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Abstract: The unstructured mechanistic model (UMM) allows for modeling the macro-scale of a
phenomenon without known mechanisms. This is extremely useful in biomanufacturing because
using the UMM for the joint estimation of states and parameters with an extended Kalman filter
(JEKF) can enable the real-time monitoring of bioprocesses with unknown mechanisms. However,
the UMM commonly used in biomanufacturing contains ordinary differential equations (ODEs) with
unshared parameters, weak variables, and weak terms. When such a UMM is coupled with an initial
state error covariance matrix P(t = 0) and a process error covariance matrix Q with uncorrelated
elements, along with just one measured state variable, the joint extended Kalman filter (JEKF) fails
to estimate the unshared parameters and state simultaneously. This is because the Kalman gain
corresponding to the unshared parameter remains constant and equal to zero. In this work, we
formally describe this failure case, present the proof of JEKF failure, and propose an approach called
SANTO to side-step this failure case. The SANTO approach consists of adding a quantity to the state
error covariance between the measured state variable and unshared parameter in the initial P(t = 0)
of the matrix Ricatti differential equation to compute the predicted error covariance matrix of the
state and prevent the Kalman gain from being zero. Our empirical evaluations using synthetic and
real datasets reveal significant improvements: SANTO achieved a reduction in root-mean-square
percentage error (RMSPE) of up to approximately 17% compared to the classical JEKF, indicating a
substantial enhancement in estimation accuracy.

Keywords: joint extended Kalman filter; unstructured mechanistic model; bioprocess monitoring

1. Introduction

The extended Kalman filter (EKF) is a recursive Bayesian filter [1,2]. This nonlinear
state estimator (NSE) is a commonly used technique for estimating the state of a nonlinear
system using a state-space model, first-order linearization, and linear estimation theory. It
is composed of a process model and a measurement model along with error covariance
matrices of the process (Q), measurement (R), and state (P) [3,4]. The EKF, beyond state
estimation, is also used for the parameter estimation (parameter evolution [5]) of nonlinear
systems (process models) considering a single joint state variable vector, which includes
both the states and parameters of the process model [6–8]. This approach is called the
joint estimation of states and parameters with an extended Kalman filter (JEKF). The joint
estimation problem is motivated by the need to correct the prediction of a process model
regarding state variables and to update the process model by evolving its parameters based
on the corrections made [8]. A process model should be estimated (evolved) for different
conditions of the same application. For example, in biomanufacturing, the parameters
of a process model for monitoring a cell culture should change for each new condition.
We can use a general set of parameters at the beginning of the process, but we need
to evolve them during the process to improve the predictions of the states of the cell
culture. Thus, JEKF uses each measurement as soon as it becomes available to correct
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both the predictions and parameters of a process model [8]. The first discussions and
applications of the JEKF approach started in the 1960s for the estimation of linear systems
(in which there is a bilinear relation between the states and parameters) [6–10]. However,
the JEKF is still very popular, with several new applications in different areas [5,11–21],
and with unsolved problems [22,23]. Furthermore, the JEKF has been established as the
least expensive nonlinear estimator for moderate-size systems in terms of computational
cost because the practical implementation of adaptive controllers using microcontrollers
(and/or minicomputers and/or microprocessors) requires numerically economical and
robust algorithms, such as the JEKF [11,24]. An important area of application of the JEKF is
biomanufacturing, that is, the production of biological products from living cells [20,25,26].
The reason for this is that the JEKF with the mechanistic model (MM) as a process model
effectively serves as a soft sensor in biomanufacturing. This combination can enable the
real-time monitoring of critical process parameters (CPPs) or critical quality attributes
(CQAs) that are difficult to measure directly or that can only be measured at low sampling
frequencies in a bioprocess [20,27]. There are two types of MM: structured mechanistic
models (SMMs) and unstructured mechanistic models (UMMs) [28]. When we have
knowledge about a bioprocess, we can use an SMM with the JEKF. On the other hand,
when we do not have knowledge about a bioprocess, we can use a UMM with the JEKF
because the UMM allows us to model the macro-scale of a phenomenon. It is a mass-balance
equation system with few parameters and variables and less complexity than SMMs [29,30].

The UMM used in biomanufacturing typically consists of ODEs with unshared pa-
rameters, weak variables, and weak terms. However, these characteristics of UMM in
biomanufacturing, together with the use of P(t = 0) and Q with uncorrelated elements
and the presence of a single measured state variable, represent a failure case that occurs
when the JEKF cannot estimate the unshared parameters and the state simultaneously.
There are many new bioprocesses for which the literature contains no prior knowledge that
the biopharmaceutical industry aims to monitor, such as recombinant adeno-associated
virus (rAAV) production [31]. Therefore, enabling the JEKF to side-step the failure case
described above may help the industry perform biomanufacturing with the real-time moni-
toring of bioprocesses with unknown mechanisms. Consequently, this skill can support
the biopharmaceutical industry in achieving biomanufacturing 4.0 by becoming more
agile and intelligent, thus enhancing product quality, optimizing operations, and reducing
costs [25,26,32,33]. Although the biopharmaceutical industry was valued at USD 239.8
billion in 2019 and is estimated to grow at an annual rate of over 13%, it faces significant
challenges in achieving the desired productivity and product quality consistently [34].

In this work, we present the common conditions in biomanufacturing that represent a
failure case where the JEKF fails to perform the unshared parameter evolution of a UMM,
and we propose a solution to side-step this failure case, called SANTO, which consists of a
Specific initiAl coNdiTiOn (SANTO) for the matrix Ricatti differential equation (MRDE).
Our solution is inspired by the regularization technique to avoid singularity issues in EKF.
However, instead of adding a small quantity to the diagonal elements of the state error
covariance matrix P [35], we only add a quantity to the state error covariance between
the measured state variable (MSV) and an unshared parameter (UP) in P(t = 0) for the
MRDE. The proposed approach can avoid JEKF failure by preventing the Kalman gain from
being zero throughout the entire process, which is an unrealistic situation that would mean
that the predictions of the UMM (used as a process model) are perfect. Our theoretical
and empirical results demonstrate the effectiveness of SANTO, which was assessed using
synthetic and real datasets. The code and data used in this work are available in the data
availability section of this paper to facilitate reproducibility. Our contributions can be
summarized as follows:

• We provide proof of JEKF failure when acting as an unshared parameter estimator
under specific biomanufacturing conditions that represent a failure case. To our
knowledge, this is the first work to formally report this failure case regarding the JEKF.
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• An approach to avoid the JEKF failure that enables using JEKF with UMM for real-time
bioprocess monitoring. This is helpful in the macro-scale modeling of a phenomenon
with UMM where the underlying process mechanism is not fully understood.

2. Related Work

In contrast to JEKF, the dual extended Kalman filter (DEKF) employs two consecutive
EKFs, separating the estimation of system states and parameters [36]. This separation can
be advantageous in certain scenarios, but JEKF offers three important benefits, particularly
in the context of the practical implementation of adaptive controllers using microcontrollers
in biomanufacturing that requires numerically economical and robust algorithms such as
JEKF [11,24]. First, JEKF avoids the computational overhead associated with running two
separate filters, as in DEKF, enhancing computational efficiency [37]. Second, it can provide
more accurate and robust estimates in scenarios, such as nonlinear biochemical systems,
that commonly occur in biomanufacturing processes [36]. Lastly, the single-filter structure
of JEKF is simpler to implement and tune compared to the dual-filter approach of DEKF [8].
The main limitation of JEKF is not guaranteed convergence in some cases, as reported
by [6,24,38]. A solution to deal with the convergence problems of JEKF is to use recurrent
derivatives [6,38]. However, a theoretical justification for that was not provided [8]. On the
other hand, it was reported that the cause of divergence in JEKF is linked to the linearization
of the coupled system and not due to the lack of recurrent derivatives [24]. Furthermore,
there are certain cases where the JEKF may be unable to estimate the parameters and
the state simultaneously, such as singularity issues [35]. However, until now, the failure
case (biomanufacturing conditions) where JEKF fails as an unshared parameter estimator
has not been formally reported. Recently, the JEKF was applied for monitoring rAAV
production [19]. In developing this application, the authors dealt with a situation that
resembles the failure case reported here. Because they reported the use of a simple UMM,
P(t = 0), and Q with uncorrelated elements and a second linear operator as an approach
to enable Kalman gain (K) and P to be updated with prior error covariances with regard
to the UMM parameters, their results showed the unshared parameter evolution with
convergence. However, the authors did not describe the problem in detail. They did not
present a theoretical justification for the approach used (second linear operator). They
clearly stated that the work is an initial study and reported the need for future validation.
We named this approach KPH2 because the authors used a second linear operator to enable
K and P to be updated, and we used this approach in our experimental evaluation for
comparison purposes with our proposed approach. A description of KPH2 and a possible
interpretation can be found in Section S6 of the Supplementary Material.

