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Abstract: Electronic tickets (e-tickets) are gradually being adopted as a substitute for paper-based
tickets to bring convenience to customers, corporations, and governments. However, their adoption
faces a number of practical challenges, such as flexibility, privacy, secure storage, and inability to
deploy on IoT devices such as smartphones. These concerns motivate the current research on e-ticket
systems, which seeks to ensure the unforgeability and authenticity of e-tickets while simultaneously
protecting user privacy. Many existing schemes cannot fully satisfy all these requirements. To
improve on the current state-of-the-art solutions, this paper constructs a blockchain-enhanced privacy-
preserving e-ticket system for IoT devices, dubbed PriTKT, which is based on blockchain, structure-
preserving signatures (SPS), unlinkable redactable signatures (URS), and zero-knowledge proofs
(ZKP). It supports flexible policy-based ticket purchasing and ensures user unlinkability. According
to the data minimization and revealing principle of GDPR, PriTKT empowers users to selectively
disclose subsets of (necessary) attributes to sellers as long as the disclosed attributes satisfy ticket
purchasing policies. In addition, benefiting from the decentralization and immutability of blockchain,
effective detection and efficient tracing of double spending of e-tickets are supported in PriTKT.
Considering the impracticality of existing e-tickets schemes with burdensome ZKPs, we replace them
with URS/SPS or efficient ZKP to significantly improve the efficiency of ticket issuing and make it
suitable for use on smartphones.

Keywords: electronic tickets; privacy-preserving; blockchain; IoT; double-spending detection

1. Introduction

E-ticketing has emerged as a popular method of ticket entry, processing, and marketing
for companies in the airline [1], railway [2,3], and other transportation and entertainment
industries. The integration of blockchain technology in e-ticketing has further enhanced the
security and transparency of transactions. Blockchain [4–7] ensures that each transaction
is recorded in a decentralized and tamper-proof ledger, reducing the risk of fraud and
ensuring the authenticity of e-tickets. Unlike traditional paper-based tickets, e-tickets offer
two major advantages. First, paper-based tickets are disposable and require significant
resources for their production, leading to an increased negative impact on the environ-
ment. By contrast, e-tickets serve as an eco-friendly replacement by minimizing paper
waste produced from ticketing activities, thereby aligning with the principles of the Paris
Agreement [8]. Second, e-tickets provide customers with the flexibility to reserve, issue,
and refund their tickets online anytime and anywhere, eliminating the need for in-person
lineups. This convenience and ease for customers is further heightened by the integration
of IoT technology. Customers can easily access their e-tickets through dedicated mobile
applications, making the entire ticketing process more streamlined and accessible. Seamless
integration with IoT devices not only enhances the overall customer experience, it reflects
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the evolving nature of ticketing systems in the digital age. As a result, e-tickets, powered
by blockchain and IoT technology, offer significant advantages in terms of convenience,
environmental sustainability, and security.

Despite the increasing popularity of e-tickets, they face numerous practical challenges,
particularly with regards to privacy. In e-ticket systems, user data such as name, identity
number, purchase date, and other personal attributes may be collected and misused. Thus,
it is crucial to minimize the collection of personal data in line with the recently introduced
General Data Protection Regulations (GDPR) [9]. In this regard, various privacy-protecting
e-ticket systems have been proposed which use randomizable signatures with efficient
proofs [10–14], pseudonyms [15,16], and anonymous credentials [13,17,18]. However, some
of these systems lack formal proof of security and cannot guarantee the integrity of the
token [12,13,16], while others are inefficient in their invoicing operations, making them
impossible to deploy on IoT devices [18].

An essential feature of any e-ticket system is the ability to issue tickets based on user
attributes. Attribute-based e-ticket systems have potential in various real-world applica-
tions. For example, they can enable students, soldiers, and individuals with disabilities
to purchase tickets at discounted rates without revealing sensitive information such as a
student ID number, unit number, or health conditions. In an attribute-based e-ticketing
system, a user credential used to purchase e-tickets is parameterized with a vector of the
user’s attributes, such as date of birth, affiliation, or occupation. During ticket purchase,
users can prove that they possess a credential meeting a given attribute policy, such as age
or disability, without revealing any additional information beyond the satisfaction of the
attribute policy. Unfortunately, most existing e-ticketing systems [12–14,16] do not support
attribute-based ticket issuance protocols.

Credentials issued by governmental bodies, schools, or companies typically include
only the basic attributes of the user, such as name, gender, educational background, address,
and position. However, in many cases additional attributes can be defined as well. For
instance, in platform configuration-based access control services, attributes may refer not
only to the user’s personal data but to hardware platform and configuration information.
Moreover, one user may hold several roles, each with unique credentials issued by a single
entity. The Privacy by Design Foundation’s Anonymous Credentials (IRMA) [19] offers a
broad range of real-world attributes, such as diplomas, passports, cards, and even member-
ship IDs for online services, which are relevant to governing bodies and various businesses.
Such scenarios imply that a user may have hundreds or more potential attributes. Integrat-
ing IoT devices into the e-ticketing system allows for the inclusion of additional attributes
related to the user while presenting an opportunity to streamline the issuance process. IoT
devices capabilities, such as bio-metric authentication and secure storage, can enhance
the security and efficiency of handling a wide array of attributes. This ensures that the e-
ticketing system remains practical and user-friendly even in scenarios with a large number
of potential attributes. While Han et al. [18] designed the first attribute-based e-ticketing
system, their ticket issuance algorithm’s computational cost and communication overhead
increases linearly with the number of user attributes, making their scheme impractical to
deploy on IoT devices when users have hundreds of attributes.

Paper-based tickets can be made unique, and are easily distinguishable from copies;
however, distinguishing original e-tickets from their copied versions is challenging, making
it necessary to prevent and detect double spending in e-ticketing systems. This challenge
is particularly pertinent in the digital realm, where the ease of replication poses a unique
set of security concerns. The integration of blockchain technology offers a promising
solution to the issue of double spending in e-ticketing. By utilizing a decentralized and
tamper-proof ledger, blockchain ensures the immutability and transparency of transaction
records. Each e-ticket transaction can be securely recorded on the blockchain, creating
a verifiable and unforgeable trail. This prevents unauthorized duplication of e-tickets
while allowing for efficient tracking and identification of any double-spending attempts.
Moreover, in the context of IoT technology, blockchain can be seamlessly integrated to
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enhance the security of e-tickets. IoT devices can serve as secure digital wallets, storing
and managing e-tickets in a tamper-resistant environment. The combination of blockchain
and IoT devices ensures that the integrity of e-tickets is maintained, reducing the risk
of duplication and unauthorized use. In the event of a double-spending attempt, the
decentralized nature of blockchain enables the identification and tracing of responsible
users without compromising the anonymity of honest users. The transparency of the
blockchain allows for swift and accurate resolution of security incidents, thereby bolstering
the overall trust and reliability of the e-ticketing system.

Based on the above requirements and intuition, we propose PriTKT, a blockchain-
enhanced privacy-preserving e-ticketing system for IoT devices that supports ticket is-
suance based on user attributes. PriTKT significantly reduces the computational cost
and communication overhead, making it suitable for use on IoT devices, and utilizes
blockchain [4] to achieve effective malicious user tracking.

Our Contributions

This work makes the following contributions:
• Attribute-based ticketing: We propose an e-ticket system that supports attribute-

based ticketing. This system securely and seamlessly integrates attribute-based anonymous
credentials [20], unlinkable redactable signatures (URS) [20], structure-preserving sig-
natures (SPS) [21], Pedersen commitment, and zero-knowledge signature of knowledge
(ZKSoK) [22] in its design. In our e-ticket system, a trusted party generates a ticket pur-
chasing policy set during system initialization. The ticket purchasing policy set regulates
how tickets are issued. User privacy is preserved, as users may disclose a subset of their
attributes as long as they satisfy a ticket purchasing policy in the ticket purchasing policy
set for the tickets they purchase.

• Efficient ticketing for IoT devices: Our system improves the efficiency of the
ticketing algorithm to ensure that it can be efficiently executed on an IoT device (such
as smartphone) while presenting a privacy-preserving e-ticketing solution that does not
require expensive Zero-Knowledge Proofs (ZKP) to validate user credentials during ticket
purchase. Instead, we use the URS signature, which reduces the computational overhead
in the ticket-issuing algorithm from O(N) to O(N − K) and the communication overhead
from O(N) to O(K), where N and K represent the number of user attributes and exposed
attributes, respectively. Compared to the closest scheme in [18], our method improves
both computational and communication performance. We implemented PriTKT on a
smartphone under AES-100-bit security and compared it with the state-of-the-art scheme
from [18], finding that our issuing algorithm and showing algorithm were 250% and 240%
more efficient, respectively.

• Blockchain-enhanced double-spending detection and efficient trace: We imple-
ment double-spending detection and efficient user tracking. The verifier uploads each valid
token into the blockchain. The decentralization and immutability of the blockchain [4]
ensures the correctness of the token storage. Every ticket must disclose its unique identity
when it is shown, and ZKSoK is used to guarantee the correctness of its identity disclosure.
With the ticket identity, the verifier can traverse the tokens stored in the blockchain and
quickly detect any double-spending. Using the “Schnorr trick” [23], the verifier can quickly
compute the public key of any double-spending user for efficient tracing.

