
Citation: Song, J.; Lee, S.; Karagiannis,

D.; Lee, M. Process Algebraic

Approach for Probabilistic Verification

of Safety and Security Requirements

of Smart IoT (Internet of Things)

Systems in Digital Twin. Sensors 2024,

24, 767. https://doi.org/10.3390/

s24030767

Academic Editor: Maurizio Mongelli

Received: 23 November 2023

Revised: 12 January 2024

Accepted: 22 January 2024

Published: 24 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Process Algebraic Approach for Probabilistic Verification of
Safety and Security Requirements of Smart IoT (Internet of
Things) Systems in Digital Twin
Junsup Song 1 , Sunghyun Lee 1, Dimitris Karagiannis 2 and Moonkun Lee 1,*

1 Department of Computer Science and Engineering, Jeonbuk National University, Jeonju 561-756,
Republic of Korea; junsup@jbnu.ac.kr (J.S.); shlee1@jbnu.ac.kr (S.L.)

2 Research Group Knowledge Engineering, University of Vienna, 1010 Vienna, Austria;
dimitris.karagiannis@dke.univie.ac.at

* Correspondence: moonkun@jbnu.ac.kr

Abstract: Process algebra can be considered one of the most practical formal methods for modeling
Smart IoT Systems in Digital Twin, since each IoT device in the systems can be considered as a
process. Further, some of the algebras are applied to predict the behavior of the systems. For example,
PALOMA (Process Algebra for Located Markovian Agents) and PACSR (Probabilistic Algebra of
Communicating Shared Resources) process algebras are designed to predict the behavior of IoT
Systems with probability on choice operations. However, there is a lack of analytical methods in
the algebras to predict the nondeterministic behavior of the systems. Further, there is no control
mechanism to handle undesirable nondeterministic behavior of the systems. In order to overcome
these limitations, this paper proposes a new process algebra, called dTP-Calculus, which can be
used (1) to specify the nondeterministic behavior of the systems with static probability, (2) verify the
safety and security requirements of the nondeterministic behavior with probability requirements,
and (3) control undesirable nondeterministic behavior with dynamic probability. To demonstrate the
feasibility and practicality of the approach, the SAVE (Specification, Analysis, Verification, Evaluation)
tool has been developed on the ADOxx Meta-Modeling Platform and applied to a SEMS (Smart
Emergency Medical Service) example. In addition, a miniature digital twin system for the SEMS
example was constructed and applied to the SAVE tool as a proof of concept for Digital Twin. It
shows that the approach with dTP-Calculus on the tool can be very efficient and effective for Smart
IoT Systems in Digital Twin.

Keywords: smart IoT; digital twin; formal method; process algebra; dTP-Calculus; probability;
SAVE; ADOxx

1. Introduction
1.1. Digital Twin

Digital Twin [1], known as Digital Mirroring, is a new technology that models objects
in real world with ICT and enables them and their operations interact with their digital
models [2,3]. In that perspective, Digital Twin not only receives information from the
objects in the real world but also controls them, beyond simple modeling them as digital
entities [4–6].

Due to that perspective, recently, Digital Twin has become one of the main innovative
topics for Big Data, AI, IoT, Smart Systems, etc., in the areas of manufacturing, medical ser-
vice, aerospace, defense, agriculture, and so on [3,7–12]. Further, Digital Twin is considered
a subset of a CPS (Cyber-Physical System) with high fidelity [13]. More specifically, it is
used to specify, verify, and control various requirements of complex physical systems, such
as Smart Systems, in various industries.

Sensors 2024, 24, 767. https://doi.org/10.3390/s24030767 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24030767
https://doi.org/10.3390/s24030767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2167-9222
https://orcid.org/0000-0003-2541-3066
https://doi.org/10.3390/s24030767
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24030767?type=check_update&version=2

Sensors 2024, 24, 767 2 of 35

Consequently, in recent years, Smart IoT has been merging into Digital Twin to enhance
the smart functionalities of Smart Computing based Big Data and AI on IoT [14]. For
example, Smart IoT Medical Systems have utilized smart IoT devices in order to transfer
the health-related information of patients in real-time to medical centers through the digital
twin systems [15]. If the devices work improperly, the patients’ lives may be in danger.
Therefore, it is necessary to verify the safe and secure functionalities or requirements of the
devices and systems in Digital Twin prior to the physical implementation of the devices in
the systems. More specifically, Digital Twin should provide a mechanism to predict the
unexpected behavior of the systems, not satisfying such functionalities and requirements,
and control the behavior so that all the functionalities and requirements are satisfied.

1.2. Process Algebra

The most common approaches for the verification of the safety and security require-
ments of Digital Twin are based on formal methods, such as, logic, state machine, and
process algebra [16,17]. Among these, as stated in the abstract, the approach based on
process algebra is most promising: each IoT device can be considered as a process Twin
with the properties of real-time, periodicity, control, interactivity, mobility, distribution,
etc. [18,19].

Further, some of these algebras are applied to predict the behavior of the systems. For
example, PALOMA (Process Algebra for Located Markovian Agents) and PACSR (Prob-
abilistic Algebra of Communicating Shared Resources) process algebras are designed to
predict the behavior of IoT Systems with probability on choice operations [18,19]. However,
there is a lack of analytical methods in the algebras to predict the nondeterministic behavior
of the systems, since the prediction of their behavior can be expressed as unconditional
nondeterministic choice operations of the process algebras, based on the static probabilistic
model. More specifically, PACSR exclusively relies on discrete probability models, and
PALOMA solely utilizes exponential probability distribution models. They are not suitable
for the analysis of dynamic probability models to control nondeterministic choice opera-
tions. Further, there is no control mechanism to fix undesirable nondeterministic behavior
of the systems for both algebras.

1.3. Approach

To overcome these limitations, this paper presents a new formal method, called dTP-
Calculus, which is extended from dT-Calculus [18,19]. It provides a method to specify,
analyze, and control the dynamic behavior of Smart IoT Systems in Digital Twin, based on
static and dynamic probability. Further, dTP-Calculus can be used to specify and verify
probabilistic safety and security requirements of Smart IoT Systems in Digital Twin, based
on probability.

Figure 1 shows the main steps and points of the approach introduced in the paper,
based on dTP-Calculus, as follows. Note that it is one of the most typical approaches in the
formal-methods-based software engineering methodology [20]:

(1) The probabilistic operational requirements of a Smart IoT System are specified with
dTP-Calculus by defining a system model and the process models for all the processes
in the system model. Specifically, the nondeterministic behavior of the system is
specified with the probabilistic choice operation of each process with static probability.

(2) A probabilistic execution model for the system is determined, and all the execution
paths of the system are generated. Particularly, the nondeterministic behavior of
the system is generated by the composition of the probabilistic choice operations of
the processes.

(3) Each path of the probabilistic execution model is simulated, based on the semantics
of the calculus, and its output is generated in the form of the GTS (Geo-Temporal
Space) model. Specifically, the nondeterministic behavior of the system is quantita-
tively measured in the GTS model and expressed with the quantitative values of the
probabilities composed by the probabilistic choice operations of the processes.

Sensors 2024, 24, 767 3 of 35

(4) The safety and security requirements of the system are specified with GTS Visual
Logic on the GTS generated from the previous step. Particularly, the probability of
the satisfiability of the requirements is measured with the composed probability from
the above (3).

(5) The safety and security requirements are analyzed and verified on the GTS. Specif-
ically, the probability of the satisfiability of the requirements is verified with the
probability requirements.

(6) If the probability requirements are not satisfied, the probabilities for the require-
ments are re-generated, and new criteria to satisfy the requirements are reset with
dynamic probability.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 38

Space) model. Specifically, the nondeterministic behavior of the system is quantita-
tively measured in the GTS model and expressed with the quantitative values of the
probabilities composed by the probabilistic choice operations of the processes.

(4) The safety and security requirements of the system are specified with GTS Visual
Logic on the GTS generated from the previous step. Particularly, the probability of
the satisfiability of the requirements is measured with the composed probability from
the above (3).

(5) The safety and security requirements are analyzed and verified on the GTS. Specifi-
cally, the probability of the satisfiability of the requirements is verified with the prob-
ability requirements.

(6) If the probability requirements are not satisfied, the probabilities for the requirements
are re-generated, and new criteria to satisfy the requirements are reset with dynamic
probability.
Since the approach includes a number of models and methods, this paper will focus

on the dTP-Calculus and its related models and present a brief description for GTS Logic
and its related functionalities in the analysis and verification steps based on probability.

Figure 1. Overview of the approach.