3. Background
3.1. Unstructured Mechanistic Model (UMM)

Unstructured Mechanistic Models (or Unstructured Mechanistic Kinetic Models) are
models of the temporal evolution of a bioprocess [39]. They are based on first-principle
mechanisms that drive the bioprocess under consideration [34]. Examples of bioprocesses
are (i) the production of therapeutic monoclonal antibodies (mAbs), which is projected to
bring in USD 300 billion by 2025 [34], and (ii) the rAAV production that is a viral vector
technology for gene therapy considered the safest and most effective way to repair single-
gene abnormalities in non-dividing cells [19,31]. It is essential to point out that despite
UMM being the most suitable option to describe the dynamic behavior of bioprocesses and
being considered a crucial foundation for soft sensors in DT development, its industrial
use is still in its early stages [28,39,40]. The UMMs are important because they allow for
the macro-scale modeling of the bioreactor’s functionality and can provide insight into
the upstream process’s underlying macro-scale phenomena. For example, this kind of
model can be used to depict the dynamics of the cell density, viability, nutrient/metabolite
concentrations, and product titer [41–43]. Therefore, UMMs are the most suitable option



Sensors 2024, 24, 653 4 of 28

for explaining observed phenomena, predicting process behavior, and analyzing intrinsic
bioprocess characteristics such as controllability [34].

The main difference between UMM and SMM is that SMM is more complex than
UMM because it provides details about the intracellular environment of a homogenous
cell population. Therefore, the development of SMM for a specific bioprocess requires
extensive domain knowledge and substantial effort [34,41]. SMM is unsuitable for the
dynamic control of bioprocess in bioreactors used commonly in biomanufacturing because
many of the variables used in SMM cannot be manipulated directly [34]. SMM is most
suited for cell-line development, in which a cells’ genome-level properties are changed to
produce the desired process behavior [34].

It is essential to point out that a simple UMM has limited predictive power and is
insufficient to process state estimation. Moreover, it is improbable that a single set of
parameter values enables a kinetic model to satisfy several datasets collected under distinct
operating circumstances [44]. The Kalman filter approach is commonly implemented with
UMM [45] to improve prediction accuracy and generate predictions between sampling
instances. Among several data analysis methods, the Kalman filter and its nonlinear
extensions, such as the extended Kalman filter, are effective tools for predicting the values
of unobserved states. Examples of UMM used in biomanufacturing can be found in
Section S1 of Supplementary Material.

3.2. Continuous-Discrete Extended Kalman Filter

This section gives an overview of the continuous-discrete EKF (CD-EKF) algorithm. A
detailed description of CD-EKF can be found in Section S2 of the Supplementary Material.
The EKF requires a state-space model to perform an estimation on the state variables of a
process (nonlinear system) present in a state variable vector ψ(t) [1,36,44]. A state-space
model consists of process and measurement (observation) models [46]. EKF linearizes
the nonlinear system (state-space model) by calculating the Jacobians of the nonlinear
process and measurement models based on the first-order Taylor series expansion in order
to analytically propagate the Gaussian random-variable representation [8,20,44].

A UMM can be used as the process model of EKF. The state variables vector to be used
by the EKF is composed of the state variables of the UMM (observed and unobserved), and
the state variables vector is defined as:

ψ(t) = [x1, x2, ..., xn]
T . (1)

Subsequently, the process model is represented as

dψ(t)
dt

= ϕ(ψ(t), t, θ) + ω(t), (2)

where ϕ denotes nonlinear functions of the state variables in ψ(t), which corresponds to a
UMM. The process model is formulated in a continuous time t, and the white process noise
vector is represented by ω ∼ N (0, Q) with the zero mean and the error covariance matrix
of process model represented by Q.

The measurement model is treated as a discrete system and defined as

Zk = h(ψ(tk)) + v. (3)

The nonlinear function h in the measurement model relates the current state variables
to the measurements Zk. The white measurement noise vector is represented by v ∼
N (0, R) with zero mean and measurement noise variance represented by R. When some
state variables can be measured directly, we have a simple case and h can be a linear model.
If h is linear, we have h(ψ(tk)) = Hψ(tk) [20,36,47] where the matrix H is a linear operator
(row vector) that matches the states variables of ψ(tk) to the measured variables Zk that are
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obtained at a discrete instance k [20,47]. Consequently, the measurement model (3) can be
rewritten as

Zk = Hψ(tk) + v. (4)

The EKF algorithm is implemented through a state variables vector ψ(t), initial condi-
tion, prediction step (time update) and correction step (measurement update) [1,20,21,36,47].

Initialization step: The initial condition is composed of the initial mean ψ̂0 = E[ψ0]
and initial error covariance matrix P0 = P(t = 0) = E[(ψ0 − ψ̂0)(ψ0 − ψ̂0)

T ] of the
state variables vector in addition to the error covariance matrices of the process Q and
measurement R [8].

Prediction step: In this step, the a priori predictions represented by the predicted mean
ψ̂(tk/k−1) and predicted error covariance matrix P(tk|k−1) of state variables vector ψ(t) are
obtained. This is completed by numerically integrating ϕ(ψ(t), t, θ) from discrete time tk−1
to tk the following equation

ψ̂(tk/k−1) = ψ̂(tk−1) +
∫ tk

tk−1

ϕ(ψ̂(t))dt
∣∣∣∣
ψ̂(tk−1)

(5)

and solving the MRDE to predict the state error covariance matrix [4,48]

dP(t)
dt

= Jϕ
t P(t) + P(t)JϕT

t + Q (6)

from tk−1 to tk, where a new measurement is obtained at time k [4,49], and Jϕ
t is the Jacobian

matrix of ϕ evaluated at the prior mode [50,51],

Jϕ
t =

∂ϕ(ψ(t))
∂ψi

∣∣∣∣
ψ(t)=ψ̂(t−1)

. (7)

Equation (6) is basically a matrix of ODEs, and the matrix of ODEs solutions obtained
from tk−1 to tk represent each error covariance of the system state.

Correction step: In this step, the results of the prediction step ( ψ̂(tk/k−1) and P(tk|k−1))
are combined with the measured value Zk and the Kalman gain (Kk) to provide the esti-
mated mean ψ̂(tk/k) and estimated error covariance matrix P(tk|k) of state variables using
the following equations:

(i) innovation equations

eZ,k = Zk − Hx̂(tk/k−1) (8)

Sk = HP(tk|k−1)H
T + R (9)

and (ii) update step equations

Kk = P(tk|k−1)H
TS−1

k (10)

x̂(tk/k) = x̂(tk/k−1) + KkeZ,k (11)

P(tk|k) = (I − KkH)P(tk|k−1) (12)

where eZ,k and Sk represent, respectively, the innovation error and innovation covariance.
The Kalman gain is a scaling factor (ratio) to estimate the state variables by setting a

value between the predicted state and measured state [4,50]. The Kk chooses a value along
the residual range (Zk - Hψ̂(tk/k−1))[8,50]. Kk enables to set a value for ψ̂(tk/k) between
the ψ̂(tk/k−1) (prediction) and Zk (measurement) using Equation (11) and update the belief
regarding the state variables based on how certain we are regarding the measurement
using Equation (12) [50]. The Kalman gain is computed as a ratio of prior and measurement
uncertainty available; see Equation (10). The one-dimensional form of Equation (10) is
the following K = P/(P + R) [50]. It is important to point out that linear operator H
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matches the states variables of ψ(tk) to the measured variables Zk that are obtained at a
discrete instance.

Using the estimated mean ψ̂(tk/k) and the estimated error covariance matrix P(tk|k) of
the vector of the state variables as an initial condition, we can return to the prediction step
until the next measurement is obtained and everything repeated again.

3.3. JEKF

JEKF is a Bayesian filter-based joint estimation approach where the states xi and
parameters θ of a process model are concatenated into a single joint state vector [52]. Then,
the state variables vector (ψ(t) = [x1, x2, ..., xn]T) is considered as extended/augmented
as following,

ψ(t) = [x1, x2, ..., xn, θ1, ..., θn]
T . (13)

To be more specific, we consider the problem of learning both the states xi and
parameters θi of a discrete-time nonlinear dynamical system (such as the UMM described
in Section S1 of Supplementary Material) that is used as a process model. In JEKF, the system
states xi and the set of model parameters θi for the dynamical system are simultaneously
corrected based only on the observed noisy signal Zk. It is essential to point out that we
consider JEKF as an approach for parameter evolution [5], because it cannot guarantee
convergence in some cases [6]. However, it can guarantee the evolution of the parameters
based on the following equation [5]

θ(tk) = θ(tk−1) + noise, (14)

where the parameters are defined as random variables with perturbation (noise) added
at each time step. This parameter evolution can be enough to update the process model
parameters when we are near the optimal parameters regarding a specific condition. In this
paper, when we say parameter estimation, we are referring to parameter evolution.

4. Theoretical Analysis

This section presents the theoretical analysis of the JEKF failure to perform unshared
parameter evolution with a UMM and SANTO, which is the proposed solution for this prob-
lem.

4.1. JEKF Failure

First, we present the conditions where JEKF fails to estimate (parameter evolution)
the unshared parameters of a UMM. Next, we present the theoretical proof of the failure.
However, before starting the analysis, we formally define unshared parameters and weak
and strong terms/variables of an ODE as follows:

• Unshared parameters: They are parameters used only in one term of an ODE and
not used by other ODEs of the same UMM. See the example in Section S3.1 of the
Supplementary Material.

• Weak and Strong term of an ODE: A weak term is a term of an ODE with a low
percentage of variables of the state variable vector, and a "strong term" is one with a
high percentage of variables of the state variable vector. See the example in Section
S3.2 of the Supplementary Material.