• Unlinkability and framing resistance: Our solution ensures the unlinkability of
tickets. Using the unlinkability of URS signatures, we prove that no tickets of the same user
can be linked. Our solution ensures the framing resistance of tickets. Framing resistance
ensures that corrupt sellers cannot falsely accuse any honest users of double-spending.

In addition, we offer formal security definitions for e-tickets that can be reduced to
known complexity assumptions or the security of established cryptography primitives.
The performance of PriTKT was measured on a smartphone.
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2. Related Work
2.1. Electronic Tickets on IoT Devices

Mut-Puigserver et al. [24] conducted a study on the functional and security require-
ments of electronic tickets. These requirements include offline verification, expiration dates,
reduced size, portability, flexibility, unlinkability, unforgeability, and non-overspending.
They explored various types of e-tickets, such as single-use, multi-use, transferable, and
non-transferable. Our research specifically focuses on analyzing the unlinkability, unforge-
ability, and non-overspending features of single-use and non-transferable electronic tickets
leveraging the capabilities of IoT devices and the security of blockchain technology.

Previous studies by Heydt-Benjamin et al. [12] employed electronic cash, anonymous
credentials [25], and proxy re-encryption [26] to enhance privacy in public transit systems
that use electronic tickets. The study proposed a theoretical framework to examine the
security of payments and the privacy of information in transit systems. They asserted
that their system was capable of safeguarding user privacy but was not compatible with
attribute-based ticketing; however, the paper did not provide any formal proof to support
the system’s security. In contrast, the integration of IoT technology and blockchain in mod-
ern e-ticketing systems, such as PriTKT, can offer improved security measures, including
attribute-based ticketing, while maintaining user privacy. Following Rupp et al. [14], Jager
et al. [27] presented Black-Box Accumulation (BBA) to establish cryptography payment
systems. Later, BBA was enhanced to BBA+ [28] by Hartung et al. and Black-Box Wallet
(BBW) by Hoffmann et al. [29]. Nonetheless, these payment schemes [27–29] differ from
attribute-based e-ticketing systems, as they pertain to electronic payments.

Vives-Guasch et al. [16] introduced an e-ticketing system that considers user privacy
requirements as well as security requirements that include exculpability and re-usability.
Additionally, by utilizing lightweight cryptography and mobile phones equipped with
Near-Field Communication (NFC) technology, their system accommodates the computa-
tional limitations of users. Regrettably, however, their system does not support attribute-
based ticketing. The integration of IoT devices (smartphones) in e-ticketing systems, as
demonstrated by PriTKT, can contribute to enhanced features such as de-anonymization
prevention and secure ticket non-transferability, while blockchain ensures the security and
transparency of transactions.

The system of Milutinovic et al. [13] depends on certified tokens that are impossible to
relate, and on different cryptographic primitives such as commitment schemes [30], partially
blind signatures [31], and anonymous credentials [32] to tackle privacy concerns. However,
their system does not provide de-anonymization capabilities after double spending or
support ticket non-transferability in the way that PriTKT does. The integration of IoT
devices capabilities in PriTKT enhances security measures and provides a practical solution
for these challenges.

Han et al. [18] introduced attribute-based credentials derived from the Boneh–Boyen
signature (BBS) [33] and efficient set membership proof and range proofs [34] to issue
attribute credentials and tickets. However, due to the use of a signature with the NIZK
protocol, their system’s NIZK proof computation increases linearly with the number of
attributes in the ticket-issuing algorithm, limiting its practical use. The integration of
lightweight and efficient IoT technology, along with the security of blockchains, can poten-
tially address these computational constraints, making attribute-based e-ticketing more
practical and user-friendly.

2.2. Blockchain-Enhanced Double-Spending Detection

Double-spending problems exist not only in e-ticket system [12–14,16,18], but in
electronic payment systems [23,27–29] and blockchain cryptocurrency schemes [5–7].
Blockchain technology plays a crucial role in mitigating the double-spending issue by
providing a decentralized and transparent ledger that ensures the integrity and uniqueness
of transactions.
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The most direct way to prevent double-spending is to bind each spending operation
with a unique identifier that cannot be forged to ensure that that verifiers can detect
double-spending based on the unique identifier. Rupp et al. [14] used a digital signature
as the identifier. Sasson et al. [5] utilized hash-based commitments to compute identifiers.
Androulaki et al. [6] utilized verifiable random functions to generate identifiers. Han
et al. [18] and Sun et al. [7] used elements randomly mapped to elliptic curve groups as
identifiers. Jager et al. [27] and Bobolz et al. [23] directly used a random number as the
identifier. Although there are many ways to generate identifiers, these schemes all need to
compute a zero-knowledge proof in the spending protocol to prove the correctness of the
disclosed identifier.

Certain schemes [5–7,12,13,16,27] simply terminate the spending protocol when a
double-spend is detected, while others [14,18,23,28,29] support further tracing and identifi-
cation of malicious users. The method used by Han et al. [18] was to hide users’ identity in
ElGamal ciphertext, then use a verifier to recover their identities through the spending algo-
rithms. The scheme in [14,23,28,29] achieved double-spending tracing through the “Schnorr
trick”, which is more efficient than scheme in [18]. The integration of blockchains into
these schemes can enhance the overall security and transparency of their double-spending
prevention and tracing mechanisms.

2.3. Attribute-Based Credentials

Anonymized attribute-based credentials that enable selective disclosure of attributes
can be obtained in a manner akin to the use of randomizable signatures. Every user receives
a signature on (commitments to) a list of attributes from a centralized authority. When
the credential is presented, the user randomizes the signature (ensuring that the resulting
signature and the published signature cannot be linked) and proves the correspondence of
this signature to the revealed and hidden attributes in zero-knowledge proofs [35–41]. From
a privacy perspective, this solution is perfectly satisfactory; however, it is not very efficient,
as the user’s unshared attributes impose more cost than the user’s revealed attributes.

Fuchsbauer and Hanser [42,43] randomized both the signature and the signed message
(which is a set commitment to the user’s attributes) with a structure-preserving signature
on equivalence classes (SPS-EQ), then used subset opening of the set commitments to
selectively disclose attributes. In this way, they avoided the need to perform costly ZKP over
the hidden attributes. Unfortunately, while attributes can be disclosed in this solution once
they are signed, it cannot be proven that they are hidden while satisfying certain relations.

Camenisch et al. [44] presented a novel unlinkable redactable signature (URS) that
allows part of the signed message to be redacted while proving that the signature is
valid for the disclosed attributes. Unfortunately, their scheme can only be instantiated
by Groth–Sahai proofs [45], and it is difficult to compete with the most effective solution
in practice. Sanders followed the URS approach from [44] and constructed a flexible
redactable signature scheme that achieves unlinkability at almost zero cost. Unlike the
methods in [43,44], the URS presented by Sanders can prove complex relationships between
attributes and does not rely on zero-knowledge proofs for partial verification.

3. Preliminaries
3.1. Bilinear Pairing

Suppose that G1, G2, and GT are groups of prime-order p with generators g ∈ G1
and g̃ ∈ G2. A mapping e : G1 ×G2 → GT is a bilinear map if it satisfies three requisite
properties. (1) Bilinearity: for all g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, we have e(ga, g̃b) = e(g, g̃)ab;
(2) Nondegeneracy: e(g, g̃) ̸= 1; and (3) Computability: e is an efficiently computable function.
The PriTKT scheme is based on the Type III bilinear pairing [46], which by definition does
not admit an efficiently computable homomorphism between G1 and G2.
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3.2. Computational Assumptions

Discrete Logarithm (DL) Assumption. Let G be a prime-order cyclic group and let
g be a generator of G. Given (g, gx) ∈ G2, the DL assumption holds in G if no efficient
algorithm or adversary can practically compute x with non-negligible probability.

The DDH Assumption. Let G be a prime-order cyclic group and let g be a generator
of G. Given (g, gx, gy, gz) ∈ G4, the DDH assumption holds in G if no efficient adversary
can distinguish the product z = x · y from a random element in G.

3.3. Unlinkable Redactable Signatures

The Unlinkable Redactable Signature (URS) [20] consists of a tuple (Setup, KeyGen,
Sign, Derive, Verify) of probabilistic polynomial-time (PPT) algorithms. The URS is used
to issue credentials for a user’s attributes.

• Setup(1λ): given a security parameter λ, this algorithm generates the public param-
eters pp = (G1,G2,GT , g, g̃, p, e).

• KeyGen(n): given an input integer n, this algorithm selects (x, y1, . . . , yn)
R←− Zn+1

p

and computes X = gx, Yi = gyi , Ỹi = g̃yi , 1 ⩽ i ⩽ n, and Zi,j = gyi ·yj , 1 ⩽ i ̸= j ⩽ n. Then,
the secret key is sk = (x, y1, . . . , yn) and the public key is pk = (X, {Yi, Ỹi}n

i=1, {Zi,j}1⩽i ̸=j⩽n).
• Sign(sk,A = {ai}n

i=1): to sign n messages a1, . . . , an (ai ∈ Zp, 1 ⩽ i ⩽ n), this

algorithm selects σ̃1
R←− G2 and computes σ̃2 = σ

x+∑n
i=1 yi ·ai

1 . It sets σ1 = 1G1 and σ2 = 1G1 ,
then outputs σ = (σ1, σ2, σ̃1, σ̃2).

