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Abstract: The development of consumer sleep-tracking technologies has outpaced the scientific
evaluation of their accuracy. In this study, five consumer sleep-tracking devices, research-grade
actigraphy, and polysomnography were used simultaneously to monitor the overnight sleep of
fifty-three young adults in the lab for one night. Biases and limits of agreement were assessed
to determine how sleep stage estimates for each device and research-grade actigraphy differed
from polysomnography-derived measures. Every device, except the Garmin Vivosmart, was able
to estimate total sleep time comparably to research-grade actigraphy. All devices overestimated
nights with shorter wake times and underestimated nights with longer wake times. For light
sleep, absolute bias was low for the Fitbit Inspire and Fitbit Versa. The Withings Mat and Garmin
Vivosmart overestimated shorter light sleep and underestimated longer light sleep. The Oura Ring
underestimated light sleep of any duration. For deep sleep, bias was low for the Withings Mat and
Garmin Vivosmart while other devices overestimated shorter and underestimated longer times. For
REM sleep, bias was low for all devices. Taken together, these results suggest that proportional bias
patterns in consumer sleep-tracking technologies are prevalent and could have important implications
for their overall accuracy.
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1. Introduction

Consumer sleep-tracking technologies, smart devices that non-invasively monitor
sleep, have become increasingly advanced, utilize more physiological signals, and claim to
measure an increasing repertoire of sleep metrics more accurately [1–4]. Some commercial
devices perform as good as research-grade actigraphy for detecting sleep [5,6], though
their algorithms do not meet the established reporting standards for reproducibility [7–10].
Commercial devices could be a cost-effective and logistically advantageous alternative
for the scientific and clinical evaluation of sleep. However, a lack of scientific evaluation
remains a critical barrier to their clinical implementation [11,12].

Sleep is characterized by physiological changes in brain activity, heart rate, blood
pressure, body temperature, respiration, eye movement, and muscle tone [13–15]. To
characterize sleep most accurately, the gold standard measure, polysomnography (PSG),
utilizes a montage of electrodes and other recording devices that capture these physio-
logical changes [14–17]. Offline, trained experts apply standardized criteria to determine
sleep stages in 30 s intervals [18]. Within each 30 s interval, scorers identify changes
in physiological patterns to characterize sleep stages [18,19]. Although PSG is the gold
standard for characterizing sleep stages, applying the PSG montage and identifying sleep
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stages requires hours of time from multiple trained professionals [16,17]. The inter-scorer
reliability of even well-trained scorers ranges from 70 to 100% [16,17,20,21]. PSG requires
costly equipment and is uncomfortable for participants [16,22,23]. While automated sleep
staging algorithms have been developed, they do not reduce the cost, time, or discomfort
of PSG [21,24,25]. Easier, comparably accurate, and more cost-effective alternatives to PSG
are in high demand.

Consumer sleep-tracking technologies are rapidly advancing to meet increasing de-
mand, resulting in novel tools and enhanced algorithms [1–4,6,26]. Wearable sleep tech-
nologies typically consist of wrist-worn or finger-worn sensors that monitor movement,
cardiac activity, and even temperature [2,11,26]. Non-wearable sleep technologies, called
nearables, typically measure physical and cardiac activity from the bedside or under a
mattress without direct physical contact to the individual [2,26]. Nearables provide a
potential solution for sleep measurement in populations sensitive to or unwilling to wear
a device [27]. Compared to research-grade actigraphy, which relies on both participant
and researcher input in the form of sleep diaries and hand scoring, wearable and nearable
consumer devices are typically less demanding and measure a wider array of physiological
signals [2,6,11–13,15,26]. These devices are also already in widespread public use and offer
a promising opportunity to help improve sleep-related interventions and health. However,
whether new consumer sleep-tracking technologies measure sleep reliably and accurately
enough to be used as alternatives to PSG and research-grade actigraphy remains unclear
and under evaluated.

In recent years, consumer devices have been able to report measures of sleep more
accurately [3,4,28]. Devices that use accelerometry alone are able to accurately estimate
sleep versus wake and tend to have the lowest staging accuracy at around 65% [29,30]. De-
vices with combined accelerometry with photoplethysmography have been able to achieve
classification accuracies between 65 and 75% for sleep staging and 90% for classifying sleep
and wake but tend to overestimate deep sleep and underestimate other sleep stages [4,31].
Pressure and radar-based systems have been demonstrated to achieve up to 80% accuracy
at detecting light sleep and deep sleep [4]. Despite these tendencies, directly comparing
device performance is difficult due to different, and often incomplete, evaluation and
reporting methods and comparisons between participants [3,10,32]. Furthermore, new de-
vices and algorithms are released nearly every month, and there is a critical lack of studies
directly comparing sleep staging performance of different devices using a within-subject
approach [32].