1.4. Proof of Concept
To demonstrate this approach, we developed the SAVE tool suite [18,19,21], on the

ADOxx Meta-Modeling Platform from OMiLAB [22–24], to specify, analyze, and verify
the basic and probabilistic requirements of Smart IoT Systems for Digital Twin using dTP-
Calculus. It consists of System and Process Modeler, Execution Model Generator, Simula-
tor, GTS Modeler, GTS Logic Specifier, Analyzer, and Verifier. As a proof of concept, a
Smart EMS (Emergency Medical Service) system is selected to show the approach with
static and dynamic probability of the choice operation for the example on the SAVE tool,
and a miniature of Digital Twin for the example is constructed and described in the paper.

Note that OMiLAB Community provided more than 57 new methodologies, includ-
ing tools, in the areas of education, IoT, business, etc., over a decade [22,23]. The method-
ologies perform domain-specific functionalities that extend the value of modeling over
simple visual representations to support simple human understanding. The examples of
the domains include haptic models [25], IoT simulation [18,19,21], robot controlling [26],
etc. In the perspective of such domains, SAVE can be considered a methodological tool to
model, analyze, and verify Digital Twin systems.

1.5. Contribution
The approach with the example on SAVE shows that dTP-Calculus is a very effective

and efficient method to specify the nondeterministic behavior of the systems with proba-
bility, verify the safety and security requirements of the nondeterministic behavior, and
control undesirable nondeterministic behavior. In general, it demonstrates how the

Figure 1. Overview of the approach.

Since the approach includes a number of models and methods, this paper will focus
on the dTP-Calculus and its related models and present a brief description for GTS Logic
and its related functionalities in the analysis and verification steps based on probability.

1.4. Proof of Concept

To demonstrate this approach, we developed the SAVE tool suite [18,19,21], on the
ADOxx Meta-Modeling Platform from OMiLAB [22–24], to specify, analyze, and verify
the basic and probabilistic requirements of Smart IoT Systems for Digital Twin using dTP-
Calculus. It consists of System and Process Modeler, Execution Model Generator, Simulator,
GTS Modeler, GTS Logic Specifier, Analyzer, and Verifier. As a proof of concept, a Smart
EMS (Emergency Medical Service) system is selected to show the approach with static
and dynamic probability of the choice operation for the example on the SAVE tool, and a
miniature of Digital Twin for the example is constructed and described in the paper.

Note that OMiLAB Community provided more than 57 new methodologies, including
tools, in the areas of education, IoT, business, etc., over a decade [22,23]. The methodologies
perform domain-specific functionalities that extend the value of modeling over simple
visual representations to support simple human understanding. The examples of the
domains include haptic models [25], IoT simulation [18,19,21], robot controlling [26], etc. In
the perspective of such domains, SAVE can be considered a methodological tool to model,
analyze, and verify Digital Twin systems.

1.5. Contribution

The approach with the example on SAVE shows that dTP-Calculus is a very effec-
tive and efficient method to specify the nondeterministic behavior of the systems with
probability, verify the safety and security requirements of the nondeterministic behavior,
and control undesirable nondeterministic behavior. In general, it demonstrates how the
unsatisfied requirements can be controlled by the given probabilities. In other words,

Sensors 2024, 24, 767 4 of 35

dTP-Calculus can be used to control the uncertainty of the requirements for Smart IoT
Systems for Digital Twin with dynamic probability.

Further, the SAVE tool can provide the capability to implement the method for real
industrial applications of Smart IoT Systems in Digital Twin. Most importantly, SAVE is
available in the public domain as an open model in OMiLAB [27].

To demonstrate the feasibility of the approach for Digital Twin, a small-scale smart
city was constructed for a SEMS system with smart mobile IoT devices as ambulances in
the physical world. These devices are activated by the processes defined by dTP-Calculus
in SAVE during the simulation in real-time in the virtual world.

1.6. Organization

The paper is organized as follows: in Section 2, the syntax and semantics of dTP-
Calculus will be described. In Section 3, the probabilistic specification and verification
approach for the nondeterministic choice operation will be described. In Section 4, a
Smart EMS (Emergency Medical Service) example for Digital Twin will be presented to
demonstrate the feasibility of the approach on SAVE. In Section 5, a proof of concept will
be presented for Digital Twin. In Section 6, a comparative analysis will be presented with
other similar approaches in process algebra. Finally, conclusions and future research will
be presented in Section 7.

2. dTP-Calculus

dTP-Calculus is a new process algebra designed by the authors. Note that dT-Calculus
is the base of dTP-Calculus, designed by the authors too [18,19]. The basic characteristics of
dT-Calculus are timed movement and geographical space of processes. The challenging char-
acteristic of dTP-Calculus is the probabilistic choice operation with probability distributions.

2.1. Main Characteristics

There are four main characteristics of dTP-Calculus: mobility, synchronization, time, and
probability. The details of the main characteristics are as follows:

2.1.1. Mobility

The main features of the movements in dTP-Calculus are mode and direction of movement:

(1) Movement mode: Autonomy and heteronomy can be used to define the movement
mode. The details for autonomy and heteronomy are as follows:
1⃝ Active movements: A process moves into a target process voluntarily.
2⃝ Passive movements: A target process is moved into other process involuntarily.

(2) Movement direction: The direction of the movement can be classified as inward
and outward.
1⃝ Move-in direction: A process moves into its process autonomously.
2⃝ Move-out direction: A process moves out of its immediate nesting process

autonomously.
3⃝ Move-get direction: A process is moved into a target process heteronomously

by the target process.
4⃝ Move-put direction: A process is moved out of its immediate nesting process

heteronomously by the target process.

2.1.2. Synchronization

The movements of dT-Calculus have a synchronous property. All the movements of
processes in dT-Calculus require permission from the target processes, either the target
process where a process moves into or out of in the autonomous case, or from a process
that is moved into or out of by the target process in the heteronomous case. Asynchronous
movement can be executed under limited conditions using the Priority property, as follows:

Sensors 2024, 24, 767 5 of 35

2.1.3. Priority

Priority is a property given to each process. Priority can be used as a condition for
asynchronous movement. It also can be used to determine the execution order of processes
when the processes are performed at the same time.

2.1.4. Time

Time can be used to specify the temporal constraints of processes in the systems. There
are five types of temporal properties:

(1) Ready Time: The time to wait for the action before performing the action.
(2) Timeout: The maximum waiting time for the execution of the action. If the Ready Time

has elapsed and the target process for its synchronous action is not prepared, the
action cannot be performed.

(3) Execution Time: The time required for the action to be executed. The action is executed
while the execution time is available. After the execution time is over, the action is
terminated, and the next action is to be executed.

(4) Deadline: The time for terminating the execution of an action. All actions must be
terminated by the Deadline. If the action is out of the Deadline, the process is in a
fault state.

(5) Period: The duration of the action for recursion. The action repeats itself after executing
the action during the specified period.

2.1.5. Probability

There are four types of probabilistic models [18,19] for dTP-Calculus:

(1) Discrete distribution without parameters.
(2) Normal distribution model with µ and σ.
(3) Exponential distribution model with λ.
(4) Uniform distribution based on the u (upper bound) and l (lower bound).

The discrete distribution is a probabilistic model that does not involve any parameters.
It defines specific values of probabilities for each branch of the choice operation with some
restrictions. One important constraint is that the probabilities assigned to all possible
outcomes must add up to 100%. As a result, it can only be used to analyze the static
probabilistic cases of specified systems, namely, Smart IoT Systems.

However, some variables can be included in the model to deal with dynamic proba-
bilistic cases, as shown in this paper. As a result, it can be used to determine a threshold of
the distribution at a satisfaction level for the safety and security requirements of Smart IoT
systems. Detailed descriptions will be provided in the next subsections of the probabilistic
choice operation.

2.2. Syntax

The details of the main characteristics are as follows: the dTP-calculus syntax is listed,
as shown in Figure 2. Each construct of the dTP-Calculus syntax is described as follows:

(1) Action (A): Represents an action performed by a process, as shown in (S-1) of Figure 2.
The types of actions are and Control (Control), Communication (Send/Receive), Move-
ment (Movement), and Empty (Null).

(2) Timed action (Aper,n
[r,to,e,d]): Defines the execution of the action with temporal restrictions,

as shown in (S-2) of Figure 2. It defines the process with timed properties. The
temporal properties of [r, to, e, d] represent Ready Time, Timeout, Execution Time,
and Deadline, respectively. per and n mean a period of action and the number of
repetitions, respectively.

(3) Timed process (Pper,n
[r,to,e,d]): Defines the process with timed properties, as shown in (S-3)

of Figure 2.
(4) Priority (P(pri_n)): Defines the importance or urgency of the processes, as shown in

(S-4) of Figure 2. Priority is expressed as an integer: a higher number implies higher

Sensors 2024, 24, 767 6 of 35

priority. Exceptionally, 0 indicates the highest priority, and an action with this priority
can be used for asynchronous movement.

(5) Nesting (P[Q]): Defines that P contains Q, as shown in (S-5) of Figure 2. Internal
processes are controlled by external processes.