• Derive(pk, σ,A,D): given an input signature σ = (σ1, σ2, σ̃1, σ̃2) on {ai}n
i=1, the

public key pk, and a subset D ⊆ [n], this algorithm selects (r, t) R←− Z2
p and computes

σ̃′1 = σ̃r
1, σ̃′2 = σ̃r

2(σ̃
′
1)

t, σ′1 = gt ∏i∈[n]\D Yai
i , and σ′2 = (∏i∈D Yi)

t ∏i∈D,j∈[n]\D Z
aj
i,j. If

D = [n], then [n] \ D = ∅ and σ′1 = gt and σ′2 = (∏i∈[n] Yi)
t. The algorithm returns the

derived signature σ′ = (σ′1, σ′2, σ̃′1, σ̃′2) on D ⊆ [n].
• Verify(pk, σ,D = {ai}i∈D): a signature(σ1, σ2, σ̃1, σ̃2) on D ⊆ [n] is valid if the

following equations hold: e(Xσ1 ·∏i∈D Ỹai
i , σ̃1) = e(g, g̃2) and e(σ1, ∏i∈D Ỹi) = e(σ2, g̃), in

which case the algorithm returns 1; otherwise, it returns 0.
The URS [20] is a redactable signature scheme with forgeability and unlinkability in

the generic group model.

3.4. Structure-Preserving Signatures

The Structure-Preserving Signatures (SPS) proposed by Groth [21] consist of a tuple
(Setup, KeyGen, Sign, Verify) of PPT algorithms that sets messages in G2. This scheme is
used to issue credentials for a seller’s public key.

• Setup(1λ): given a security parameter 1λ, this algorithm generates public parameters
pp = (G1,G2,GT , g, g̃, p, e).
• KeyGen(n): this algorithm generates a secret key sk = (x, y1, . . . , yn) and a public

key pk = (h; X̃; {Ỹi}n−1
i=1 ) when given an input integer n. It selects (x, y1, . . . , yn−1)

R←− Zn
p

and a random generator h R←− G1, and computes X̃ = g̃x, Ỹi = g̃yi , and 1 ⩽ i ⩽ n− 1.
• Sign(sk, {mi}n

i=1): to sign n messages (m1, . . . , mn), where mi is an element of group

G1 for 1 ≤ i ≤ n, the signer randomly selects r R←− Zp and computes δ̃1 = g̃r−1
,

δ2 = (h · gx)r, and δ3 = (h · mn · ∏n−1
i=1 myi

i )
r. Next, the signer outputs the signature

δ = (δ̃1, δ2, δ3).
• Verify(pk, δ, {mi}n

i=1): for verification of the signature δ = (δ̃1, δ2, δ3) associated with
messages {mi}n

i=1, two pairing equations need to be evaluated: e(δ2, δ̃1) = e(h, g̃)e(g, X̃)

and e(δ3, δ̃1) = e(h, X̃)e(mn, g̃)∏n−1
i=1 e(mi, Ỹi). If at least one of these equations is not

satisfied, the algorithm outputs 0; otherwise, it outputs 1.
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3.5. Zero-Knowledge Signature of Knowledge

The ZKSoK protocol [22] for an NP-relationR is composed of the following algorithms
to ensure knowledge of the language LR = {y : ∃x, (x, y) ∈ R}.

• Gen(1λ), which returns a public parameter pp when provided a security parameter λ;
• Sign(m, x, y), which returns a ZKSoK Π = ZKSoK{x : (x, y) ∈ R} when given a

message m and a relation (x, y) ∈ R;
• Verify(m, Π, y), which, when given a message m, ZKSoK Π, and statement y, returns

1 if Π is valid and 0 otherwise.

4. System and Security Model
4.1. System Model

Electronic ticketing systems involve five entities, as presented in Figure 1: the Cen-
tral Authority (CA), Ticket Seller (S), User (U) with IoT device (such as smartphones),
Blockchain (BC), and Ticket Verifier (V). This section describes each individual function
in turn.

Figure 1. E-ticket system.

• CA bears the responsibility of being the globally trusted entity that establishes the
electronic ticketing system (step 1⃝). Here, the CA creates policy set for purchasing tickets.
In addition, the CA must offer registration services to ticket sellers (step 2⃝) and users
(step 3⃝).

• S is an independent ticket seller who is required to register with CA in order to
participate in the ticketing system (step 2⃝). During the ticket purchasing process, S is
responsible for verifying each user’s credentials and issuing tickets based on the ticket
purchasing policy set forth by CA (step 4⃝).

• U has a designated set of attributes stored in their IoT device that must be registered
with CA in order to participate in the ticketing system (step 3⃝). When purchasing a ticket
from S, U is only required to disclose a subset of their attributes that satisfy the ticket
purchasing policy selected by S (step 4⃝). Subsequently, U presents the ticket to V in an
anonymous manner (step 5⃝).

• The blockchain BC acts as an immutable database in the electronic ticket system;
using the decentralized features of the blockchain, the verifier can upload all valid token
information. Any participant can then query the presentation tokens.

• V offers ticket verification services to all users, and has the ability to detect instances
of double-spending. Upon receiving verifiable data from users, V verifies the authenticity
of their tickets (step 5⃝) and uploads the token to the blockchain while simultaneously
detecting any attempts at double-spending. If a double-spending ticket is identified,
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V traces the corresponding user’s public key (step 6⃝) and generates double-spending
blaming information.

• Any participant can download the token information from the blockchain and verify
the correctness of the double-spending tracing based on the double-spending blaming
information generated by V (step 7⃝).

4.2. Formal Definition

The notations used in the system are listed in Table 1, and the algorithms are defined
formally below.

Table 1. Summary of notation.

Notation Description

1λ/ϵ(λ) security number/negligible function
[N] set {1, 2, · · · , N}
D subset of [N]

x R←− S x is randomly selected from the set S
CA central authority
S/U/V ticket seller/user/verifier
BC the blockchain
P ticket purchasing policy set
A/D attributes/disclosed attributes set
N/K number of user attributes/disclosed attributes
pp/msk public parameters/master key of the system
usk/upk secret/public key of U
ssk/spk secret/public key of S
credu/creds credential of U/S
tkt ticket of U
VPtkt valid period for the ticket of U
dsid/dstrace double-spending identity/trace infomation
dsblame double-spending blaming information
H collision resistant hash function
⊥ failed identifier

• Setup(1λ)→ (msk, pp,P): the algorithm is executed by CA, which takes a security
parameter 1λ as input and returns a secret key msk, system parameter pp, and set of ticket
purchasing policies P.

• SKeyGen(pp) → (ssk, spk): the algorithm is executed by S, which takes a system
parameter pp as input and returns a private key ssk and corresponding public key spk
as output.

• UKeyGen(pp)→ (usk, upk): the algorithm is executed by U, which takes a system
parameter pp as input and returns a private key usk and corresponding public key upk
as output.

• SReg(S(ssk, spk, pp)↔ CA(msk, spk, pp))→ (creds,⊥): to obtain a credential for a
given public key spk, S and CA engage in an interactive algorithm. S provides (ssk, spk)
and pp as inputs, while CA provides msk, spk, and pp as inputs. If the algorithm executes
successfully, a credential creds is issued to S. If the algorithm fails to execute, ⊥ is returned
as the output.

• UReg(U(usk, upk,A, pp)↔ CA(msk, upk, pp)) → (credu, ⊥): U and CA engage in
an interactive algorithm to obtain a credential for the attribute set A = {ai}N

i=1. U provides
(usk, upk), A, and pp as inputs, while CA provides msk, upk, and pp as inputs. If the
algorithm executes successfully, a credential credu is issued to U. If the algorithm fails to
execute, ⊥ is returned as output.

• Issue(U(usk, credu,D,A, pp) ↔ S(ssk, creds, pp,P)) → ((tkt, VPtkt), b): the algo-
rithm for obtaining an anonymous ticket involves an interaction between U and S. To
initiate this process, U provides usk, credu, D, A, and pp as inputs, while S provides ssk,
creds, pp, and P as inputs. Here, we define D = {ai}i∈D ,D ⊆ [N] for convenience. U
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must then provide proof that a subset D of their attributes A has been certified and that
D ∈ P in accordance with the ticket purchasing policy selected by S. The final output of the
algorithm consists of a bit b indicating the validity of credu as well as an anonymous ticket
tkt and its associated valid period VPtkt for U.

• Show(U(usk, tkt, VPtkt, spk, pp)↔ V(spk, pp))→ ((dsid, dstrace), b): this algorithm
relies on the interaction between U and V. U accepts usk, tkt, VPtkt, spk, and pp as inputs,
while V only takes spk and pp. When the algorithm is completed, V uploades the token
to BC and produces a bit b with a value of either 1 or 0 (1 indicates that tkt is valid and
that VPtkt falls within the validity period, whereas 0 indicates the opposite) along with a
double-spending identity dsid and double-spending trace information dstrace.