• Weak and Strong variable of an ODE: A weak variable is a variable used only in the
first member of an ODE in UMM, and a strong variable is a variable used in the first
member and different terms of the second member of an ODE. Furthermore, it is used
in the second member of other ODEs of the same UMM. See the example in Section
S3.3 of the Supplementary Material.

4.1.1. Failure Case: Biomanufacturing Conditions

The following conditions are prevalent in biomanufacturing and should be taken into
consideration while developing JEKF applications for this area:
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• ODEs of UMM with unshared parameters. This parameter type is commonly used in
ODE to model the dynamic of product formation in biomanufacturing [53–55]. See
the example in Section S3.1 of the Supplementary Material.

• P and Q with uncorrelated elements. In case of the limited amount of data, it is very
common to assume P and Q with uncorrelated elements in EKF applications [19–21,47].
This assumption means that the error covariance matrices P and Q are diagonal,
with the diagonal elements being the noise variances (Pi,i ̸= 0 and Qi,i ̸= 0) and
off-diagonal elements equal to zero (Pi,j = 0 and Qi,j = 0). The Q constant and with
uncorrelated elements is used only to build the MRDE, and the P with uncorrelated
elements can be used to build an MRDE and as an initial condition of MRDE (the
initial predicted state error covariance P(t = 0)).
This assumption raises two scenarios:

1. The use of P with uncorrelated elements to build the MRDE (Equation (6)) and
P(t = 0) with uncorrelated elements as the initial condition. When P with uncor-
related elements is used to build the MRDE, the ODEs of MRDE are based only
on noise variance of Pi,i and Qi,i and elements of Jacobian Jϕ

t . See the example
in Section S3.4 of the Supplementary Material. It is important to point out that
depending on the partial derivative, the ODE to predict a state error covariance

can be time-invariant
dPi,j(tk|k−1)

dt = 0. See Section S3.2 of the Supplementary
Material.

2. The use of P with correlated elements to build the MRDE (Equation (6)) and P(t
= 0) with uncorrelated elements as the initial condition. This means that the ODE
of MRDE can be composed of off-diagonal elements of P, and it can reduce the
number of the time-invariant ODE to predict a state error covariance between
two state variables.

• ODEs of UMM with weak terms. A strong term contributes more than a weak term
to compute the predicted state error covariance P(tk|k−1). Many elements of Jacobian

Jϕ
t result from the partial derivation of a strong term. See the example in Section S3.2

of the Supplementary Material.
• ODEs of UMM with weak variables. In the Jacobian Jϕ

t , the first-order partial deriva-
tives of all functions with respect to a weak variable are equal to zero. Consequently,
this variable type does not contribute to the calculations of predicted error covariance
P(tk|k−1) since it will not be part of any element of MRDE to predict the state error
covariance matrix P(tk|k−1). On the other hand, a strong variable contributes to the
calculations of predicted error covariance P(tk|k−1). See the example in Section S3.3 of
Supplementary Material.

• Only one measured state variable. In some cases (JEKF application), measuring only
one state variable is possible. This measured state variable determines which column
of the predicted state error covariance P(tk|k−1) is used to compute the Kalman gain
through P(tk|k−1)H

T in Equation (10). If this column has a row with a value equal to
zero (no covariance between the measured variable and state variable represented by
the row), the Kalman gain cannot be computed to the state variable defined by the
row. See the example in Section S3.5 of the Supplementary Material.

4.1.2. Lemma: Inability to Update Kalman Gain for Unshared Parameters based P(t = 0)
and Q with Uncorrelated Elements

Given the conditions described above, we have the following Lemma:

Lemma 1. The Kalman gain cannot be updated (by Equation (10)) for an unshared parameter
that is part of a state variable vector and part of a weak term in a UMM if the initial state error
covariance matrix P(t = 0) and Q are formed by uncorrelated elements and there is only one state
variable measured.
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The proof of this lemma is in the following, and an example can be found in Section S4
of the Supplementary Material.

Proof of Lemma 1. Let us consider the following:

• A general UMM with an unshared parameter in a weak term represented by a system
of nonlinear differential equations of the form:

dxmsv

dt
= f1(xmsv, x2, . . . , xn−1, θ1, θ2, . . . , θm) (15)

dx2

dt
= f2(xmsv, x2, . . . , xn−1, θ1, θ2, . . . , θm) (16)

... (17)
dxn

dt
= fn(xmsv, θup) (18)

where xmsv and x2, . . . , xn are the variables of the system, f1, f2, . . . , fn are the functions
defining the system, and θ1, θ2, . . . , θm are the parameters of the system, and θup is an
unshared parameter.

• A joint state variables vector defined as

ψ(t)general = [xmsv, x2, . . . , xn, θup]. (19)

• A process model defined as

dψ(t)general

dt
= ϕ(ψ(t)general , t) + ω(t) =

d
dt


xmsv
x2
...

xn
θup

 =


f1
f2
...
fn
0

+ ω(t). (20)

• xmsv as the unique measured state variable (MSV) and H = [1 0 ... 0 0].
• R as measurement noise variance of xmsv.
• θup as the unshared parameter (UP) to be evolved (estimated) and presented in only

one weak term.
• P and Q with uncorrelated elements for the ψ(t)general (Equation (19)),

P =


Pxmsv ,xmsv 0 . . . 0 0

0 Px2,x2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Pn,n 0
0 0 . . . 0 Pθup ,θup

, (21)

Q =


Qxmsv ,xmsv 0 . . . 0 0

0 Qx2,x2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Qn,n 0
0 0 . . . 0 Qθup ,θup

. (22)
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• The Jacobian Jϕ
t (Equation (7)), with the ψ(t)general (Equation (19)),

Jϕ
t (ϕ(ψ(t)general , t)) =



∂ f1
∂xmsv

∂ f1
∂x2

. . . ∂ f1
∂xn

0
∂ f2

∂xmsv

∂ f2
∂x2

. . . ∂ f2
∂xn

0
...

...
. . .

...
...

∂ fn
∂xmsv

∂ fn
∂x2

. . . ∂ fn
∂xn

∂ fn
∂θup

0 0 . . . 0 0


. (23)

Given these conditions and Equation (6), we have the following MRDE (based on P
uncorrelated)

dP(t)
dt =



dPxmsv ,xmsv (t)
dt = Q1,1 + 2P1,1

∂ f1
∂xmsv

dPx2,xmsv (t)
dt = (P1,1 + P2,2)

∂ f1
∂x2

. . . dPxn ,xmsv (t)
dt = (P1,1 + P3,3)

∂ f1
∂xn

dPθup ,xmsv (t)
dt 0

dPxmsv ,x2 (t)
dt = (P1,1 + P2,2)

∂ f2
∂xmsv

dPx2,x2 (t)
dt = Q2,2 + 2P2,2

∂ f2
∂x2

. . .
dPxn ,x2 (t)

dt = (P3,3 + P2,2)
∂ f2
∂xn

dPθup ,x2
(t)

dt = 0
...

...
. . .

...
...

dPxmsv ,xn (t)
dt = (P1,1 + Pn,n)

∂ fn
∂xmsv

dPx2,xn (t)
dt = (P2,2 + Pn,n)

∂ fn
∂x2

. . . dPxn ,xn (t)
dt = Qn,n + 2Pn,n

∂ fn
∂xn

dPθup ,xn (t)
dt = 0

dPxmsv ,θup (t)
dt = 0

dPx2,θup (t)
dt = 0 . . .

dPxn ,θup (t)
dt = 0

dPθup ,θup (t)
dt = 0


. (24)

Now, using this Equation (24) to compute the predicted state error covariance matrix
P(tk/k−1) from tk−1 to tk with an initial predicted state error covariance matrix P(tk−1) =
P0 = Pinit(t = 0) with uncorrelated elements as the following

Pinit(t = 0) =


Pxmsv ,xmsv(t = 0) 0 . . . 0 0

0 Px2,x2(t = 0) . . . 0 0
...

...
. . .

...
...

0 0 . . . Pn,n(t = 0) 0
0 0 . . . 0 Pθup ,θup(t = 0)

, (25)

we have

P(tk/k−1) =


Pxmsv ,xmsv(tk/k−1) Px2,xmsv(tk/k−1) . . . Pn,xmsv(tk/k−1) Pθup ,xmsv(tk/k−1)

Pxmsv ,x2(tk/k−1) Px2,x2(tk/k−1) . . . Pn,x2(tk/k−1) Pθup ,x2(tk/k−1)
...

...
. . .

...
...

Pxmsv ,n(tk/k−1) Px2,n(tk/k−1) . . . Pn,n(tk/k−1) Pθup ,n(tk/k−1)

Pxmsv ,θup(tk/k−1) = 0 Px2,θup(tk/k−1) . . . Pn,θup(tk/k−1) Pθup ,θup(tk/k−1)

. (26)

Now, using P(tk/k−1), H and R to compute the Kalman gain for all variables in the
state variable vector ψ(t)general (Equation (19)), we have

Kk = P(tk|k−1)H
T(HP(tk|k−1)H

T + R)−1 =


Kxmsv

Kx2
...

