant improvement [28]. Zhou et al. leverage syntactic and
knowledge graphs to express relationships between aspects and contexts, and feed them
into graph convolutional networks to update neighbor node information. This method
incorporates common sense knowledge to enhance the semantic knowledge of sentences,
complementing ordinary syntax structures and achieving further improvement [29]. Li et al.
construct a syntactic graph convolutional model based on dependency parsers and a se-
mantic graph convolutional model based on self-attention, then effectively fuse them with
BiAffine to extract pivotal information from sentences. This method precisely models
specific aspect words from both syntactic and semantic perspectives, achieving satisfactory
performance improvement [8]. Ke et al. present a novel Syntactically Dependent ATTen-
tion model (SDATT) that aims to explore context-aspect relationships by incorporating
syntactic distances and dependency paths through dependency trees, paying more atten-
tion to aspect-relevant contexts and generating more robust aspect representations [30].
Zhang et al. integrate syntactic, semantic knowledge, and context graphs into one SSC
graph, feed it into graph convolutional networks to obtain representations for specific
aspects, and perform aspect sentiment analysis using an attentive CNN with positional
embeddings. This method extracts key information from sentences from different per-
spectives, such as syntax, semantics, and knowledge, effectively fusing them through a
convolutional neural network, yielding good results [31]. Lu et al. propose a novel graph
convolutional network with sentiment interactions and multi-graph perception, simul-
taneously considering complementarity between semantic dependencies and sentiment
interactions [32]. In addition, they also build a multi-graph perception mechanism to cap-
ture specific inter-graph dependency relationships, thus reducing overlapping information
and effectively improving classification performance. Zhang et al. propose a novel syntax
and semantics-enhanced graph convolutional network (SSEGCN) model for ABSA tasks.
The architecture integrates semantic and syntactic information, combining attention score
matrices with syntax mask matrices to fuse semantic and syntactic information, achieving
better performance [33]. Liang et al. design a structure-enhanced interactive model (SE-
IAN-G) for aspect-level sentiment classification. The main idea is that structurally enhanced
representation eliminates the negative impact of certain words, making the expression of
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target words and context words more closely connected, a relationship ignored by other
methods [34].

Overall, we summarize and compare the aforementioned models in Table 1. From the
table, it can be observed that most current mainstream approaches effectively enhance
aspect-level sentiment analysis performance by integrating syntactic knowledge, common-
sense knowledge, and graph neural networks in deep learning. However, the majority of
existing models only utilize simple syntactic dependency trees to extract sentence syntactic
knowledge or reshape dependency trees. Few models enrich the syntactic dependency tree
from multiple perspectives to extract more accurate node representations. Furthermore,
although part-of-speech information has been studied by many researchers, there are
few methods that combine part-of-speech with syntactic dependency distance to capture
relationships between important nodes that lack direct dependency connections.

Table 1. Summary of the related work.

Models RNN Attention CNN GCN GAT Syntactic Knowledge

TD-LSTM ✓
ATAE-LSTM ✓ ✓
ASCNN ✓ ✓
R-GAT ✓ ✓ ✓ ✓
SK-GCN ✓ ✓ ✓ ✓ ✓
CDT ✓ ✓ ✓
ASGCN ✓ ✓ ✓ ✓
RMN ✓ ✓ ✓ ✓
InterGCN ✓ ✓ ✓ ✓
GL-GCN ✓ ✓ ✓ ✓
SenticGCN ✓ ✓ ✓ ✓

3. The Proposed Method

Utilization of different types of information in sentences, such as aspect positions,
sentiment relationships, part-of-speech tags, and dependency distances, can lead to more
accurate results in sentiment analysis. As discussed previously, on the one hand, we
need to find nodes more relevant to the aspect while retaining syntactic information,
avoiding the loss of information caused by pruning. On the other hand, we also need to
discover sentiment relationships between nodes without direct dependencies in order to
uncover potential sentiment information. Therefore, this paper constructs two structured
dependency weight matrices using various sentence information—the adjacency-enhanced
dependency weight matrix and the subadjacent dependency weight matrix. This is to fully
extract hidden sentiment information in sentences from different perspectives. Specifically,
the adjacency-enhanced dependency weight matrix assigns different weights to dependen-
cies between words based on positional and sentiment common sense knowledge, on top
of the generic dependency tree constructed by dependency parsers. This describes the
relevance between the nodes better. The subadjacent dependency weight matrix utilizes
pivotal part-of-speech tags and dependency distances to construct subadjacent depen-
dency edges, uncovering sentiment propagation relationships between nodes without
direct dependencies.