(6) Channel (P⟨ch⟩): Represents a list of channels connected to processes, as shown in (S-6)
of Figure 2, allowing the processes to communicate with other processes.

(7) Choice (P + Q): Defines that only one of several actions or one of several processes is
selected for execution non-deterministically, as shown in (S-7) of Figure 2.

(8) Probabilistic choice (P{pc}+F Q{pc}): Used to select one of the actions with a proba-
bility distribution, as shown in (S-8) of Figure 2. There are four probabilistic models
as follows:
1⃝ Discrete Distribution (D): Simply, probability is directly determined with dis-

crete values, based on Discrete Distribution. For example, the processes P and
Q are assigned with probabilities of 0.6 and 0.4, respectively. The syntax for
probabilistic choice operations for Discrete Distribution is as follows:

P{0.6}+D Q{0.4} (1)

2⃝ Normal Distribution (N(µ, σ)): The parameters µ and σ can be used to specify a
desired Normal Distribution. For example, the values µ and σ with the integers
40 and 10, respectively, can be used to specify the following probabilistic choice
for Normal Distribution. The variable v represents a probabilistic variable. For
example, v ≤ 52 indicates the probability that v is less than or equal to 52 in a
normal distribution with a mean µ of 40 and a standard deviation σ of 10:

P{v > 52}+N(40,10) Q{v ≤ 52} (2)

3⃝ Exponential Distribution (Ex(λ)): The parameter λ can be used to specify Ex-
ponential Distribution. For example, the value λ with the real number 0.5 can
be used to specify the following probabilistic choice for Exponential Distribu-
tion. The variable v represents a probabilistic variable. For example, v ≤ 2.5
indicates the probability that v is less than or equal to 2.5 in an exponential
distribution with a rate parameter λ of 0.5:

P{v > 2.5}+E(0.5) Q{v ≤ 2.5} (3)

4⃝ Uniform Distribution (U(l, u)): The bound values lower (l) and upper (u) can be
used to specify Uniform Distribution. For example, the values l and u with the
integers 4 and 6, respectively, can be used to specify the following probabilistic
choice for Uniform Distribution. The variable v represents a probabilistic
variable. For example, v ≤ 5 indicates the probability that v is less than or
equal to 5 in a uniform distribution with a lower bound l of 3 and an upper
bound u of 7:

P{v > 5}+U(3,7) Q{v ≤ 5} (4)

(9) Parallel (P ∥ Q): Defines that two processes in a parallel relationship are executed at
the same time, as shown in (S-9) of Figure 2.

(10) Exception (P\E): Used to handle Deadline or Timeout, as shown in (S-10) of Figure 2.
(11) Sequence (A·P): Used to specify the next action, as shown in (S-11) of Figure 2.
(12) Empty (ϕ): An idle action, that is, null, as shown in (S-12) of Figure 2.
(13) Send/Receive (ch(msg)/ch(msg)): Synchronous Communication is based on describing

the synchronous communication between processes, with two types of communication
actions called Send and Receive, as shown in (S-13) and (S-14) of Figure 2.

(14) Movement request (mpri(k)P): Defines a request for a process movement to another
process, as shown in (S-15) of Figure 2.

Sensors 2024, 24, 767 7 of 35

(15) Movement permission (Pm(k)): Defines a permit for a process movement from other
process, as shown in (S-16) of Figure 2.

(16) Create process (newP): Defines that a process creates a new internal process, as shown
in (S-17) of Figure 2.

(17) Kill process (killP): Defines that a process terminates another process, as shown in
(S-18) of Figure 2.

(18) Exit process (exit): Defines that a process terminates itself, as shown in (S-19) of
Figure 2.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 38

the integers 4 and 6, respectively, can be used to specify the following probabil-
istic choice for Uniform Distribution. The variable 𝑣 represents a probabilistic
variable. For example, 𝑣 ≤ 5 indicates the probability that v is less than or equal
to 5 in a uniform distribution with a lower bound 𝑙 of 3 and an upper bound 𝑢
of 7: 𝑃{𝑣 > 5}+௎(ଷ,଻)𝑄{𝑣 ≤ 5} (4)

(9) Parallel (𝑃 ∥ 𝑄): Defines that two processes in a parallel relationship are executed at
the same time, as shown in (S-9) of Figure 2.

(10) Exception (𝑃\𝐸): Used to handle Deadline or Timeout, as shown in (S-10) of Figure 2.
(11) Sequence (𝐴 ∙ 𝑃): Used to specify the next action, as shown in (S-11) of Figure 2.
(12) Empty (𝜙): An idle action, that is, null, as shown in (S-12) of Figure 2.
(13) Send/Receive (𝑐ℎ(𝑚𝑠𝑔)/𝑐ℎ(𝑚𝑠𝑔)): Synchronous Communication is based on describing

the synchronous communication between processes, with two types of communica-
tion actions called Send and Receive, as shown in (S-13) and (S-14) of Figure 2.

(14) Movement request (𝑚௣௥௜(𝑘) 𝑃): Defines a request for a process movement to another
process, as shown in (S-15) of Figure 2.

(15) Movement permission (𝑃 𝑚(𝑘)): Defines a permit for a process movement from other
process, as shown in (S-16) of Figure 2.

(16) Create process (𝑛𝑒𝑤 𝑃): Defines that a process creates a new internal process, as shown
in (S-17) of Figure 2.

(17) Kill process (𝑘𝑖𝑙𝑙 𝑃): Defines that a process terminates another process, as shown in (S-
18) of Figure 2.

(18) Exit process (𝑒𝑥𝑖𝑡): Defines that a process terminates itself, as shown in (S-19) of Figure
2.

Figure 2. Syntax of dTP-Calculus.

2.3. Semantics
Table 1 shows the semantics with a set of transition rules for dTP-Calculus. The tran-

sition rules define that a conclusion can be derived from a Premise when the Side Condition
is satisfied: 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑃𝑟𝑒𝑚𝑖𝑠𝑒𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 (𝑆𝑖𝑑𝑒 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (5)

Figure 2. Syntax of dTP-Calculus.

2.3. Semantics

Table 1 shows the semantics with a set of transition rules for dTP-Calculus. The
transition rules define that a conclusion can be derived from a Premise when the Side
Condition is satisfied:

Transition =
Premise

Conclusion
(Side Condition) (5)

Table 1. Semantics of dTP-Calculus.

No Name Transition Rules

(R-1) Sequence −
A·P A→P

(R-2)
ChoiceL −

P+Q→P

ChoiceR −
P+Q→Q

(R-3) Probability Choice A·P A→ P

(∑i∈I Ai{pci})·P
Ai{pci}→ P′ .

(∑
i∈I

pci = 1, i ∈ I)

(R-4) Com −
ch1(msg1)·P||ch2(msg2)·Q

τ→P||Q
((ch1 = ch2) ∧ (msg1 = msg2))

(R-5)

ParallelL P→P′

P||Q→P′ ||Q

ParallelR Q→Q′

P||Q→P||Q′

ParallelCom P A→P′ ,Q A→Q′

P
∣∣∣∣∣∣Q τ→P′

∣∣∣∣∣∣Q′

Sensors 2024, 24, 767 8 of 35

Table 1. Cont.

No Name Transition Rules

(R-6)

NestingO P→P′

P[Q]→P′ [Q]

NestingI Q→Q′

P[Q]→P[Q′]

NestingCom P A→P′ ,Q A→Q′

P
∣∣∣∣∣∣Q τ→P′

∣∣∣∣∣∣Q′

(R-7)

In P
in(k)Q→ P′ ,Q

Pin(k)→ Q′

P
∣∣∣∣∣∣Q δ→Q′ [P′]

Out P
out(k)Q→ P′ ,Q

Pout(k)→ Q′

Q[P] δ→P′
∣∣∣∣∣∣Q′

Get P
get(k)Q→ P′ ,Q

Pget(k)→ Q′

P
∣∣∣∣∣∣Q δ→P′ [Q′]

Put P
put(k)Q→ P′ ,Q

Pput(k)→ Q′

P[Q]
δ→P′

∣∣∣∣∣∣Q′

(R-8)

InP P
inpri (k)Q→ P′

P(n1)

∣∣∣∣∣∣Q(n2)
δ→Q(n2)[P

′
(n1)]

((n1 > n2 ∧ n2 ̸= 0) ∨ (n1 = 0 ∧ n2 ̸= 0))

OutP P
outpri (k)Q→ P′

Q(n2)[P(n1)]
δ→P′

(n1)

∣∣∣∣∣∣Q(n2)

((n1 > n2 ∧ n2 ̸= 0) ∨ (n1 = 0 ∧ n2 ̸= 0))

GetP P
getpri (k)Q→ P′

P(n1)

∣∣∣∣∣∣Q(n2)
δ→P′

(n1)[Q(n2)]
((n1 > n2 ∧ n2 ̸= 0) ∨ (n1 = 0 ∧ n2 ̸= 0))