This study evaluated the accuracy of sleep measurement in five consumer sleep-
tracking technologies and research-grade actigraphy against PSG, using a within-subject
and standardized evaluation approach [10]. We were particularly interested in the perfor-
mance of nearable devices (under mattress) and wearable devices with multiple measures
(e.g., actigraphy, heart rate, SpO2) in comparison to research-grade actigraphy and PSG.
Device measured total sleep time, wake after sleep onset, light sleep, deep sleep, and REM
sleep were compared to their corresponding reference measures derived using consensus-
scored PSG records. Such findings are important for identifying the clinical and research
useability of these devices.

2. Materials and Methods
2.1. Participants

Participants consisted of 53 healthy young adults (31 female, 22 male) aged 18–30 years
(M = 22.5, SD = 3.5). Participants were asked to wear the devices as part of other larger
ongoing studies where participants slept in the lab with PSG. As part of the procedure of
the ongoing studies, participants were excluded for self-reported cardiac, neurological, psy-
chological, or sleep disorders (e.g., restless leg syndrome, insomnia, narcolepsy), abnormal
sleep patterns (i.e., greater than 3 naps per week, fewer than 6 h of sleep per night, habitual
bedtime after 2 a.m.), medication or supplements affecting sleep (e.g., Ambien, Lunesta,
St. John’s Wort, melatonin, over-the-counter sleep supplements), and excessive caffeine
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or alcohol consumption (i.e., greater than fourteen 12 oz drinks per week). Participants
were instructed to get quality sleep the night before experimental sessions and to abstain
from caffeine and alcohol consumption on experimental days and prior nights. Information
about sleep the night before and pre-testing criteria were verified by self-reports. All
participants were provided monetary compensation for completing experimental proce-
dures, and all procedures were approved by Institutional Review Board of the University
of Massachusetts.

2.2. Surveys

Questionnaires assessed demographics, body mass index, and the presence of sleep
disorders. The Morning–Eveningness Questionnaire (range (16–86), >59 = “morning types”)
assessed participants’ chronotype [33]. The Pittsburg Sleep Quality Index (range (0–21), >5
= “Poor” sleeper) was used to assess habitual sleep over the last 30 days [34]. Self-reported
information about participants’ sleep (e.g., sleep and wake onset, estimated sleep duration,
awakenings) was collected using an in-house sleep diary.

2.3. Sleep-Tracking Devices

The Actiwatch Spectrum Plus (Phillips Respironics, Bend, OR, USA) is a research-
grade activity-monitoring wristwatch. The devices were configured to collect data in 15 s
epochs. Participants were instructed to press a button on the device to provide an event
marker indicating when they went to bed after the lights were out, and when they woke
up. Actigraphy data was downloaded with Actiware software 6.3.0 and scored for sleep
or wake, or excluded if off-wrist, using 15 s epochs. Next, sleep diary entries and event
markers were used to check the auto-scored rescored records for discrepancies with the
sleep diaries and button presses. If there was no entry in the sleep diary or an event marker,
the first 3 consecutive minutes of sleep defined sleep onset and the last 5 consecutive
minutes of sleep defined wake onset [35].

We employed five commercial sleep-tracking devices. Cost and other information
about the devices are outlined below in Table 1. The Fitbit Inspire HR (Fitbit Inc., San
Francisco, CA, USA), Fitbit Versa 2 (Fitbit Inc. San Francisco, CA, USA), and Garmin
Vivosmart 4 (Garmin Ltd., Lenexa, KA, USA) are smartwatches that pair with a dedicated
smartphone application using Bluetooth. All 3 watches measure activity, sleep, and heart
rate. The Fitbit Versa 2 and Garmin Vivosmart 4 have additional SpO2 monitors. The
Oura Ring Gen 2 (Oura Inc., Oulu, Finland) is a smart ring that pairs with a dedicated
smartphone application using Bluetooth and reports estimated measures of activity, sleep,
and heart rate. We also assessed a nearable, the Withings Sleep Tracking Mat (Withings
Inc., Issy-les-Moulineaux, France). This mat is placed under a mattress and paired with a
smartphone application using Bluetooth.

