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1. Unstructured Mechanistic Models cases in biomanufacturing
1.1. Case 1

The ODE system 1 represents the dynamics of mammalian cell growth Xv(t), nutrients
N(t) and metabolite/production formation MP(t) in a general form [1,2].

dXV(t)
dt

= µXv XV(t)

dN(t)
dt

= −µN XV(t)

dMP(t)
dt

= µmpXV(t)

(1)

1.2. Case 2

The ODE system 2 is a UMM used for Mab production [3]. This system represents the
cell growth, cell dead, uptake of substrates, metabolism, and production process with 35
parameters. More details can be found in [3].
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1.3. Case 3

The ODE system 3 represents the Michaelis-Menten model for enzymatic reactions [4].

dE(t)
dt

= −k1E(t)S(t) + k2ES(t) + k3ES(t)

dS(t)
dt

= −k1E(t)S(t) + k2ES(t)

dES(t)
dt

= k1E(t)S(t)− k2ES(t)− k3ES(t)

dP(t)
dt

= k3ES(t)

(3)

1.4. Case 4

The ODE system 4 is a UMM used for Mab production [5]. This system represents the
cell growth, uptake of substrates, metabolism, and production process with 16 parameters
described in the Table S1. It is important to point out that QmAb denotes the specific mAb
production rate, and is an example of unshared parameter. More details can be found in [5].

d XV
dt

= (µ − µd)XV

d Xt

dt
= µXV − klysis(Xt − XV)
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µ
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µ
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d [mAb]
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(4)

1.5. Case 5

An UMM used to monitoring rAAV production [6] is the following
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dXV(t)
dt

= µXv XV(t)

dGlc(t)
dt

= −µGlcXV(t)

dGln(t)
dt

= −µGlnXV(t)

dLac(t)
dt

= µLacXV(t)

dAmm(t)
dt

= µAmmXV(t) + kdegGln(t)

dAAV(t)
dt

= µAAV XV(t)

(5)

This system represents the cell growth, uptake of substrates, metabolism, and pro-
duction process with six parameters: the specific cell growth rate (µXv ), the specific rates
of uptake (consumption) of the main nutrients, glucose (µGlc) and glutamine (µGln), the
specific rates of production of the metabolite waste, lactate (µLac) and ammonium (µAmm),
and specific rate of production of rAAV(µAAV). In the case of ammonium production, the
specific rates must consider the spontaneous glutamine degradation in the medium into am-
monium. This process follows first-order rate kinetics concerning glutamine concentration,
being kdeg the glutamine degradation constant.

2. Continuous-Discrete Extended Kalman Filter

The EKF can be implemented in Discrete-Discrete, and Continuous-Discrete versions
[7–9]. The most common version used in biomanufacturing for modeling nonlinear bio-
chemical dynamic pathways is Continuous-Discrete EKF (CD-EKF) [3,10–12] and we will
describe it here. The EKF requires a state–space model to perform estimation on the state
variables of a process (nonlinear system) present in a state variable vector ψ(t) [4,13,14]. A
state-space model consists of process and measurement (observation) models [15]. EKF
linearizes the nonlinear system (state–space model) by calculating the Jacobians of the
nonlinear process and measurement models based on the first-order Taylor series expansion
in order to analytically propagate the Gaussian random-variable representation [11,14,16].

Effectively, the nonlinear dynamics are approximated by a time-varying linear system,
and the linear Kalman filters equations are applied. Essentially, the mean ψ̂(t) and error
covariance matrix P(t) of the state variables in ψ(t) are recursively corrected. The EKF
recursively estimates the (posterior) mean ψ̂(tk/k) and error covariance matrix P(tk/k) of the
state variables by combining the predicted (a priori) mean ψ̂(tk/k−1) and error covariance
matrix P(tk/k−1) with the current noisy measurement Zk [16].

Process Model: An UMM as described in the supplementary information Section 1
can be used as the process model of EKF. The state variables vector to be used by the EKF
is composed of the state variables of the UMM (observed and unobserved) and the state
variables vector is defined as:

ψ(t) = [x1, x2, ..., xn]
T . (6)

Subsequently, the process model is represented as

dψ(t)
dt

= ϕ(ψ(t), t) + ω(t), (7)

where ϕ denotes non-linear functions of the state variables in ψ(t), which corresponds
to an UMM. The process model is formulated in a continuous time t and the white process
noise vector is represented by ω ∼ N (0, Q), with zero mean and error covariance matrix
of process model represented by Q.
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Measurement Model: The measurement model is treated as a discrete system and
defined as

Zk = h(ψ(tk)) + v. (8)

The non-linear function h in the measurement model relates the current state variables
to the measurements Zk. The white measurement noise vector is represented by v ∼
N (0, R), with zero mean and measurement noise variance represented by R. When the
some state variables can be measured directly, we have a simple case and h can be a linear
model. If h is linear, we have h(ψ(tk)) = Hψ(tk) [3,4,11]. Where the matrix H is a linear
operator (row vector) that matches the states variables of ψ(tk) to the measured variables
Zk that are obtained at a discrete instance k [3,11]. Consequently, the measurement model
(8) can be rewritten as

Zk = Hψ(tk) + v. (9)

Probabilistic state-space models: The probabilistic process model approximated by EKF
is

p(ψ(t)|ψ(t − 1)) ≈ N (ψ(t)|ϕ(ψ(t − 1)), Q), (10)

where the non-linear functions ϕ are linearized as follows

ϕ(ψ(t − 1)) ≈ ϕ(ψ̂(t − 1))+

Jϕ
t × (ψ(t − 1)− ψ̂(t − 1))

(11)

and Jϕ
t is the Jacobian matrix of ϕ evaluated at the prior mode [17,18],

Jϕ
t =

∂ϕ(ψ(t))
∂ψi

∣∣∣∣
ψ(t)=ψ̂(t−1)

. (12)

The probabilistic measurement model (measurement likelihood distribution) approxi-
mated by EKF is the following

p(Zk|ψ(tk)) ≈ N (Zk|h(ψ(tk)), R) (13)

where the non-linear functions h are linearized as follows

h(ψ(tk)) ≈ h(ψ̂(tk))+

Jh
t × (ψ(tk)− ψ̂(tk))

(14)

and the Jh
tk

is the Jacobian matrix of h evaluated at the prior mode [17,18]

Jh
tk
=

∂h(ψ(tk))

∂ψ

∣∣∣∣
ψ(t)=ψ̂(tk/k−1)

. (15)

In this work, we will consider the case of h be linear. Then, we have

Jh
tk
=

∂(Hψ(tk))

∂ψ

∣∣∣∣
ψ(t)=ψ̂(tk/k−1)

= H
∂(ψ(tk))

∂ψ

∣∣∣∣
ψ(t)=ψ̂(tk/k−1)

= H (16)

and consequently

p(Zk|ψ(tk)) ≈ N (Zk|Hψ̂(tk) + H × (ψ(tk)− ψ̂(tk)), R) (17)
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or

p(Zk|ψ(tk)) ≈ N (Zk|Hψ̂(tk/k−1) + H × (ψ(tk/k−1)− ψ̂(tk/k−1)), R). (18)

EKF algorithm: The EKF algorithm is implemented through the initial condition,
prediction step (time update) and correction step (measurement update) [3,4,11–13].

Initialization step: The initial condition are composed of the initial mean ψ̂0 = E[ψ0],
and initial error covariance matrix P0 = Pi,i(t = 0) = E[(ψ0 − ψ̂0)(ψ0 − ψ̂0)

T ] of state
variables vector [16].