PutP P
putpri (k)Q→ P′

P(n1)[Q(n2)]
δ→P′

(n1)

∣∣∣∣∣∣Q(n2)

((n1 > n2 ∧ n2 ̸= 0) ∨ (n1 = 0 ∧ n2 ̸= 0))

(R-9) TickTimeR −
Aper,n
[r,to,e,d] ·P

▷1→ Aper,n
[r−1,to,e,d−1] ·P

(r ≥ 1)

(R-10) TickTimeTO
A·P

∣∣∣∣∣∣A·Q τ∨δ→ P
∣∣∣∣∣∣Q

Aper,n
[0,to,e,d] ·P

▷1→ Aper,n
[0,to−1,e,d−1] ·P

(to ≥ 1)

(R-11) TickTimeSyncE
A·P

∣∣∣∣∣∣A·Q τ∨δ→ P
∣∣∣∣∣∣Q

Aper1, n1
[0,to1,e1,d1]

·P
∣∣∣∣∣∣Aper2, n2

[0,to2,e2,d2]
·Q ▷1→ Aper1, n1

[0,to1,e1−1,d1−1] ·P
∣∣∣∣∣∣Aper2, n2

[0,to2,e2−1,d2−1] ·Q
(e1 ≥ 1, e2 ≥ 1)

(R-12) TickTimeAsyncE −
Aper,n
[0,to,e,d] ·P

▷1→ Aper,n
[0,to,e−1,d−1] ·P

(e ≥ 1)

(R-13) TickTimeEnd −
Aper,n
[0,to,0,d] ·P

▷1→ P

(R-14) Timeout −
(Aper,n

[0,0,e,d]\E)·P ▷1→ E·P

(R-15) Deadline −
(Aper,n

[r,to,e,0]\E)·P ▷1→ E·P

(R-16) Period −
Aper,n
[r,to,e,d] ·P

▷per→ Aper, n−1
[r,to,e,d] ·P

(n ≥ 1)

(R-17) Period End −
Aper,0
[0,to,0,d] ·P

▷1→ P

The subsequent labeled transitions indicate that the process state P can translate to a
different process state P′, with or without Action A.

P → P′, P A→ P′ (6)

Each transition rule in the table is defined as follows:

Sensors 2024, 24, 767 9 of 35

(1) Sequence: Indicates that if the action A is performed without the premise, the process
P is executed with the action A, as shown in (R-1) of Table 1.

(2) Choice: ChoiceL and ChoiceR represent the transition rules of the action. One of the
two processes is executed under the premises while the other one is not executed, as
shown in (R-2) of Table 1.

(3) Probability Choice: Represents that the actions for choice are performed probabilistically
with a given premise with a side condition. For example, A1{0.7}+ A2{0.1}+ A3{0.2}
implies that the probabilities for Actions A1, A2, A3 are 70%, 10%, 20%, respectively,
as shown in (R-3) of Table 1.

(4) Com: Defines the synchronous communication between P and Q on a channel with
the conditions of ch1 = ch2 and msg1 = msg2. The Send action is defined by a message
with an overline (msg1) and the Receive action is defined by a message without an
overline (msg2). Synchronous communication is represented by the τ action, as shown
in (R-4) of Table 1.

(5) Parallel: ParallelL and ParallelR mean that the processes P and Q are in parallel and
executed independently. However, in the case of dependency, it is necessary to apply
the ParallelCom rule. If two processes P and Q are synchronous, their τ action can be
executed synchronously in parallel, without causing any impact on other processes,
as shown in (R-5) of Table 1.

(6) Nesting: NestingO and NestingI mean that the processes P and Q can be performed
independently without synchronization. However, if they are synchronous, the
parallel synchronous transition as NestingCom will have an impact on both processes.
It is important that the synchronous action between P and Q is represented by the τ
action, as shown in (R-6) of Table 1.

(7) In, Out, Get, Put: In and Get mean that a process moves into its target process, au-
tonomously and heteronomously, respectively. Out and Put mean that a process
moves out of its nesting process autonomously and heteronomously, respectively. The
movements of dTP-Calculus are synchronous. All the movements of processes in dT-
Calculus require permission from the target processes. Such synchronous movement
actions are represented by the δ action. Note that In and Out are active, and Get and
Put are passive, as shown in (R-7) of Table 1.

(8) InP, OutP, GetP, PutP: These rules indicate the asynchronous movements between
two processes. The asynchronous movements can be decided by priorities between
two processes. If the priority of the process to request the target process is higher
than the target process, the permission of the target process is not required to move to
another space. These rules can be used to handle some exceptional cases in emergency
situations, as shown in (R-8) of Table 1.

(9) TickTimeR: Transition rule for Ready Time of the action by decrementing the ready
time r and the deadline d of an action by 1 unit time with ▷ 1, as shown in (R-9) of
Table 1. Note that ▷ 1 implies the elapse of 1 unit time.

(10) TickTimeTO: Transition rule for the waiting time of the action by decrementing the
timeout to and the deadline d of an action by a time unit with ▷ 1 after the ready time
r is completed in a condition that the synchronous partner process is not ready, as
shown in (R-10) of Table 1. As stated, ▷ 1 implies the elapse of 1 unit time.

(11) TickTimeSyncE: Transition rule for the Execution Time of the synchronous action. When
both actions A and A are ready simultaneously, they are executed synchronously, and
the execution time e and the deadline d of the actions are decremented by a time unit
with ▷ 1, as shown in (R-11) of Table 1. As stated, ▷ 1 implies the elapse of 1 unit
time.

(12) TickTimeAsyncE: Transition rule for the asynchronous action. Since the asynchronous
action does not require waiting for its timeout to, it is possible to proceed to its
execution just after its ready time r. After that, its execution time e and deadline d are
decremented by a time unit with ▷ 1, as shown in (R-12) of Table 1. As stated, ▷ 1
implies the elapse of 1 unit time.

Sensors 2024, 24, 767 10 of 35

(13) TickTimeEnd: Defines the termination of the action A by completing its execution time
e, as shown in (R-13) of Table 1.

(14) Timeout: Indicates the transition rule for the occurrence of timeout when Timeout(to)
becomes 0 by the elapse of a time unit with ▷ 1, which implies a system fault, as
shown in (R-14) of Table 1. As stated, ▷ 1 implies the elapse of 1 unit time. If an
exception handler E is defined and the action with the fault is terminated, the handler
E after the exception operator (\) is executed. Note that Process P is still valid.

(15) Deadline: Indicates the transition rule for the violation of the deadline, as shown in
(R-15) of Table 1. Deadline(d) becomes 0 by the elapse of a time unit with ▷ 1, which
implies a system fault. As stated, ▷ 1 implies the elapse of 1 unit time. If an exception
handler E is defined, the action with the fault is terminated, and the handler process
E after the exception operator (\) is executed. Process P is still valid.

(16) Period: Defines the rule for the execution of a periodic action A, as shown in (R-16)
of Table 1. In Period, Action A executes itself in n times. This means that the value of
n will be decremented by 1 after each ▷ per. As stated, ▷ per implies the elapse of
1 unit time.

(17) Period End: Defines the rule for termination of the periodic action A, as shown in
(R-17) of Table 1. Since the value of n is 0, Action A will not repeat itself anymore after
the elapse of a time unit, ▷ 1. As stated, ▷ 1 implies the elapse of 1 unit time.

3. Conceptual Approach

This section presents a conceptual overview of the approach in the paper with a simple
example, based on the following specification, analysis, and verification steps.

3.1. Specification Step

Figure 3 shows a simple PBC (Producer-Buffer-Consumer) example in dTP-Calculus.
It consists of Producer (P), Buffer (B), and Consumer (C). Note that the Producer produces
two resources: Resource1 (R1) and Resource2 (R2). The operational requirements with
probability for PBC are as follows:

(1) P has the resources: R1 and R2.
(2) P puts the resources in B in order: R1-R2 or R2-R1.
(3) P sends a signal for the sending order for the resources to B.

1⃝ The probability of the R1-R2 order for P is 0.6; that of its reverse, R2-R1, is 0.4.
2⃝ The probability of the R1-R2 order for B is 0.7; that of its reverse, R2-R1, is 0.3.

(4) The resources from B are handled by C in that order from the above (3).
(5) C sends a signal of the order to B.

1⃝ The probability of the R1-R2 order for C is 0.8; that of its reverse, R2-R1, is 0.2.
2⃝ The probability of the R1-R2 order for B is 0.5; that of its reverse, R2-R1, is 0.5.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 38

exception handler 𝐸 is defined, the action with the fault is terminated, and the han-
dler process 𝐸 after the exception operator (\) is executed. Process 𝑃 is still valid.