Table 1. Information about cost, location, and available measurements for each device.

Cost Location Measurements

Fitbit Inspire HR USD 97 Wrist Activity, Sleep, Heart Rate
Fitbit Versa 2 USD 200 Wrist Activity, Sleep, Heart Rate, SpO2
Garmin Vivosmart USD 110 Wrist Activity, Sleep, Heart Rate, SpO2
Oura Ring USD 300 Finger Activity, Sleep, Heart Rate
Withings USD 80 Under Mattress Activity, Sleep, Heart Rate
Actiwatch USD 800 Wrist Activity, Sleep

All devices report estimated measures of total sleep time, wake after sleep onset,
light sleep, deep sleep, and REM sleep for detected sleep intervals via the corresponding
applications. For each device, the corresponding applications were used to extract summary
measures. Epoch by epoch data was not available for any of the devices. Time stamps were
not synchronized between the iPhone and PSG data collection computer. Therefore, only
summary measures were assessed.
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2.4. Polysomnography

Polysomnography for 33 participants was acquired using a 32-channel cap (Easycap,
Herrsching, Germany) and a Bluetooth-compatible LiveAmp amplifier (Brain Products
GmbH, Gilching, Germany). The EasyCap montage consisted of 28 EEG electrodes placed
at 10–10 and intermediary locations, 2 electrooculogram (EOG) electrodes placed beside
the eyes, and 2 electromyogram (EMG) electrodes placed over the zygomatic major and
mylohyoid muscles. Data were recorded with a bandpass filter between RAW-250 Hz and
were digitized at 500 Hz using BrainVision Recorder (Brain Products GmbH, Gilching,
Germany). Scalp impedances were reduced below 10 kΩ.

For the remaining 20 participants, PSG was acquired using a custom 129-channel cap
(Easycap, Herrsching, Germany) and BrainAmp MR plus amplifiers (Brain Products GmbH,
Gilching, Germany). The PSG montage consisted of 123 scalp EEG electrodes placed at
10–10 and intermediary locations, 4 EOG electrodes placed beside and below the eyes, and
2 EMG electrodes placed over the zygomatic major and mylohyoid muscles. Data were
recorded using a hardware bandpass filter between RAW-1000 Hz and digitized at 2000 Hz
using BrainVision Recorder (Brain Products GmbH, Gilching, Germany). Scalp impedances
were reduced below 10 kΩ using high-chloride abrasive gel.

2.5. Procedure

Data were collected in the Sleep Lab at The University of Massachusetts, Amherst.
The phone applications for the Garmin Vivosmart 4, Withings Sleep Mat, and the Oura
Ring were downloaded to an Apple iPhone 8. For each device, one account was created.
Then, the same account for each device was used to collect data from all participants.
Demographic information was updated for each participant prior to data collection. The
Fitbit application is limited to one account per device, and only one account can log into
the phone at a time. Therefore, one account was created for the Fitbit Versa, and another
was created for the Fitbit HR. Data were harvested from both accounts by logging them in
and out of the same application using the same phone following each study night.

While participating in other studies, participants were given information about the
current study and asked whether they would be interested in wearing the devices alongside
their already scheduled night PSG recording. All participants arrived at the lab between 8
and 11 p.m. to complete surveys and cognitive memory tasks associated with the studies.
After the tasks, participants were given up to a 30 min break to prepare for overnight sleep
in the lab (e.g., brush teeth, use restroom, change clothes). The Fitbit Versa and Garmin
Vivosmart were applied to one wrist, and the Fitbit HR and Actiwatch Spectrum were
placed on the other wrist. The Oura Ring was applied to whichever finger it fit on the best.
Wrist location (proximal vs. distal) and arm placement (left vs. right) were counterbalanced
across participants. The Withings Sleep Tracking Mat was placed under the mattress (full
size, interspring mattress, Gold Medal Sleep Products) according to product specifications.
Next, PSG was applied, and participants were instructed to sleep. Participants were in
bed with PSG by between 9 p.m. and 12 a.m. In the morning, the PSG and devices were
removed, participants completed any tasks required from the original studies, and then
they were compensated and debriefed about the aims of this study.