• DSTrace(dsid, dstrace, dsid, dstrace, spk, pp) → ((dsblame, upk′),⊥): V can execute
this algorithm under the condition that the double-spending identity of two tickets is
identical (dsid = dsid), which can be correctly verified by traversing the token information
in BC. By taking two trace information dstrace and dstrace as input, V can deterministically
generate two outputs: the unique public key upk′ of the double-spending user, and the
double-spending blaming information (dsblame if successful or ⊥ if unsuccessful).

• VerifyDS(dsblame, upk′) → b: any party can operate this algorithm. With dsblame
and upk′ as inputs, it generates an output of b = 1 if dsblame proves that upk′ has double-
spending and b = 0 otherwise.

Note that instead of embedding the user ID as an attribute in the user credential, in
our e-ticketing system we use each user’s public key as that user’s unique identifier. This is
because in our system each user has a unique public key. When the DSTrace algorithm is
executed, the user’s ID can always be determined in the real world according to the public
key issued by V and the credential information maintained by CA.

Definition 1. The correctness of the e-ticket system depends on two conditions: (1) the tickets
produced by the Issue algorithm must be verifiable by the Show algorithm, and (2) the DSTrace
algorithm must be able to track users who attempt double-spending behavior. The formal definition
of correctness can be found in Supplementary Material Section S4.

4.3. Security Model

We assume that the central authority in the system, CA, is fully trustworthy. The ticket
seller, S, is honest enough to issue tickets to users according to a specific purchase policy
but may attempt to obtain users’ undisclosed attributes and real IDs. The user, U, may forge
tickets, attempt to spend them twice, or transfer them illegally. The ticket verifier is honest
in verifying tickets and detecting users who attempt to spend an electronic ticket more than
once, but may attempt to obtain the undisclosed attributes and real IDs of honest users.

The e-ticket system should satisfy the following security requirements: unforgeability
of user credentials and tickets, unlinkability of honest users, framing resistance of honest
users, and non-transferability of tickets. The security model is defined following the works
in [20,23,43,47], and we provide formal definitions of security requirements.

The following global variables and oracles are used in all security definitions.
Global Variables.
HU : the set of honest users’ identities; CU : the set of corrupt users identities; (UPK,

USK): the list of users’ public and secret keys; (CREDU , AT T RU , CIDU): the list of user
credentials, user attributes sets, and user identities; (T KT , VP tkt, T IDU , T IDS): the list
of tickets, valid period of tickets, user identities, and seller identities;HS : the set of honest
sellers’ identities; CS : the set of corrupt sellers’ identities; (SPK, SSK): the list of sellers’
public and secret keys; (CREDS, CIDS): the list of sellers’ credentials and identities.

Oracles.
• OHU(i): an oracle that can be used to generate keys for an honest user i. If

i ∈ HU or i ∈ CU , then it returns ⊥; otherwise, it creates honest user i by running
(USK[i],UPK[i])← UKeyGen(·). It adds i toHU and returns UPK[i].
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• OHS(j): an oracle that can be used to generate keys for an honest seller j. If
j ∈ HS or j ∈ CS , then it returns ⊥; otherwise, it creates honest seller j by running
(SSK[j],SPK[j])← SKeyGen(·). It adds j toHS and returns SPK[j].

• OCU(i, upk): an oracle that can (optionally) be used to corrupt an honest user i with
the public key upk. If i ∈ CU , then it returns ⊥. If i ∈ HU , then it removes i from HU
and adds i to CU ; it searches u to fulfill the condition CIDU [u] = i and returns (USK[i],
AT T RU [u], CREDU [u]). Otherwise, it adds i to CU and sets UPK[i]← upk.

• OCS(j, spk): an oracle that can (optionally) be used to corrupt an honest seller j with
the public key spk. If j ∈ CS , then it returns ⊥. If j ∈ HS , then it removes j fromHS , adds
j to CS , and returns SSK[j]. Otherwise, it adds j to CS and sets SPK[j]← spk.

• OUReg(i,A): an oracle that can be used to issue a credential for an honest user i
with the attribute set A. If i /∈ HU , it returns ⊥. Otherwise, it issues a credential to i by
running UReg(U(USK[i],UPK[i],A, pp)↔ CA(msk, UPK[i], pp))→ credu and appends
(credu,A, i) to (CREDU , AT T RU , CIDU).

• OSReg(j): an oracle that can be used to issue a credential for an honest seller j. If
j /∈ HS , it returns ⊥; otherwise, it issues a credential to j by running SReg(S(msk,SPK[j],
SPK[j], pp)↔ CA(SSK[j], pp))→ creds and appends (creds, j) to (CREDS, CIDS).

• OIss(i, j,D): an oracle that can be used to play an honest seller j issuing a ticket to
an honest user i with the disclosed attributes set D = {ai}i∈D . If i /∈ HU or j /∈ HS , it
returns⊥; otherwise, it searches u and v to fulfill conditions CIDU [u] = i and CIDS[v] = j,
then j issues a ticket to i by running Issue(U(USK[i], CREDU [u],D,AT T RU [u], pp)↔ S(
SSK[j], CREDS[v], pp,P))→ ((tkt, VPtkt), b). If b = 0, it returns ⊥; otherwise, it appends
(tkt, VPtkt, i, j) to (T KT , VP tkt, T IDU , T IDS).

• OIssU (i, j,D) : an oracle that can be used to play a curious seller j issuing a ticket to an
honest user i with the disclosed attributes set D. If i /∈ HU or j /∈ CS , it returns⊥; otherwise,
it searches u to fulfill the condition CIDU [u] = i and runs Issue(U(USK[i], CREDU [u],D,
AT T RU [u], pp) ↔ A(j, ·)) → ((tkt, VPtkt), b), where the seller’s side is executed by the
adversary. If b = 0, it returns ⊥; otherwise, it appends (tkt, VPtkt, i, j) to (T KT , VP tkt,
T IDU , T IDS).

• OIssS(j, i,D): an oracle that can be used to play an honest seller j issuing a ticket
to a malicious user i with the disclosed attributes set D. If i /∈ CU or j /∈ HS , it returns
⊥; otherwise, it searches v to fulfill the condition CIDS[v] = j and runs Issue(A(i, ·) ↔
S(SSK[j], CREDS[v], pp,P)) → ((tkt, VPtkt), b), where the user’s side is executed by the
adversary. If b = 0, it returns ⊥; otherwise, it appends (tkt, VPtkt, i, j) to (T KT , VP tkt,
T IDU , T IDS).

• OShw(i, j): an oracle that can be used to play a malicious verifier verifying a ticket for
an honest seller user i. If i /∈ HU , it returns ⊥; otherwise, it searches u to fulfill conditions
T IDU [u] = i and T IDS[u] = j and runs Show(U(USK[i], T KT [u],VP tkt[u], pp) ↔
A(SPK[j], ·))→ ((dsid, dstrace), b), where the verifier’s side is executed by the adversary.
If b = 0, it returns ⊥; otherwise, it returns (dsid, dstrace).

We define the security model of the PriTKT system as follows.
Unforgeability. Unforgeability can protect honest sellers and verifiers from malicious

users. It guarantees that users cannot forge credentials in the Issue algorithm or tickets
in the Show algorithm. An adversary can interact with the CA and honest seller oracles
as a corrupted user to model this property. The adversary wins when they can forge
a credential or a ticket of either an honest or an unregistered user in the Issue or Show
algorithm. Unforgeability is defined by dividing it into credential unforgeability and
ticket unforgeability.

Definition 2. Experiment Expu fcred in Pse. 1 defines the unforgeability of credentials. The users’
credentials are considered unforgeable if any PPT adversary A can access the oracle
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O = {OHU(i),OCU(i),OHS(j),OUReg(i,A),OSReg(j),OIss(i, j,D),OIssS(j, i,D),OShw(i, j)}.
A negligible function ϵ(λ) exists such that

Advu fcred = |Pr
[

Expu fcred(A, λ)
]
= 1| ⩽ ϵ(λ).

Expu fcred(A, λ):
1. (msk, pp,P)← Setup(1λ);
2. (i∗, j∗, st)← AO(pp,P);
3. Issue(A(st, i∗)↔ S(SPK[j∗], pp))→ (·, b);
4. If ( b = 0∨ i∗ ∈ CU ∨ j∗ /∈ HS ), return 0;
5. Return 1.

Pseudocode 1. Unforgeability of Credentials

Definition 3. The experiment Expu ftkt in Pse. 2 defines the unforgeability of tickets. In order for
users’ tickets to be considered unforgeable, it must be the case that any PPT adversary, denoted
as A, who has the oracle O that contains OHU(i), OCU(i), OHS(j), OUReg(i,A), OSReg(j),
OIss(i, j,D), OIssS(j, i,D), and OShw(i, j), will have a negligible function ϵ(λ) such that

Advu ftkt = |Pr
[

Expu ftkt(A, λ)
]
= 1| ⩽ ϵ(λ).