Prediction step: In this step, the a priori predictions represented by the predicted mean
ψ̂(tk/k−1) and predicted error covariance matrix P(tk|k−1) of state variables vector ψ(t) are
obtained respectively by numerically integrating ϕ(ψ(t), t) from discrete time tk−1 to tk the
following equation

ψ̂(tk/k−1) = ψ̂(tk−1) +
∫ tk

tk−1

ϕ(ψ̂(t))dt
∣∣∣∣
ψ̂(tk−1)

(19)

and solving the matrix Riccati Differential equation (MRDE) for predict the state error
covariance matrix [7,19]

dP(t)
dt

= Jϕ
t P(t) + P(t)JϕT

t + Q (20)

from tk−1 to tk, where a new measurement is obtained at time k [20], [7] and [21]. The
Equation 20 is basically a matrix of ODEs, and the matrix of ODEs solutions obtained from
tk−1 to tk represent each state error covariance of the system. See the MRDE represented
by Equation 37 and the respective solution represented by Matrix 40 in the Section 4 of
Supplementary Material.

Correction step: In this step, the results of the prediction step ( ψ̂(tk/k−1) and P(tk|k−1))
are combined with the measured value Zk and Kalman gain (Kk) to provide the estimated
mean ψ̂(tk/k) and estimated error covariance matrix P(tk|k) of state variables vector using
the following equations:

Kk = P(tk|k−1)H
T(HP(tk|k−1)H

T + R)−1 (21)

ψ̂(tk/k) = ψ̂(tk/k−1) + Kk(Zk − Hψ̂(tk/k−1)) (22)

P(tk|k) = (I − KkH)P(tk|k−1) (23)

The Kalman gain is a scaling factor (ratio) to estimate the state variables by setting a
value between the predicted state and measured state [7,22]. The Kk chooses a value along
the residual range (Zk - Hψ̂(tk/k−1))[16,22]. Kk enables to set a value for ψ̂(tk/k) between
the ψ̂(tk/k−1) (prediction) and Zk (measurement) using Equation 22, and update the belief
regards the state variables based on how certain we are regards the measurement using the
Equation 23, [22] (pages 137 and 209). The Kalman gain is computed as a ratio of prior and
measurement uncertainty available; see Equation 21. The one dimensional form Equation
21 is the following K = P/(P + R) [22]. It is important to point out that linear operator
H matches the states variables of ψ(tk) to the measured variables Zk that are obtained at
a discrete instance. It is linear operator with zeros and ones. Where the elements ones
represent elements of the state variable vector that are measured. For example, if the state
variables vector has 3 variables and only the first one is measured, we have H = [1 0 0].

Using the estimated mean ψ̂(tk/k) and estimated error covariance matrix P(tk|k) state
variables vector as an initial condition, we can return to the prediction step until the next
measurement be obtained and everything repeated again.

2.1. Intuitions behind Kalman Gain and unshared parameters

Analyzing the Equation 21 is possible to have the following approximation [22,23]

https://doi.org/10.3390/s24020653
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Kk ≈
Process Uncertainty

System Uncertainty
, (24)

and extract the following two interpretations [22]: First, When the Process uncertainty
is large (nominator in Equation 24), K is large and so the corrections (Equation 22) are almost
determined by the influence of the measured state variable. Since, K is multiplied by the
residual (Zk −Hψ̂(tk/k−1)). So, a large K favors the measurement [24]; and Second, On the
other hand, if the Process uncertainty is very low, the correction step is almost the estimated
without influence of the measurement obtained. Since, K ≈ 0 and ψ̂(tk/k) = ψ̂(tk/k−1)
[23].

3. Analysis of Unstructured Mechanistic Models

3.1. Unshared and shared parameters

The UMM case 1.1 is the case of an ODE system with only unshared parameters.
On another hand, the UMM case 1.3 is a ODE system with only shared parameters. For
example, the k3 is used in different ODEs of this system. The UMM case 1.2 is a case of
system with unshared and shared parameters.

3.2. Weak and strong terms

The three UMM cases (1.1, 1.2 and 1.3) presented above are examples of ODE systems
with weak and strong terms. The UMM case 1.1 is example of ODE system with only
terms that could be considered weak, because they have low percentage of variables that
compose the state variable vector. For example, let assume the following state variable
vector ψ(t)case1 = [Xv, N, MP, µXv, µN , µmp] with six elements for the UMM of case 1.1. We
have that all terms of this UMM has a 1/3 of the state variable vector. On another hand, the
UMM case 1.2 is example of ODE system with terms that could be considered weak and
strong. For example, let consider the following state variable vector for UMM case 1.2,

ψcase2 = [Xv, f gr, Xd, GLC, GLN, LAC, ASN, ASP, ALA, AMM, Mab, µmax, k31, kd] (25)

we have that the first term of equation dXv
dt is the strongest term in this system, since

it has 7/14 of state variable vector, and the first term of the equation dMab
dt as the weakest

term, since it has 2/14 of state variable vector. In the context of JEKF, we have that a
strong term in an UMM contribute more than weak term to compute of predicted state
error covariance P(tk|k−1). Since, many elements of Jacobian Jϕ

t , results from the first-order
partial derivatives of strong term with respect to the variables of state variable vector ψ(t) .
For example, let consider the following:

• State variable vector ψ(t) = [x1, x2, x3, x4]
• An UMM composed of an ODE with a strong term by the function S(x1,x2,x3,x4) and

three ODEs composed of waek terms represented by the function W1(x1), W2(x2) and
W3(x3).

• MRDE (Equation 20).
• P and Q uncorrelated for the ψ(t),

P =


P1,1 0 0 0
0 P2,2 0 0
0 0 P3,3 0
0 0 0 P4,4

, Q =


Q1,1 0 0 0

0 Q2,2 0 0
0 0 Q3,3 0
0 0 0 Q4,4

. (26)

Given this we have the following Jacobian

https://doi.org/10.3390/s24020653
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Jacobian(S, W1, W2, W3) =


∂S
∂x1

∂S
∂x2

∂S
∂x3

∂S
∂x4

∂W1
∂x1

0 0 0

0 ∂W2
∂x2

0 0

0 0 ∂W3
∂x3

0

 (27)

and the following MRDE to compute the Predicted state error covariance P(tk/k−1)
from tk−1 to tk,

dP(t)
dt

=


Q1,1 + 2.P1,1. ∂S

∂x1
P1,1. ∂W1

∂x1
+ P2,2. ∂S

∂x2
P3,3. ∂S

∂x3
P4,4. ∂S

∂x4

P1,1. ∂W1
∂x1

+ P2,2. ∂S
∂x2

Q2,2 P2,2. ∂W2
∂x2

0

P3,3. ∂S
∂x3

P2,2. ∂W2
∂x2

Q3,3 P3,3. ∂W3
∂x3

P4,4. ∂S
∂x4

0 P3,3. ∂W3
∂x3

Q4,4

. (28)

Then, we can see that S contribute with 7 partial derivatives and the others functions
with 2 partial derivative only each one. If we consider the MRDE formed with P correlated,
we have S contributing with 32 partial derivatives and the others functions with 8 partial
derivative only each one. It is important point out that the element 0 in the MRDE (Equation

28) represents an time invariant ODE
dPx2,x4 (tk/k−1)

dt = 0 to predicts the covariance between
x4 and x2 when solved from tk−1 to tk.

