
Supplemental Material

S1. Correctness Analysis

We claim that PriTKT system described in section 4 is cor-
rect. Using the properties of bilinear maps, it is trivial to vali-
date that the equations in Setup, SKeyGen and UKeyGen which
are used to system initialization and key generation, and Pse.
6 and Pse. 7 which are used to verify the credentials sent to
U and S, hold. Similarly, it is straightforward to verify the
equations in DSTrace and VerifyDS, which are used to detect
double-spending and verify the correctness of double-spending
tracing.

We prove that the correctness of the equations in Pse. 8 and
Pse. 9 also hold true. The former are used by U and S to issue
tickets, while the latter are used by U and V to show tickets.

The following prove that the Issue algorithm is correct. For
a valid credential credu = (σ̃1, σ̃2) issued on A and usk, we
have:

e(X(Y0)usk
∏
i∈[N]

Yai
i , σ̃1) = e(g, σ̃2) (1)

which is equivalent to:

e((Y0)usk, σ̃1) = e(g, σ̃2)e(X
∏
i∈[N]

Yai
i , σ̃1)−1

(2)

Therefore:

e(Y s
0 , σ̃

′
1)(σ′3)−1

= e(Y0, σ̃
r·s
1)e(Y0, σ̃

−r·k
1)

= e(Y0, σ̃
r(s−k)
1) = e((Y0)usk, σ̃1)r·c

= [e(g, σ̃2)e(X
∏
i∈[N]

Yai
i , σ̃1)−1]r·c

= [e(g, σ̃′2)e(g, σ̃′1)−te(X
∏
i∈[N]

Yai
i , σ̃

′
1)−1]c

= [e(g, σ̃′2)e(Xgt
∏
i∈[N]

Yai
i , σ̃

′
1)−1]c

= [e(g, σ̃′2)e(Xσ1

∏
i∈D

Yai
i , σ̃

′
1)−1]c

(3)

and

e(σ1,
∏

i∈D∪{0}

Ỹi)

= e(
∏

i∈[N]\D

Yai
i ,
∏

i∈D∪{0}

Ỹi)e(gt,
∏

i∈D∪{0}

Ỹi)

= e((
∏

i∈[N]\D

Yai
i , g̃)

∑
i∈D∪{0} yi)e((

∏
i∈D∪{0}

Yi)t, g̃)

= e(σ2, g̃)

(4)

in addition, we have

[(σ′3)−1 · e(Y s
0 , σ̃

′
1)]c−1

= [e(Yk
0 , σ̃

′
1)−1e((Y s

0 , σ̃
′
1)]c−1

= e(Y s−k
0 , σ̃

′
1)c−1

= e(Yc·usk
0 , σ̃′1)c−1

= e(Yusk
0 , σ̃

′
1) = ω

(5)

Eqs. 1, Eqs. 2, Eqs. 3, Eqs. 4 and Eqs. 5 are used to show
the correctness of Issue algorithm.

The following prove that the Show algorithm is correct. For
a valid ticket tkt = (T̃1, T̃2), we have:

e(ABusk
0 Bdsid

1 Bdsrnd
2 BVPtkt

3 , T̃1) = e(g, T̃2) (6)

which is equivalent to:

e(Busk
0 , T̃1) = e(g, T̃2)e(ABdsid

1 Brnd
2 BVPtkt

3 , T̃1)−1 (7)

Therefore:

e(Bs′
0 , T̃

′
1)(T ′3)−1

= e(B0, T̃ r′·s′
1 ,)e(B0, T̃−r′·dsrnd

1)

= e(B0, T̃
r′(s′−dsrnd)
1) = e(Busk

0 , T̃1)r′·c′

= [e(g, T̃2)e(ABdsid
1 Bdsrnd

2 BVPtkt
3 , T̃1)−1]r′·c′

= [e(g, T̃ ′2)e(g, T̃ ′1)−t′e(ABdsid
1 Bdsrnd

2 BVPtkt
3 , T̃ ′1)−1]c′

= [[e(g, T̃ ′2)e(AgtBdsid
1 Bdsrnd

2 BVPtkt
3 , T̃ ′1)−1]c′

= [e(g, T̃ ′2)e(AT1Bdsid
1 BVPtkt

3 , (T̃ ′1)−1)]c′

(8)

and

e(T1, B̃0B̃1B̃3)

= e(Bdsrnd
2 , B̃0B̃1B̃3)e(gt′ , B̃0B̃1B̃3)

= e((Bdsrnd
2)b0+b1+b3 , g̃)e((B0B1B3)t′ , g̃)

= e(T2, g̃)

(9)

The equations 6, 7, 8 and 9 are utilized to prove the correctness
of the Show algorithm.