Expu ftkt(A, λ):
1. (msk, pp,P)← Setup(1λ);
2. (i∗, j∗, st)← AO(pp,P);
3. Show(A(st, i∗)↔ V(SPK[j∗], pp))→ (·, b);
4. If ( b = 0∨ i∗ ∈ CU ∧ j∗ /∈ HS ), return 0;
5. Return 1.

Pseudocode 2. Unforgeability of Tickets

Unlinkability. Unlinkability is necessary to safeguard honest users from inquisitive
sellers and verifiers. Its primary purpose is to prevent an adversary from controlling a
corrupt seller (who also verifies) from associating a specific credential with a particular
user in the Issue algorithm or from tying a specific ticket to a particular user in the Show
algorithm. To formally define this property, we allow the adversary to interact with the CA
and honest user oracles playing the part of the corrupted seller. In the subsequent challenge
phase, the adversary can invoke extra interactions and attempt to determine which user
they are interacting with. If they correctly guess the user, the adversary wins. To define
this property, we divide unlinkability into unlinkability of credentials and unlinkability
of tickets.

Definition 4. The experiment Expanocred−b depicted in Pse. 3 defines the unlinkability of creden-
tials. We consider users’ credentials to be unlinkable if, for any PPT adversary, A with access to
the oracle O = {OHU(i),OHS(j),OCS(j),OUReg(i,A), OSReg(j),OIss(i, j,D), OIssU (i, j,D),
OShw(i, j)} there exists a negligible function ϵ(λ) such that

Advanocred = |Pr
[

Expanocred−1(A, λ) = 1
]
−

Pr
[

Expanocred−0(A, λ) = 1
]
| ⩽ ϵ(λ).
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Expanocred−b(A, λ):
1. (msk, pp,P)← Setup(1λ);
2. (i0, i1,D∗, j∗, st)← AO(pp,P);
3. If ( i0 /∈ HU ∨ i1 /∈ HU ∨ j∗ /∈ CS ), return ⊥;
4. b∗ ← AOIssU (ib ,j∗ ,D∗)(pp,P);
5. Return b∗.

Pseudocode 3. Anonymity of Credentials

Definition 5. Experiment Expanotkt−b in Pse. 4 defines the unlinkability of tickets. Users’
tickets are unlinkable if any PPT adversary A with the oracle O = {OHU(i),OHS(j),OCS(j),
OUReg(i,A),OSReg(j), OIss(i, j,D),OIssU (i, j,D),OShw(i, j)} cannot associate a specific ticket
with a particular user. There exists a negligible function ϵ(λ) such that

Advanotkt = |Pr
[

Expanotkt−1(A, λ) = 1
]
−

Pr
[

Expanotkt−0(A, λ) = 1
]
| ⩽ ϵ(λ).

Expano−b(A, λ):
1. (msk, pp,P)← Setup(1λ);
2. (i0, i1, j∗, st)← AO(pp,P);
3. If ( i0 /∈ HU ∨ i1 /∈ HU ∨ j∗ /∈ CS ), return ⊥;
4. b∗ ← AOShw(ib ,j∗)(pp,P);
5. Return b∗.

Pseudocode 4. Anonymity of Tickets

Framing Resistance. In defining framing resistance, we follow the idea of Bobolz
et al. [23]. Framing resistance ensures that corrupt sellers cannot falsely accuse honest users
of double spending. To model this property, we allow the adversary to interact with the
CA and the oracles of the honest users in the role of a corrupt seller. Honest users will not
engage in double spending. The adversary outputs a double-spending blame information
dsblame. If there is an honest user’s public key upk′ that verifies dablame and upk′ with
VerifyDS, then the adversary wins.

Definition 6. The framing resistance property is defined by the experiment Exp f r in Pse. 5.
The e-ticket system is framing-resistant if, for any PPT adversary A having access to the oracle
O = {OHU(i),OHS(j),OCS(j),OUReg(i,A),OSReg(j),OIss(i, j,D),OIssU (i, j,D),OShw(i, j)},
there is a negligible function ϵ(λ) such that

Adv f r = |Pr
[

Exp f r(A, λ) = 1
]
| ⩽ ϵ(λ).

Exp f r(A, λ):
1. (msk, pp,P)← Setup(1λ);
2. (i∗, dsblame∗, st)← AO(pp,P);
3. If ( i∗ ∈ HU ∧VerifyDS(dsblame∗,UPK[i∗]) = 1 ),

return 1;
4. Return 0.

Pseudocode 5. Framing Resistance
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SReg(S(ssk, spk, pp)↔ CA(msk, spk, pp))→ creds

Seller: S Central Authority: CA
1: compute Π1 =
ZKSoK{(a, b0, b1, . . . ,

spk,Π1−−−−−−−→

2: b3) : A = ga ∧ Bi = gbi , 0 ⩽ i ⩽ 3}. verify Π1, verify e(Bi, g̃) ?
= e(g, B̃i), 0 ⩽ i ⩽ 3,

3: e(B2, B̃0)
?
= e(C0,2, g̃), e(B2, B̃1)

?
= e(C1,2, g̃),

4: e(B2, B̃3)
?
= e(C3,2, g̃), select rs

R←− Zp,
5: compute the credential creds = (δ̃1, δ2, δ3)←
6: creds←−−−−−−− (g̃r−1

s , (hgd)rs , (hd A ∏3
i=0(Bi)

ei )rs .

7: verify e(δ3, δ̃1)
?
= e(h, D̃)e(A, g̃)·

8: ∏3
i=0 e(Bi, Ẽi), e(δ2, δ̃1)

?
= e(h, g̃)·

9: e(g, D̃).
10: store creds = (δ̃1, δ2, δ3).

Pseudocode 6. Seller Registration Algorithm

5. Our Construction
5.1. Overflow of PriTKT

PriTKT’s workflow, illustrated in Figure 1, operates in the following manner. The
CA initializes the system by issuing a system parameter pp and a set of ticket purchase
policies P (Setup, step 1⃝). Upon joining the system, the Seller (S) creates a private–public
key pair (ssk, spk) by running SKeyGen, authenticates to the CA, and obtains their public
key credentials creds (SReg, step 2⃝). The User (U) generates the private–public key pair
(usk, upk) using UKeyGen, authenticates to the CA, and obtains their attribute-based cre-
dentials credu (UReg, step 3⃝). To obtain a ticket, U verifies their identity to S by providing
a disclosure proof for selective attributes (including attributes D ⊂ A) and S generates
a ticket tkt for U (Issue, step 4⃝). Upon presenting the ticket, U anonymously proves its
validity to Verifier (V) and discloses its validity period VPtkt and double-spending identity
dsid (Show, step 5⃝). V can traverse the token information in the blockchain and verify
whether a double-spending event has occurred. In case of attempted double-spending, V
can trace U’s public key upk′ using a ticket tkt and generate blame information (DSTrace,
step 6⃝). Using this blame information, any entity involved can verify the accuracy of the
double-spending trace (VerifyDS, step 7⃝).

5.2. High-Level Overview

In this section, we present a specific implementation of the e-ticket system defined
in Section 4. The main challenge in developing the e-ticket system is creating efficient
and unlinkable ticket issuance and show algorithms. The classical solution used in this
regard consists of zero-knowledge proofs that prove the knowledge of hidden attributes,
where those attributes are signed by a certification authority or a signer. Han et al. [18]
have proposed an attribute-based e-ticketing system using this approach, and to date
this remains the only such system. Han et al.’s system includes a privacy-preserving
e-ticketing system with attribute-based credentials, BBS signatures, and NIZK. While this
solution fulfills privacy requirements, the system is very costly, with the Issue algorithm’s
computational complexity being O(N), where N is the number of user attributes. This
significantly limits its practical use. Another strategy is to use specific signatures to prove
knowledge of a subset of user attributes. The URS signature [20,44] is a constant-size
signature that proves K out of N attributes, and its computational complexity is O(N − K)
for the prover and O(K) for the verifier. Sanders [20] has proposed an extremely efficient
URS scheme that can easily unlink without cost. Therefore, we have chosen to use Sanders’
URS scheme to create the attribute credentials credu and tickets tkt. URS ensures that the
displayed credentials cannot be linked and supports the proof of attribute disclosure. The
most important advantage of URS is that it uses randomization proof technology, avoiding
the need for complex zero-knowledge proofs.
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Because the private key of S is used to issue tickets to U, S generates the public–private
key pair of URS, and the CA must issue the credential for the public key of S. SPS [21]
allows us to effectively implement credential issuance for URS public keys.

The tickets are designed as single-use tickets, with a need to prevent double-spending
by users. Moreover, in the case of double-spending, a user’s public key needs to quickly
be traced. To meet these requirements, we use the “Schnorr trick” [23]. When presenting
tickets, a user discloses their double-spending identity dsid to the verifier; the verifier can
instantly detect double-spending if a similar identity was used earlier. Specifically, every
time a user shows a ticket, they create a challenge value c′ and calculate s′ = dsrnd+ usk · c′,
employing the “Schnorr trick”. When double-spending occurs, the user is required to show
s′ = dsrnd + usk · c′ in the first show and s′ = dsrnd + usk · c′ in the second show. The zero-
knowledge proof of knowledge ensures that usk and dsrnd are the same for both shows,
while (s′, s′, c′, c′) enables the verifier to calculate usk. If a user does not double-spend, usk
remains perfectly hidden in s′ (because dsrnd is only used once) and each displayed dsid is
simply a random identity.