2.6. Analysis

Sleep stages comprising NREM1, NREM2, NREM3, and REM were manually scored in
30 s epochs by two trained sleep researchers according to standard American Academy of
Sleep Medicine criteria [18]. After each record was independently scored by each reviewer,
discrepant epochs were identified. Each discrepant epoch was then individually rescored
by another scorer to provide a consensus score. Rescored records with consensus scored
epochs replacing discrepant scores were then used to calculate summary statistics for total
sleep time, wake, NREM1, NREM2, NREM3, and REM sleep. Based on the prior literature,
we assumed that NREM1 and NREM2 were both considered “light” sleep, and NREM3
was considered “deep” sleep [36]. Thus, reported data combined NREM1 and NREM2.
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Absolute bias, Bland–Altman plots, intra-class correlation coefficients, and mean
absolute percent error were used to evaluate whether the observed summary sleep measures
recorded by each device differed from the corresponding measure recorded by PSG. Bias
was assessed to determine how estimates differed as a function of the amount of each
measurement. Plots of the mean difference and 95% limits of agreement were generated
using recent standardized guidelines for the evaluation of sleep tracking [10]. Briefly, plots
were examined for heteroscedasticity and proportional bias. Where heteroscedasticity
and/or proportional bias were present, the bias and 95% limits of agreement (LOAs)
were adjusted by log-transforming the data. When data were homoscedastic, LOAs were
computed as bias ± 1.96 SD of the differences. When heteroscedasticity was detected,
LOAs were modeled as a function of the size of the measurement [10].

Intra-class correlation coefficient values were calculated using an ICC (2,1) single-
measurement, absolute-agreement, 2-way mixed-effects model and were classified as poor
(<0.50), moderate (0.50–0.75), good (0.75–0.90), or excellent (>0.90) based on established
guidelines [37]. Mean absolute percentage error values were calculated to indicate the
relative measurement error of each consumer sleep-tracking device compared to PSG for
all sleep measurements. Mean absolute percentage error was calculated as the absolute
difference between the devices and PSG measures divided by the measured PSG and
multiplied by 100 (e.g., [(Device TST − PSG TST)]/PSG TST × 100) [38,39]. All statistical
analyses were performed using R [40].

3. Results
3.1. Sample Demographics

The sample demographics are presented in Table 2. Participants’ BMI ranges were
in the healthy range. The MEQ indicated the participants were, on average, intermediate
chronotypes with poor habitual sleep quality based on the PSQI scores (Table 3). Three
participants slept less than 4.5 h overnight in the lab and were therefore excluded from
further analyses. Sleep architecture of the final sample are in Table 4.

Table 2. Demographics of the participants included in this study.

Total F:M White Asian Hispanic Black DNR

N 53 31:22 29 11 7 3 3
F:M = females/males, DNR = did not report.

Table 3. Summary of participant characteristics.

Age
(Years)

Height
(m)

Weight
(kg)

BMI
(kg/m2) MEQ * PSQI

Mean (SD) 22.5 (3.5) 1.7 (0.10) 69.4 (16.6) 23.7 (5.0) 45.4 (8.4) 5.9 (2.8)
Median 22.0 1.7 65.8 22.7 45.5 6.0
Range 18–34 1.5–1.9 49.9–131 16.9–44.4 26–64 1–17

SD = standard deviation, BMI = body mass index, MEQ = Morning–Eveningness Questionnaire, PSQI = Pittsburgh
Sleep Quality Index. * Scores unavailable for 3 participants.

Table 4. Summary statistics for sleep stages calculated by polysomnography in minutes.

TST WASO NREM1 NREM2 NREM3 REM

Mean (SD) 431 (54.7) 33.1 (22.6) 15.7 (10.0) 226 (38.4) 113 (35.2) 76.4 (25.2)
TST = total sleep time, WASO = wake after sleep onset.

3.2. Device Failures

All devices exhibited software or user errors (Table 5). The Fitbit Inspire had three
failures; two failures were related to poor fit obscuring a proper heart rate recording, and
one was related to data synchronization. The Fitbit Versa had the most failures: nine were
related to data synchronization and one was related to poor fit obscuring a proper heart rate
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recording. The Garmin Vivosmart had two errors related to data synchronization failures
and one related to poor fit. For the Oura Ring, three errors were due to data synchronization
failures, and one was due to low battery. For the Withings Mat, all six errors were due to
data synchronization failures. The Actiwatch reported being off-wrist for more than 75% of
the night seven times due to poor fit and failed to record one time because of an issue with
programming of the device.