After obtaining the structured dependency tree, we utilize a weighted graph convolu-
tional network to aggregate node information, effectively distinguishing the importance
of nodes, thereby aggregating information from important nodes with larger weights and
information from secondary nodes with smaller weights. Finally, we fuse them through
masking and attention mechanisms to acquire the final sentiment orientation of the specific
aspect. Some notations are provided to clearly explain the proposed model, as shown in
Table 2. The overall framework of our model is illustrated in Figure 3.
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Table 2. All notations used to explain the proposed model.

Notation Type Definition

s Set A sentence with n-words
wi One-hot vector The i-th word in the sentence
ai One-hot vector The i-th word in the aspect terms
n Scalar The length of the context word
m Scalar The length of the aspect word
dw Scalar The dimension of word embedding
dh Scalar The dimension of hidden representation
X Matrix The GloVe embedding matrix
D Matrix The adjacency matrix
P Matrix The position weight matrix
sa Set The set of aspects in the sentence
E Matrix The sentiment knowledge matrix
A Matrix The aspect matrix
Wadj Matrix The adjacency enhanced dependency weight matrix
Wsub Matrix The subadjacency matrix
Hc Matrix HcThe final representation of the sentence

𝑤1

𝑤2

𝑤𝑎1

𝑤𝑎𝑚
𝑤3

𝑤𝑛

Sentiment dependence

Dependency tree

Position dependence 

Structured dependency tree

Part-of-speech dependence

𝑤1 𝑤2 𝑤3 𝑤𝑛𝑤𝑎1 𝑤𝑎𝑚

Bi-LSTM

Word  embedding

Subneighbor aggregation

Neighbor  aggregation

Mask mechanismAttention mechanism

Sentiment

Figure 3. Overall architecture of the proposed SDTGCN model.
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3.1. Definitions

Aspect-level sentiment analysis basically depends on context information to pre-
dict the sentiment polarity of particular aspects. Given a sentence contains n words
s = {w1, w2, . . . , wa1, wa2, . . . , wak, . . . , wn}, where aspect sequence sa = {wa1, wa2, . . . , wak}
is the subsquence of s, wi denotes the ith context word, and wai denotes the ith aspect.

3.2. Text Representation
3.2.1. Word Embedding

For the input text, we obtain high-dimensional embedded representations of the sentence
using a pretrained GloVe embedding matrix, where each word in the sentence is mapped
to vector xi ∈ Rdw , where dw denotes the dimension of word vectors. After embedding, we
can obtain embedding matrix X = {x1, x2, . . . , xa1, xa2, . . . , xak, . . . , xn} for the input sentence,
where X ∈ Rdw×n, n is the length of the sentence, xi denotes the embedding of the ith context
word, xai denotes the embedding of the ith aspect.

3.2.2. Bi-LSTM Embedding

To obtain contextual information of the sentence, we feed the word embedding matrix
into a Bi-LSTM, using a forward LSTM and a backward LSTM to capture bidirectional
contextual information. After Bi-LSTM embeddings, we obtain forward hidden state
−→
h i ∈ Rdh and backward hidden state

←−
h i ∈ Rdh , where dh is the number of hidden

units. Finally, we concatenate the forward and backward states to obtain the final hidden
representation H for each position.

3.3. Structured Dependency Trees

In this paper, we construct structured dependency trees on top of the generic depen-
dency tree by incorporating position information, sentiment common sense knowledge,
part-of-speech tags, and syntactic dependency distances. This allows sufficient representa-
tion of the aspects and contexts while retaining syntactic knowledge, enabling thorough
extraction of potential sentiment information. The structured dependency tree mainly
consists of an adjacency-enhanced dependency tree and a subadjacent dependency tree,
which are used to uncover hidden information from two perspectives—the dependency
relationships of individual aspects, and the sentiment relationships between aspects and
pivotal words.

Specifically, the adjacency-enhanced dependency tree assigns weights to edges be-
tween words in the generic dependency tree based on position and sentiment commonsense
knowledge to differentiate the importance of context words to the aspect. The subadja-
cent dependency tree builds connections between pivotal words and the aspect based on
part-of-speech tags and dependency distances, uncovering hidden sentiment propagation
paths. By combining the two sub-structures, the structured dependency tree can sufficiently
preserve syntactic relationships while emphasizing important sentiment signals.