UReg(U(usk, upk,A, pp)↔ CA(msk, upk, pp))→ credu

User: U Central Authority: CA
1: define A = {ai}N

i=1 as a set of attributes.
2: compute Π2 = ZKSoK{usk : upk = g̃usk}. upk,Π2 ,A−−−−−−→
3: verify Π2,

4: select ru
R←− Zp, compute credential

5: credu←−−−−−− credu = (σ̃1, σ̃2) = (g̃ru , (upk)ru ·y0 ·
6: verify e(g, σ̃2)

?
= e(X(Y0)

usk ∏N
i=1 Yai

i ,σ̃1). g̃ru(x+∑N
i=1 yi ·ai ).

7: store the credential credu = (σ̃1, σ̃2).

Pseudocode 7. User Registration Algorithm

Issue(U(usk, credu,D,A, pp)↔ S(ssk, creds, pp,P))→ (tkt, VPtkt)

User: U Seller: S

1: select nonce R←− Zp.

2:
Π′1 ,nonce
←−−−−−− compute Π′1 = ZKSoK{(a, b0, b1, . . . , b3) :

3: A = ga ∧ Bi = gbi , 0 ⩽ i ⩽ 3}.
4: verify Π′1.
5: set attributes disclose policy D ⊂ A,

6: select k, r, t R←− Zp, computes :
7: σ1 = gt ∏i∈[N]\D Yai

i
8: σ2 =

[∏i∈D∪{0} Yi]
t ∏i∈D∪{0},j∈[N]\D Z

aj
i,j

9: σ̃′1 = σ̃r
1, σ̃′2 = σ̃r

2(σ̃
′
1)

t

10: σ′3 = e(Yk
0 , σ̃′1)

11: c = H(σ1||σ2||σ̃′1||σ̃′2||σ′3||nonce)
12: s = k + c · usk s,psu,D,Π3−−−−−−−−→

σ1 ,σ2 ,σ̃′1 ,σ̃′2 ,σ′3

13: ω = e(Yusk
0 , σ̃′1) compute c = H(σ̃1||σ̃2||σ′1||σ′2||σ′3||nonce),

14: psu = B̃usk
0 B̃dsid′

1 B̃dsrnd
2 verify e(Ys

0 , σ̃′1)(σ
′
3)
−1 ?

= [e(g, σ̃′2)e(Xσ1·
15: Π3 = ZKSoK{(usk, dsid′, dsrnd) : ∏i∈D Yai

i , σ̃′1)
−1]c, and e(σ1, ∏i∈D∪{0} Ỹi)

?
=

16: ω = e(Yusk
0 , σ̃′1) ∧ psu = B̃usk

0 B̃dsid′
1 · e(σ2, g̃).

17: B̃dsrnd
2 }(nonce) compute ω = [(σ′3)

−1 · e(Ys
0 , σ̃′1)]

c−1
, verify

18: Π3. select (dsid′′, z) R←− Z2
p, set VPtkt ∈

19: Zp, compute the ticket tkt = (T̃1, T̃2)←
20: tkt,dsid′′ ,VPtkt←−−−−−−−− (g̃z, psuz · g̃z(a+b1·dsid′′+b3·VPtkt)).
21: compute dsid = dsid′ + dsid′′.

22: verify e(g, T̃2)
?
= e(ABusk

0 Bdsid
1 ·

23: Bdsrnd
2 BVPtkt

3 , T̃1).
24: store the ticket tkt = (T̃1, T̃2)

Pseudocode 8. Issue Tickets Algorithm
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Show(U(usk, tkt, VPtkt, spk, pp)↔ V(spk, pp))→ ((dsid, dstrace), b)

User: U Verifier: V

1: nonce←−−−−−− select nonce R←− Zp

2: select r′, t′ R←− Zp and compute:
3: T1 = gt′Bdsrnd

2 .
4: T2 = (B0B1B3)

t′ ·
(C0,2C1,2C3,2)

dsrnd.
5: T̃′1 = T̃r′

1 ; T̃′2 = T̃r′
2 (T̃′1)

t′ .
6: T′3 = e(Bdsrnd

0 , T̃′1).
7: c′ = H(T1||T2||T̃′1||T̃′2||T′3||nonce).
8: s′ = dsrnd + c′ · usk. s′ ,dsid,VPtkt ,Π4−−−−−−−−→

T̃1 ,T̃2 ,T′1 ,T′2 ,T′3

9: Π4 = ZKSoK{(t′, dsrnd) : T1 = gt′ compute c′ = H(T1||T2||T̃′1||T̃′2||T′3||nonce).

10: Bdsrnd
2 ∧ T′3 = e(Bdsrnd

0 , T̃′1) verify e(Bs′
0 , T̃′1)(T

′
3)
−1 ?

= [e(g, T̃′2)e(AT1Bdsid
1 ·

11: }(nonce). BVPtkt
3 , (T̃′1)

−1)]c
′
, e(T1, B̃0B̃1B̃3)

?
= e(T2,g̃).

12: verify Π4, output dsid, dstrace =(s′, c′) and
13: b = 1; upload (dsid, dstrace) to BC.

Pseudocode 9. Show Tickets Algorithm

5.3. Concrete Construction

Setup(1λ) → (msk, pp,P): CA takes the security parameter 1λ as input to create
the system master private key msk, public parameters pp, and a ticket purchasing policy
set P. CA defines a ticket purchasing policy set P and generates Type-III bilinear pair

parameters (G1,G2,GT , g, g̃, p, e). CA selects (x, y0, y1, . . . , yN)
R←− ZN+2

p , (d, e0, e1, . . . , e3)
R←− Z5

p, h R←− G1, and computes X = gx, Yi = gyi , Ỹi = g̃yi , Zi,j = gyi ·yj for 0 ⩽ i ̸= j ⩽ N.
In addition, CA computes D̃ = g̃d and Ẽi = g̃ei , 0 ⩽ i ⩽ 3. CA then outputs msk =
{x, y0, y1, . . . , yN , d, e0, e1, . . . , e3} and pp = {g, g̃, h, X, Y0, . . . , YN , Ỹ0, . . . , ỸN , {Zi,j}0⩽i ̸=j⩽N ,
D̃, Ẽ0, . . . , Ẽ3}.

SKeyGen(pp) → (ssk, spk): S takes public parameters pp as input to generate its

secret key ssk and public key spk. S selects (a, b0, b1, . . . , b3)
R←− Z5

p and computes A = ga,
Bi = gbi , B̃i = g̃bi , C0,2 = gb0·b2 , C1,2 = gb1·b2 , and C3,2 = gb3·b2 , where 0 ⩽ i ⩽ 3. S outputs
ssk = {a, b0, b1, . . . , b3} and spk = {A, B0, . . . , B3, B̃0, . . . , B̃3, C0,2, C1,2, C3,2}.

UKeyGen(pp) → (usk, upk): U takes public parameters pp as input to generate the

secret key usk and public key upk. U selects usk R←− Zp and computes upk = g̃usk.
SReg(S(ssk, spk, pp) ↔ CA(msk, spk, pp)) → creds: As shown in Pse. 6, S interacts

with CA to generate the seller’s public key credential creds. S sends CA the public key
spk along with a ZKSoK of ssk (Π1) to prove that S knows the secret key ssk. S should
authenticate to CA and provide (online or offline) evidence to demonstrate that it can
operate as a seller. If Π1 is verified as valid and the authentication is accepted, CA computes
an SPS signature creds as the credential of the public key spk. creds is then sent back to S,
who uses its private and public keys and their associated credential to verify that CA has
authorized it as a seller.

UReg(U(usk, upk,A, pp)↔ CA(msk, upk, pp)) → credu: as shown in Pse. 7, U inter-
acts with CA to generate the user’s attribute credential credu. U sends CA the public key
upk along with a ZKSoK of usk (Π2) and a set of attributes A = {ai}N

i=1 which allow U to
purchase tickets. If Π2 is verified as valid and the attributes are authentic, CA computes
a URS signature credu as the credential of the public key upk and user attributes A. credu
is sent back to U, who uses it to verify that they are now a legitimate user and that their
attributes have been signed by CA.

Issue(U(usk, credu,D,A, pp)↔ S(ssk, creds, pp,P))→ (tkt, VPtkt): as shown in Pse. 8,
U interacts with S to obtain the ticket tkt. To prevent S from collecting user information
maliciously, S computes the signature of knowledge Π′1 to prove to the user that it has been
authenticated by CA. To prevent replay attacks, S chooses a random nonce to send to U.
U anonymously proves to S that they have been certified by CA as a legitimate user and
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selects an attributes set D to disclose in order to satisfy a ticket purchasing policy selected
by S from the policy set defined by CA. U then generates a new Pedersen commitment psu
which commits a private key usk, double-spending identity dsid′, and double-spending
random dsrnd. U constructs a ZKSoK (Π3) to prove that U knows the knowledge of
(usk, dsid′, dsrnd) and that psu and credu have the same usk. If Π3 is verified as valid, S can
update the Pedersen commitment psu homomorphically without knowing the opening,
then produces the ticket tkt, contributes to double-spending identity dsid′′ of S, and clarifies
the ticket’s valid period VPtkt. S then sends tkt, dsid′′, and VPtkt to U, who uses them along
with U’s private key to verify the validity of the ticket.