Table 5. Device failures.

Device % of Data
Lost

N Errors
Total

Data
Synch Poor Fit Low

Battery

Fitbit Inspire 5.6% 3 1 2 0
Fitbit Versa 18.8% 10 9 1 0
Vivosmart 5.6% 3 2 1 0
Oura Ring 7.5% 4 3 0 1
Withings 11.3% 6 6 0 0
Actiwatch 15.1% 8 1 7 0

Data Synch = data synchronization or programming failures.

3.3. Total Sleep Time

Compared with PSG, the Phillips Actiwatch, Garmin Vivosmart, and Withings Mat
overestimated total sleep time, while the Fitbit Inspire, Fitbit Versa, and Oura Ring tended
to underestimate total sleep time. None of the devices had proportional bias for estimates
of total sleep time. For all devices, heteroscedasticity manifested as the limits of agreement
around their biases being wider for nights with longer total sleep times than nights with
shorter total sleep times. The agreement between the devices and PSG-reported total sleep
time was good for the Fitbit Inspire, Fitbit Versa, Withings Sleep Mat, and Oura Ring,
moderate for the Phillips Actiwatch and poor for the Garmin Vivosmart (Figure 1 and
Table 6).
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Table 6. Agreement between devices and PSG for total sleep time.

Device
(min)

PSG
(min) Bias LOA ICC

Inspire 424.5 (66.4) 433.5 (52.7) −8.96 (29.7) 0.15 0.84 (0.73–0.91)
Versa 423.7 (57.7) 434.9 (56.6) −11.2 (27.6) 0.14 0.86 (0.75–0.93)
Vivosmart 476.6 (87.9) 435.0 (53.5) 41.7 (77.5) 0.46 0.38 (0.09–0.60)
Oura Ring 420.7 (70.6) 434.6 (54.1) −13.9 (41.1) 0.23 0.77 (0.61–0.86)
Withings 443.6 (58.9) 436.0 (55.9) 7.6 (30.8) 0.16 0.85 (0.74–0.91)
Actiwatch 449.0 (71.1) 435.4 (56.7) 13.6 (54.4) 0.26 0.63 (0.41–0.79)

Bias = absolute bias and standard deviation. LOA = limits of agreement (Bias ± ref × value), ICC = intraclass
correlation coefficient and 95% confidence intervals.

3.4. Wake after Sleep Onset

Compared with PSG, all devices tended to overestimate wake after sleep onset. All
devices tended to overestimate nights with shorter wake times after sleep onset times and
underestimated nights with longer wake times after sleep onset times. For all devices,
heteroscedasticity manifested as the limits of agreement being wider for nights with longer
wake times after sleep onset times than for nights with shorter wake times after sleep onset
times. The agreement between the devices and PSG-reported wake after sleep onset was
poor for all devices (Figure 2 and Table 7).
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Figure 2. Bland–Altmann plots depicting device-measured and PSG-measured agreement for
wake after sleep onset (A) Fitbit Inspire; (B) Fitbit Versa; (C) Garmin Vivosmart 4; (D) Oura Ring;
(E) Withings Sleep Mat; (F) Phillips Actiwatch. Data are shown in minutes. Red lines = mean bias,
grey lines = upper and lower limits of agreement, dots = individuals.

Table 7. Bias and limits of agreement between device- and PSG-measured wake after sleep onset.

Device
(min)

PSG
(min) Bias LOA ICC

Inspire 54.8 (20.1) 32.7 (22.2) 42.2 + −0.62 × ref 0.99 0.27 (−0.06–0.55)
Versa 58.5 (21.9) 33.5 (24.3) 45.5 + −0.61 × ref 1.01 0.27 (−0.07–0.56)
Vivosmart 7.2 (10.1) 33.1 (22.9) 4.0 + −0.9 × ref 2.00 0.08 (−0.08–0.27)
Oura Ring 58.8 (26.6) 33.6 (23.2) 39.6 + −0.43 × ref 1.01 0.32 (−0.05–0.61)
Withings 32.2 (33.2) 33.6 (23.9) 25.4 + −0.8 × ref 2.00 0.15 (−0.15–0.43)
Actiwatch 35.9 (21.1) 34.7 (23.5) 21.4 + −0.58 × ref 1.10 0.47 (0.19–0.68)