Kxn

Kθup

 =



Pxmsv ,xmsv (tk/k−1)
Pxmsv ,xmsv (tk/k−1)+R

Pxmsv ,x2 (tk/k−1)

Pxmsv ,xmsv (tk/k−1)+R
...

Pxmsv ,n(tk/k−1)
Pxmsv ,xmsv (tk/k−1)+R

Pxmsv ,θup (tk/k−1)

Pxmsv ,xmsv (tk/k−1)+R


=



Pxmsv ,xmsv (tk/k−1)
Pxmsv ,xmsv (tk/k−1)+R

Pxmsv ,x2 (tk/k−1)

Pxmsv ,xmsv (tk/k−1)+R
...

Pxmsv ,n(tk/k−1)
Pxmsv ,xmsv (tk/k−1)+R

0
Pxmsv ,xmsv (tk/k−1)+R


=



Pxmsv ,xmsv (tk/k−1)
Pxmsv ,xmsv (tk/k−1)+R

Pxmsv ,x2 (tk/k−1)

Pxmsv ,xmsv (tk/k−1)+R
...

Pxmsv ,n(tk/k−1)
Pxmsv ,xmsv (tk/k−1)+R

0


. (27)

H selected the first column of P(tk/k−1), since it is related to the measured value xmsv.
However, in this column, we have that the predicted state error covariance between xmsv

and θup is zero, Pxmsv ,θup(tk/k−1) = Cov(xmsv, θup) = 0. The solution of
dPxmsv ,θup (t)

dt = 0
obtained from tk−1 to tk is equal to the initial condition that is zero due to P(t = 0) with
uncorrelated elements, and we have Cov(xmsv, θup) = Pxmsv ,θup(tk−1) = Pxmsv ,θup(t = 0) = 0.
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Then, the Kalman gain value for the unshared parameter is zero, Kθup = 0, and consequently,
the predicted state error covariance Pxmsv ,θup(tk/k−1) cannot be updated (by Equation (12)).
Since

P(tk|k) = (I − KkH)P(tk|k−1) =

[ ... . . .

Pxmsv ,θup(tk/k−1)− Kθup .Pxmsv ,xmsv(tk/k−1) ...

]
=

[ ... . . .

0 − 0.Pxmsv ,xmsv(tk/k−1) ...

]
.

(28)

Therefore, we have that Pxmsv ,θup(tk/k) = Pxmsv ,θup(tk/k−1) = 0, and as Pxmsv ,θup(tk/k) =
0 has to be used as a new initial condition for MRDE (Equation (24)), we have Kθup = 0 for
all Pxmsv ,θup(tk/k−1) obtained from tk−1 to tk using Equation (24) and consequently Kθup and
Pxmsv ,θup(tk/k) = Pxmsv ,θup(tk/k−1) = 0 are always zero and cannot be updated.

4.1.3. Theorem: JEKF Failure

The consequence of Lemma 1 (Section 4.1.2) is the following theorem:

Theorem 1. The JEKF (Section 3.3) fails to estimate an unshared parameter (parameter evolution)
that is part of a state variable vector and part of a weak term in a UMM if the initial state error
covariance matrix P(t = 0) and Q are composed of uncorrelated elements, and there is only one state
variable measured. This is because the Kalman gain value for the unshared parameter is equal to
zero for all steps of execution of the JEKF algorithm.

The proof of Theorem 1 is in the following, and an example of this theorem can be
found in Section S5 of the Supplementary Material.

Proof of Theorem 1. This proof can be completed using the conditions and results de-
scribed previously in the proof of Lemma 1 (Section 4.1.2).

Then, let us consider the following:

• H=[1 0 ... 0 0] and Kk = [Kxmsv , Kx2 , . . . , Kxn , Kθup ]
T as obtained in the proof of Lemma

1 in Section 4.1.2, where Kθup = 0.
• Zk as a measured value of xmsv.
• Predicted mean of the state variable vector ψ̂(tk/k−1)general = [x̂msv, x̂2, . . . , x̂n, θ̂up]T

with regard to the general UMM used in the proof of Lemma 1 in Section 4.1.2.

Now, using Equation (11) to compute the estimated mean of the state variable vector
ψ̂(tk/k)general , we have

ψ̂(tk/k)general = ψ̂(tk/k−1)general + Kk(Zk − Hψ̂(tk/k−1)general) (29)

ψ̂(tk/k)general =


x̂msv
x̂2
...

x̂n
θ̂up

+


Kxmsv

Kx2
...

Kxn

Kθup

.(Zk − x̂msv) =


x̂msv + Kxmsv .(Zk − x̂msv)

x̂2 + Kx2 .(Zk − x̂msv)
...

x̂n + Kxn .(Zk − x̂msv)
θ̂up + 0

 (30)

Then, we have that the estimated mean of the unshared parameter θ̂up(tk/k) (compos-
ing the ψ̂(tk/k)general ) is equal to the predicted mean of unshared parameter θ̂up(tk/k−1)
(composing the ψ̂(tk/k−1)general) for all steps from tk−1 to tk. In other words, the JEKF
fails to perform the parameter evolution, since it does not have a noise component to
evolve the parameter as described in the θ(tk) = θ(tk−1) + noise (Equation (14)); then,
θ̂up(tk/k) = θ̂up(tk/k−1) for all steps from tk−1 to tk.



Sensors 2024, 24, 653 11 of 28

4.2. SANTO: Specific Initial Condition for MRDE (PMSV,UP(t = 0) ̸= 0 in P0)

This section presents the SANTO approach to avoid the JEKF failure described in
Theorem 1. The initial condition of MRDE is the initial state error covariance matrix
P0 = P(t = 0). When it is composed of uncorrelated elements (Pi,j = 0), some initial

conditions of time-invariant ODEs (
dPi,j(tk|k−1)

dt = 0) in the MRDE are zero, and consequently,
the obtained solutions from tk−1 to tk for some of these time-invariant ODEs are zero, too.
Furthermore, in the presence of the biomanufacturing conditions (failure case presented in
Section 4.1.1), we have that the Kalman gain value regarding the unshared parameter (KUP)
and the predicted state error covariance between the unique measured state variable and
the unshared parameter (PMSV,UP(tk|k−1)), are zero too, KUP = 0 and PMSV,UP(tk|k−1) = 0.
Then, the KUP and PMSV,UP(tk|k−1) that compose P(tk|k−1) cannot be updated with regard
to the unshared parameter (see Lemma 1), and they are constant and equal to zero during
the entire process execution of JEKF. It is worth noting that PMSV,UP(tk|k−1) is an element
of P(tk|k−1) such as PMSV,UP(t = 0) is an element of P(t = 0). Furthermore, that KUP = 0
during the entire JEKF execution reflects an unrealistic situation. This would mean that the
prediction regarding the unshared parameter is perfect and does not need the influence
of the measurement in the correction step of JEKF since there is no uncertainty in the
prediction regarding the unshared parameter. This reflects the second intuition behind
Kalman gain described in Section S2 of the Supplementary Material. However, based on
prior knowledge, we know that the process model predictions regarding the unshared
parameter are imperfect since we need to perform the evolution of the unshared parameter;
otherwise, they would be the same during the entire process. Therefore, we need KUP ̸= 0
and PMSV,UP(tk|k−1) ̸= 0.

In general, the initial condition of MRDE is P(t = 0) with uncorrelated elements (Pi,j =
0) due to the difficulty of estimating all covariances with a limited dataset. However, instead,
considering all off-diagonal elements of P(t = 0) equal zero (Pi,j = 0), we can consider
only the key off-diagonal element (that is PMSV,UP(t = 0)) with an initial value different of
zero (PMSV,UP(t = 0) ̸= 0) to avoid the failure case. This value could be a positive quantity,
λ, since the off-diagonal elements of P(t = 0) can show a positive covariance between
two variables, indicating that they tend to increase or decrease together. Furthermore,
the value of λ should be different from zero and small enough to not significantly affect the
filter’s estimates but large enough to prevent the failure case. Then, with this consideration,
we can have a value for the initial state error covariance between the MSV and an UP
(PMSV,UP(t = 0)). If we add it to the initial state error covariance matrix P(t = 0) with the
other uncorrelated elements, we have a specific initial condition for MRDE that enables us
to update the KUP and PMSV,UP(tk|k−1) present in P(tk|k−1) and, consequently, avoids the
JEKF failure.

Theorem 2 (SANTO—Proposed approach to avoid the JEKF failure). The addition of a
positive quantity (λ) to the PMSV,UP(t = 0) in P(t = 0) to initialize the MRDE with a specific
initial condition can prevent the Kalman gain being zero in the entire execution of JEKF and prevent
the JEKF failure (Section 4.1).

Proof. The proof of the SANTO approach can be completed using the conditions described
previously in the proof of Lemma 1 (Section 4.1.2) and Theorem 1 (Section 4.1.3).

Then, let us consider the following:

• A positive quantity λ.
• xmsv as the unique measured state variable (MSV) and H = [1 0 ... 0 0].
• R as measurement noise variance of xmsv.
• θup as the unshared parameter (UP) to be evolved (estimated) and presented in only

one weak term.
• A specific initial predicted state error covariance matrix P(tk−1) = P0 = Psanto(t = 0)

with uncorrelated elements and PMSV,UP(t = 0) = Pxmsv ,θup(t = 0) = λ as following
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Psanto(t = 0) =


Pxmsv ,xmsv(t = 0) 0 . . . 0 0

0 Px2,x2(t = 0) . . . 0 0
...

...
. . .