To better leverage graph convolutional networks, we first construct a dependency tree
for each sentence using a dependency parser to obtain syntactic knowledge of the sentence.
Adjacency matrix D of the dependency tree is defined as follows:

Dij =

{
1, i = j or wi, wj contains dependency,
0, otherwise,

(1)

where Dij is the dependency matrix, wi denotes the ith context word.

3.3.1. Adjacency Enhanced Dependency Weight Matrix

Context words at different positions relative to the aspect have varying degrees of
influence on aspect sentiment analysis. Context closer to the aspect has a larger impact,
with influence decreasing as distance increases. Thus, we construct a position weight
matrix to enhance the generic adjacency matrix by incorporating the positional information
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of each node’s distance to the aspect node. Position weight matrix P is implemented as
follows:

Pij =


1, wi ∈ sa and wj ∈ sa,

1
|j−pa |+1 , wi ∈ sa,

1
|i−pa |+1 , wj ∈ sa,

1
2(|i−pa |+1) +

1
2(|j−pa |+1) , otherwise,

(2)

where pa is the start position of the aspect in the sentence, wi denotes the ith word in the
sentence, and sa is the set of aspects in the sentence.

To utilize sentiment common sense knowledge between the aspects and context words,
we obtain the sentiment scores of each word from the common sense knowledge library
SenticNet [35]. Different weights are then assigned to each node accordingly. SenticNet is a
knowledge base of common sense information that includes 100,000 concepts related to
rich emotional attributes (e.g., emotion, polarity, semantics). These emotional attributes
provide conceptual-level representations and semantic connections for various aspects
and their associated sentiments. The sentiment common sense knowledge library assigns
sentiment scores to opinion words, which can effectively indicate the sentiment orientation
of words. Specifically, positive words have scores close to 1, negative words have scores
close to −1, and neutral words have scores close to 0. We construct a sentiment knowledge
matrix E based on this knowledge, which is defined as

Eij =

{
S(wi, wj), wi ∈ s and wj ∈ s,
0, otherwise,

(3)

S(wi, wj) = Swi + Swj , (4)

where Swi denotes the sentiment score of wi, S(wi, wj) is the sentiment weight between wi
and wj.

In order to emphasize the importance of specific aspects, we assign them higher
weights. The formula for the aspect matrix A is as follows:

Aij =

{
1, wi ∈ sa or wj ∈ sa,
0, otherwise.

(5)

Finally, we can obtain the representation of the adjacency enhanced dependency
weight matrix Wadj as follows:

Wadj = D⊙ (P + E + A). (6)

3.3.2. Subadjacent Dependency Weight Matrix

Aspect-based sentiment analysis focuses on sufficiently expressing relationships be-
tween aspects and opinion words. We find that part of speech can effectively uncover
sentiment orientations between specific aspects and opinion words. As shown in Figure 1,
the sentiment polarity of the aspect “product” is determined to be negative directly by the
negation adverb “not”. Through dataset comparison, we observe that most opinion words
consist of adjectives, adverbs, noun phrases, etc., while conjunctions are often overlooked.
However, some conjunctions can play pivotal roles. In Figure 1, the adverb “not” deter-
mines the aspect “product” as negative, while although the opinion word “same” modifying
the aspect “performance” does not have explicit sentiment, the coordinating conjunction
“and” indicates “performance” shares the same negative polarity with “product” based on
their paratactic relationship. This demonstrates that conjunctions can also significantly
impact judgment of aspect sentiment orientations. Therefore, we also consider conjunctions
as pivotal words to uncover key sentiment signals.
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Most existing methods simply embed all word part-of-speech (POS) tags to enrich
word representations while overlooking pivotal POS tags and relationships between
them [10]. However, words with shorter dependency distances to the aspect have larger
influence on it. To uncover connections between pivotal words without direct dependencies
yet playing vital roles in determining aspect sentiment, we combine POS tags and depen-
dency distances to discover relationships between such pivotal words. Different weights
are then assigned as subadjacent edges to construct the subadjacency matrix. In this work,
we not only consider pivotal POS tags, but also incorporate dependency distances to selec-
tively highlight relationships between pivotal words, even without direct dependencies in
the original tree. Words closer to the aspect are more likely to modify its sentiment.