Bias = absolute bias and standard deviation. LOA = limits of agreement (Bias ± ref × value), ICC = intraclass
correlation coefficient and 95% confidence intervals.
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3.5. Light Sleep

Compared with PSG-measured light sleep (NREM1 + NREM2), the Fitbit Inspire and
Fitbit Versa tended to slightly overestimate light sleep. Bias was not proportional, and the
limits of agreement were wider for nights with longer light sleep times than for nights with
shorter light sleep times. The Garmin Vivosmart and Withings Mat had proportional bias
with heteroscedasticity such that light sleep tended to be overestimated at lower light sleep
times and underestimated at higher light sleep times. Limits of agreement were wider for
nights with longer light sleep times than for nights with shorter light sleep times. The Oura
Ring tended to underestimate light sleep, and limits of agreement were wider for longer
light sleep times than short ones. The agreement between devices and PSG-reported wake
after sleep onset was poor for all devices (Figure 3 and Table 8).
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Table 8. Bias and limits of agreement between device- and PSG-measured light sleep.

Device
(min)

PSG
(min) Bias LOA ICC

Inspire 256.8 (73.0) 243.0 (42.2) 13.7 (63.6) 0.79 0.42 (0.16–0.63)
Versa 246.2 (72.2) 244.9 (43.1) 1.3 (65.3) 0.80 0.40 (0.11–0.64)
Vivosmart 263.3 (51.7) 243.0 (41.3) 155 + −0.56 × ref 0.41 0.32 (0.05–0.55)
Oura Ring 193.5 (64.3) 243.0 (42.2) −49.5 (59.0) 0.60 0.29 (−0.03–0.55)
Withings 235.9 (58.5) 243.6 (42.7) 170 + −0.73 × ref 0.51 0.19 (−0.11–0.47)

Bias = absolute bias and standard deviation. LOA = limits of agreement (Bias ± ref × value), ICC = intraclass
correlation coefficient and 95% confidence intervals.

3.6. Deep Sleep

The Fitbit Inspire, Fitbit Versa, and Oura Ring tended to overestimate deep sleep at
lower deep sleep times and tended to underestimate higher deep sleep times compared to
PSG-measured NREM3. Limits of agreement were wider for nights with longer deep sleep
times than for nights with shorter deep sleep times. The Garmin Vivosmart and Withings
Sleep Mat tended to overestimate deep sleep, and limits of agreement were wider for longer
deep sleep times than shorter ones. The agreement between devices and PSG-reported
wake after sleep onset was poor for all devices (Figure 4 and Table 9).
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Table 9. Bias and limits of agreement between device- and PSG-measured deep sleep.

Device
(min)

PSG
(min) Bias LOA ICC

Inspire 81.5 (52.3) 117.7 (30.4) 99.9 + −1.16 × ref 1.10 0.00 (−0.21–0.24)
Versa 92.2 (56.3) 117.2 (30.8) 109.3 + −1.14 × ref 0.96 0.00 (−0.28–0.29)
Vivosmart 120.3(110) 117.9 (30.3) 2.3 (108.2) 1.99 0.14 (−0.15–0.40)
Oura Ring 142.5(40.5) 118.5 (30.9) 94.9 + −0.6 × ref 0.67 0.29 (0.01–0.53)
Withings 122.8(48.1) 121.1 (30.2) 1.7 (48.6) 0.93 0.31 (0.01–0.56)

Bias = absolute bias and standard deviation. LOA = limits of agreement (Bias ± ref × value), ICC = intraclass
correlation coefficient and 95% confidence intervals.

3.7. REM Sleep

All of the devices tended to overestimate REM sleep. None of the devices had propor-
tional bias. Limits of agreement were wider for nights with longer compared to shorter
REM times. The agreement between devices and PSG-reported REM sleep was moderate
for the Fitbit Inspire and Fitbit Versa, and was poor for all other devices (Figure 5 and
Table 10).
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Table 10. Bias and limits of agreement between device- and PSG-measured REM sleep.