...
...

0 0 . . . Pn,n(t = 0) 0
Pxmsv ,θup(t = 0) = λ 0 . . . 0 Pθup ,θup(t = 0)

, (31)

Now, using this Equation (24) to compute the predicted state error covariance matrix
P(tk/k−1) from tk−1 to tk with the specific initial predicted state error covariance matrix
P(tk−1) = P0 = Psanto(t = 0), we have

P(tk/k−1) =

[ ...
... . . .

Pxmsv ,θup(tk/k−1) = λ Px2,θup(tk/k−1) . . .

]
. (32)

where Pxmsv ,θup(tk/k−1) = λ because the solution of
dPxmsv ,θup (t)

dt = 0 obtained from tk−1 to tk
is equal to the initial condition that is λ in P0. Now, using P(tk/k−1), H and R to compute
the Kalman gain for all variables in the state variable vector ψ(t) (Equation (19)), we have

Kk = P(tk|k−1)H
T(HP(tk|k−1)H

T + R)−1 =

[ ...
Kθup

]
=

 ...
Pxmsv ,θup (tk/k−1)

Pxmsv ,xmsv (tk/k−1)+R

 =

 ...
λ

Pxmsv ,xmsv (tk/k−1)+R

. (33)

Then, we have the Kalman gain value for the unshared parameter as

Kθup = λ(Pxmsv ,xmsv(tk/k−1) + R)− ̸= 0, (34)

and consequently, the predicted state error covariance Pxmsv ,θup(tk/k−1) can be updated by
Equation (12) and predicted mean of the state variable vector with regard to UP, θ̂up(tk/k−1)
can be updated as Equation (11). Therefore, we have Pxmsv ,θup(tk/k) ̸= Pxmsv ,θup(tk/k−1) and
θ̂up(tk/k) ̸= θ̂up(tk/k−1) during the entire execution of JEKF.

It is essential to point out that the SANTO is inspired by the idea of a regularization
technique used to avoid the singularity problem in the state error covariance matrix [35,56].
However, instead of adding a small quantity to the diagonal elements of the state error
covariance matrix P, such as the perturbed-P algorithm [35], we only add a positive quantity
(λ) to the PMSV,UP(t = 0) in P(t = 0) to initialize the MRDE. Furthermore, a positive
quantity to the PMSV,UP(t = 0) can be defined by empirical tuning. One of the most
common ways to define a quantity is by trial and error. This involves running the filter
with different values of λ and choosing the value that results in the best performance [57].

Figure 1 shows the steps to develop a soft sensor for bioprocess monitoring based
on JEKF-SANTO.

• Step 1: Data Collection and Preprocessing. The first step in developing a soft sensor
for bioprocess monitoring using the JEKF-SANTO approach involves comprehensive
data collection and preprocessing. Once collected, these data must be meticulously
cleaned and preprocessed to remove outliers and address any missing values. This
preprocessing is crucial to ensure the quality and reliability of the data, which forms
the foundation for accurate modeling and estimation in subsequent steps.

• Step 2: Analyze the Biomanufacturing Conditions. This step involves a comprehensive
analysis of the biomanufacturing conditions where JEKF fails to estimate an unshared
parameter that is part of a state variable vector and part of a weak term in a UMM if
the initial state error covariance matrix P(t = 0) and Q are composed of uncorrelated
elements, and there is only one state variable measured.

• Step 3: Implement JEKF with the SANTO approach. Implement the JEKF algorithm,
defining the process model and the measurement model. Modify the initial state error
covariance matrix P(t = 0) as per the SANTO approach, adding a specific positive
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quantity λ to the covariance between the measured state variable and the unshared
parameter.

• Step 4: JEKF-SANTO calibration. Tune the R and Q of JEKF-SANTO based on consis-
tency tests, and adjust the λ parameter model based on the estimates obtained from
JEKF-SANTO related to the unshared parameter and the associated weak variable.

• Step 5: Deployment and Monitoring. Integrate the JEKF-SANTO as a soft sensor into
the biomanufacturing process control system to monitor critical quality attributes
(CQAs) and critical process parameters (CPPs) in real time.

Figure 1. The basic steps to develop a soft sensor for bioprocess monitoring based on JEKF-SANTO.

5. Empirical Evaluation

In our evaluation, we have the two goals (G1 and G2) that are addressed by answering
three Research Questions (RQs) comparing three NSEs: JEKF-Classic, JEKF-SANTO and
JEKF-KPH2. First, the goals are the following:

• (G1) Experimentally test Theorem 1 (JEKF Failure ) in Section 4.1.3;
• (G2) Test whether SANTO can avoid the JEKF failure and compare its performance

with KPH2.

Lastly, the research questions are the following:

• (RQ1-G1) Is there any variation in the unshared parameter estimation completed by
JEKF-Classic with the biomanufacturing conditions (failure case), or are the estimations
constant in the entire process?

• (RQ2-G2) Is there any variation in the unshared parameter estimation completed by
SANTO and KPH2 with the biomanufacturing conditions (failure case), and which
one has the best estimations (performance)?

• (RQ3-G2) Can the SANTO simultaneously estimate more than one unshared parame-
ter, performing better than KPH2?

5.1. Experimental Setup
5.1.1. Synthetic Dataset—mAb Production

The synthetic dataset (SD) has data regarding Monoclonal Antibody (mAb) produc-
tions that represent the biomanufacturing of a protein widely used as diagnostic reagents
and for therapeutic purposes [58]. The SD comprises two runs (A-SD and B-SD) with
different cell expansions and maximums of the mAb (titer) production. The runs of SD can
be seen in Figure 2, and the runs have a sample rate of 7.5 minutes during 103 hours of the
process. The runs were generated using the UMM proposed by [59] with small variations
in parameters µmax (maximum growth rate) and QmAb (mAb specific production rate)
(see Table S1 of the Supplementary Material) but with the same initial concentrations of
states variables (viable cell density (Xv), glucose (GLC), glutamine (GLN), lactate (LAC),
ammonium (AMM) and mAb) and with different conditions of pH and temperature as
completed in the synthetic dataset of [55]. The run A-SD (red lines in plots of Figure 2) was
generated using the original parameters proposed by [59], which are the parameters µmax
= 5.8 × 10−9(h−) and QmAb = 7.21 (×10−9 mg cells−1h−1). Run B-SD (blue lines in plots
of Figure 2) has the maximum cell expansions and a maximum of mAb (titer) production
of SD, and they were obtained with the parameters µmax = 7.5 × 10−9(h−) and QmAb =
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9.21 (×10−9 mg cells−1h−1). Furthermore, the run B-SD has samples regarding XV (cell/L)
with Gaussian white noise, and they were created by adding the Gaussian white noise with
a standard deviation of 20×107 to the data represented in blue and green lines. The Xv of
B-SD with noise is highlighted in light blue in the first plot. It is essential to point out that
XV samples with Gaussian white noise represent a possible online measurement with a
sensor that includes noises. This noise is used to evaluate the performance of the NSEs
(JEKF-Classic, JEKF-SANTO, and JEKF-KPH2) to estimate mAb and QmAb.

Figure 2. Synthetic dataset regarding mAb production. The run A-SD (red lines) was generated using
the original parameters proposed by [59]. Run B-SD (blue lines) has the maximum cell expansions
and the maximum mAb (titer) production of SD. The Xv of B-SD with noise is highlighted in light
blue in the first plot. This noise is used to evaluate the performance of the NSE to estimate mAb and
QmAb.

5.1.2. Real Dataset: AAV Production

The real dataset (RD) contains data regarding rAAV productions, which are described
and available in [19]. rAAV is a viral vector technology for gene therapy that is considered
the safest and most effective way to repair single-gene abnormalities in non-dividing
cells [60]. The RD has two runs with online and offline measurements of the state variables
viable cell density (Xv), glucose (GLC), glutamine (GLN), lactate (LAC), ammonium (AMM),
and rAAV (titer) regarding the rAAV production in shake-flasks and in bioreactors. The
run A-RD (production in shake-flasks) has only offline measurements, and the run B-RD
(production in bioreactor) has online measurements of Xv and offline measurements of
GLC, LAC, and rAAV (titer). The samples of the runs add up to 2902 with a sample rate of
1 minute during 48.3 hours of the process. The details of the real dataset development can
be seen in [19].