We define pivotal = {adjectives, adverbs, nounphrases, conjunctions, aspects}. If two
words both belong to the pivotal set, the closer their syntactic dependency distance,
the greater the edge weight between them. Subadjacency matrix Wsub can be expressed
as follows:

Wsub(i, j) =


2− dij

n , wi ∈ pivotal and wj ∈ pivotal,

1− dij
n , wi ∈ pivotal or wj ∈ pivotal,

0, otherwise,

(7)

where dij denotes the dependency distance between i and j, and n is the number of the
words in the sentence.

3.4. Weighted Aggregation Graph Convulutional Network

In this study, we employ a weighted aggregation graph convolutional network that
takes into account the varying importance of different nodes. Instead of treating all nodes
equally, our approach assigns higher attention to pivotal nodes and lower attention to less
critical ones. Figure 4 illustrates the aggregation process for the node “meat”. Initially,
the node “meat” aggregates its adjacency enhanced nodes such as “the”, “is”, and “restaurant”
to gather syntactic information from the dependency tree. Subsequently, it aggregates
“stale”, which represents subadjacent nodes, to capture the relationships among non-directly
dependent key nodes.

the

meat

in

this good

restaurant

is

stale

the

meat

in

this good

is

stale

Neighbor aggregation

Subneighbor aggregation

restaurant

Figure 4. The weighted aggregation graph convolution of target node “stale”. The green line indicates
the neighbor aggregation edge, and the brown line indicates the subconnection aggregation edge.
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Within the SDTGCN model, adjacency-enhanced weight matrix Wadj and subadja-
cency weight matrix Wsub from the structured dependency tree, along with the hidden
state information H obtained from BiLSTM, serve as inputs. These inputs are fed into
the weighted aggregation graph convolutional network to obtain adjacency-enhanced
information and subadjacency information for each word. In each layer of the aggregation
graph convolutional layer, the ith node’s hidden information hs(i) is updated based on its
adjacency-enhanced nodes and subadjacent nodes:

hn
l (i) = ReLU([Hn

l−1W̃adj ⊕ hn
l−1(i)]Madj + bl), (8)

hs
l (i) = ReLU([Hn

l W̃sub ⊕ hs
l−1(i)]Msub + bl), (9)

where Hl−1 is the representation matrix of the l− 1 layer, Hn
l is the neighbor feature matrix

of l-th layer, Madj and Msub are the parameter matrices; they are updated during the train-
ing process, W̃adj and W̃sub are the normalized matrices of Wadj and Wsub, respectively,
bl is the bias, and ⊕ denotes the concatenation operation.

We construct a concrete aspect masking mechanism to retain the aspect representa-
tions in the final GCN output while masking out non-aspect word representations in the
sentence. This mechanism can effectively acquire valid information about specific aspects
to determine their sentiment orientation. The final representation of the sentence is

Hc = {0, 0, 0, . . . , hs(a1), hs(a2), . . . , hs(ak), 0, 0, . . . , 0}. (10)

3.5. Atterntion Mechanism

We leverage an attention mechanism to extract deep features that capture the rela-
tionship between specific aspects and contextual information. We employ an index-based
attention mechanism for the hidden state information obtained from BiLSTM and the
representations generated using the aspect masking mechanism:

βt =
n

∑
j=1

hc(i)Thc(j), (11)

αt =
exp(βt)

∑n
1 exp(βi)

, (12)

γ =
n

∑
t=1

αihc(i), (13)

where βt is utilized to model the relationship between aspects and their context, αt repre-
sents attention weights, and γ signifies index-based attention representation. Finally, we
feed the ultimate representation of the sentence into a classifier for sentiment analysis.

y = softmax(Wpγ + bp), (14)

where softmax() function is applied to learn the output distribution of the sentiment classi-
fier, y denotes the predicted sentiment distribution, Wp and bp are the trained parameters.

3.6. Training

To minimize the loss function, we employ minimum cross-entropy regularization to
train the model and utilize the standard gradient descent algorithm to optimize and update
the proposed model’s parameters:

L = −
N

∑ yi log(ŷi)||θ||2, (15)



Sensors 2024, 24, 418 12 of 22

where N represents the number of samples in the dataset, yi denotes the ground truth
values, ŷi represents the predicted values, θ encompasses all training parameters, and λ is
the coefficient for L2 regularization.