S2. Security Proof

Let Π1,Π2,Π3,Π4 be ZKSoKs, and the formal proofs of the
PriTKT system are provided as follows.

S2.1 Unforgeability of Credentials.
Theorem 1: In PriTKT system, the user’s credential is un-

forgeable if the DL assumption holds in G2 and if URS is un-
forgeable.

Proof: Suppose an adversaryA aims to breach the creden-
tial unforgeability of PriTKT. A wins the Expu fcred game when
it succeeds in forging a user’s attribute credential. Let usk de-
note the user’s private key, and if A presents the credential, it

16

proves the knowledge of usk. The adversary’s objective is to
forge the credential of either a registered or unregistered user
in the Issue algorithm. Accordingly, we identify two types of
adversaries:

Type-1: A forges credi, where ∃i ∈ HU, and USK[i] =
usk;

Type-2: A forges credi, where ∀i ∈ HU, and USK[i] ,
usk;

Lemma 1. If there is a type-1 adversary A that breaks the
unforgeability of credentials with the probability ϵ, then there
is a challenger C that breaks the DL assumption with the prob-
ability ϵn , where n is a bound on the number of honest users.

Proof: Let (̃g, g̃x) be a DL challenge in G2. C use g̃ as the
generator for G2. C runs (msk, pp,P) ← Setup(1λ), and then
runs τ ← SimGen(1λ) to generate a trapdoor of ZKSoK using
pp as paramters. C sends (pp,P) to A. When we consider
a type-1 forgery, there is an user identity i∗ such that A will
try to impersonate the i∗-th honest user in the Issue algorithm.
C makes a guess on i∗ ∈ [n] and answers oracles queries as
follows:
• OHU(i). If i , i∗, then C proceeds as usual. Otherwise, it

assignsUPK[i] = g̃x and adds i toHU; it returnsUPK[i].
• OCU(i, upk). If i , i∗, then C proceeds as usual and aborts

otherwise.
• OUReg(i,A). C knows CA’s secret msk and so perfectly

plays CA’s part of this oracle. It can also simulate the honest
user i, if i , i∗. Otherwise, it simulates the ZKSoK of x.
• OHS (j),OS Reg(j),OIssS (j, i,D). C knows CA and seller’s

secret and so perfectly simulates these oracles.
• OIss(i, j,D). C knows the seller’s secret ssk and so per-

fectly plays the seller’s part of this oracle. It can also simu-
late the honest user i, if i , i∗. Otherwise, it simulates the
ZKSoK of x. Note that x only appears in the following con-
texts: (1) s = k + c · x; (2) ω = e(Y x

0 , σ̃
′
1); (3) Π3. C computes

ω = e(Y0, (̃gx)ru·r). Since (1) and (3) use the signature of knowl-
edge, they are easy to simulate.
• OS hw(i, j). If i , i∗, then C can perfectly play the user’s

part of this oracle. Otherwise, it runs the algorithm but simu-
lates the ZKSoK of x. Note that x only appears in s′ = dsrnd +
c′ · x, it is easy to simulate.

If the guess on i∗ is correct, the game is simulated perfectly
and the probability of occurrence is 1

n . In this case, a successful
adversaryA proves the ZKSoK of x when it obtains a ticket in
Issue algorithm. C can then run the extractor of Π3 to restore
x, which is returned as a valid solution to the DL assumption.
The probability of success for C is ϵn .

Lemma 2. If there is a type-2 adversary A that breaks the
unforgeability of credentials with the probability ϵ, then there is
a challenger C that breaks the unforgeability of the URS scheme
with the same probability.