5.1.3. NSEs Assessment with Synthetic Dataset to Address RQ1-G1 and RQ2-G2

All NSEs (JEKF-Classic, JEKF-SANTO, and JEKF-KPH2) used the UMM described
in Section S1.4 of the Supplementary Material as a process model and the same initial
concentration regarding the state variables; see Table S2 of the Supplementary Material.
The NSEs were used to correct (estimate) the predictions regarding state variables (Xv
and mAb) and to evolve the unshared parameter (QmAb) of the process model. This
was accomplished using the Xv samples with the noise of the run B-SD as the unique
measured state variable and the parameters used to generate the run A-SD as initial
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parameters of the process model (see Tables S1 and S2 of Supplementary Material). This
situation represents a joint estimation problem where the prediction and parameter of
the process model should be corrected by the NSEs based on measured state variable
Xv with noise. For example, the initial value used for QmAb is the value of run A-SD
(QmAb = 7.21 ×10−9 mg cells−1h−1), and it should be evolved to the value of run B-
SD (9.21 ×10−9 mg cells−1h−1) based on Xv with the noise of run B-SD. Furthermore,
the Xv (without noise) and mAb samples of run B-SD were used as ground truth, too.
It is important to point out that the estimations were made with MRDE formed by P
with correlated elements (MRDE-PC) and uncorrelated elements (MRDE-PU). In addition,
MRDE-PC and MRDE-PU were combined with standard and specific P(t = 0) to check
the sensitivity of SANTO (with regard to PMSV,UP(t = 0)) and KPH2 (with regard to
PUP,UP(t = 0)). The standard P(t = 0) means that all NSEs used the same P(t = 0). On the
other hand, the specific P(t = 0) means that each NSE used a different P(t = 0) that enables
its best performance. For example, the specific P(t = 0) for SANTO contains a specific
value of PMSV,UP(t = 0), and the specific P(t = 0) for KPH2 includes specific value of
PUP,UP(t = 0). The specific P(t = 0) was obtained by trial and error, and a standard Q
was used for all NSEs. For example, the specific P(t = 0) for SANTO contains a specific
value of PMSV,UP(t = 0) = λ, and the specific P(t = 0) for KPH2 includes a specific value
of PUP,UP(t = 0). The values of specific P(t = 0) (including λ) were obtained by trial and
error. Furthermore, a standard and specific Q were also used for all NSEs. In addition,
the root-mean-square percentage error (RMSPE) was used as a metric to assess the similarity
between NSEs estimations and the ground truth of run B-SD. The details about the design
of NSEs with SD can be found in the Section S7.3 of the Supplementary Material.

5.1.4. NSEs Assessment with Real Dataset to Address RQ3-G2

The NSEs (JEKF-Classic, JEKF-SANTO, and JEKF-KPH2) used the UMM described
in Section S1.5 of the Supplementary Material as a process model and the same initial
concentration regarding the state variables; see Table S8 of the Supplementary Material.
These three NSEs were used to correct (estimate) the predictions regarding Xv, GLC, LAC,
and rAAV (titer) and to evolve the unshared parameters (µLac, µGLC and µrAAV) of the
process model. This was accomplished using the Xv samples with the noise of the run
B-RD as the unique measured state variable and the parameters obtained with the run
A-SD as initial parameters (see Table S9 of the Supplementary Material). This situation
also represents a joint estimation problem where the predictions and parameters of the
process model should be corrected simultaneously by the NSEs based on measured state
variable Xv with noise. However, in this case, the NSEs have to correct three different
unshared parameters simultaneously based on Xv with the noise of run B-RD. Furthermore,
the RMSPE was used as a metric to assess the similarity between NSEs estimations and
the ground truth of run B-SD, which are the offline measurements of GLC, LAC and rAAV
(titer) of run B-RD. It is essential to point out that the estimations were also completed with
MRDE-PC and with specific P(t = 0). The details about the design of NSEs with RD can be
found in Section S7.4 of the Supplementary Material.

5.1.5. Checking Consistency and Efficiency

The calibration of standard and specific Q were based on consistency tests, specifically
the innovation magnitude bound (IMB) test and the normalized innovations squared (NIS)
Chi-square test [61]. These two tests are used to check that the NSEs are performing
correctly with Q and R selected [50,62].

IMB Test. It checks that the innovation is consistent with its covariance by verifying
that the magnitude of the innovation is bounded by ±2

√
Sk. A positive result in this test

occurs when at least 95% of the values of the innovation lie within the ±2
√

Sk. Figure 3
presents the innovation error sequence for the NSEs configured with MRDE-PC, utilizing
specific Q and P(0) settings as detailed in Tables S4–S6 of the Supplementary Material
using run B of the synthetic dataset. This figure demonstrates that the innovation errors
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are unbiased with approximately 95.14% of the values falling within the ±2
√

Sk bounds
as required. Similar outcomes were observed for NSEs configured with both MRDE-PC
and MRDE-PU, and irrespective of whether standard or specific Q and P(0) settings were
employed, as shown in Figures S1–S3 using Q and P(0) as detailed in Tables S4, S5, and S7
of the Supplementary Material. Each of these configurations yielded similar innovation
error characteristics, underscoring the robustness of the NSEs under varying conditions.
Furthermore, similar results were also obtained with run B of the real dataset. Figure 4
presents the innovation error sequence for the NSEs configured with MRDE-PC, utilizing
specific Q and P(0) settings as detailed in Tables S10 and S11 of the Supplementary Material.
This figure demonstrates that the innovation errors are unbiased with approximately 95.9%
of the values falling within the ±2

√
Sk bounds as required.

Complementarily, standard error (SE) plots, based on the P matrix’s diagonal, demon-
strate the changing uncertainty in state estimates. Filter stability and consistency are
indicated by SEs, related to the measured state variable, converging to a stable value.
This convergence signifies the adaptability and equilibrium of a filter in making accurate
predictions. The alignment of positive innovation test results with this convergent SE (of
measured state variable) trend substantiates the overall stability and consistency of a filter.
Figure 5 depicts the SE over time of XV (measured state variable) estimated by NSEs with
a synthetic dataset using MRDE-PC and specific P(0). Initially, these errors exhibited an
increase, reflecting a period of adaptation as the filter assimilated the initial data. How-
ever, after this initial phase, the standard errors converged around a stable value. This
convergence signifies the increasing reliability of the filter in estimating the state of XV as it
processed more data. The initial increase followed by a steady convergence of the standard
errors, in tandem with the favorable innovation test results, compellingly demonstrates the
robustness of the NSEs. Similar results were obtained with NSEs with the synthetic dataset
using MRDE-PU and specific P(0) (Figure S4 of the Supplementary Material) and with
NSEs with the real dataset using MRDE-PC and specific P(0); see Figure 6. It is important
to point out that Figures S5–S8 in the Supplementary Material show the normal behavior
of standard errors for the state variables (QmAb and mAb) estimated by JEKF-SANTO and
JEKF-KPH2 with the synthetic dataset. Similarly, Figures S10–S14 in the Supplementary
Material show the standard errors for the state variables (GLC, LAC, rAAV, µGLC, µLAC,
and µrAAV) estimated by JEKF-SANTO and JEKF-KPH2 with the synthetic dataset.

NIS Chi-square Test. It verifies that the innovation is unbiased and white by using
hypothesis testing (χ2 test) [50,62]. The NIS is defined as NISk = eZ,kS−

k eZ,k, and the mean
of NIS is defined as µ(NIS) = 1

N ∑N
k=1 eZ,kS−

k eZ,k from a single run of a JEKF. Therefore, the
NIS test involves verifying that µ(NIS) lies in the confidence interval [r1, r2] defined by the
hypothesis H0 that N × µ(NIS) is χ2

Nm distributed with probability 1-α, such that P(N ×
µ(NIS) ∈ [r1, r2]|H0) = 1 − α where m is the number of measured state variables and N is
the number of samples from the measured state variables. In our case, m=1 because we have
only one measure state variable, and N = 824 for SD and N = 2901 for RD. Furthermore, for
the case of a two-sided 95% confidence region, we have [r1, r2] = [χ2

Nm(0.025), χ2
Nm(0.975)].

Therefore, the NIS test of NSEs with the synthetic dataset is concerned with answering the
following question: Is N × µ(NIS) inside of [χ2

824(0.025), χ2
824(0.975)] = [745.39, 904.39]

where N=824, such that P(N × µ(NIS) ∈ [745.39, 904.39]|H0) = 1 − α? All the NSEs
designed with the synthetic dataset using the Q, R and P(0) defined in Tables S3–S7 of the
Supplementary Material presented the N × µ(NIS) falling inside of the confidence bound
defined by the χ 2 test. The NSEs with MRDE-PU had an N × µ(NIS) = 835.29 and NSEs
with MRDE-PC presented a N × µ(NIS) = 830.35. Furthermore, the NSEs with the real
dataset had a positive result in the χ2 test with the following question: Is N × µ(NIS) inside
of [χ2

2901(0.025), χ2
2901(0.975)] = [2752.63, 3051.15] where N=2901? NSEs with MRDE-PC

and, Q, R and P(0) defined in Tables S10 and S11 of the Supplementary Material presented
an N × µ(NIS) = 2840.55.