Show(U(usk, tkt, VPtkt, spk, pp)↔ V(spk, pp))→ ((dsid, dstrace), b): as shown in Pse.
9, U interacts with V to show the ticket tkt. To prevent replay attacks, V first chooses a
random nonce to send to U. U anonymously proves the legitimacy of tkt to V and discloses
dsid and VPtkt. Then, U computes the challenge c′ and s′ = dsrnd + usk · c′ to enable V
to reveal the user’s public key in case of double-spending. Finally, U needs to compute
Π4 to ensure that the dsrnd in the tkt is the same as in s′. If Π4 is verified, V checks all
tickets in the history with the same dsid to detect whether the ticket has been double-spent.
If not, V uploads (dsid, dstrace) to BC and outputs b = 1; otherwise, b = 0. Then, V
traverses the token information in the blockchain and verifies whether a double-spending
event has occurred. In case of double-spending being detected, V outputs dsid to link
double-spending tickets and uses dstrace to trace the double-spending user’s public key.

DSTrace(dsid, dstrace, dsid, dstrace, spk, pp) → (dsblame, upk′): if U spends the same
ticket a second time, this algorithm can be operated by V. If U only spends their ticket once,
then usk is perfectly hidden. However, in the case of double-spending V can detect whether
the dsid of the current ticket is the same as the dsid of a ticket that was spent before. This
allows V to compute the private key usk of a double-spending user based on the fact that
double-spending of the same ticket involves the same dsid and two different challenges
(c′, c′) with s′ = dsrnd + usk · c′, s′ = dsrnd + usk · c′, allowing V to extract usk with
overwhelming probability by parsing {dsid, dstrace = (s′, c′)} and {dsid, dstrace = (s′, c′)}.
If dsid = dsid, dsblame = s′−s′

c′−c′ is output and upk′ = g̃dsblame; otherwise, ⊥ is output. It
should be noted that because the user generates c′ by using a random nonce selected by V
every time a ticket is shown, there is an overwhelming probability that generation of two
different c′ will be forced when a ticket is double-spent.

VerifyDS(dsblame, upk′) → b; given double-spending blaming information dsblame
and a public key upk, this algorithm outputs b = 1 if upk′ = g̃dsblame and b = 0 otherwise.

The details of the zero-knowledge signature of knowledge of the proposed system are
shown in Supplemental Material Section S3.

6. Security Analysis

In Supplementary Material Section S1, we analyze the correctness of the proposed
system. To formalize that our construction from Section 4.2 satisfies all the desired security
guarantees defined in Section 3.2, we define the following theorems. Let Π1, Π2, Π3, Π4 be
ZKSoKs. See Supplementary Material Section S2 for the formal proofs.

Theorem 1. In the PriTKT system, the user’s credential is unforgeable if the DL assumption holds
in G2 and if the URS is unforgeable.

Theorem 2. In the PriTKT system, the user’s tickets are unforgeable if the DL assumption holds in
G2 and if the URS is unforgeable.

Theorem 3. In the PriTKT system, the user’s credential is unlinkable if the DDH assumption
holds in G2.

Theorem 4. In the PriTKT system, the user’s tickets are unlinkable if the DDH assumption holds
in G2.



Sensors 2024, 24, 496 17 of 24

Theorem 5. The PriTKT system is framing-resistant if the DL assumption holds in G2.

7. Performance Analysis
7.1. Theoretical Analysis and Comparison

Table 2 presents a detailed comparison of PriTKT and related works, including four
e-ticket systems [12–14,16], one attribute-based issuance e-ticket system [18], and five
attribute-based credential schemes [35,36,39,40,43]. The comparison evaluates each system
in terms of formal security proof, double-spending detection, double-spending trace,
attribute-based issuance, and attribute disclosure. Formal proof refers to an e-ticketing
system’s security verification through formal methods. Double-spending detection ensures
that an e-ticket cannot be reused after it has been spent, while double-spending trace
allows for the identification of the responsible user when a ticket is spent twice. Attribute-
based issuance allows for the issuance of tickets or credentials based on user attributes.
Finally, attribute disclosure refers to the method used by users to reveal a subset of their
attributes in order to purchase or display tickets. Of the e-ticketing systems included in
the study, all those listed in [12–14,16,18] feature double-spending detection, while the
systems in [14,18] offer double-spending trace and formal security proof. Furthermore,
Ref. [18] employs complex zero-knowledge proofs (ZKP) to issue tickets based on attributes,
while the attribute-based credential schemes discussed in [35,36,39,40] use ZKP to issue
credentials. Lastly, the attribute-based credential schemes in [43] offer formal proof and
attribute-based issuance, with the efficiency of attribute disclosure improved by replacing
ZKP with SPS-EQ. However, this scheme fails to prove that the user’s hidden attributes
satisfy certain requirements. In comparison, PriTKT boasts formal proof, double-spending
detection, double-spending trace, attribute-based issuance, and attribute disclosure. The
URS signature used in PriTKT avoids the complexity associated with the use of ZKP in [18].

Table 2. Functional comparison with related works.

Scheme Formal Proof Double-Spending
Detection

Double-Spending
Trace

Attribute-Based
Issuance Disclosing Attributes

[12] ×
√

× × −

[16] ×
√

× × −

[13] ×
√

× × −

[14]
√ √ √

× −

[18]
√ √ √ √

ZKP

[35]
√

− −
√

ZKP

[36]
√

− −
√

ZKP

[39]
√

− −
√

ZKP

[40]
√

− −
√

ZKP

[43]
√

− −
√

SPS-EQ

PriTKT
√ √ √ √

URS
√

: supported feature; ×: unsupported feature; −: not applicable.

Tables 3–5 feature a comparison of the PriTKT system and the only existing e-ticketing
system [18] in terms of computation, storage, and communication overhead. The sizes of
the elements in the groups G1, G2, GT , and Zp are represented by |G1|, |G2|, |GT |, and
|Zp|, respectively. The time costs for exponentiation in groups G1, G2, and GT , and the
bilinear pairing maps are denoted by te1 , te2 , teT , and tp, respectively. The only difference in
implementation between these two systems is that PriTKT uses high-efficiency Type-III
pairing, where G1 ̸= G2, while the system presented in [18] uses Type-I pairing with
G1 = G2.
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Table 3. Computation overhead comparison.

Algorithms Entity PriTKT [18]

Setup CA (N2 + 1)te1 + (N + 5)te2 Nte1

UKeyGen User te2 te1

SKeyGen Seller 8te1 + 4te2 te1

URegU User (N + 1)te1 + 1te2 + 2tp (N + 5)te1 + (N + 4)tp

URegCA CA 5te2 (N + 2)te1

SRegS Seller 5te1 + 10tp 4te1 + 5tp

SRegCA CA 8te1 + 3te2 + 14tp 3te1

IssueU User (2(N − K) + 20)te1 + 9te2 + 5tp (N + 3K + 37)te1 + (N + 3K + 21)tp

IssueS Seller (K + 3)te1 + 7te2 + 4teT + 6tp (3K + 31)te1 + KteT + (2K + 17)tp

ShowU User 8te1 + 3te2 + 2tp 24te1 + 8tp

ShowV Verifier 7te1 + 2tT + 6tp 19te1 + 8tp
DSTrace Verifier te2 3te1

Table 4. Storage complexity comparison.

Variates Entity PriTKT [18]

pp CA (N2 + 3)|G1|+ (N + 6)|G2| (N + 13)|G1|

upk User 1|G2| 1|G1|

spk Seller 8|G1|+ 4|G2| 1|G1|

credu User 2|G1| 2|Zp|+ 1|G1|

creds Seller 2|G1|+ 1|G2| 2|Zp|+ 1|G1|

tkt User 4|Zp|+ 2|G2| 5|Zp|+ 2|G1|

tok User 5|Zp|+ 2|G1|+ 2|G2|+ 1|GT | 10|Zp|+ 8|G1|

Table 5. Communication complexity comparison.