3.3. Weak and strong variables

The three UMM cases (1.1, 1.2 and 1.3) presented above are examples of the ODE
system with weak and strong variables. The variable MP in the UMM case 1.1 and Mab
in UMM case 1.2 are examples of weak variable. In these cases, the first-order partial
derivatives of all functions with respect to these two variables are equal to zero and this
reflects that the variable has a column with zeros in the jacobian Jϕ

t . On another hand, in
the UMM case 1.1 and 1.2, Xv is an example of strong variable.

3.4. MRDE to predict the state error covariance P(tk|k−1) based on P and Q with uncorrelated
elements

For any UMM, the use of P and Q with uncorrelated elements in MRDE, means that
the predicted state error covariance P(tk|k−1) will be updated/calculated based only in

noise variance of Pi,i and Qi,i and elements of Jacobian Jϕ
t .

For example, let consider the following conditions:

• The set of functions f = [ f1, f2, f3, f4, f5] and state variables vector ψ(t)f = [x1, x2, x3, x4, x5].
• P and Q uncorrelated for the ψ(t)f,

P =


P1,1 0 0 0 0
0 P2,2 0 0 0
0 0 P3,3 0 0
0 0 0 P4,4 0
0 0 0 0 P5,5

, Q =


Q1,1 0 0 0 0

0 Q2,2 0 0 0
0 0 Q3,3 0 0
0 0 0 Q4,4 0
0 0 0 0 Q5,5

. (29)

• The Jacobian ,

https://doi.org/10.3390/s24020653
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Jacobian(f) =



∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f1
∂x5

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f2
∂x5

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f3
∂x5

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x3

∂ f4
∂x4

∂ f4
∂x5

∂ f5
∂x1

∂ f5
∂x2

∂ f5
∂x3

∂ f5
∂x4

∂ f5
∂x5


(30)

Given these conditions and the Equation 20, we have the following MRDE to compute the
predicted state error covariance P(tk/k−1) from tk−1 to tk,

dP(t)
dt

=



Q1,1 + 2. ∂ f1
∂x1

.P1,1 P1,1. ∂ f2
∂x1

+ ∂ f1
∂x2

.P2,2 P1,1. ∂ f3
∂x1

+ ∂ f1
∂x3

.P3,3 P1,1. ∂ f4
∂x1

+ ∂ f1
∂x4

.P4,4 P1,1. ∂ f5
∂x1

+ ∂ f1
∂x5

.P5,5

P2,2. ∂ f1
∂x2

+ ∂ f2
∂x1

.P1,1 Q2,2 + 2. ∂ f2
∂x2

.P2,2 P2,2. ∂ f3
∂x2

+ ∂ f2
∂x3

.P3,3 P2,2. ∂ f4
∂x2

+ ∂ f2
∂x4

.P4,4 P2,2. ∂ f5
∂x2

+ ∂ f2
∂x5

.P5,5

P3,3. ∂ f1
∂x3

+ ∂ f3
∂x1

.P1,1 P3,3. ∂ f2
∂x3

+ ∂ f3
∂x2

.P2,2 Q3,3 + 2. ∂ f3
∂x3

.P3,3 P3,3. ∂ f4
∂x3

+ ∂ f3
∂x4

.P4,4 P3,3. ∂ f5
∂x3

+ ∂ f3
∂x5

.P5,5

P4,4. ∂ f1
∂x4

+ ∂ f4
∂x1

.P1,1 P4,4. ∂ f2
∂x4

+ ∂ f4
∂x2

.P2,2 P4,4. ∂ f3
∂x4

+ ∂ f4
∂x3

.P3,3 Q4,4 + 2. ∂ f4
∂x4

.P4,4 P4,4. ∂ f5
∂x4

+ ∂ f4
∂x5

.P5,5

P5,5. ∂ f1
∂x5

+ ∂ f5
∂x1

.P1,1 P5,5. ∂ f2
∂x5

+ ∂ f5
∂x2

.P2,2 P5,5. ∂ f3
∂x5

+ ∂ f5
∂x3

.P3,3 P5,5. ∂ f4
∂x5

+ ∂ f5
∂x4

.P4,4 Q5,5 + 2. ∂ f5
∂x5

.P5,5


. (31)

Then, we have that each ODE of the P(tk/k−1) is composed only of the elements of Pi,i
and Qi,i and elements of Jacobian(f). Furthermore, these ODEs can be time invariant, if
the partial derivative are zero. See the equation 28.

3.5. Only one variable measured

In the UMM case 1.2. For example, let consider the following state variable vector,

ψcase2 = [Xv, f gr, Xd, GLC, GLN, LAC, ASN, ASP, ALA, AMM, Mab, µmax, k31, kd] (32)

To estimate the entire state variable vector is need to have the minimum of two
measurement, and an option is Xv and GLC. Since, the column regards Xv in MRDE is
zero k31 ODE, but it is different of zero in GLC column.

4. Example of the Lemma: Inability to Update Kalman Gain for Unshared parameters

Lemma 1. The Kalman gain cannot be updated (by Eq 21) for an unshared parameter that is part of
a state variable vector and part of a weak term in an UMM, if the initial state error covariance matrix
P(t=0) and Q are formed by uncorrelated elements and there is only one state variable measured.

To illustrate this Lemma, we show that the Kalman gain value cannot be updated for
the unshared parameter µmp of the UMM with weak terms presented in Case 1.1. Let’s
consider the following:

• The state variables vector

ψ(t)case1 = [Xv, N, MP, µXv, µN , µmp]. (33)

• Xv is the unique measured variable and H = [1 0 0 0 0 0].
• R as measurement noise variance of Xv.
• µmp the unshared parameter to be evolved (estimated) and that is related to a weak

term.
• P and Q with uncorrelated elements for the ψ(t)case1 (Equation 33),
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P =



P1,1 0 0 0 0 0
0 P2,2 0 0 0 0
0 0 P3,3 0 0 0
0 0 0 P4,4 0 0
0 0 0 0 P5,5 0
0 0 0 0 0 P6,6

, Q =



Q1,1 0 0 0 0 0
0 Q2,2 0 0 0 0
0 0 Q3,3 0 0 0
0 0 0 Q4,4 0 0
0 0 0 0 Q5,5 0
0 0 0 0 0 Q6,6

.

(34)
• The Jacobian Jϕ

t , (Equation 12) with the ψ(t)case1 (Equation 33),

Jϕ
t =



µXv 0 0 Xv 0 0
−µN 0 0 0 −Xv 0
µmp 0 0 0 0 Xv

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

. (35)

Given these conditions and the Equation 20, we have the following MRDE (based on
P with uncorrelated elements)

dP(t)
dt

=



Q1,1 + 2.P1,1.µXv −P1,1.µN P1,1.µmp P4,4.Xv 0 0
−P1,1.µN Q2,2 0 0 −P5,5.Xv 0
P1,1.µmp 0 Q3,3 0 0 P6,6.Xv
P4,4.Xv 0 0 Q4,4 0 0

0 −P5,5.Xv 0 0 Q5,5 0
0 0 P6,6.Xv 0 0 Q6,6

 = (36)

dP(t)
dt

=



PXv ,Xv (t)
dt = Q1,1 + 2.P1,1.µXv

PN,Xv (t)
dt = −P1,1.µN ...