4. Expriments
4.1. Datasets and Setting

To validate the effectiveness of our proposed model, we conduct experiments on
five public datasets: Lap14, Rest14, Rest15, Rest16, and Twitter. These datasets are sourced
from various SemEval tasks, including SemEval 2014 task 4 (Lap14, Rest14) [36], SemEval
2015 task 12 (Rest15) [37], and SemEval 2016 task 5 (Rest16) [38]. The SemEval datasets are
divided into two main categories, namely Restaurant and Laptop. Each dataset consists of
both training and testing sets, with each review sentence containing one or more aspects
and their corresponding sentiment polarities, which are categorized as positive, neutral,
and negative. Dataset representations are provided in Table 3 for reference.

Table 3. Datasets.

Dataset
Positive Neural Negative

Train Test Train Test Train Test

Lap14 994 341 464 169 870 128
Rest14 2164 728 637 196 807 193
Rest15 978 326 36 34 307 182
Rest16 1230 440 62 28 417 107
Twitter 1561 173 3127 346 1560 1743

In our experiments, we initialize the word embeddings with 300-dimensional pre-trained
GloVe vectors. The hidden state vectors for all neural network layers are set to 300 dimensions.
All weight matrices are initialized from a uniform distribution U(−0.01, 0.01). The Adam
optimizer with a learning rate of 0.001 is utilized to optimize and update all models. The L2
regularization coefficient λ (learning rate) is set to 0.00001, and the batch size is set to 32.
The number of layers in SDTGCN is set to 1. We obtain results over 20 random initializations
and evaluate the model performance using accuracy and Macro-F1 as evaluation metrics.

4.2. Baseline Models

To evaluate the efficacy of our model, we make comparisons with the following
baseline models on five datasets:

• TD-LSTM [39]: The TD-LSTM model employs two target-dependent LSTM networks
to capture dependencies between specific aspects and left and right contexts separately.

• ATAE-LSTM [5]: The ATAE-LSTM model utilizes an attention-based LSTM model
to compute attention scores for specific aspects, thus enabling the model to focus on
pivotal contextual information around different aspects in the sentence.

• IAN [14]: The IAN model uses two interactive attention networks to learn representa-
tions of contexts and targets, which allows for focusing on pertinent parts of contexts
and targets by utilizing inter-attention. It generates aspect-specific representations for
contexts and targets separately.

• MGAN [40]: The MGAN model proposes a fine-grained attention mechanism that
can capture word-level interactions between aspects and contexts.

• MemNet [4]: This model develops a deep memory network to capture pertinent
contextual information for aspect-level sentiment classification. Compared to RNN
models like LSTM, this approach is simpler and faster.

• AOA [41]: This model captures interactions between context and aspects via an
attention mechanism that focuses on salient parts of the sentence.

• TNet-LF [42]: This model utilizes CNN layers to extract pertinent features based on
LSTM layers from transformed lexical representations.
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• ASCNN [7]: This model simplifies ASGCN by substituting two CNN layers for the
two GCN layers in ASGCN.

• R-GAT [9]: The R-GAT model defines an aspect-oriented dependency tree structure
rooted at the target aspect by reshaping and pruning the original dependency tree.
It then leverages graph attention networks to encode the new tree and analyze the
sentiment orientation of specific aspects.

• SK-GCN [29]: This model employs a novel syntax and knowledge-based graph
convolutional network for aspect-level sentiment classification, primarily by modeling
syntactic dependency trees and common sense knowledge graphs to enhance sentence
representations for given aspects.

• CDT [6]: The CDT model simply aggregates GCN and BiLSTM models, demonstrating
convolutional operations of GCNs on dependency trees to distill BiLSTM embeddings,
thereby effectively capturing both structural and contextual information of sentences.

• ASGCN [7]: The ASGCN model constructs a dependency graph for each sentence and
extracts syntactic information and word dependencies via graph convolutional networks.

• BiGCN [43]: This model proposes a novel hierarchical architecture of lexical and
syntactical graphs. It utilizes a global word-level graph to encode co-occurrence
information of words, and separate hierarchical syntax to distinguish various types of
dependency relationships or word pair relations.

• AGCN [11]: This model introduces two aggregating functions to iteratively update
each node’s representation from its neighborhood and leverage sub-dependencies of
nodes to incorporate more relevant node information.

• RMN [44]: The RMN model proposes an innovative relation-constructing multitask
learning network that generates aspect representations via graph convolutional net-
works with semantic dependency graphs and acquires relationships between aspects
for sentiment classification.