(16) Period: Defines the rule for the execution of a periodic action 𝐴, as shown in (R-16) of
Table 1. In Period, Action 𝐴 executes itself in 𝑛 times. This means that the value of 𝑛 will be decremented by 1 after each ⊳ 𝑝𝑒𝑟. As stated, ⊳ 𝑝𝑒𝑟 implies the elapse of
1 unit time.0

(17) Period End: Defines the rule for termination of the periodic action 𝐴, as shown in (R-
17) of Table 1. Since the value of 𝑛 is 0, Action 𝐴 will not repeat itself anymore after
the elapse of a time unit, ⊳ 1. As stated, ⊳ 1 implies the elapse of 1 unit time.

3. Conceptual Approach
This section presents a conceptual overview of the approach in the paper with a sim-

ple example, based on the following specification, analysis, and verification steps.

3.1. Specification Step
Figure 3 shows a simple PBC (Producer-Buffer-Consumer) example in dTP-Calculus. It

consists of Producer (P), Buffer (B), and Consumer (C). Note that the Producer produces two
resources: Resource1 (R1) and Resource2 (R2). The operational requirements with probabil-
ity for PBC are as follows:
(1) P has the resources: R1 and R2.
(2) P puts the resources in B in order: R1-R2 or R2-R1.
(3) P sends a signal for the sending order for the resources to B. ① The probability of the R1-R2 order for P is 0.6; that of its reverse, R2-R1, is 0.4. ② The probability of the R1-R2 order for B is 0.7; that of its reverse, R2-R1, is 0.3.
(4) The resources from B are handled by C in that order from the above (3).
(5) C sends a signal of the order to B. ① The probability of the R1-R2 order for C is 0.8; that of its reverse, R2-R1, is 0.2. ② The probability of the R1-R2 order for B is 0.5; that of its reverse, R2-R1, is 0.5.

Figure 3. Syntax of dTP-Calculus for the PBC example.

Figure 4 shows the pictorial view of PBC. The large circles indicate the processes P,
B, and C. The small circles in the process P indicate the child processes R1 and R2. Note
that There are PB and CB channels between P and B, and C and B, respectively, to exchange
messages with each other. The unconditional choices are selected non-deterministically
when the choice operations are performed on the channels. There are four possible syn-
chronous combinations with probabilities on each channel, that is, PB and CB: (1) those
with 0.42, 0.28, 0.18, and 0.12 probabilities from the 0.6 vs. 0.4 of P by the 0.7 vs. 0.3 of B,
(2) those with 0.40, 0.40, 0.10, and 0.10 probabilities from the 0.5 vs. 0.5 of B by the 0.8 vs.
0.2 of C. The rules Parcom and ProbabilityChoice in Table 1 can be used as the condition for
four possible synchronous combinations.

Figure 3. Syntax of dTP-Calculus for the PBC example.

Sensors 2024, 24, 767 11 of 35

Figure 4 shows the pictorial view of PBC. The large circles indicate the processes P, B,
and C. The small circles in the process P indicate the child processes R1 and R2. Note that
There are PB and CB channels between P and B, and C and B, respectively, to exchange mes-
sages with each other. The unconditional choices are selected non-deterministically when
the choice operations are performed on the channels. There are four possible synchronous
combinations with probabilities on each channel, that is, PB and CB: (1) those with 0.42,
0.28, 0.18, and 0.12 probabilities from the 0.6 vs. 0.4 of P by the 0.7 vs. 0.3 of B, (2) those with
0.40, 0.40, 0.10, and 0.10 probabilities from the 0.5 vs. 0.5 of B by the 0.8 vs. 0.2 of C. The
rules Parcom and ProbabilityChoice in Table 1 can be used as the condition for four possible
synchronous combinations.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 38

Figure 4. System View for the PBC example with probabilities.

3.2. Analysis Step
Figure 5 shows the reachability graph of the PBC example in the perspective of prob-

abilistic choice operation. The top node is the root node, that is, the starting point of the
execution. Synchronous communication can be derived from the interaction between the
processes P and B. As a result, four possible synchronous combinations are generated
from the interactions between the processes P and B on the first channel, PB, as shown on
the left side of Figure 4, with the 0.42, 0.28, 0.18, and 0.12 probabilities, calculated from the
0.6 vs. 0.4 of P by the 0.8 vs. 0.2 of B. Note that there are two deadlock cases in the middle.
The normal cases are only two cases, that is, the left-most and the right-most, from which
another series of combinations of the following synchronous communication on CB be-
tween B and C can be extended. These are the same ones with those cases on the second
channel, CB, as shown on the right side of Figure 4, with the 0.40, 0.40, 0.10, and 0.10
probabilities, calculated from the 0.8 vs. 0.2 of C by the 0.5 vs. 0.5 of B. However, in Figure
5, the normal cases are affected by the previous combination: (1) those of 0.168, 0.168, 0042,
and 0.042 probabilities for the right-most, and (2) those of 0.048, 0.048, 0.012, and 0.012
probabilities for the left-most. As with the previous combinations, there are two deadlock
cases for each combination in the middle. The total 0.27 probability for the normal cases
are generated at the node at the bottom of Figure 5.

Figure 5. Probabilistic reachability graph of the PBC Example.

3.3. Verification Step
For the PBC example, the following types of requirements are specified:

Figure 4. System View for the PBC example with probabilities.

3.2. Analysis Step

Figure 5 shows the reachability graph of the PBC example in the perspective of
probabilistic choice operation. The top node is the root node, that is, the starting point of
the execution. Synchronous communication can be derived from the interaction between
the processes P and B. As a result, four possible synchronous combinations are generated
from the interactions between the processes P and B on the first channel, PB, as shown on
the left side of Figure 4, with the 0.42, 0.28, 0.18, and 0.12 probabilities, calculated from
the 0.6 vs. 0.4 of P by the 0.8 vs. 0.2 of B. Note that there are two deadlock cases in the
middle. The normal cases are only two cases, that is, the left-most and the right-most, from
which another series of combinations of the following synchronous communication on
CB between B and C can be extended. These are the same ones with those cases on the
second channel, CB, as shown on the right side of Figure 4, with the 0.40, 0.40, 0.10, and
0.10 probabilities, calculated from the 0.8 vs. 0.2 of C by the 0.5 vs. 0.5 of B. However, in
Figure 5, the normal cases are affected by the previous combination: (1) those of 0.168,
0.168, 0042, and 0.042 probabilities for the right-most, and (2) those of 0.048, 0.048, 0.012,
and 0.012 probabilities for the left-most. As with the previous combinations, there are two
deadlock cases for each combination in the middle. The total 0.27 probability for the normal
cases are generated at the node at the bottom of Figure 5.

3.3. Verification Step

For the PBC example, the following types of requirements are specified:

(1) Security Requirements:
1⃝ ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security

information is contained in the first resource to decode the second resource.
2⃝ ScReq2: The time interval between the first and second should not exceed

3 time units.

(2) Safety Requirement:
1⃝ SfReq1: C should consume the resources, which are produced by P, in less than

10 time units.

Sensors 2024, 24, 767 12 of 35

Sensors 2024, 24, x FOR PEER REVIEW 12 of 38

Figure 4. System View for the PBC example with probabilities.

3.2. Analysis Step
Figure 5 shows the reachability graph of the PBC example in the perspective of prob-

abilistic choice operation. The top node is the root node, that is, the starting point of the
execution. Synchronous communication can be derived from the interaction between the
processes P and B. As a result, four possible synchronous combinations are generated
from the interactions between the processes P and B on the first channel, PB, as shown on
the left side of Figure 4, with the 0.42, 0.28, 0.18, and 0.12 probabilities, calculated from the
0.6 vs. 0.4 of P by the 0.8 vs. 0.2 of B. Note that there are two deadlock cases in the middle.
The normal cases are only two cases, that is, the left-most and the right-most, from which
another series of combinations of the following synchronous communication on CB be-
tween B and C can be extended. These are the same ones with those cases on the second
channel, CB, as shown on the right side of Figure 4, with the 0.40, 0.40, 0.10, and 0.10
probabilities, calculated from the 0.8 vs. 0.2 of C by the 0.5 vs. 0.5 of B. However, in Figure
5, the normal cases are affected by the previous combination: (1) those of 0.168, 0.168, 0042,
and 0.042 probabilities for the right-most, and (2) those of 0.048, 0.048, 0.012, and 0.012
probabilities for the left-most. As with the previous combinations, there are two deadlock
cases for each combination in the middle. The total 0.27 probability for the normal cases
are generated at the node at the bottom of Figure 5.

Figure 5. Probabilistic reachability graph of the PBC Example.