Proof: C runs the unforgeability game of the URS and so
receives a public parameters (G1,G2, GT , g, g̃, p, e, X,Y0, . . . ,
YN , Ỹ0, . . . , ỸN ,Zi, j, 0 ⩽ i , j ⩽ N). C runs Setup(1λ) to
genetare remaining parameters (h, D̃, Ẽ0, . . . , Ẽ3,P), and then
runs τ ← SimGen(1λ) to generate a trapdoor of ZKSoK using
pp as paramters. C sends (pp,P) to adversaryA. C can ask the

oracle of URS, OS ign(·), with an unlimited number of times. C
answers oracles queries as follows:
• OHU(i),OHS (j),OCU(i, upk),OIss(i, j,D),OS hw(i, j),OIssS (j,

i,D). C knows users and sellers secret keys and so perfectly
simulates these oracles.
• OS Reg(j). C knows CA’s secret which used to sign the

seller’s credential and so perfectly simulates this oracle.
• OUReg(i,A). C runs the extractor of Π2 to recovers the

secret key USK[i] and then submits (USK[i],A) to the URS
signing oracleOS ign(·). It then receives a URS signature (σ1, σ2,
σ̃1, σ̃2) whose first two elements are 1G1 . C then discards
(σ1, σ2) and stores the resulting credential (σ̃1, σ̃2).
C can handle any oracles queries and never aborts. There-

fore, at the end of the game, ifA can prove possession of a cre-
dential on disclosed attributes set D with probability ϵ, then C
extracts usk∗ from Π3 and stores the elements (σ∗1, σ

∗
2, σ̃

′∗
1 , σ̃

′∗
2).

Since we consider a type-2 forgery, for any honest user i, usk∗

must be different fromUSK[i], so C constructs a valid derived
signature on (usk∗,D, ·).

S2.2 Unforgeability of Tickets.

Theorem 2: In PriTKT system, the user’s tickets are un-
forgeable if the DL assumption holds in G2 and if URS is un-
forgeable.

Proof: Let A be an adversary against the unforgeability of
tickets in PriTKT system. When A wins the game Expu ftkt , A
forges a ticket. Let usk be the user private key, and when A
shows the ticket, the knowledge of usk is proved by A. The
adversary wins if they can forge a ticket of an honest user or a
ticket of an unregistered user in Show algorithm, therefore we
distinguish two types of adversary:

Type-3: A forges tkti, where ∃i ∈ HU, and USK[i] =
usk;

Type-4: A forges tkti, where ∀i ∈ HU, and USK[i] ,
usk;

Lemma 3. If there is a type-3 adversary A that breaks the
unforgeability of tickets with the probability ϵ, then there is a
challenger C that breaks the DL assumption with the probability
ϵ
n , where n is a bound on the number of honest users.

Proof: Assumptions and oracles definitions are consistent
with lemma 1. In this case, a successful adversary A proves
knowledge of x when it shows the ticket in Show algorithm. C
can then run the extractor of ZKSoK to restore x, which is re-
turned as a valid solution to the DL assumption. The probability
of success for C is ϵn .

Lemma 4. If there is a type-4 adversary A that breaks the
unforgeability of tickets with the probability ϵ, then there is a
challenger C that breaks the unforgeability of the URS scheme
with the probability ϵ

m , where m is a bound on the number of
honest sellers.

Proof: C runs the unforgeability game of the URS scheme
and so receives a public key spk∗ = (A∗, B∗0, . . . , B

∗
3, B̃

∗
0, . . . , B̃

∗
3,

C∗0,2,C
∗
1,2,C

∗
3,2) and bilinear paring paramaters pp = (G1,G2,GT ,

g, g̃, p, e). C runs Setup(1λ) to generate remaining parameters
using pp as paramters, and then runs τ ← SimGen(1λ) to gen-
erate a trapdoor of ZKSoK. C sends (pp,P) to A. C can ask