• InterGCN [45]: This work introduces a novel interactively graph-perceiving model
based on graph convolutional networks for sentiment analysis by constructing a
heterogeneous graph for each example using aspect-oriented and inter-aspect contex-
tual dependencies.

• GL-GCN [46]: This model concurrently introduces global and local structural infor-
mation in aspect-based tasks to sufficiently extract accurate representations of specific
aspects and contexts.

• SenticGCN [17]: The SenticGCN model aggregates sentiment knowledge from Sentic-
Net to construct graph neural networks, enhancing dependency graphs of sentences.
The novel sentiment-enhanced graph model can accurately acquire distinct affective
features of different aspects and fully capture relationships between specific aspects
and contextual information.

4.3. Results and Analysis

As shown in Table 4, we present the performance of all baseline models and our
proposed model on the five public datasets, i.e., Lap14, Rest14, Rest15, Rest16, and Twitter.
The table allows us to draw the following conclusions:

First, compared to the baseline models, including sequence-based models, self-attention
models, convolutional neural network models, and graph neural network models, the SDT-
GCN model outperforms the baseline models on the Rest14, Rest15, Rest16, and Twitter
datasets. This effectively demonstrates the effectiveness of our proposed model in aspect-
based sentiment analysis.

Second, the table reveals that our model outperforms syntatic models based on general
dependency trees like CDT and ASGCN. This indicates that the structured dependency
tree proposed in this paper enriches node information, allowing for it to better capture
the sentiment dependencies between aspects and context information. This enrichment
effectively avoids irrelevant context information as clues for determining the sentiment
polarity of specific aspects.
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Third, compared to conventional graph neural network models such as ASGCN,
SDGCN, and SK-GCN, our model exhibits superior performance. This suggests that our
proposed weighted aggregation graph convolutional network is capable of aggregating
information from neighbor nodes and subadjacent nodes based on their respective impor-
tance levels. It assigns higher weight to pivotal nodes and lower weight to irrelevant noise
nodes, thereby enhancing model performance.

Table 4. Comparison with the baseline models on five public datasets. Acc represents accuracy, F1
represents Macro-F1 score. Best results are in bold face and second best underlined.

Models
Lap14 Rest14 Rest15 Rest16 Twitter

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

TD-LSTM 71.83 68.43 78.00 66.73 76.39 58.70 82.16 54.21 70.80 69.00
ATAE-
LSTM 68.70 63.93 77.20 67.02 78.48 60.53 83.77 61.71 - -

IAN 72.05 67.38 79.26 71.94 78.54 57.26 84.74 62.29 72.50 70.81
MemNet 70.64 65.17 79.61 69.64 77.31 58.28 85.44 65.99 71.48 69.90
AOA 72.62 67.52 79.97 70.42 78.17 57.02 87.50 66.21 72.30 70.20
TNet-LF 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43 72.98 71.43
ASCNN 72.62 66.72 81.73 73.10 78.47 58.90 87.39 64.56 71.05 69.45
R-GAT 77.42 73.76 83.30 76.08 80.83 64.17 88.92 70.89 75.57 73.82
SK-GCN 73.20 69.18 80.36 70.43 80.12 60.70 85.17 68.08 71.97 70.22
CDT 77.19 72.99 82.30 74.02 - - 85.58 69.93 74.66 73.66
ASGCN 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48 72.15 70.40
BiGCN 74.59 71.84 81.97 73.48 81.16 64.79 88.96 70.84 74.16 73.35
AGCN 75.07 70.96 80.02 71.02 80.07 62.70 87.98 65.78 73.98 72.48
RMN 74.50 69.79 81.16 73.17 80.69 64.41 88.75 71.54 - -
InterGCN 77.86 74.32 82.23 74.01 81.76 65.67 89.77 73.05 - -
GL-GCN 76.91 72.76 82.11 73.46 80.81 64.99 88.47 69.64 73.26 71.26
SenticGCN 77.90 74.71 84.03 75.38 82.84 67.32 90.88 75.91 - -
SDTGCN 78.64 75.50 83.82 76.13 83.21 67.07 91.53 77.08 76.25 74.59

4.4. Ablation Study

To evaluate the performance of different components in our proposed SDTGCN model,
we conducted ablation experiments on the same five public datasets, as demonstrated in
Figures 5 and 6.