3.3. Verification Step
For the PBC example, the following types of requirements are specified:

Figure 5. Probabilistic reachability graph of the PBC Example.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by
internal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP1 Total

τ1 · τ2 τ1,1τ2.1 τ1,1τ2.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τଵ,ℸଶ: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τଶ,ℸଵ: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τଶ,ℸଵ: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

τ1,1τ2.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τଵ,ℸଶ: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τଶ,ℸଵ: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τଶ,ℸଵ: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

τ1,1τ2.2 τ1,

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τଵ,ℸଶ: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τଶ,ℸଵ: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τଶ,ℸଵ: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

τ1,

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τଵ,ℸଶ: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τଶ,ℸଵ: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τଶ,ℸଵ: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

τ1,2τ2.1 τ1,2τ2.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τଵ,ℸଶ: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τଶ,ℸଵ: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τଶ,ℸଵ: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

τ1,2τ2.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τଵ,ℸଶ: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τଶ,ℸଵ: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τଶ,ℸଵ: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

τ1,2τ2.2

Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00
ScReq1 # ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ # 0.18
ScReq2 # ✕ ✕ # ✕ ✕ # ✕ ✕ # 0.27
SfReq1 # ✕ ✕ # ✕ ✕ # ✕ ✕ # 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τ1 and τ2 for the communication are as follows:
1⃝ τ1,1: The order of R1-R2 with the communication between the processes P and B,

represented by the execution paths eP1 and eP4 in Table 2.
2⃝ τ1,2: The order of R2-R1 with the communication between the processes P and B,

represented by eP7 and eP10 in Table 2.
3⃝ τ2,1: The order of R1-R2 with the communication between the processes B and C,

represented by eP4 in Table 2.
4⃝ τ2,2: The order of R2-R1 with the communication between the processes B and C,

represented by eP10 in Table 2.

Additionally, the following list represents the failures of the communications:
1⃝ τ1,

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τ1,ℸ2: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τ2,ℸ1: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τ2,ℸ2: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τ2,ℸ1: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

: Failure of τ1,1, by eP5 in Table 2.
2⃝ τ1,

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τ1,ℸ2: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τ2,ℸ1: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τ2,ℸ2: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τ2,ℸ1: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

: Failure of τ1,2, by eP6 in Table 2.

Sensors 2024, 24, 767 13 of 35

3⃝ τ1,1·τ2,

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τ1,ℸ2: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τ2,ℸ1: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τ2,ℸ2: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τ2,ℸ1: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

: Failure of τ2,1 after τ1,1, by eP2 in Table 2.
4⃝ τ1,1·τ2,

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τ1,ℸ2: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τ2,ℸ1: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τ2,ℸ2: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τ2,ℸ1: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

: Failure of τ2,2 after τ1,1, by eP3 in the Table 2.
5⃝ τ1,2·τ2,

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τ1,ℸ2: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τ2,ℸ1: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τ2,ℸ2: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τ2,ℸ1: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

: Failure of τ2,1 after τ1,2, by eP8 in Table 2.
6⃝ τ1,1·τ2,

Sensors 2024, 24, x FOR PEER REVIEW 13 of 38

(1) Security Requirements: ① ScReq1: The order of R1-R2 or R2-R1 should not be violated because the security
information is contained in the first resource to decode the second resource. ② ScReq2: The time interval between the first and second should not exceed 3 time
units.

(2) Safety Requirement: ① SfReq1: C should consume the resources, which are produced by P, in less than
10 time units.

In addition, the security and safety requirements are defined from different perspec-
tives. The security requirement is aimed at preventing an accident caused by external
problems, while the safety requirement is aimed at preventing an accident caused by in-
ternal problems.

Table 2 shows the analysis of probabilistic verifications of these requirements. The
values in Table 2 are derived from the probabilistic execution model for PBC.

Table 2. Analysis of probabilistic verification for the requirements.

 eP1 eP2 eP3 eP4 eP5 eP6 eP7 eP8 eP9 eP10 total
τ1  τ2 τ1,1τ2.1 τ1,1τ2.⸣1 τ1,1τ2.⸣2 τ1,1τ2.2 τ1, ⸣1 τ1, ⸣2 τ1,2τ2.1 τ1,2τ2.⸣1 τ1,2τ2.⸣2 τ1,2τ2.2
Prob. 0.168 0.168 0.042 0.042 0.28 0.28 0.048 0.048 0.012 0.012 1.00

ScReq1 ◯ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ◯ 0.18
ScReq2 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27
SfReq1 ◯ ✕ ✕ ◯ ✕ ✕ ◯ ✕ ✕ ◯ 0.27

There are execution paths in Table 2. Each path is represented by the type of commu-
nication. The details for τଵ and τଶ for the communication are as follows: ① τଵ,ଵ: The order of R1-R2 with the communication between the processes P and B, rep-

resented by the execution paths eP1 and eP4 in Table 2. ② τଵ,ଶ: The order of R2-R1 with the communication between the processes P and B, rep-
resented by eP7 and eP10 in Table 2. ③ τଶ,ଵ: The order of R1-R2 with the communication between the processes B and C, rep-
resented by eP4 in Table 2. ④ τଶ,ଶ: The order of R2-R1 with the communication between the processes B and C, rep-
resented by eP10 in Table 2.
Additionally, the following list represents the failures of the communications: ① τଵ,ℸଵ: Failure of τଵ,ଵ, by eP5 in Table 2. ② τ1,ℸ2: Failure of τଵ,ଶ, by eP6 in Table 2. ③ τଵ,ଵ ∙ τ2,ℸ1: Failure of τଶ,ଵafter τଵ,ଵ, by eP2 in Table 2. ④ τଵ,ଵ ∙ τ2,ℸ2: Failure of τଶ,ଶ after τଵ,ଵ, by eP3 in the Table 2. ⑤ τଵ,ଶ ∙ τ2,ℸ1: Failure of τଶ,ଵ after τଵ,ଶ, by eP8 in Table 2. ⑥ τଵ,ଵ ∙ τଶ,ℸଶ: Failure of τଶ,ଶ after τଵ,ଶ, by eP9 in Table 2.
First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be

checked as follows: ① τଵ,ଵ ∙ τଶ,ଵ: The order of R1-R2, by eP1 in Table 2. ② τଵ,ଶ ∙ τଶ,ଶ: The order of R2-R1, by eP10 in Table 2.
For the requirements SfReq1 and ScReq2, note that all the actions and interactions

consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the re-
quirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

: Failure of τ2,2 after τ1,2, by eP9 in Table 2.

First, for the purpose of verifying ScReq1, the order of R1-R2 or R2-R1 should be
checked as follows:
1⃝ τ1,1·τ2,1: The order of R1-R2, by eP1 in Table 2.
2⃝ τ1,2·τ2,2: The order of R2-R1, by eP10 in Table 2.

For the requirements SfReq1 and ScReq2, note that all the actions and interactions
consume only 1 time unit. Consequently, the total delivery time of the resources takes 7
time units for both R1-R2 and R2-R1.

Further, it can be seen in Table 2 that the probabilities for the satisfaction of the
requirements ScReq1, ScReq2, and SfReq1 are 0.18, 0.27, and 0.27, respectively.

4. Smart EMS Example Using SAVE

The purpose of this section is to prove the applicability of dTP-Calculus for a Smart
IoT System, namely Smart EMS (Emergency Medical Service) (SEMS) in Digital Twin, using
SAVE. Note that SAVE is a tool developed on the ADOxx Meta-Modeling Platform to prove
the basic concept of the approach in this paper.

4.1. ADOxx Meta-Modeling Platform

ADOxx is a meta-modeling platform developed by OMiLAB [22–24]. It provides the
facilities to develop modeling tools in various business and engineering domains. Figure 6
shows the basic components of the meta-modeling facilities of ADOxx as follows:

(1) Modeling Language: Provides a set of facilities and libraries to define notation, syntax,
and semantics of modeling languages from different domains.

(2) Modeling Technique: Provides a set of facilities and libraries to define procedures to
construct models in the modeling languages from above (1) and obtain the expected
results from the models.

(3) Mechanisms and Algorithms: Provides a set of facilities and libraries to utilize the
basic and enhanced functionalities of generic mechanisms and their algorithms in the
meta-modeling platform for developing new modeling methods in common domains.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 38

4. Smart EMS Example Using SAVE
The purpose of this section is to prove the applicability of dTP-Calculus for a Smart

IoT System, namely Smart EMS (Emergency Medical Service) (SEMS) in Digital Twin, using
SAVE. Note that SAVE is a tool developed on the ADOxx Meta-Modeling Platform to
prove the basic concept of the approach in this paper.

4.1. ADOxx Meta-Modeling Platform
ADOxx is a meta-modeling platform developed by OMiLAB [22–24]. It provides the

facilities to develop modeling tools in various business and engineering domains. Figure
6 shows the basic components of the meta-modeling facilities of ADOxx as follows:
(1) Modeling Language: Provides a set of facilities and libraries to define notation, syn-

tax, and semantics of modeling languages from different domains.
(2) Modeling Technique: Provides a set of facilities and libraries to define procedures to

construct models in the modeling languages from above (1) and obtain the expected
results from the models.