17

the oracle of URS, OS ign(·), with an unlimited number of times.
Since we consider a type-4 forgery, there is an identity j∗ such
thatA will try to forge a ticket that can be verified by the j∗-th
honest seller’s publick key. C then makes a guess on j∗ ∈ [m].
C can then answers oracle queries as follows.
• OHU(i),OCU(i, upk),OUReg(i,A),OS hw(i, j). C knows CA

and user’s secret key and so perfectly simulates these oracles.
• OHS (j). If j , j∗ , then C proceeds as usual. Otherwise,

it assign SPK[j] = spk∗ and adds j toHS; it returns SPK[j].
• OS Reg(j). If j , j∗ , then C proceeds as usual. Otherwise,

it simulates the signature of knowledge of SSK[j].
• OIssS (j, i,D). If j , j∗ , then C proceeds as usual. Other-

wise, C simulates the signature of knowledge of SSK[j], and
then runs the extractor of Π3 to recovers the secret (USK[i],
dsid′, dsrnd) and then submits (USK[i], dsid′ + dsid′′, dsrnd,
VPtkt) to the signing oracle OS ign(·). It then receives a URS sig-
nature (T ∗1 ,T

∗
2 , T̃

∗
1 , T̃

∗
2) whose first two elements are 1G1 . C then

discards (T ∗1 ,T
∗
2) and stores the resulting ticket (T̃ ∗1 , T̃

∗
2).

• OIss(i, j,D). C knows the user’s secret key and so per-
fectly simulates the user’s side of this oracle. If j , j∗, then C
proceeds as usual. Otherwise, it performs the same operation
as OIssS (j, i,D).

At the end of the game, A can prove possession of a ticket
issued by seller j with probability ϵ. If j , j∗, then it aborts
and the probability of termination is m−1

m . Otherwise, C extracts
usk∗ from the ZKSoK and stores the elements (T ∗1 ,T

∗
2 , T̃

′∗
1 , T̃

′∗
2)

. Since we consider a type-4 forgery, for any honest user i, usk∗

must be different fromUSK[i], so C constructs a valid derived
signature on (usk∗, dsid, dsrnd,VPtkt) with probability ϵ

m .

S2.3 Unlinkability of Credentials.

Theorem 3: In PriTKT system, the user’s credential is
unlinkable if the DDH assumption holds in G2.

Proof: If there is an adversary A that breaks the unlinka-
bility of credentials with the probability ϵ in Issue algorithm,
then there is a challenger C that breaks the DDH assumption in
G2 with the probability ϵn , where n is a bound on the number of
honest users.

Let (̃g, g̃x, g̃y, g̃z) be a DDH challenge in G2, C runs Setup
(1λ) → (msk, pp,P) by using g̃ as the generator for G2, and
then runs τ ← SimGen(1λ) to generate a trapdoor of ZKSoK
using pp as paramters. C sends (pp,P) to A. C guesses the
identity of the user ib, the user will have the credential credi∗

targeted byA. C answers the first stage of the oracles query as
follows .
• OHS (j),OCS (j),OS Reg(j). C knows CA and seller’s secret

keys and so perfectly simulates these oracles.
• OHU(i). If i , i∗, then C proceeds as usual. Otherwise, it

assignsUPK[i] = g̃x, and adds i toHU; it returnsUPK[i].
• OUReg(i,A). C knows CA’s secret msk and so perfectly

simulates CA’s side of this oracle. It can also simulate the hon-
est user i, if i , i∗. Otherwise, it simulates the ZKSoK of x.
• OIssU (i, j,D). C can simulate the honest user i, if i , i∗.

Otherwise, it simulates the ZKSoK of x. Note that x only ap-
pears in the following contexts: (1) s = k + c · x; (2) ω =
e(Y x

0 , σ̃
′
1); (3) Π3. C compute ω = e(Y0, (̃gx)ru·r). Since (1) and

(3) use the ZKSoK, it is easy to simulate given that he has al-
ready computed ω.
• OIss(i, j,D). C knows S’s secret ssk and so perfectly plays

the S’s side of this oracle. If i , i∗, then C proceeds as usual.
Otherwise, C performs the same operation as OIssU (i, j,D).
• OS hw(i, j). C can simulate any honest user i, if i , i∗.