PµN ,Xv (t)
dt = 0

Pµmp ,Xv (t)
dt = 0

PXv ,N(t)
dt = −P1,1.µN

PN,N(t)
dt = Q2,2 ...

PµN ,N(t)
dt = −P5,5.Xv

Pµmp ,N(t)
dt = 0

PXv ,MP(t)
dt = P1,1.µmp

PN,MP(t)
dt = 0 ...

PµN ,MP(t)
dt = 0

Pµmp ,MP(t)
dt = P6,6.Xv

PXv ,µXv
(t)

dt = P4,4.Xv
PN,µXv

(t)
dt = 0 ...

PµN ,µXv
(t)

dt = 0
Pµmp ,µXv

(t)
dt = 0

PXv ,µN (t)
dt = 0

PN,µN (t)
dt = −P5,5.Xv ...

PµN ,µN (t)
dt = Q5,5

Pµmp ,µN (t)
dt = 0

PXv ,µmp (t)
dt = 0

PN,µmp (t)
dt = 0 ...

PµN ,µmp (t)
dt = 0

Pµmp ,µmp (t)
dt = Q6,6


. (37)

Now, using this Equation 37 to compute the predicted state error covariance matrix
P(tk/k−1) (for the Case 1.1) from tk−1 to tk with a initial predicted state error covariance
matrix P(tk−1) = P(t = 0) with uncorrelated elements as following

P(t = 0) =



PXv ,Xv(t = 0) 0 0 0 0 0
0 PN,N(t = 0) 0 0 0 0
0 0 PMP,MP(t = 0) 0 0 0
0 0 0 PµXv ,µXv

(t = 0) 0 0
0 0 0 0 PµN ,µN (t = 0) 0
0 0 0 0 0 Pµmp ,µmp(t = 0)

, (38)

we have
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P(tk/k−1) =



PXv ,Xv(tk/k−1) PN,Xv(tk/k−1) PMP,Xv(tk/k−1) PµXv ,Xv(tk/k−1) PµN ,Xv(tk/k−1) Pµmp ,Xv(tk/k−1)

PXv ,N(tk/k−1) PN,N(tk/k−1) PMP,N(tk/k−1) PµXv ,N(tk/k−1) PµN ,N(tk/k−1) Pµmp ,N(tk/k−1)

PXv ,MP(tk/k−1) PN,MP(tk/k−1) PMP,MP(tk/k−1) PµXv ,MP(tk/k−1) PµN ,MP(tk/k−1) Pµmp ,MP(tk/k−1)

PXv ,µXv
(tk/k−1) PN,µXv

(tk/k−1) PMP,µXv
(tk/k−1) PµXv ,µXv

(tk/k−1) PµN ,µXv
(tk/k−1) Pµmp ,µXv

(tk/k−1)

PXv ,µN (tk/k−1) PN,µN (tk/k−1) PMP,µN (tk/k−1) PµXv ,µN (tk/k−1) PµN ,µN (tk/k−1) Pµmp ,µN (tk/k−1)

PXv ,µmp(tk/k−1) PN,µmp(tk/k−1) PMP,µmp(tk/k−1) PµXv ,µmp(tk/k−1) PµN ,µmp(tk/k−1) Pµmp ,µmp(tk/k−1)


=

(39)

P(tk/k−1) =



Cov(Xv, Xv) Cov(N, Xv) Cov(MP, Xv) Cov(µXv , Xv) Cov(µN , Xv) Cov(µmp, Xv)
Cov(Xv, N) Cov(N, N) Cov(MP, N) Cov(µXv , N) Cov(µN , N) Cov(µmp, N)

Cov(Xv, MP) Cov(N, MP) Cov(MP, MP) Cov(µXv , MP) Cov(µN , MP) Cov(µmp, MP)
Cov(Xv, µXv) Cov(N, µXv) Cov(MP, µXv) Cov(µXv , µXv) Cov(µN , µXv) Cov(µmp, µXv)
Cov(Xv, µN) Cov(N, µN) Cov(MP, µN) Cov(µXv , µN) Cov(µN , µN) Cov(µmp, µN)
Cov(Xv, µmp) Cov(N, µmp) Cov(MP, µmp) Cov(µXv , µmp) Cov(µN , µmp) Cov(µmp, µmp)

. (40)

Now, using P(tk/k−1), H and R to compute the Kalman gain values for all variables in
the state variable vector, we have

Kk = P(tk|k−1)H
T(HP(tk|k−1)H

T + R)−1 =



KXv

KN
KMP
KµXv
KµN

Kµmp

 =



PXv ,Xv (tk/k−1)
PXv ,Xv (tk/k−1)+R

PXv ,N(tk/k−1)
PXv ,Xv (tk/k−1)+R

PXv ,MP(tk/k−1)
PXv ,Xv (tk/k−1)+R

PXv ,µXv
(tk/k−1)

PXv ,Xv (tk/k−1)+R
PXv ,µN (tk/k−1)

PXv ,Xv (tk/k−1)+R
PXv ,µmp (tk/k−1)

PXv ,Xv (tk/k−1)+R


=



PXv ,Xv (tk/k−1)
PXv ,Xv (tk/k−1)+R

PXv ,N(tk/k−1)
PXv ,Xv (tk/k−1)+R

PXv ,MP(tk/k−1)
PXv ,Xv (tk/k−1)+R

PXv ,µXv
(tk/k−1)

PXv ,Xv (tk/k−1)+R
PXv ,µN (tk/k−1)

PXv ,Xv (tk/k−1)+R
0

PXv ,Xv (tk/k−1)+R


=



PXv ,Xv (tk/k−1)
PXv ,Xv (tk/k−1)+R

PXv ,N(tk/k−1)
PXv ,Xv (tk/k−1)+R

PXv ,MP(tk/k−1)
PXv ,Xv (tk/k−1)+R

PXv ,µXv
(tk/k−1)

PXv ,Xv (tk/k−1)+R
PXv ,µN (tk/k−1)

PXv ,Xv (tk/k−1)+R
0


.

(41)

H selected the first column of P(tk/k−1) since it is related to the measured value Xv.
However, in this column, we have that the predicted error covariance between Xv and

µmp is zero, Cov(Xv, µmp) = 0. Since the solution of
PXv ,µmp (t)

dt = 0 obtained from tk−1 to tk
is zero, and we have PXv ,µmp(tk/k−1) = PµXv ,µmp(tk−1) = PµXv ,µmp(t = 0) = 0. This means
that due to P(t=0) with uncorrelated elements the obtained solution is equal to the initial
condition. Then, we have the kalman gain value for the unshared parameter is zero, Kµmp =
0, and consequently the predicted state error covariance PXv ,µmp(tk/k−1) cannot be updated
in P(tk|k−1) by Eq 23. Since

P(tk|k) = (I − KkH)P(tk|k−1) =



PXv ,Xv(tk/k−1)− KXv.PXv ,Xv(tk/k−1) ...
PXv ,N(tk/k−1)− KN .PXv ,Xv(tk/k−1) ...

PXv ,MP(tk/k−1)− Kmp.PXv ,Xv(tk/k−1) ...
PXv ,µXv(tk/k−1)− KµXv .PXv ,Xv(tk/k−1) ...
PXv ,µN (tk/k−1)− KµN .PXv ,Xv(tk/k−1) ...

PXv ,µmp(tk/k−1)− Kµmp .PXv ,Xv(tk/k−1) ...