Algorithms (Variates) Entity PriTKT [18]

URegU User (N + 1)Zp|+ 1|G2| (N + 3)|Zp|+ 3|G1|

URegCA CA 1|Zp|+ 2|G2| 3|Zp|+ 1|G1|

SRegS Seller 6|Zp|+ 8|G1|+ 4|G2| 2|Zp|+ 2|G1|

SRegCA CA 2|Zp|+ 1|G1| 3|Zp|+ 1|G1|

IssueU User (K + 5)|Zp|+ 3|G1|+ 2|G2|+ 1|GT | (2N + K + 8)|Zp|+ (2K + 5)|G1|

IssueS Seller 9|Zp|+ 2|G2| 6|Zp|+ 1|G1|

ShowU User 6|Zp|+ 2|G1|+ 2|G2|+ 1|GT | (K + 10)|Zp|+ 9|G1|

ShowV Verifier 3|Zp| 2|Zp|+ 4|G1|

DSTrace Verifier |Zp|+ |G2| |G1|

Tables 3–5 show that the system in [18] is inefficient; a ticket issued on an attribute-
based credential (IssueU) requires at least O(N) operations in order for a user to disclose K
attributes out of a total of N attributes. In addition, it is necessary to prove knowledge of
all N attributes, which implies that at least O(N) elements must be sent in communications
during the execution of the Issue algorithm. Our algorithm avoids this problem, signifi-
cantly reducing the computational cost to O(N − K) operations and the communication
cost to O(K) elements.
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In PriTKT, the computational overhead of Setup and the storage overhead of pp are
both O(N2). Fortunately, system initialization only needs to be performed once, and the
system parameters pp are stored on users’ IoT devices (such as smartphones), which have
more than enough storage space. In PriTKT, the user credential credu, seller credential
creds, and ticket tkt all have constant sizes. While the operations on IssueU are related to
the number of user attributes, they decrease with the number of disclosed attributes. The
operations for IssueS depend only on the number of disclosed attributes. The computation
and communication overhead of Show and DSTrace are constant in PriTKT.

7.2. Experimental Analysis of PriTKT

We further evaluated the performance of the PriTKT system through objective tests.
We implemented the system and measured its performance on an Android 9.0 operating
system running on a HUAWEI Honor 9i smartphone, which had a Hisilicon Kirin 659
(ARMv8-A) CPU with a clock speed of 2.36 GHz and 1.7 GHz and with 4 GB of RAM.

We performed experiments utilizing MIRACL [48] and Type-III pairing. We used
SHA256 to implement the H : {0, 1}∗ → Zp hash functions required by PriTKT (see Pseu-
docodes 8 and 9). To accurately evaluate the computational and storage/communication
overhead of each of PriTKT’s algorithms, we used the Barreto–Naehrig curve (BN-256) [49].
BN-256 was used to test the system’s performance at the AES 100-bit security level, and we
compared it to the performance of a scheme [18] using the Security Supersingular Elliptic
Curve (SSP-1536) [50] at the same security level.

In practice, the total number of user attributes N can reach hundreds, and is usually
much larger than the number of a user’s disclosed attributes K. For example, a user
may have name, id, student, phone, number, occupation, home, address, and many other
attributes. If the user buys a student discount ticket, they only need to provide their student
attribute. Therefore, we compared the computation and storage/communication costs with
a larger number of N and a constant number of K = 5.

Tables 6–8 compare the computational and storage/communication overheads of all
algorithms between PriTKT and [18] at N = 50, where each time result is averaged over
50 iterations.

As shown in Table 6, in PriTKT the Setup algorithm takes 44.2 s. For key generation,
UKeyGen and SKeyGen cost 18.1 ms and 143.6 ms, respectively. For user registration,
URegU and URegCA cost 642.8 ms and 95.5 ms, respectively. For seller registration, SRegS
and SRegCA cost 1024.3 ms and 1543.2 ms, respectively. The DSTrace algorithm takes
18.5 ms. Most frequently used of e-tickets rely on two algorithms, namely, Issue and Show.
When issuing a ticket, the computation overheads of the IssueU algorithm are 1971.4 ms
for PriTKT and 561,049 ms for the scheme in [18], while the computation overheads of the
IssueS algorithm are 908.2 ms for PriTKT and 201,506 ms for the scheme in [18]. When
showing a ticket, the computation overheads of the ShowU algorithm are 320.4 ms for
PriTKT and 79,544 ms for the scheme in [18], while the computation overheads of the
ShowV algorithm are 804.3 ms for PriTKT and 69,924 ms for the scheme in [18].

As shown in Table 7, the storage of public parameters pp in PriTKT is 348,816 bytes,
which is significantly larger than the 2584 bytes required by the scheme in [18]; however,
we note that public parameters can be stored in smartphones with sufficient storage space.
The other size overheads are similar for both PriTKT and the scheme in [18].

As shown in Table 8, the communication overheads of the IssueU algorithm are
1856 bytes for PriTKT and 6640 bytes for the scheme in [18], while the communication
overheads of the ShowU algorithm are 1568 bytes for PriTKT and 1824 bytes for the scheme
in [18]. For both the IssueS and ShowV algorithms, the communication overheads of both
PriTKT and the scheme in [18] are less than 1000 bytes.
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Table 6. Experimental computation costs (ms).

ALGO Entity PriTKT [18]

Setup CA 44,245 98,124

UKeyGen User 18.1 1924

SKeyGen Seller 143.6 1924

URegU User 642.8 337,149

URegCA CA 95.5 101,972

SRegS Seller 1024.3 28,551

SRegCA CA 1543.2 5772

IssueU User 1971.4 561,049

IssueS Seller 908.2 201,506

ShowU User 320.4 79,544

ShowV Verifier 804.3 69,924

DSTrace Verifier 18.5 5772

Table 7. Experimental storage costs (B).

ALGO Entity PriTKT [18]

pp CA 348,816 2584

upk User 272 136

spk Seller 2112 136

credu User 256 216

creds Seller 528 216

tkt User 704 472

tok User 1528 1488

Table 8. Experimental communication costs (B).

ALGO Entity PriTKT [18]

URegU User 2352 2568

URegCA CA 584 256

SRegS Seller 1584 3,52

SRegCA CA 208 256

IssueU User 1856 6640

IssueS Seller 904 376

ShowU User 1568 1824

ShowV Verifier 120 624

DSTrace Verifier 312 136

Tables 9 and 10 compare the computational and communication overheads of the Issue
and Show algorithms between PriTKT and the scheme in [18]; the parameters were set to
K = 5, while N varied from 20 to 100.
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Table 9. Computation overhead of Issue and Show (ms).

ALGO System
Number of Attributess

20 40 60 80 100

IssueU
PriTKT 1200.5 1723 2242.1 2767.1 3283.5

[18] 378,196 500,098 622,002 743,903 865,801

IssueS
PriTKT 905.6 906.7 908.1 904.5 906.7

[18] 201,506 201,508 201,505 201,506 201,507

ShowU
PriTKT 325.9 323.1 324.2 320.2 321.4

[18] 79,544 79,541 79,545 79,543 79,542

ShowV
PriTKT 801.1 803.9 802.4 802.3 803.6

[18] 69,924 69,923 69,925 69,922 69,924

Table 10. Communication overheads of Issue and Show (B).

ALGO System
Number of Attributess

20 40 60 80 100

IssueU
PriTKT 1856 1856 1856 1856 1856

[18] 4240 5840 7440 9040 10,640

IssueS
PriTKT 904 904 904 904 904

[18] 376 376 376 376 376

ShowU
PriTKT 1586 1568 1586 1586 1586

[18] 1824 1824 1824 1824 1824

ShowV
PriTKT 120 120 120 120 120

[18] 624 624 624 624 624

Table 9 shows that the computational overhead of the IssueU algorithm in both PriTKT
and the scheme of Han et al. [18] increases linearly with the number of user attributes.
However, PriTKT performs over 250 times more efficiently than the scheme of Han et al.
For the IssueS algorithm, the computational overhead of both schemes are independent of
the number of user attributes. Nonetheless, PriTKT is around 200 times more efficient than
the scheme of Han et al. In the case of the ShowU and ShowV algorithms, the computational
overhead of both schemes are independent of the number of user attributes. However,
PriTKT executes around 240 times and 80 times more efficiently in the ShowU and ShowV
algorithms, respectively, compared to the scheme of Han et al.

As shown in Table 10, the communication overheads of PriTKT are constant for both
the Issue and Show algorithms. The communication overheads of the IssueU , IssueS,
ShowU , and ShowV algorithms in PriTKT are as low as 1856 bytes, 904 bytes, 1586 bytes
and 120 bytes, respectively. In comparison, while the scheme in [18] achieves a constant
communication overhead for the Show algorithm, for the IssueU algorithm its output size
increases linearly with the number of user attributes.

Compared to the state-of-the-art described in Han et al. [18], the above analysis and
comparison reveal that PriTKT incurs significantly less computational and communica-
tion overhead.

8. Conclusions

This paper presents a blockchain-enhanced privacy-preserving e-ticketing system
for IoT devices. The proposed system permits users to purchase tickets anonymously by
revealing some of their attributes while concealing others. The proposed system presents
significantly reduced computational cost and communication overhead compared to state-
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of-the-art e-ticketing systems, making it suitable for use in IoT devices. Moreover, it utilizes
blockchain technology to achieve effective malicious user tracking. The system possesses
robust security properties such as unlinkability, unforgeability, non-double spending, non-
transferability, and framing resistance. The security properties are formally defined, and
we have reduced them to well-known complexity assumptions or the security of proven
cryptography primitives. We implemented the algorithms of the e-ticketing system on a
smartphone, demonstrating that the system generates significantly lower computational
and communication overhead compared to the state-of-the-art.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s24020496/s1, Section S1: Correctness Analysis; Section S2: Security Proof;
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