Otherwise, it simulates the ZKSoK of x.
At some point in the game,A outputs the indices i0 and i1 of

two credentials along with a set of attributes D∗ and an honest
seller j∗. If ib , i∗, then C aborts. Otherwise, it proceeds as
follows.
• OIssU (ib, j∗,D∗). C first selects a random α and computes:

σ∗1 = gα

σ∗2 = (σ∗1)
∑

i∈D∗∪{0} yi

σ̃′∗1 = g̃y

σ̃′∗2 = (̃gz)y0 (σ̃′∗)x+
∑

i∈A yi·ai

The simulation of the ZKSoK of x is consistent with that of
OIssU (·).
• OS hw(i∗, j∗). C simulates the ZKSoK of x.
If x·y = z, then, by setting t = α−

∑
i∈[N]\D∗ yi ·ai, we can see

that (σ∗1, σ
∗
2, σ̃

′∗
1 , σ̃

′∗
2) are distributed as in the Issue algorithm.

Otherwise, z is random, which means that σ̃′∗2 is random. Since
(σ∗1, σ

∗
2, σ̃

′∗
1 , σ̃

′∗
2) are independent of x and D∗, A cannot suc-

ceed in this game with non negligible advantage ϵ. Therefore,
the behaviour of A can be used to solve the DDH assumption
in G2, unless C aborts. The advantage of C is at least ϵn .

S2.4 Unlinkability of Tickets.

Theorem 4: In PriTKT system, the user’s tickets are un-
linkable if the DDH assumption holds in G2.

Proof: If there is an adversary A that breaks the unlinka-
bility with the probability ϵ in Show algorithm, then there is
a challenger C that breaks the DDH assumption in G1 with the
probability ϵn , where n is a bound on the number of honest users.

The game setup for Theorem 4 is the same as for Theorem
3 except for the following oracles.
• OIssU (i∗, j∗,D∗). The simulation is the same as forOIssU (i, j,D)

in Theorem 3.
• OS hw(i∗, j∗). C selects a random α and computes:

T ∗1 = gα

T ∗2 = (T ∗1)b0+b1+b3

T̃ ′∗1 = g̃y

T̃ ′∗2 = (̃gz)b0 (T̃ ′∗1)a+b1·dsid+b2·dsrnd+b3·VPtkt

and then C simulate the signature of knowledge of x.
If x · y = z, then, by setting t = α − (b2 · dsrnd), we see

that (T ∗1 ,T
∗
2 , T̃

′∗
1 , T̃

′∗
2) are distributed as in the Show algorithm.

Otherwise, z is random, which means that T̃ ′∗2 is random. Since
(T ∗1 ,T

∗
2 , T̃

′∗
1 , T̃

′∗
2) are independent of x,A cannot succeed in this

game with non negligible advantage ϵ. Therefore, the behaviour
ofA can be used to solve the DDH assumption in G2, unless C
aborts. The advantage of C is then at least ϵn .

18

S2.5 Framing-resistance.

Theorem 5: PriTKT system is framing-resistance if the DL
assumption holds in G2.

Proof: If there is an adversary A that breaks the framing-
resistance with the probability ϵ, then there is a challenger C
that breaks the DL assumption in G2 with the probability ϵ

n ,
where n is a bound on the number of honest users.

The setup and simulations of oracles are the same as that of
Lemma 1. C perfectly simulates Exp f r(A, λ). At some point,
A outputs (dsblame, upk′) with non negligible advantage ϵ. If
upk′ , UPK[i∗] , then C aborts. Otherwise, C outputs x =
dsblame. C outputs the correct discrete logarithm x, if upk′ =
UPK[i∗] = g̃x. The advantage of C is then at least ϵn .

S3. Zero-Knowledge Signature of Knowledge

The zero-knowledge signature of knowledge mentioned in
section 5.2 can be instantiated by Fiat-Shamir paradigm [51].

S3.1 Details of Π1 and Π′1.

The proof Π1 = Π
′
1 = ZKSoK{(a, b0, b1, . . . , b3) : A =

ga ∧ Bi = gbi , 0 ⩽ i ⩽ 3} is computed as below.

(1) S select (β0, . . . β4)
R
←− Z5

p and computes P0 = gβ0 , · · · , P4 =

gβ4 , c1 = H(A||B0|| . . . ||B3||P0|| . . . || P4) and t0 = β0 − a · c1,
t1 = β1 − b0 · c1, . . . , t4 = β4 − b3 · c2. S send Π1 = (c1, t0, . . . , t4)
to CA.