 = (42)
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P(tk|k) = (I − KkH)P(tk|k−1) =



PXv ,Xv(tk/k−1)− KXv.PXv ,Xv(tk/k−1) ...
PXv ,N(tk/k−1)− KN .PXv ,Xv(tk/k−1) ...

PXv ,MP(tk/k−1)− Kmp.PXv ,Xv(tk/k−1) ...
PXv ,µXv(tk/k−1)− KµXv .PXv ,Xv(tk/k−1) ...
PXv ,µN (tk/k−1)− KµN .PXv ,Xv(tk/k−1) ...

0 − 0.PXv ,Xv(tk/k−1) ...

. (43)

We have that PXv ,µmp(tk/k) = PXv ,µmp(tk/k−1) = 0, and as the PXv ,µmp(tk/k) = 0 have
to be used as a new initial condition for MRDE (Equation 37), we have Kµmp = 0 for
all PXv ,µmp(tk/k−1) in P(tk/k−1) that are obtained from tk−1 to tk using Equation 37 and
consequently no updates for Kµmp and PXv ,µmp(tk/k−1) .

5. Example of the Theorem (JEKF failure)

Theorem 1. The JEKF fails to estimate an unshared parameter (parameter evolution) that is part of
a state variable vector and part of a weak term in a UMM if the initial state error covariance matrix
P(t=0) and Q are composed of uncorrelated elements, and there is only one state variable measured.
This is because the Kalman gain value for the unshared parameter is equal to zero for all steps of
execution of the JEKF algorithm.

To illustrate this Theorem, we show the JEKF failure with the condition and results
used in the example 4 of the Lemma 1.

Then, let’s consider the following:

• the UMM of Case 1.1.
• H=[1 0 0 0 0 0] and Kk = [KXv , KN , KMP, KµXv

, KµN , Kµmp ]
T as obtained in the proof

of Lemma 1, where Kµmp = 0.
• Zk as measured value of Xv .
• ψ̂(tk/k−1)case1 = [X̂v, N̂, M̂P, ˆµXv, µ̂N , ˆµmp]T .

Now, using the Equation 22 to provide the estimated mean of the state variable vector
ψ̂(tk/k)case1, we have

ψ̂(tk/k)case1 = ψ̂(tk/k−1)case1 + Kk(Zk − Hψ̂(tk/k−1)case1) (44)

ψ̂(tk/k)case1 =



X̂v
N̂

M̂P
ˆµXv

µ̂N
ˆµmp

+



KXv

KN
KMP
KµXv
KµN

Kµmp

.(Zk − Xv) =



X̂v + KXv .(Zk − X̂v)
N̂ + KN .(Zk − X̂v)

M̂P + KMP.(Zk − X̂v)
ˆµXv + KµXv

.(Zk − X̂v)
µ̂N + Kµmp .(Zk − X̂v)

ˆµmp + 0

 (45)

Then, we have the estimated mean ψ̂(tk/k)case1 of the unshared parameter is equal to the
predicted mean ψ̂(tk/k−1)case1 of unshared parameter for all step from tk−1 to tk. In another
words, the JEKF failure to perform the parameter evolution, since ˆµmp(tk/k) = ˆµmp(tk/k−1)
all step from tk−1 to tk.

6. Related work: Approach KPH2

In this section, we describe the approach KPH2 [6] that can to side-step JEFK failure.
The authors did not give details about the approach, because the focus was to report
application developed to monitoring a rAAV production that is a new bioprocess. Basi-
cally, the KPH2 tries to prevent the Kalman gain value regards to an unshared parameter
from being zero. Because Kalman gain value equal to zero resulted from an low process
uncertainty would mean that the prediction regarding the unshared parameter is perfect
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and does not need the influence of the measurement in the correction step of JEKF since
there is no uncertainty in the prediction regarding the unshared parameter. This is an
unrealistic situation and therefore, there is the need to increase the Process uncertainty,

Kk ≈
Process Uncertainty
System Uncertainty

to obtain |K| > 0 and enable the predicted unshared parameter to be
corrected by the influence of residual error in JEKF algorithm. The KPH2 approach tries to
fulfill this need by adding more information about the prior error covariances regard to
an unshared parameter in two update steps: i) in the Kalman gain computation (Equation
21) and ii) in the update of predicted state error covariance matrix (Equation 23) of EKF
algorithm. In the following, we describe the details of this.

The Process uncertainty (Equation 24) is only composed of prior error covariance
related to the measured state variable and this information is "incomplete" with regards
to unshared parameter, Cov(MSV, UP) = 0 in the initial condition P(t=0) and in the
predictions during the process of execution of JEKF algorithm. However, the prior error
covariances related to unshared parameter Pi,UP(tk|k−1) are informations that are already
available in the P(tk|k−1) and can be easily extracted from it. Then, an approach to increase
process uncertainty (in Equation 24) is to add the Prior error covariances of unshared
parameter Pi,UP(tk|k−1) to P(tk|k−1)H

T in Equation 21 as following. Given that P(tk|k−1)H
T

is a vector with prior error covariances of each state variable (SV) with measured state
variable (MSV)

P(tk|k−1)H
T =

Cov(SVi, MSV)
...

Cov(SVn, MSV)

, (46)

and Pi,UP(tk|k−1) is also a vector with prior error covariances of each state variable
(SV) with all unshared parameter to be estimated

Pi,UP(tk|k−1) =


Cov(SVi, ∑

j
i UPi)

...
Cov(SVn, ∑

j
i UPi)

, (47)

we have that the sum of Pi,UP(tk|k−1) and P(tk|k−1)H
T in the equation 21 is

Kk = (P(tk|k−1)H
T + Pi,UP(tk|k−1))(HP(tk|k−1)H

T + R)−1. (48)

Since, all information that we need to perform P(tk|k−1)H
T +Pi,UP(tk|k−1) are available

in P(tk|k−1), we can apply a specific linear operator H2 (row vector) to P(tk|k−1) to extract
all information easily. We need only to defining H2 with the state variable vector "position"
of MSV and UP. For example, if the position of MSV and UP in the state variable vector,
ψ(t) = [MSV, x2, x3, x4, UP], is 1st and 5th, we have H2 =[1 0 0 0 1]. Then, the final version
of the Equation 48 is

Kk = P(tk|k−1)H
T
2 (HP(tk|k−1)H

T + R)−1. (49)

In theory, this Equation 49 could prevent K = 0. However, in the case of too many
unshared parameters to be estimated, it can unbalance the ratio in the Equation 24, since
the Process uncertainty (PU) can become too large in relation to the System uncertainty
(SU) in the entire process of execution of JEKF algorithm. Then, to try to preserve a more
realistic ratio between PU and SU, the PU that compose the SU can be increased. Since
SU = PU + Measurementuncertainty = HP(tk|k−1)H

T + R [22]. Given this, an approach is
add the total sum of all prior error covariances of unshared parameters to be estimated
PUPtotal (tk|k−1) to HP(tk|k−1)H

T that is part of the system uncertainty (Equation 49) as
following. Given that HP(tk|k−1)H

T results in a scalar representing prior error variance of
MSV
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HP(tk|k−1)H
T = Cov(MSV, MSV), (50)

and PUPtotal (tk|k−1) is also a scalar, but representing the total sum of all prior error
covariances related with the unshared parameters to be estimated

PUPtotal (tk|k−1) = Cov(MSV,
n

∑
i

UPi) +
n

∑
j

Cov(UPj, MSV +
n

∑
i

UPi), (51)

we have that the sum of PUPtotal (tk|k−1) and HP(tk|k−1)H
T in the equation 49 is

Kk = (P(tk|k−1)H
T + Pi,UP(tk|k−1))(HP(tk|k−1)H

T + PUPtotal (tk|k−1) + R)−1. (52)

Since all information that we need to perform the sum of PUPtotal (tk|k−1) and HP(tk|k−1)H
T

are available in P(tk|k−1). We can apply a specific linear operator H2 to P(tk|k−1) to extract
all information easily. Then, the final version of the Equation 52 is

Kk = P(tk|k−1)H
T
2 (H2P(tk|k−1)H

T
2 + R)−1. (53)

The Equation 53 tries to preserve a more realistic ratio between PU and SU by increas-
ing the PU that compose the SU. However, if the kalman gain continue being small, the
P(tk|k−1) could be updated slowly by the Equation 23. Because KkHP(tk|k−1) is the factor
that update P(tk|k−1) and it is totally dependent of K, as we can see in

KkHP(tk|k−1) =

Cov(MSV, SV1).K1, . . . , Cov(MSV, SVn).K1,
...