(3) Mechanisms and Algorithms: Provides a set of facilities and libraries to utilize the
basic and enhanced functionalities of generic mechanisms and their algorithms in the
meta-modeling platform for developing new modeling methods in common do-
mains.

Figure 6. The basic components of ADOxx [22,23].

Figure 7 shows the basic facilities and libraries of ADOxx for developing a specific
modeling tool.

Figure 6. The basic components of ADOxx [22,23].

Figure 7 shows the basic facilities and libraries of ADOxx for developing a specific
modeling tool.

Sensors 2024, 24, 767 14 of 35Sensors 2024, 24, x FOR PEER REVIEW 15 of 38

Figure 7. ADOxx Basic Facilities and Meta2 Model Concepts: Design with CoChaCo [28].

4.2. SAVE
SAVE (Specification, Analysis, Verification, and Evaluation) [18,19,21] is a tool suite

for dTP-Calculus, developed on the ADOxx Meta-Modeling Platform [22,23], as shown in
Figure 8. The components of the SAVE tool are the Specifier, Analyzer, and Verifier. There
are engines which consist of sub-engines in the components of the SAVE Tool.

Figure 7. ADOxx Basic Facilities and Meta2 Model Concepts: Design with CoChaCo [28].

4.2. SAVE

SAVE (Specification, Analysis, Verification, and Evaluation) [18,19,21] is a tool suite
for dTP-Calculus, developed on the ADOxx Meta-Modeling Platform [22,23], as shown in
Figure 8. The components of the SAVE tool are the Specifier, Analyzer, and Verifier. There
are engines which consist of sub-engines in the components of the SAVE Tool.

The meta-modeling definition of the ITL (In-The-Large) and ITS (In-The-Small) views
is visually specified in Tables 3 and 4, and their notations are shown at the bottom of each
table. The detailed definition and representations are described in [18,19,21]. The detailed
descriptions of the engines of the Specifier are as follows:

(1) ITL/ITS Loader: In-The-Large (ITL) is the model that shows the inclusion relations of
the processes in the systems. In-The-Small (ITS) is the model that shows the detailed
actions of the processes of the systems. ITL/ITS Loader loads all the information from
an ITL and its included ITS’s.

Sensors 2024, 24, 767 15 of 35

(2) ITL/ITS Mapper: ITL/ITS Mapper is the syntax checker for the pair of an ITL and its
included ITS’s, and it creates the preliminary data for the EM Generator.

(3) dTP-Cal. Syntax Checker: dTP Cal. Syntax Checker checks whether the syntax of
dTP-Calculus is correct or not when T2M(Text2Model) Parser is running.

(4) T2M Parser: T2M(Text2Model) Parser parses the textual specification with dTP-
Calculus to change it into an ITL and its included ITS’s.

(5) ITL/ITS Model Generator: ITL/ITS Model Generator generates the pair of an ITL and
its included ITS’s at the end of the T2M Parser process.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 38

Figure 8. SAVE Architecture.

The meta-modeling definition of the ITL (In-The-Large) and ITS (In-The-Small) views
is visually specified in Tables 3 and 4, and their notations are shown at the bottom of each
table. The detailed definition and representations are described in [18,19,21]. The detailed
descriptions of the engines of the Specifier are as follows:
(1) ITL/ITS Loader: In-The-Large (ITL) is the model that shows the inclusion relations of

the processes in the systems. In-The-Small (ITS) is the model that shows the detailed
actions of the processes of the systems. ITL/ITS Loader loads all the information from
an ITL and its included ITS’s.

(2) ITL/ITS Mapper: ITL/ITS Mapper is the syntax checker for the pair of an ITL and its
included ITS’s, and it creates the preliminary data for the EM Generator.

(3) dTP-Cal. Syntax Checker: dTP Cal. Syntax Checker checks whether the syntax of
dTP-Calculus is correct or not when T2M(Text2Model) Parser is running.

(4) T2M Parser: T2M(Text2Model) Parser parses the textual specification with dTP-Cal-
culus to change it into an ITL and its included ITS’s.

(5) ITL/ITS Model Generator: ITL/ITS Model Generator generates the pair of an ITL and
its included ITS’s at the end of the T2M Parser process.
The meta-modeling definition of the execution model is visually specified in Table 5,

and its notations are shown at the bottom of the table. The detailed definition and repre-
sentations are described in [18,19,21]. The detailed descriptions of the engines of the sim-
ulator are as follows:
(1) EM Generator: EM Generator generates the execution model for the pair of an ITL

and its included ITS’s. The execution model is the state transition model, which can
be used to identify all the possible execution paths of the systems and display all their
transitions in the tree form.

(2) GTS Generator: GTS Generator generates GTS. GTS is the diagram that shows all the
actions of the processes of the systems with the blocks in the 2-dimensional space.

Figure 8. SAVE Architecture.

Table 3. Meta-Model Definition for System Model.

Meta-Model Notation

Sensors 2024, 24, x FOR PEER REVIEW 17 of 38

(3) EM Path Analyzer: EM Path Analyzer analyzes all the execution paths in the execu-
tion model.
The meta-modeling definition of the GTS model is visually specified in Table 6, and

its notations are shown at the bottom of the table. The detailed definition and representa-
tions are described in [18,19,21]. The detailed descriptions of the engines of the analyzer
and the verifier are as follows:
(1) GTS-VL Parser: GTS-VL Parser parses the safety requirements of the systems with

GTS-VL to verify the safety requirements of the systems.
(2) GTS-VL Syntax Checker: GTS-VL Syntax Checker checks whether the syntax of GTS-

VL is correct or not when GTS-VL Parser is running.
(3) GTS-VL Verifier: GTS-VL Verifier analyzes and verifies the safety requirements of the

systems.
(4) GTS-VL Visualizer: GTS-VL Visualizer visualizes the verification results of the safety

requirements of the systems.

Table 3. Meta-Model Definition for System Model.

Meta-Model Notation

Process
Process

Channel
Channel

Table 4. Meta-Model Definition for Process Model.

Meta-Model

Notation

Process Lane
Process Lane

Process

Sensors 2024, 24, x FOR PEER REVIEW 17 of 38

(3) EM Path Analyzer: EM Path Analyzer analyzes all the execution paths in the execu-
tion model.
The meta-modeling definition of the GTS model is visually specified in Table 6, and

its notations are shown at the bottom of the table. The detailed definition and representa-
tions are described in [18,19,21]. The detailed descriptions of the engines of the analyzer
and the verifier are as follows:
(1) GTS-VL Parser: GTS-VL Parser parses the safety requirements of the systems with

GTS-VL to verify the safety requirements of the systems.
(2) GTS-VL Syntax Checker: GTS-VL Syntax Checker checks whether the syntax of GTS-

VL is correct or not when GTS-VL Parser is running.
(3) GTS-VL Verifier: GTS-VL Verifier analyzes and verifies the safety requirements of the

systems.
(4) GTS-VL Visualizer: GTS-VL Visualizer visualizes the verification results of the safety

requirements of the systems.

Table 3. Meta-Model Definition for System Model.

Meta-Model Notation

Process
Process

Channel
Channel

Table 4. Meta-Model Definition for Process Model.

Meta-Model

Notation

Process Lane
Process Lane

Process

Channel

Sensors 2024, 24, x FOR PEER REVIEW 17 of 38

(3) EM Path Analyzer: EM Path Analyzer analyzes all the execution paths in the execu-
tion model.
The meta-modeling definition of the GTS model is visually specified in Table 6, and

its notations are shown at the bottom of the table. The detailed definition and representa-
tions are described in [18,19,21]. The detailed descriptions of the engines of the analyzer
and the verifier are as follows:
(1) GTS-VL Parser: GTS-VL Parser parses the safety requirements of the systems with

GTS-VL to verify the safety requirements of the systems.
(2) GTS-VL Syntax Checker: GTS-VL Syntax Checker checks whether the syntax of GTS-

VL is correct or not when GTS-VL Parser is running.
(3) GTS-VL Verifier: GTS-VL Verifier analyzes and verifies the safety requirements of the

systems.
(4) GTS-VL Visualizer: GTS-VL Visualizer visualizes the verification results of the safety

requirements of the systems.

Table 3. Meta-Model Definition for System Model.

Meta-Model Notation

Process
Process

Channel
Channel

Table 4. Meta-Model Definition for Process Model.

Meta-Model

Notation

Process Lane
Process Lane

Channel

Sensors 2024, 24, 767 16 of 35

Table 4. Meta-Model Definition for Process Model.