Normalized estimation error squared (NEES) test. It is the metric used to evaluate
the efficiency of the JEKF-SANTO as an estimator. This involves verifying that the actual
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estimation errors ( ex,k) appropriately match the predictions made by the P(tk/k) [62].
Essentially, if the P(tk/k) predicts a certain degree of uncertainty, it is expected for the
real-world errors ex,k to match this prediction. This match is crucial for the estimator to
be considered accurate and reliable. NEES is calculated as NEES(k) = e⊤x,kP(tk/k)

−1ex,k
where ex,k is the estimation error at time step k, defined as ex,k = x(tk)− x̂(tk/k), with x(tk)
being the true state and x̂(tk/k) being the estimated state. Then, for the case of a single
run, the NEES(k) is Chi-square distributed with nx degrees of freedom. In our case, we
have nx = 3 because we are concerned with evaluating the performance of JEKF-SANTO
to estimate the states XV , QmAb and mAb of the synthetic dataset. Therefore, we consider
a one-sided 95% probability region as seen in Bar-Shalom et al. in [62] for single-run
simulation tests with small degrees of freedom. We have the hypothesis H0 that JEKF-
SANTO’s efficiency (ex,k matches P(tk/k)), and H0 is accepted if P(NEES(k) ≤ χ2

3(0.95) =
7.815|H0) = 1 − α. Figure 7 depicts the result of NEES for the JEKF-SANTO with the
synthetic dataset using MRDE-PC and MRDE-PU. The designated upper threshold for the
acceptance region is set at 7.815. The majority of the NEES(k) values are observed to fall
within the defined confidence interval [0, χ2

3(0.95) = 7.815], which means the estimation
error and the covariance are compatible with each other, and the estimation of the JEKF-
SANTO is reliable and credible. Moreover, these findings are in alignment with those
reported by Bar-Shalom et al. in [62], particularly in the context of single-run simulation
tests with a small number of degrees of freedom.

Figure 3. Innovation magnitude bound test using the run B of synthetic dataset for the NSEs with
MRDE-PC and specific Q and P(0).

Figure 4. Innovation magnitude bound test using the run B of real dataset for the NSEs with
MRDE-PC and specific Q and P(0).
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Figure 5. Standard error of XV at each k estimated by NSEs with synthetic dataset (run B) using
MRDE-PC and specific P(0).

Figure 6. Standard error of XV at each k estimated by NSEs with real dataset using MRDE-PC and
specific P(0).

Figure 7. NEES test of JEKF-SANTO with synthetic dataset. In case of JEKF-SANTO with MRDE-PC
with specific P(0), we have that 100% of all NEES computed are found inside the one-sided 95%
probability region where the 5% tail is χ2

3(0.95) = 7.815 (upper limit). In case of JEKF-SANTO with
MRDE-PU with specific P(0), we have 98.4% of the NEES inside of confident interval [0,χ2

3(0.95) =
7.815].
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6. Results

The results are organized by research questions RQ1-G1, RQ2-G2 and RQ3-G2.
Answer to RQ1-G1. The results of the experimental test of Theorem 1 (JEKF failure)

can be seen in Figures 8 and 9. We also reported the estimations made using JEKF-SANTO
and JEKF-KPH2 in regard to Xv, mAb, and QmAb of mAb production (run B-SD) using
MRDE-PC and MRDE-PU with specific P(t = 0). In plot A of Figures 8 and 9, we can see that
all NSEs estimated the Xv close to the ground truth. However, the JEKF-Classic (purple line)
was not able to evolve (update) the unshared parameter QmAb, because the estimations
about QmAb were constant and equal to the initial value of 7.21 ×10−9 mg cells−1h−1

during the entire process. Consequently, the JEKF-Classic estimation regarding mAb was
far from the ground truth (red dash line) of run B-SD (see plots B and C in Figure 8),
and it had a high RMSPE value of 18.65%; see Table 1. The same results regarding the
JEKF-Classic were obtained using MRDE-PU; see Figure 9. It is important to point out
that the Kalman gain over time obtained by JEKF-Classic with SD is constant and equal
to zero using MRDE-PU or MRDE-PC (see Figure 10). Furthermore, the Kalman gain
values obtained by JEKF-SANTO with MRDE-PC were more stable than those obtained by
JEKF-KPH2.

Answer to RQ2-G2. The results of JEKF-SANTO avoiding the JEKF failure (using
runs B-SD ) can be seen in the plots B and C of Figures 8 and 9. In these plots, we can see
that JEKF-SANTO (blue line) evolved the QmAb from the initial value to the ground truth
(red dash line) and consequently estimated the mAb close to the ground truth of run B-SD
(red dash line) with MRDE-PU and MRDE-PC. These results are the opposite of the ones
obtained with JEKF-Classic. In addition, JEKF-SANTO had the smallest RMSPE values
between the NSEs in all cases; see Table 1. On the other hand, the JEKF-KPH2 did not
perform similarly to JEKF-SANTO. The unique case where JEKF-KPH2 (green line) had
a good performance was in run B-SD with MRDE-PU with specific P(t = 0). In that case,
JEKF-KPH2 estimations were near to the ground truth (red dash line); see plots B and C of
Figure 9. However, JEKF-KPH2 did not present stability, and the estimation converged to
values far from the ground truth in run B-SD (with MRDE-PC with specific P(t = 0)). The
best performances of JEKF-SANTO and JEKF-KPH2 were obtained by the use of specific
P(t = 0) because when we used a standard P(t = 0) for JEKF-SANTO and JEKF-KPH2, their
estimations are worse with runs B-SD. The results using standard P(t = 0) with runs B-SD
can be found in Figures S15 and S16 and Table S12 of the Supplementary Material. These
results (with standard and specific P(t = 0)) show that JEKF-KPH2 is sensitive to the initial
PQmAb,QmAb(t = 0), and JEKF-SANTO is sensitive to PXV ,QmAb(t = 0), since their better
results were obtained with their specific P(t = 0). Table S4 of the Supplementary Material
shows the specific P(t = 0) used in JEKF-KPH2, and Table S5 of the Supplementary Material
shows the specific P(t = 0) used in JEKF-SANTO. It is important to point out that the best
results of JEKF-SANTO were obtained with PXV ,QmAb(t = 0) with positive values in case
of run B-SD; see Table S5 of the Supplementary Material.

Answer to RQ3-G2. In Figure 11, we show the estimations made by JEKF-SANTO
and JEKF-KPH2 with regard to Xv, GLC, LAC, rAAV and the three unshared parameters
( µGLC, µLAC, and µrAAV) of rAAV production (real dataset) using the MRDE-PC and the
specific P(t = 0) and standard Q. In plot A of Figure 11, we can see that JEKF-SANTO and
JEKF-KPH2 estimated the Xv inside of the noise range of the real online measurement
of Xv by the capacitance probe. The following plots, B, C, and D, show the estimation
obtained for the variables GLC, LAC, and rAAV. JEKF-SANTO (blue line) and JEKF-KPH2
(green line) were able to evolve the three unshared parameters simultaneously converging
to values that enabled the estimation of GLC, LAC, and rAAV near the ground truth (red
points in plots B, C and D). In these plots of Figure 11, and the RMSPE in Table 2, we can see
that JEKF-SANTO and JEKF-KPH2 made similar estimations. Nevertheless, JEKF-SANTO
had a slightly better performance than JEKF-KPH2 estimating GLC, LAC, and rAAV (titer);
see the RMSPE Table 2. It is important to point out that the Kalman gain over time obtained
by JEKF-Classic with RD is constant and equal to zero. See Figure 12. Consequently, JEKF-
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Classic had the worst performance and could not evolve the three unshared parameters
simultaneously; see plots of Figure 11, and the RMSPE Table 2.

Figure 8. Experimental test of the theorem (JEKF failure) and the JEKF-SANTO to avoid the JEKF
failure with the biomanufacturing conditions (failure case). This experiment used run B of the
synthetic dataset, and plot (A) shows that all estimations with regard to Xv were close to the ground
truth. Plots (B,C) show the estimations with regard to the unshared parameter QmAb and mAb
(titer), respectively. The JEKF-SANTO was able to evolve QmAb with convergence to the ground
truth value, but JEKF-KPH2 and JEKF-Classic failed. They were not able to evolve the mAb. All
NSEs were executed with MRDE-PC and specific P(t = 0).

Table 1. RMSPE between NSEs estimations about mAb and ground truth of run B in synthetic dataset
with specific P(t = 0).

NSE RMSPE (MRDE-PU) RMSPE (MRDE-PC)

JEKF-SANTO 2.06% 1.30%
JEKF-KPH2 10.11% 48.44%
JEKF-Classic 18.80% 18.65%
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Figure 9. Experimental test that JEKF-Classic cannot avoid the JEKF failure with run B of the synthetic
dataset. First, plot (A) shows the estimations regarding Xv, and all estimations were close to the
ground truth. The plots (B,C) show the estimations regarding the unshared parameter QmAb and
mAb (titer), respectively. All NSEs evolved QmAb with convergence to the ground truth value except
JEKF-Classic. All NSEs were executed with MRDE-PU and specific PUP,UP(t = 0).

Figure 10. Kalmain gain over time for the NSEs with run B of synthetic dataset. In all cases, JEKF-
Classic is constant and equal to zero.
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Figure 11. Simultaneous unshared parameters estimation by JEKF-SANTO and JEKF-KPH2 with real
dataset (rAAV production). Plot (A) shows the estimations regarding Xv, and all estimations were
inside of the noise range of the real online measurement of Xv by the capacitance probe. Plots (B–D)
show the estimation obtained regarding the variables GLC, LAC, and rAAV, respectively. In these
plots, we can see that JEKF-SANTO and JEKF-KPH2 had similar estimations. They evolved the
µGLC,µLAC, and µrAAV (unshared parameters) with convergence, and their estimations related to
GLC, LAC, and rAAV were close to the ground truth (red points); see plots (E–G). All NSEs were
executed with MRDE-PC and specific P(t = 0).