Cov(MSV, SV1).Kn, . . . , Cov(MSV, SVn).Kn,

. (54)

Them, an artefact to avoid a possible slow update of P(tk|k−1) can be to add the Prior error
covariance related to unshared parameter Pi,UP(tk|k−1) to the KkHP(tk|k−1) in the Equation
23 as the following way

KkH2P(tk|k−1) =


(Cov(MSV, SV1) + Cov(∑

j
i UPi, SV1)).K1, . . . , (Cov(MSV, SVn) + Cov(∑

j
i UPi, SVn)).K1,

...
(Cov(MSV, SV1) + Cov(∑

j
i UPi, SV1)).Kn, . . . , (Cov(MSV, SVn) + Cov(∑

j
i UPi, SVn)).Kn,

 (55)

P(tk|k) = (I − KkH2)P(tk|k−1), (56)

where H2 is the same linear operator used in Equation 53 .
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7. Empirical Evaluation - Extension
7.1. Synthetic dataset development - mAb production

The Synthetic dataset (SD) is composed of two runs (A-SD, and B-SD). The runs have
different samples regarding the state variables Xv, GLC, GLN, LAC, AMM, and mAb and
were generated using the UMM case 1.4 with three set of different parameters. These
parameters are presented in the Table S1.
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Table S1. Parameters used in UMM case 1.4 to generate the runs A-SD, and B-SD of Synthetic Dataset
(SD).

Parameter Name run A-SD run B-SD

µmax(h−) Maximum growth rate 5.8×10−2 7.5×10−2

kglc(mM) Monod constant glucose 7.5×10−1 7.5×10−1

kgln(mM) Monod constant glutamine 7.5×10−2 7.5×10−2

kIlac(mM) Monod constant lactate for inhibition 1.72×102 1.72×102

kIamm(mM) Monod constant ammonium for inhibition 2.85×101 2.85×101

µd,max(h−) Maximum death rate 3.0×10−2 3.0×10−2

Kd,amm(mM) Monod constant ammonium for death 1.76 1.76
Klysis(h−) Breakdown of cell membranes 5.51×10−2 5.51×10−2

YX,glc(cells mmol−) Yield coefficient cell conc./glucose 1.06×108 1.06×108

mglc(mmol/cells h) Glucose maintenance coefficient 4.85×10−14 4.85×10−14

YX,gln(cells/mmmol) Yield coefficient cell conc./glutamine 5.57×108 5.57×108

α1(mmols cells− h−) Coefficient for mgln 3.40×10−13 3.40×10−13

α2(mM) Coefficient for mgln 4.0 4.0
kd,gln(h−) Monod constant glutamine for death 9.6×10−3 9.6×10−3

Ylac/glc(1) Yield coefficient lactate/glucose 1.4 1.4
Yamm/gln(1) Yield coefficient ammonium/glutamine 4.27×10−1 4.27×10−1

γ constant parameter 4.27×10−1 4.27×10−1

QmAb(mg cells− h−) mAb specific production rate 7.21×10−9 9.21×10−9

Table S2. Initial conditions of state variables of UMM case 1.4 for the JEKF test with Synthetic Dataset.

State Variable Name Value

Xv Viable cells density 2 × 108 c/mL
Xt total cells density 2 × 108 c/mL
GLC Glucose 29.1 mM
GLN Glutamine 4.9 mM
LAC Lactate 0 mM
AMM Ammonium 0.31 mM
mAb Monoclonal Antibody (titer) 80.6 mg/L
QmAb Specific production rate of mAb 7.21 ×10−9 mg cells−1h−1
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7.2. Real dataset development - rAAV production

The details of Real dataset (RD) can be found in [6].

7.3. NSEs (JEKF-classic, JEKF-SANTO and JEKF-KPH2) design to address RQ1-G1 and RQ2-G2

The process model (based on UMM case 1.4) and joint state variable vector used by
JEKF-Classic, JEKF-SANTO and JEKF-KPH2 are the following:

ψ(t)case4 = [XV , Xt, GLC, GLN, LAC, AMM, mAb, QmAb]T , (57)

and

d
dt



XV
Xt

GLC
GLN
LAC

AMM
mAb

QmAb


=



fXV
fGLC
fGLN
fLAC

fAMM
fmAb

0


+ ω(t). (58)

The standard and specific P(t=0) that were used with run B of Synthetic Dataset to
address the RQ1-G1 and RQ2-G2 are in Tables S3, S4, and S5.

In regards to the run B-SD, the standard P(t=0) for the NSEs were obtained follow-
ing P(t = 0) = diag((ψcase4(t = 0) − ψ̂case4(t = 0))(ψcase4(t = 0) − ψ̂case4(t = 0))T)
as done in [4,6]. Then, we have PQmAb,QmAb = (9.21 × 10−9 − 07.21 × 10−9)2 = 3.9 ×
10−18(g cells−1h−1)2, see Table S3. Since PXv,QmAb is a off-diagonal element, we defined it
as 1/4 of PQmAb,QmAb (g cells−1h−1)2. Then, PXv,QmAb = (3.9 × 10−18)/4 = 9.99 × 10−19

(c2/mL2)(g cells−1h−1). On the other hand, the specific P(t=0) for the NSEs were obtained
by trial and error. Furthermore, the R and Q used by the NSEs (for runs B of Synthetic
Dataset) are presented in Tables S6 and S7. It is important point out that all NSEs used
a standard and specific Q that were obtained by by trial and error until achieve positive
results in the Innovation Magnitude Bound Test and the Normalised Innovations Squared
Chi-square Test.
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Table S3. Standard initial state error covariance matrix (standard P(t=0)) for JEKF-Classic, JEKF-KPH2
and JEKF-SANTO with run B of Synthetic Dataset.

Parameter Name Pi,i for JEKF-Classic Pi,i for JEKF-SANTO in
and JEKF-KPH2 in MRDE-PC and
MRDE-PC and MRDE-PU MRDE-PU

PXv,Xv (c2/mL2) Viable cells 0.00 0.00
PGLC,GLC (mM2) Glucose 0.00 0.00
PGLN,GLN (mM2) Glutamine 0.00 0.00
PLAC,LAC (mM2) Lactate 0.00 0.00
PAMM,AMM (mM2) Ammonium 0.00 0.00
PmAb,mAb (mg/L)2 Monoclonal Antibody (titer) 0.00 0.00
PQmAb,QmAb (g cells−1h−1)2 Specific production rate of mAb 3.9e-18 3.9e-18
PXv,QmAb (c2/mL2)(g cells−1h−1) Initial Cov(Xv, QmAb) 0.0 9.99e-19

Table S4. Specific initial state error covariance matrix (specific P(t=0)) for JEKF-KPH2 with run B of
Synthetic Dataset.