(2) CA verifies c1
?
= H(A||B0|| . . . ||B3||gt0 Ac1 || gt1 Bc1

0 || . . . ||g
t4 Bc1

4).

S3.2 Details of Π2.

The proof Π2 = ZKSoK{usk : upk = g̃usk} is computed as
below.

(1) U select α1
R
←− Zp and compute R1 = g̃α1 , c2 = H(upk||R1),

s1 = α1 − usk · c2. U sends Π2 = (c1, s1) to CA.
(2) CA verifies c2

?
= H(upk||̃gs1 upkc2).

S3.3 Details of Π3.

The proofΠ3 = ZKSoK{(usk, dsid′, dsrnd) : ω = e(Yusk
0 , σ̃

′
1)∧

psu = B̃usk
0 B̃dsid′

1 B̃dsrnd
2 }(nonce) is computed as below.

(1) U select (αu, αd, αr)
R
←− Z3

p and computes R̂d = e(Yαu
0 , σ̃

′
1), R̃p =

B̃αu
0 B̃αd

2 B̃αr
2 , c3 = H(ω||psu||R̂d || R̃p||nonce) and su = αu − usk ·

c3, sd = αd − dsid′ · c3, sr = αr − dsrnd · c3. U sends Π3 =

(c3, su, sd, sr) to S.
(2) S verifies c3

?
= H(ω||psu||e(Y su

0 , σ̃
′
1)ωc3)||B̃su

0 B̃sd
1 B̃sr

2 ·psuc3 ||nonce).

S3.4 Details of Π4.

The proof Π4 = ZKSoK{(t′, dsrnd) : T1 = gt′Bdsrnd
2 ∧ T ′3 =

e(Bdsrnd
0 , T̃ ′1)}(nonce) is computed as below.

(1) U select (αt, αr)
R
←− Z2

p and computes R1 = gαt Bαr
2 , R̂2 =

e(Bαr
0 , T̃

′
1), c4 = H(T1||T ′3||R1||R̂2||nonce) and st = αt − t′ · c4,

sr = αr − dsrnd · c4. U sends (c4, st, sr) to V.
(2) V verifies c3

?
= H(T1||T ′3||g

st Bsr
2 T c4

1 ||e(Bsr
0 , T̃

′
1)·(T ′3)c4 ||nonce).

S4. Formal Correctness Definition

(1) The tickets produced by the Issue algorithm must be
verifiable by the Show;

Pr



Show
(U(usk, tkt,

VPtkt, spk, pp)
↔ V(spk, pp)
→ ((dsid,

dstrace), 1))

Setup(1λ)→ (msk, pp,P);
SKeyGen(pp)→ (ssk, spk);
SReg(S(ssk, spk, pp)
↔ CA(msk, spk, pp))→ creds;
UKeyGen(pp)→ (usk, upk);
UReg(U(usk, upk,A,
pp)↔ CA(msk, upk, pp))→ credu;
Issue(U(usk, credu,

D,A, pp)↔ S(ssk, creds,

pp,P))→ ((tkt,VPtkt), 1)



= 1

(2) The DSTrace algorithm must be able to track users who
attempt double-spending behavior

Pr



DSTrace(dsid,
dstrace, dsid,
dstrace, spk,

pp)→ (dsblame,
upk′),

VerifyDS(
dsblame, upk′)

→ 1

Setup(1λ)→ (msk, pp,P);
SKeyGen(pp)→ (ssk, spk);
SReg(S(ssk, spk, pp)
↔ CA(msk, spk, pp))→ creds;
UKeyGen(pp)→ (usk, upk);
UReg(U(usk, upk,A,
pp)↔ CA(msk, upk, pp))→ credu;
Issue(U(usk, credu,

D,A, pp)↔ S(ssk, creds,

pp,P))→ ((tkt,VPtkt), 1)
Show(U(usk, tkt,
VPtkt, spk, pp)↔ V(spk, pp)
→ ((dsid, dstrace), 1));
Show(U(usk, tkt,
VPtkt, spk, pp)↔ V(spk, pp)
→ ((dsid, dstrace), 1));



= 1

19