Ablation on Accuracy
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3

Figure 5. Ablation study on accuracy.
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表格 1

F1 Lap14(%) Rest14（%） Rest15（%） Rest16（%） Twitter(%)
SDTGCN w/o S 75.26 75.11 65.95 75.29 73.02
SDTGCN w/o P 73.98 74.44 65.55 76.8 73.84
SDTGCN w/o 
W 74.38 75.85 66.87 76.54 74.26
SDTGCN 75.5 76.13 67.07 77.08 74.59

F1
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80

Lap14(%) Rest14（%） Rest15（%） Rest16（%） Twitter(%)

SDTGCN w/o S SDTGCN w/o P SDTGCN w/o W SDTGCN

1

Figure 6. Ablation study on F1.

• SDTGCN w/o S: This represents the model with the structured dependency tree mod-
ule removed, making it unable to fully investigate the relationships between aspects
and context in sentences. As shown, there is a significant decrease in performance
across all datasets when the structured syntax dependency tree module is removed
compared to the SDTGCN model. This indicates that the structured syntax dependency
tree enriches the general dependency tree, strengthens the contextual information in
sentences, and effectively extracts and identifies specific aspect information.

• SDTGCN w/o P: This indicates the model with the subadjacent module that considers
part-of-speech and syntactic dependency distance removed. As observed, remov-
ing this subadjacent module results in a relatively minor decrease in performance
compared to the SDTGCN model. This suggests that considering part-of-speech
and syntactic distance can effectively explore relationships between important nodes
that lack direct dependencies, leading to noticeable improvements in aspect-based
sentiment analysis.

• SDTGCN w/o W: This represents the model with the weighted aggregation graph
convolutional network removed, which means it does not effectively aggregate infor-
mation from adjacency-enhanced matrices and subadjacent matrices. Instead, it uses a
regular graph convolutional network to aggregate neighbor node information. It is
evident that removing the weighted aggregation graph convolutional network results
in a relatively modest decline in performance compared to the SDTGCN model. This
indicates that the weighted aggregation graph convolutional network plays a certain
role in the SDTGCN model by aggregating node information based on importance
levels, thereby enhancing the accuracy of node representations.

These ablation experiments demonstrate the significant contributions of the individual
components within the SDTGCN model to its overall performance, reaffirming the model’s
effectiveness in aspect-based sentiment analysis.

4.5. Study on Model Depth

To evaluate the impact of different numbers of SDTGCN layers, we experiment with
SDTGCN layers ranging from 1 to 6, and the results are presented in Figures 7–11. From the
graph, we can observe that a single layer of SDTGCN achieves the best performance, out-
performing other numbers of SDTGCN layers. Therefore, we set the number of SDTGCN
layers to 1 for our experiments. When the number of SDTGCN layers exceeds 1, the model’s
performance in terms of accuracy and macro metrics shows diminishing returns. This
may be because a higher number of layers introduces complexity that hinders the effective
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propagation of adjacency information. When the number of layers in SDTGCN is set to
1, the aggregated graph convolutional network first performs the initial aggregation on
the enhanced adjacency matrix. Subsequently, it conducts a second aggregation on the
sub-adjacency matrix based on the results of the first aggregation. Therefore, when the
graph convolutional network performs one convolutional operation, it is equivalent to
aggregating information from the nodes twice. This enables the extraction of sufficient
neighboring node information while avoiding the introduction of unnecessary redundancy.
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Figure 7. Model depth study on Lap14.
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Figure 8. Model depth study on Rest14.
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Figure 9. Model depth study on Rest15.
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Figure 10. Model depth study on Rest16.
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Figure 11. Model depth study on Twitter.

4.6. Case Study

As shown in Table 5, for the first example with the aspect “screen”, the attention-based
model incorrectly focuses on the opinion word “good” and ignores the negation “not”,
leading to an incorrect positive sentiment for the aspect. In contrast, both ASGCN and
SDTGCN models accurately capture the dependency relationships of the aspect “screen”
with both “good” and “not”, enabling them to correctly analyze the aspect’s sentiment as
positive. This example demonstrates that dependency tree-based GCN models can flexibly
capture sentence syntax and sentiment dependencies.

Table 5. Case study. We use different models to analyze various cases, where “P”, and “N” represent
positive, and negative sentiments, respectively. Red and blue are used to emphasize positive and
negative emotions, while yellow is used to highlight aspects.