Parameter Name Value in MRDE-PC Value in MRDE-PU

PXv,Xv (c2/mL2) Viable cells 0.00 0.00
PGLC,GLC (mM2) Glucose 0.00 0.00
PGLN,GLN (mM2) Glutamine 0.00 0.00
PLAC,LAC (mM2) Lactate 0.00 0.00
PAMM,AMM (mM2) Ammonium 0.00 0.00
PmAb,mAb (mg/L)2 Monoclonal Antibody (titer) 0.00 0.00
PQmAb,QmAb (g cells−1h−1)2 Specific production rate of mAb 12.21e-1 11.97e-2

Table S5. Specific initial state error covariance matrix (specific P(t=0)) for JEKF-SANTO with run B of
Synthetic Dataset.

Parameter Name Value in MRDE-PC Value in MRDE-PU

PXv,Xv (c2/mL2) Cov(xv, xv) 0.00 0.00
PGLC,GLC (mM2) Glucose 0.00 0.00
PGLN,GLN (mM2) Glutamine 0.00 0.00
PLAC,LAC (mM2) Lactate 0.00 0.00
PAMM,AMM (mM2) Ammonium 0.00 0.00
PmAb,mAb (mg/L)2 Monoclonal Antibody (titer) 0.00 0.00
PQmAb,QmAb (g cells−1h−1)2 Specific production rate of mAb 3.9e-18 3.9e-18
PXV,QmAb (c2/mL2)(g cells−1h−1) Initial Cov(XV , QmAb) 0.754 0.1445
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Table S6. Measurement noise variance R and error covariance matrix of process model (Q) for the
JEKF-Classic, JEKF-SANTO and JEKF-KPH2 with run B of Synthetic Dataset using MRDE-PC.

Standard Q Specific Q

JEKF-Classic,
JEKF-SANTO,

and JEKF-KPH2 JEKF-SANTO JEKF-KPH2
Parameter Name values with values with values with

MRDE-PC and MRDE-PC and MRDE-PC with
standard P(0) specific P(0) specific P(0)

R2 (c2/mL2) Viable cells MNV 1 (20× 107)2 (20× 107)2 (20× 107)2

QXv,Xv (c2/mL2) Viable cells PNV 2 (90× 106)2 (90× 106)2 (90× 106)2

QXt,Xt (c
2/mL2) Viable cells PNV 2 0.001 0.001 0.001

QGLC,GLC (mM2) Glucose PNV 0.001 0.001 0.001
QGLN,GLN mM2 Glutamine PNV 0.001 0.001 0.001
QLAC,LAC (mM2) Lactate PNV 0.001 0.001 0.001
QAMM,AMM (mM2) Ammonium PNV 0.001 0.001 0.001
QmAb,mAb (VG2/mL2) Monoclonal Antibody (titer) PNV 0.001 1.7 0.001
QQmAb,QmAb (h−2) Specific production rate of mAb (1× 109)2 1× 109 (1× 108)2

1 MNV—measurement noise value; 2 PNV—process noise value.

Table S7. Measurement noise variance R and error covariance matrix of process model (Q) for the
JEKF-Classic, JEKF-SANTO and JEKF-KPH2 with run B of Synthetic Dataset using MRDE-PU.

Standard Q Specific Q

JEKF-Classic,
JEKF-SANTO,

and JEKF-KPH2 JEKF-SANTO JEKF-KPH2
Parameter Name values with values with values with

MRDE-PU and MRDE-PU and MRDE-PU with
standard P(0) specific P(0) specific P(0)

R2 (c2/mL2) Viable cells MNV 1 (20× 107)2 (20× 107)2 (20× 107)2

QXv,Xv (c2/mL2) Viable cells PNV 2 (20× 106)2 (20× 106)2 (20× 106)2

QXt,Xt (c
2/mL2) Viable cells PNV 2 0.001 0.001 0.001

QGLC,GLC (mM2) Glucose PNV 0.001 0.001 0.001
QGLN,GLN mM2 Glutamine PNV 0.001 0.001 0.001
QLAC,LAC (mM2) Lactate PNV 0.001 0.001 0.001
QAMM,AMM (mM2) Ammonium PNV 0.001 0.001 0.001
QmAb,mAb (VG2/mL2) Monoclonal Antibody (titer) PNV 1.04 1.7 20300.9
QQmAb,QmAb (h−2) Specific production rate of mAb 17× 10−15 1× 109 0.001

1 MNV—measurement noise value; 2 PNV—process noise value.
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Figure S1. Innovation Magnitude Bound Test using the run B of Synthetic dataset for the NSEs with
MRDE-PU and specific Q and P(0).

Figure S2. Innovation Magnitude Bound Test using the run B of Synthetic dataset for the NSEs with
MRDE-PC and standard Q and P(0).

Figure S3. Innovation Magnitude Bound Test using the run B of Synthetic dataset for the NSEs with
MRDE-PU and standard Q and P(0).
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Figure S4. Standard Error of XV at each k estimated by NSEs with Synthetic Dataset using MRDE-PU
and specific P(0).

Figure S5. Standard Error of QmAb at each k estimated by NSEs with Synthetic Dataset using
MRDE-PC and specific P(0).
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Figure S6. Standard Error of QmAb at each k estimated by NSEs with Synthetic Dataset using
MRDE-PU and specific P(0).
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Figure S7. Standard Error of mAb at each k estimated by NSEs with Synthetic Dataset using MRDE-
PC and specific P(0).
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Figure S8. Standard Error of mAb at each k estimated by NSEs with Synthetic Dataset using MRDE-
PU and specific P(0).
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7.4. NSEs (JEKF-SANTO and JEKF-KPH2) design to address RQ3-G2

The process model (based on UMM of Section 1.5) and joint state variable vector used
by JEKF-SANTO and JEKF-KPH2 to address the RQ3-G2 are the following:

ψ(t) = [Xv, GLC, GLN, LAC, AMM, AAV, µXv , µGlc, µGln, µLac, µAmm, kdeg, µAAV ]
T . (59)

and

dψ(t)
dt

= ϕ(ψ(t), t) + ω(t), (60)

d
dt



XV
Glc
Gln
Lac

Amm
AAV
µXv

µGlc
µGln
µLac

µAmm
kdeg

µAAV



=



µXv XV
−µGlcXV
−µGlnXV
µLacXV

µAmmXV + kdegGln
µAAV XV

0
0
0
0
0
0
0



+ ω(t). (61)

The specific P(t=0) that was used by the NSEs to address the RQ3-G2 are in Table S10.
The specific P(t=0) for JEKF-KPH2 with MRDE-PC and specific Q come from article of
Iglesias et al [6]. Furthermore, the R, and standard and specific Q used by the NSEs are
presented in Table S11.
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Table S8. Initial conditions of state variables of UMM case 1.5 for the JEKF-SANTO and JEKF-KPH2
test with run B-RD (Source [6]).