Table 2. RMSPE between NSEs estimations and ground truth of real dataset with MRDE-PC, specific
P(t = 0) and (standard Q).

Ground Truth JEKF-Classic JEKF-SANTO JEKF-KPH2

GLC 11.6% 3.48% 3.58%
LAC 16.66% 1.01% 1.61%
rAAV (titer) 41.41% 2.87% 3.28%
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Figure 12. Kalmain gain over time for the NSEs with run B of real dataset. In all cases, the JEKF-Classic
is constant and equal to zero.

7. Discussion

Our theoretical and empirical results showed the JEKF failure with biomanufacturing
conditions. These results showed that JEKF-Classic could not estimate the unshared
parameters and the state simultaneously, since the Kalman gain related to the unshared
parameter was constant and equal to zero from the beginning to the end of the processes
tested. On the other hand, the results showed that the JEKF-SANTO and JEKF-KPH2
approaches can avoid the JEKF failure. However, the JEKF-SANTO had a more accurate
estimation than JEKF-KPH2 while having faster and stable unshared parameters evolution
to values that allowed the best performance of the process model tested. It is essential
to point out that JEKF-SANTO performed best in two different situations, which were
represented by run B-SD with MRDE-PC and MRDE-PC. The best performance of JEKF-
KPH2 was only with run B-SD. Furthermore, the results showed that both approaches
are sensitive to P(t = 0). JEKF-KPH2 is sensible to the PUP,UP(t = 0), and JEKF-SANTO
is sensible to PMSV,UP(t = 0). It is essential to point out that the JEKF-SANTO approach
did not change the probabilistic view of JEKF, and the minimization cost function in
JEKF remained the same. Therefore, the JEKF-SANTO approach can be viewed as an
artifact that prevents the Kalman gain from becoming zero with the biomanufacturing
conditions (failure case). In addition, the JEKF-SANTO approach only addresses the
failure case. It does not solve other issues, such as nonlinearity or high dimensionality,
and should be used as a complementary approach. Beyond the SANTO approach, several
methods have been established to tackle singularities and convergence issues in EKF.
Rank reduction techniques address ill-conditioned covariance matrices by reducing their
dimensionality, thus preventing singularities [63]. Time-correlated noise analysis allows for
a more accurate state estimation by adjusting noise covariance matrices based on observed
temporal correlations in system noise, providing a more realistic noise model [64]. These
methods, used in conjunction with JEKF-SANTO, offer a comprehensive approach to EKF
optimization in challenging scenarios like biomanufacturing. It is important to note that
our analysis did not explicitly consider observability and stability conditions. However,
this omission does not invalidate our study. The focus of our research was on addressing
a specific failure case of JEKF under certain biomanufacturing conditions. Our proposed
solution, SANTO, was developed to specifically address this issue based on experiments
with JEKF that are consistent. Therefore, in our study, while we did not explicitly detail the
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observability and stability analysis in the traditional sense, we implicitly addressed these
aspects through empirical evaluation methods. Regarding observability, our approach
primarily focused on the empirical performance of the JEKF in the given case study rather
than a formal observability analysis.

8. Conclusions

In this work, firstly, we presented the common conditions in biomanufacturing that
represent a failure case for the classical JEKF. Secondly, we proved that the classical JEKF,
with these conditions, cannot estimate the unshared parameters and the state simultane-
ously since the Kalman gain related to the unshared parameter is constant and equal to
zero in the entire process. Lastly, we presented an approach called SANTO, which is a
simple and effective way to address the JEKF failure case by adding a positive quantity
(λ) regarding the initial state error covariance between a measured state variable and an
unshared parameter (PMSV,UP(t = 0)) in P(t = 0). Our empirical evaluation demonstrated
that the SANTO approach effectively estimates unshared parameters and states simulta-
neously, aligning closely with ground truth values in the tested datasets. SANTO notably
outperformed both JEKF-Classic and JEKF-KPH2 in accuracy. In a rigorously controlled
test using a synthetic dataset, JEKF-SANTO, whether paired with MRDE-PC or MRDE-PU,
exhibited a substantial improvement in RMSPE, achieving up to approximately 17% en-
hancement compared to JEKF-Classic. Meanwhile, JEKF-KPH2 showed an improvement
of around 8.7% in RMSPE, but this was limited to its execution with MRDE-PU. This
highlights the effectiveness of SANTO in overcoming the limitations of classical JEKF in
biomanufacturing applications. Our future works will focus on the development of an
auto-tuning mechanism based on an objective function to systematically calibrate Q, R and
λ , as seen in [65], but also investigate the potential of the Unscented Kalman Filter (UKF) to
estimate the unshared parameters and the state simultaneously with the biomanufacturing
conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24020653/s1, Figure S1: Innovation Magnitude Bound Test
using the run B of Synthetic dataset for the NSEs with MRDE-PU and specific Q and P(0); Figure S2:
Innovation Magnitude Bound Test using the run B of Synthetic dataset for the NSEs with MRDE-PC
and standard Q and P(0); Figure S3: Innovation Magnitude Bound Test using the run B of Synthetic
dataset for the NSEs with MRDE-PU and standard Q and P(0); Figure S4: Standard Error of XV
at each k estimated by NSEs with Synthetic Dataset using MRDE-PU and specific P(0); Figure S5:
Standard Error of QmAb at each k estimated by NSEs with Synthetic Dataset using MRDE-PC and
specific P(0); Figure S6: Standard Error of QmAb at each k estimated by NSEs with Synthetic Dataset
using MRDE-PU and specific P(0); Figure S7: Standard Error of mAb at each k estimated by NSEs
with Synthetic Dataset using MRDE-PC and specific P(0); Figure S8: Standard Error of mAb at each k
estimated by NSEs with Synthetic Dataset using MRDE-PU and specific P(0); Figure S9: Standard
Error of GLC at each k estimated by NSEs with Real Dataset using MRDE-PC and specific P(0);
Figure S10: Standard Error of LAC at each k estimated by NSEs with Real Dataset using MRDE-PC
and specific P(0); Figure S11: Standard Error of rAAV at each k estimated by NSEs with Real Dataset
using MRDE-PC and specific P(0); Figure S12: Standard Error of µGLC at each k estimated by NSEs
with Real Dataset using MRDE-PC and specific P(0); Figure S13: Standard Error of µLAC at each k
estimated by NSEs with Real Dataset using MRDE-PC and specific P(0); Figure S14: Standard Error of
µrAAV at each k estimated by NSEs with Real Dataset using MRDE-PC and specific P(0); Figure S15:
The JEKF-SANTO and JEKF-KPH2 avoid the JEKF failure in B-SD, but they need an specific P(t = 0).
First, plot A shows the estimations regards Xv, and all estimations were close the ground truth. The
plots B and C show the estimations regards the unshared parameter QmAb and mAb (titer) far from
the ground truth, respectively. The NSEs were executed with MRDE-PC and standard P(t = 0);
Figure S16: The JEKF-SANTO and JEKF-KPH2 avoid the JEKF failure in B-SD, but they need an
specific P(t = 0). First, plot A shows the estimations regards Xv, and all estimations were close the
ground truth. The plots B and C show the estimations regards the unshared parameter QmAb and
mAb (titer) far from the ground truth, respectively. The NSEs were executed with MRDE-PU and
standard P(t = 0).; Table S1: Parameters used in UMM case 1.4 to generate the runs A-SD, and B-SD
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of Synthetic Dataset (SD); Table S2: Initial conditions of state variables of UMM case 4 for the JEKF
test with Synthetic Dataset; Table S3: Standard initial state error covariance matrix (standard P(t=0))
for JEKF-Classic, JEKF-KPH2 and JEKF-SANTO with run B of Synthetic Dataset; Table S4: Specific
initial state error covariance matrix (specific P(t=0)) for JEKF-KPH2 with run B of Synthetic Dataset;
Table S5: Specific initial state error covariance matrix (specific P(t=0)) for JEKF-SANTO with run B of
Synthetic Dataset; Table S6: Measurement noise variance R and error covariance matrix of process
model (Q) for the JEKF-Classic, JEKF-SANTO and JEKF-KPH2 with run B of Synthetic Dataset using
MRDE-PC; Table S7: Measurement noise variance R and error covariance matrix of process model (Q)
for the JEKF-Classic, JEKF-SANTO and JEKF-KPH2 with run B of Synthetic Dataset using MRDE-PU;
Table S8: Initial conditions of state variables of UMM case 5 for the JEKF-SANTO and JEKF-KPH2 test
with run B-RD (Source [19]); Table S9: Initial parameters obtained with A-RD for the JEKF-SANTO
and JEKF-KPH2 test with run B-RD (Source [19]); Table S10: Specific initial state error covariance
matrix (specific P(t=0)) for for the JEKF-Classic, JEKF-SANTO and JEKF-KPH2 with Real Dataset
(run B) using MRDE-PC; Table S11: Measurement noise variance R, and error covariance matrix of
process model Qi,i for the JEKF-Classic, JEKF-SANTO and JEKF-KPH2 with Real Dataset (run B)
using MRDE-PC; Table S12: RMSPE between NSEs estimations about mAb and ground truth of run
B in synthetic dataset with standard P(t=0).
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