Device
(min)

PSG
(min) Bias LOA ICC

Inspire 86.8 (27.4) 75.6 (24.2) 11.2 (18.3) 0.52 0.70 (0.40–0.84)
Versa 85.8 (34.6) 76.5 (26.6) 9.3 (27.6) 0.69 0.57 (0.32–0.75)

Vivosmart 115.6 (81.8) 76.3 (25.0) 39.2 (82.3) 2.00 0.06 (−0.16–0.31)
Oura Ring 81.8 (38.9) 75.9 (25.4) 5.81 (37.7) 1.11 0.34 (0.05–0.57)
Withings 85.8 (41.0) 74.2 (24.7) 11.6 (39.7) 1.93 0.30 (0.02–0.55)

Bias = absolute bias and standard deviation. LOA = limits of agreement (Bias ± ref × value), ICC = intraclass
correlation coefficient and 95% confidence intervals.

3.8. Mean Absolute Percent Error

The mean absolute percent error for total sleep time was the lowest and ranged from
5.3% (Fitbit Versa) to 14.3% (Garmin Vivosmart), indicating acceptable accuracy for all
devices except the Oura Ring. The mean absolute percent error for wake after sleep onset
was the highest and ranged from 59.29% (Phillips Actiwatch) to 138.5% (Fitbit Versa),
indicating very low accuracy across all devices. The mean absolute percentage errors for
light sleep were between 19.4% (Garmin Vivosmart) and 27.0% (Oura Ring), indicating low
but acceptable accuracy. The mean absolute percent errors for deep sleep and REM sleep
were all above 20%, indicating low accuracy across all devices (Figure 6).
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4. Discussion

Here, we compared sleep measurements from commercial wearable and nearable
sleep-tracking devices and research-grade actigraphy relative to gold-standard PSG. Two
core findings emerged from this research. All but one of the consumer sleep-tracking
technologies were able to detect total sleep time with comparable accuracy to research-
grade actigraphy. Second, the accuracy of device-measured sleep stages depends on
many factors, including the sleep stage, the device, time spent in that sleep stage, and
the individual. Taken together, these findings support a growing body of literature that
consumer sleep-tracking devices are a potential cost-effective, convenient, and accurate
alternative sleep measurement tool.
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All devices assessed here detected total sleep time with similar accuracy to research-
grade actigraphy, without requiring any programming, software, button presses, sleep
diaries, or a researcher to score records. Consistent with a growing number of recent studies,
we find that newer-generation wearable and nearable devices are capable of accurately
estimating sleep time within clinically acceptable levels [5,11,36,41]. Also, the reliability
and convenience of consumer sleep-tracking technologies was demonstrated to be better
than research-grade actigraphy [5,11]. Our results demonstrate that all devices, except
the Garmin Vivosmart, were able to estimate total sleep time with biases, reliability, and
accuracy comparable to research-grade actigraphy (Figures 7 and 8). All of the devices also
cost less than research-grade actigraphy.
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Figure 8. Summary figure depicting intra-class correlation (ICC) values and 95% confidence in-
tervals of agreement between device- and PSG-measured sleep variables. TST = total sleep time,
WASO = wake after sleep onset, light green boxes = 0.90 > ICC > 0.75; good accuracy, yellow boxes =
0.75 > ICC > 0.50; moderate accuracy, red boxes = ICC < 0.50; poor accuracy.

For wake detection, interestingly, all of the tested devices and research-grade actig-
raphy overestimated nights with shorter wake after sleep onset times. All of the devices
also underestimated nights with longer wake after sleep onset times. Moreover, all of the
devices had low accuracy and a higher error for wake after sleep onset than any other sleep
measurement. Due to the difficulty with detecting when someone is awake but not moving,
devices and algorithms that rely heavily on actigraphy were reported to largely under-
estimate wake after sleep onset [10,42,43]. In newer-generation wearable and nearable
devices, accurate heart rate and heart rate variability measures were widely incorporated
into sleep and wake detection algorithms [2–4,11]. These results contribute to a growing
body of evidence supporting that many new consumer sleep-tracking devices with heart
rate sensors can track sleep and wake as accurately as or better than actigraphy [5,36,41].
However, improvements are required before any of these devices can replace the accuracy
of PSG for detecting when someone is awake.
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It remains unclear whether and how different sensors and physiological signals are
being incorporated for sleep staging across consumer sleep-tracking technologies [10,12].
In this analysis, bias in sleep staging estimates varied greatly across individuals, devices,
stages, and stage length. Further, the accuracy of all sleep measurements compared to
PSG was poor. Similar to previous studies, discerning light sleep from deep sleep was
especially challenging for sleep-tracking devices [5,31,36,41,44–51]. The Fitbit Inspire, Fitbit
Versa, and Oura Ring estimated light sleep with less bias than deep sleep. Conversely,
the Withings Mat and Garmin Vivosmart estimated deep sleep with less bias than light
sleep. Across devices, estimates for REM sleep were less biased than estimates of light and
deep sleep. Despite low absolute biases, it should be noted that some estimates were still
up to 250 min different than their PSG derived measures. Moreover, overestimations and
underestimations were dependent on the length of the estimate for some stages but not
others across all of the sleep-tracking technologies tested. Taken together, the results of this
research suggest that proportional bias patterns in consumer sleep-tracking technologies
are prevalent and could have important implications for the overall accuracy of devices.