State Variable Name run B-RD

Xv Viable cells 1.0011 × 106 c/mL
GLC Glucose 26.7039 mM
GLN Glutamine 4.0310 mM
LAC Lactate 7.4385 mM
AMM Ammonium 1.5678 mM
rAAV rAAV viral titer 0 VG/mL

Table S9. Initial parameters obtained with A-RD for the JEKF-SANTO and JEKF-KPH2 test with run
B-RD (Source [6]).

State Variable run B-RD

µXv (h−1) 0.006
µGLC (mmol 10−6c h−1) 1.01e-7
µGLN (mmol 10−6c h−1) 2.12e-8
µLAC (mmol 10−6c h−1) 2.58571e-8
µAMM (mmol 10−6c h−1) 1.47905e-9
kdeg (h−1) 0.0014591
µAAV (109 vg/mL h 106c) 65.6

Table S10. Specific initial state error covariance matrix (specific P(t=0)) for for the JEKF-Classic,
JEKF-SANTO and JEKF-KPH2 with Real Dataset (run B) using MRDE-PC.

Parameter Initial error JEKF-Classic JEKF-SANTO JEKF-KPH2
Covariance

PXv,Xv (c2/mL2) Cov(Xv, Xv) 0.00 0.00 0.00
PGLC,GLC (mM2) Cov(GLC, GLC) 0.00 0.00 0.00
PGLN,GLN (mM2) Cov(GLN, GLN) 0.00 0.00 0.00
PLAC,LAC (mM2) Cov(LAC, LAC) 0.00 0.00 0.00
PAMM,AMM (mM2) Cov(AMM, AMM) 0.00 0.00 0.00
PrAAV,rAAV (VG2/mL2) Cov(rAAV, rAAV) 0.00 0.00 0.00
PµXv ,µXv (h

−2) Cov(µXv, µXv) 1.77 × 10−9 1.77 × 10−9 1.77 × 10−9

PµGLC ,µGLC (mmol 10−12c h−2) Cov(µGLC, µGLC) 4.76× 10−5 4.76 × 10−5 10.66 × 10−6

PµGLN ,µGLN (mmol 10−12c h−2) Cov(µGLN , µGLN) 1.05 × 10−5 1.05 × 10−5 1.05 × 10−5

PµLAC ,µLAC (mmol 10−12c h−2) Cov(µLAC, µLAC) 35.59× 10−7 35.59 × 10−7 550.59 × 10−8

PµAMM ,µAMM (mmol 10−12c h−2) Cov(µAMM, µAMM) 6.71 × 10−10 6.71 × 10−10 6.71 × 10−10

Pkdeg ,kdeg
(h−2) Cov(kdeg, kdeg) 8.71 × 10−8 8.71 × 10−8 8.71 × 10−8

PµrAAV ,µrAAV ( vg2/mL2 h2 1012c) Cov(µrAAV , µrAAV) 42000 42000 10000
PXv ,µGLC (c/mL)(mM) Cov(Xv, µGLC) 0.00 0.000006751 0.00
PXv ,µLAC (c/mL)(mM) Cov(Xv, µLAC) 0.00 0.0000072505 0.00
PXv ,µrAAV (c/mL)(VG/mL) Cov(Xv, µrAAV) 0.00 9500.3625 0.00
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Table S11. Measurement noise variance R, and error covariance matrix of process model Qi,i for the
JEKF-Classic, JEKF-SANTO and JEKF-KPH2 with Real Dataset (run B) using MRDE-PC.

Parameter Name JEKF-Classic JEKF-SANTO JEKF-KPH2

R (c2/mL2) Viable cells MNV 1 130 × 105 130 × 105 130 × 105

QXv,Xv (c2/mL2) Viable cells PNV 2 50 × 105 50 × 105 50 × 105

QGLC,GLC (mM2) Glucose PNV 0.0006 0.0006 0.0006
QGLN,GLN mM2 Glutamine PNV 0.0006 0.0006 0.0006
QLAC,LAC (mM2) Lactate PNV 0.0006 0.0006 0.0006
QAMM,AMM (mM2) Ammonium PNV 0.0006 0.0006 0.0006
QrAAV,rAAV (VG2/mL2) AAV viral titer PNV 0.0006 0.0006 0.0006
QµXV ,µXV

(h−2) µXV PNV 1.77 × 10−7 1.77 × 10−7 1.77 × 10−7

QµGLC ,µGLC (mmol 10−12c h−2) µGLC PNV 0.21 × 10−16 0.21 × 10−16 0.21 × 10−16

QµGLN ,µGLN (mmol 10−12c h−2) µGLN PNV 7.86 × 10−18 7.86 × 10−18 7.86 × 10−18

QµLAC ,µLAC (mmol 10−12c h−2) µLAC PNV 13.59 × 10−7 13.59 × 10−7 13.59 × 10−7

QµAMM ,µAMM (mmol 10−12c h−2) µAMM PNV 0.11 × 10−8 0.11 × 10−8 0.11 × 10−8

Qkdeg ,kdeg
(h−2) kdeg PNV 0.71 × 10−8 0.71 × 10−8 0.71 × 10−8

QµrAAV ,µrAAV (vg2/mL2 h2 1012c) µrAAV PNV 0.31 0.31 0.31
1 MNV—measurement noise value; 2 PNV—process noise value.

Figure S9. Standard Error of GLC at each k estimated by NSEs with Real Dataset using MRDE-PC
and specific P(0).
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Figure S10. Standard Error of LAC at each k estimated by NSEs with Real Dataset using MRDE-PC
and specific P(0).
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Figure S11. Standard Error of rAAV at each k estimated by NSEs with Real Dataset using MRDE-PC
and specific P(0).
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Figure S12. Standard Error of µGLC at each k estimated by NSEs with Real Dataset using MRDE-PC
and specific P(0).
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Figure S13. Standard Error of µLAC at each k estimated by NSEs with Real Dataset using MRDE-PC
and specific P(0).
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Figure S14. Standard Error of µrAAV at each k estimated by NSEs with Real Dataset using MRDE-PC
and specific P(0).
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7.5. Results with synthetic dataset

In Figures S15, and S16, we can see the estimations of JEKF-SANTO and JEKF-KPH2
with run B-SD with standard P(t=0). This show that they are sensible to P(t=0) because the
best results were obtained with specific P(t=0) (results in main text).

Figure S15. The JEKF-SANTO and JEKF-KPH2 avoid the JEKF failure in B-SD, but they need an
specific P(t = 0). First, plot A shows the estimations regards Xv, and all estimations were close the
ground truth. The plots B and C show the estimations regards the unshared parameter QmAb and
mAb (titer) far from the ground truth, respectively. The NSEs were executed with MRDE-PC and
standard P(t = 0).
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Figure S16. The JEKF-SANTO and JEKF-KPH2 avoid the JEKF failure in B-SD, but they need an
specific P(t = 0). First, plot A shows the estimations regards Xv, and all estimations were close the
ground truth. The plots B and C show the estimations regards the unshared parameter QmAb and
mAb (titer) far from the ground truth, respectively. The NSEs were executed with MRDE-PU and
standard P(t = 0).

Table S12. RMSPE between NSEs estimations about mAb and ground truth of run B in synthetic
dataset with standard P(t=0).

NSE RMSPE (MRDE-PU) RMSPE (MRDE-PC)

JEKF-SANTO 18.80% 18.65%
JEKF-KPH2 18.80% 18.65%
JEKF-Classic 18.80% 18.65%
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7.6. Codes and datasets availability

All source codes and datasets used in this work can be found in GitHub: https:
//github.com/cristovaoiglesias/JEKF-SANTO.
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