Case IAN ASGCN SDTGCN Ground Truth

The screen on this phone is not very good. P N N N

The food tastes only a little good. N P N N

The meat in this good restaurant is stale. N N P P

In the second example, the ASGCN model incorrectly identifies the sentiment polarity
of the aspect “food”, whereas the SDTGCN model accurately recognizes the sentiment polar-
ity of “food”. This discrepancy is attributed to the SDTGCN model’s structured dependency
tree, which enriches the general syntax dependency graph. It does so by incorporating
location information, sentiment knowledge, part-of-speech, syntactic dependency distance,
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among others, to enhance the importance of aspects with opinion words while weakening
connections between irrelevant words. This results in a more precise expression of the
sentiment dependencies between specific aspects and opinion words.

In the third example, both Attention and ASGCN models fail to correctly identify
the sentiment polarity of the aspect “meat”. In contrast, our proposed SDTGCN model
accurately identifies the sentiment polarity of “meat”. The reason for the misclassification
by Attention and ASGCN models is that they do not consider the relationship between key
words “meat” and “stale”, which lack direct dependency. Therefore, they fail to correctly
identify the aspect’s sentiment polarity. In this case, compared to the opinion word “stale”,
the aspect “meat” has a closer syntactic dependency distance to the opinion word “good”,
indicating a negative sentiment. The SDTGCN model accounts for the influence of part-of-
speech and syntactic dependency distance, effectively mining the relationships between
pivotal nodes that lack direct dependencies, thereby enhancing aspect-based sentiment
analysis performance.

4.7. Visualization of the SDTGCN

To better illustrate that the proposed SDTGCN model enhances the performance of
aspect sentiment analysis, we visualize the attention focus in different models for the
sentence “The food tastes only a little good” in Figures 12 and 13. The SDTGCN model utilizes a
structured dependency tree to explore key opinion words related to the aspect from multiple
perspectives. From the graph, it can be observed that the SDTGCN model assigns higher
attention to the aspect “food” and the words“only”, “little”, “good”. Through comprehensive
analysis, the model determines the sentiment polarity of the aspect as negative. This
demonstrates that the SDTGCN model not only focuses on explicit opinion words, but also
extracts crucial keywords important for determining the sentiment of the aspect.

In contrast, in the ASGCN model, higher attention is given to the aspect word “food”
and “good”, while “only” and “little” receive lower attention. As a result, the model
incorrectly analyzes the sentiment polarity of the aspect word ‘food’ as positive. Therefore,
the proposed SDTGCN model not only concentrates on explicit opinion words, but also
accurately explores the sentiment analysis of the aspect through structured dependency
tree-based comprehensive analysis.
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Figure 12. Attention weights of the SDTGCN model.
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Figure 13. Attention weights of the ASGCN model.

5. Conclusions

In this paper, we introduce a Structured Dependency Tree-based Graph Convolution
Network (SDTGCN) for fine-grained aspect sentiment analysis. The SDTGCN model
enriches the general dependency tree using positional information, sentiment common
sense knowledge, part-of-speech tags, and syntactic dependency distances. This approach
assigns higher weights to pivotal words relevant to aspects and lower weights to words
unrelated to aspects, thereby enhancing the representation of aspects in relation to pivotal
opinion words. Moreover, it considers the relationship between pivotal opinion words
that are not directly dependent on each other through part-of-speech and syntactic depen-
dency distance, reducing the distance between aspects and pivotal opinion words and thus
improving sentiment classification performance. Finally, the SDTGCN model leverages a
graph convolutional network with aggregated edge weights to sequentially aggregate infor-
mation from enhanced neighbor nodes and subadjacent nodes based on node importance.
This allows for the precise representation of specific aspects and enhances the performance
of aspect-based sentiment analysis. Experimental results demonstrate the efficacy of our
proposed model on five public datasets, outperforming other baseline models.

While this study achieved favorable results, there are still some limitations. First,
the dataset used in this study is relatively small. Second, the SDTGCN model relies
on the syntactic structure of sentences, and its effectiveness may be less pronounced
for sentences lacking clear syntactic structures. It is constrained to datasets where the
syntactic structure features are prominent or accurate dependency parsing is available.
Thus, the proposed SDTGCN model may not perform well in datasets with less obvious
syntactic structures or when dependency parsing accuracy is compromised. Therefore,
in future work, we plan to enhance the semantic information of sentences to fully capture
the emotional dependencies between specific aspects and contextual information. This
involves addressing the limitations associated with syntactic structures and attempting to
train the model on larger datasets.
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