Although the sleep staging performance of consumer sleep-tracking devices is increas-
ing, compared to research-grade actigraphy, the mechanisms and specific causes of bias
and variability are less transparent. To classify sleep stages, wearable and nearable devices
implement a wide array of proprietary sensors and algorithms, whereas the algorithms
and data from the Actiwatch and other research-grade devices are open to and tested by
researchers. Adding to the obscurity of consumer-grade devices, it remains difficult or
expensive to gather the necessary data to properly evaluate the accuracy of consumer
sleep staging devices and their sensors at a full resolution. Some devices provide access
to all of the data collected from device sensors, but obtaining access to the data requires
advanced coding knowledge, the ability to utilize application programming interfaces, or
funding to pay the company or a third party to develop custom software. Research-grade
actigraphy devices provide full access to the data, dedicated software, and open-source
scoring algorithms. In this study, epoch-by-epoch data were not accessed for any of the
devices due to technological constraints. Therefore, the specificity and accuracy at which
any of the tested devices detected sleep staging remains unclear. Future work should
prioritize the development of free open-source tools designed to facilitate the extraction of
epoch-by-epoch data from consumer sleep-tracking devices. Facilitating a greater access
to granular data will be essential to hasten the evaluation of specific causes of bias and
variability, such as race, which remained to be determined [52].

5. Limitations

There are limitations to consider in the interpretation of these results. First, devices
were worn for one night. The accuracy of measurements was demonstrated to vary due
to a variety of factors including night to night differences [27,53]. Second, commercial
devices are rapidly evolving, and validity may be improved in newer models. However, in
the past, upgrades to the same device have not improved the sensitivity, specificity, and
accuracy for any sleep measure [48,54]. Finally, our sample was not sufficiently diverse
enough to know the generalizability of these findings across racial and ethnic groups.
Photoplethysmography, which provides a measure of heart rate (which is used in sleep
estimation) by shining light through the skin to detect blood flow changes is used in many
newer wearable devices (Versa, Inspire, Vivofit, Oura) and is not as accurate in individuals
with darker skin tones [52,55–58]. Thus, it is critical for future studies to include more
diverse samples and separately validate performance in individuals with dark skin tones.

6. Conclusions

The results of this study support a growing body of literature that consumer sleep-
tracking devices are a potential widely available, cost-effective, and accurate alternative
sleep measurement tool. According to a recent national survey, nearly 30% of US adults
use a wearable device on a daily basis, and the majority of those users would be willing
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to share their information with health care providers [59]. Wearable devices have been
demonstrated to facilitate the success of sleep interventions and could help improve health
outcomes for a large portion of the population [60]. Consistent with a growing number of
recent studies, all but one of the newer-generation wearable and nearable devices tested
in this study were capable of accurately estimating total sleep within clinically acceptable
levels [5,36]. Despite their prevalence and potential utility, only 5% of consumer sleep-
tracking technologies have been formally evaluated [28,61]. Many previous evaluation
approaches have not examined whether accuracy differs across shorter compared to longer
staging estimates [10,12,28]. Here, we demonstrated prevalent proportional bias patterns
in consumer sleep-tracking technologies that could have important implications for their
overall accuracy. Despite their prevalence, it remains unclear whether and how different
sensors, algorithms, and physiological signals are being incorporated across consumer
sleep-tracking technologies. Greater access to granular data and future studies to further
investigate the implications of proportional bias across devices that use different sensors
and physiological measures are warranted. While the performance of some devices is
strong, we also note the need for further improvements to the reliability and accuracy of
consumer devices and research-grade actigraphy.
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