Meta-Model

Sensors 2024, 24, x FOR PEER REVIEW 17 of 38

(3) EM Path Analyzer: EM Path Analyzer analyzes all the execution paths in the execu-
tion model.
The meta-modeling definition of the GTS model is visually specified in Table 6, and

its notations are shown at the bottom of the table. The detailed definition and representa-
tions are described in [18,19,21]. The detailed descriptions of the engines of the analyzer
and the verifier are as follows:
(1) GTS-VL Parser: GTS-VL Parser parses the safety requirements of the systems with

GTS-VL to verify the safety requirements of the systems.
(2) GTS-VL Syntax Checker: GTS-VL Syntax Checker checks whether the syntax of GTS-

VL is correct or not when GTS-VL Parser is running.
(3) GTS-VL Verifier: GTS-VL Verifier analyzes and verifies the safety requirements of the

systems.
(4) GTS-VL Visualizer: GTS-VL Visualizer visualizes the verification results of the safety

requirements of the systems.

Table 3. Meta-Model Definition for System Model.

Meta-Model Notation

Process
Process

Channel
Channel

Table 4. Meta-Model Definition for Process Model.

Meta-Model

Notation

Process Lane
Process Lane

Notation

Process Lane

Sensors 2024, 24, x FOR PEER REVIEW 17 of 38

(3) EM Path Analyzer: EM Path Analyzer analyzes all the execution paths in the execu-
tion model.
The meta-modeling definition of the GTS model is visually specified in Table 6, and

its notations are shown at the bottom of the table. The detailed definition and representa-
tions are described in [18,19,21]. The detailed descriptions of the engines of the analyzer
and the verifier are as follows:
(1) GTS-VL Parser: GTS-VL Parser parses the safety requirements of the systems with

GTS-VL to verify the safety requirements of the systems.
(2) GTS-VL Syntax Checker: GTS-VL Syntax Checker checks whether the syntax of GTS-

VL is correct or not when GTS-VL Parser is running.
(3) GTS-VL Verifier: GTS-VL Verifier analyzes and verifies the safety requirements of the

systems.
(4) GTS-VL Visualizer: GTS-VL Visualizer visualizes the verification results of the safety

requirements of the systems.

Table 3. Meta-Model Definition for System Model.

Meta-Model Notation

Process
Process

Channel
Channel

Table 4. Meta-Model Definition for Process Model.

Meta-Model

Notation

Process Lane
Process Lane Process Lane

Action

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Empty

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Choice

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Start

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

End

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Send

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Receive

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

In Request

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Out Request

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Get Request

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Put Request

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

In Permission

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Out Permission

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Get Permission

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Put Permission

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

New

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Exit

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Kill

Sequence

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Sequence

Exception

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Exception

The meta-modeling definition of the execution model is visually specified in Table 5,
and its notations are shown at the bottom of the table. The detailed definition and represen-
tations are described in [18,19,21]. The detailed descriptions of the engines of the simulator
are as follows:

(1) EM Generator: EM Generator generates the execution model for the pair of an ITL
and its included ITS’s. The execution model is the state transition model, which can

Sensors 2024, 24, 767 17 of 35

be used to identify all the possible execution paths of the systems and display all their
transitions in the tree form.

(2) GTS Generator: GTS Generator generates GTS. GTS is the diagram that shows all the
actions of the processes of the systems with the blocks in the 2-dimensional space.

(3) EM Path Analyzer: EM Path Analyzer analyzes all the execution paths in the execu-
tion model.

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Notation

State_EX

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Start

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

State

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

Deadlock

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition

End

Transition

Sensors 2024, 24, x FOR PEER REVIEW 18 of 38

Action

Empty

Choice

Start

End

Send

Receive

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

New

Exit

Kill

Sequence
Sequence

Exception
Exception

Table 5. Meta-Model Definition for Execution Model.

Meta-Model

Notation

State_EX
Start

State

Deadlock

End

Transition
Transition Transition

The meta-modeling definition of the GTS model is visually specified in Table 6, and its
notations are shown at the bottom of the table. The detailed definition and representations
are described in [18,19,21]. The detailed descriptions of the engines of the analyzer and the
verifier are as follows:

(1) GTS-VL Parser: GTS-VL Parser parses the safety requirements of the systems with
GTS-VL to verify the safety requirements of the systems.

(2) GTS-VL Syntax Checker: GTS-VL Syntax Checker checks whether the syntax of
GTS-VL is correct or not when GTS-VL Parser is running.

(3) GTS-VL Verifier: GTS-VL Verifier analyzes and verifies the safety requirements of
the systems.

(4) GTS-VL Visualizer: GTS-VL Visualizer visualizes the verification results of the safety
requirements of the systems.

Sensors 2024, 24, 767 18 of 35

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Notation

Process Block

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Process Block

Action Block

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Send

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Receive

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Empty

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

New

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Exit

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Kill

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

In Request

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Out
Request

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Get
Request

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Put Request

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

In Permission

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Out
Permission

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Get
Permission

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Put
Permission

Requirement
Point

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Tau

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Delta

Interaction

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Tau

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Delta

Sensors 2024, 24, x FOR PEER REVIEW 19 of 38

Table 6. Meta-Model Definition for GTS Model.

Meta-Model

Notation

Process Block
Process Block

Action Block

Send

Receive

Empty

New

Exit

Kill

In Request

Out Request

Get Request

Put Request

In Permission

Out Permission

Get Permission

Put Permission

Requirement
Point

Tau

Delta

Interaction
Tau

Delta

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical dis-
tribution can be represented in the ITL (System) view, as shown in Figure 10. The defini-
tions of the processes, namely ITS (Process, omitted), specify the detailed actions for the
processes. The main goal of the system is to transport four types of patients to two desig-
nated hospitals according to the types of urgency and illness, such as food poisoning (FP),
high blood pressure (HBP), and heart disease (HD). Two ambulances are responsible for
transporting the patients as informed by 911 Center within the deadlines.

Move

4.3. Example
4.3.1. Description

Figure 9 shows the code for the SEMS example with dTP-Calculus syntax. Note that
the figure is also included in Appendix A for clearer visualization. It includes 911 Center,
Patients, Places, Ambulances, and Hospitals. Their inclusion relations and geographical
distribution can be represented in the ITL (System) view, as shown in Figure 10. The
definitions of the processes, namely ITS (Process, omitted), specify the detailed actions
for the processes. The main goal of the system is to transport four types of patients to
two designated hospitals according to the types of urgency and illness, such as food
poisoning (FP), high blood pressure (HBP), and heart disease (HD). Two ambulances are
responsible for transporting the patients as informed by 911 Center within the deadlines.

Sensors 2024, 24, 767 19 of 35Sensors 2024, 24, x FOR PEER REVIEW 20 of 38

Figure 9. SEMS Specification in dTP-Calculus.

Figure 10. ITL View for SEMS.

4.3.2. Specification
Figure 9 shows the dTP-Calculus code, and Figure 10 represents the dTP-Calculus

code in the ITL view for SEMS, generated by the SAVE tool. The processes in SEMS are
defined as follows:

Figure 9. SEMS Specification in dTP-Calculus.

Sensors 2024, 24, x FOR PEER REVIEW 20 of 38

Figure 9. SEMS Specification in dTP-Calculus.

Figure 10. ITL View for SEMS.

4.3.2. Specification
Figure 9 shows the dTP-Calculus code, and Figure 10 represents the dTP-Calculus

code in the ITL view for SEMS, generated by the SAVE tool. The processes in SEMS are
defined as follows:

Figure 10. ITL View for SEMS.

4.3.2. Specification

Figure 9 shows the dTP-Calculus code, and Figure 10 represents the dTP-Calculus
code in the ITL view for SEMS, generated by the SAVE tool. The processes in SEMS are
defined as follows:

Sensors 2024, 24, 767 20 of 35

(1) 911 Center: Patients send emergency calls to 911 Center from their locations. Ambu-
lanceX and AmbulanceY receive the emergency calls and orders from 911 Center to
transport the patients to the hospitals. Table 7 shows the priority information for the
patients. Note that AmbulanceX and AmbulanceY are in 911 Center.

(2) Ambulance: Two ambulances, specifically designated as AmbulanceX and AmbulanceY.
(3) Place: Four distinct locations, namely School, Restaurant, Office, and House, where the

patients are dispersed.
(4) Hospital: Two medical facilities, namely HospitalA and HospitalB.

Table 7. Priorities for patients.

Triage Priority Illness

T1 Immediate Life-threatening patient (1st Priority) HD

T2 Delayed Operation-needed Patient (2nd Priority) FP

T3 Minimal Examination-needed Patient (3rd Priority) HBP

The following description outlines the scenario of SEMS. Note that each action is
numbered in Figures 9 and 10, with the circled numbers indicating the corresponding
processes in the dTP-Calculus code in Figure 9 and their graphical representations in
Figure 10, respectively:

(1) 911 Center receives the emergency calls from the patients in House and Office: 1⃝.

(i) A T1 patient in House.
(ii) A T2 patient in Office.

(2) House and Office send 911 Center information about the patients, and AmbulanceX
receives the information from 911 Center: 2⃝.

(3) 911 Center receives emergency calls from the patients in Restaurant and School: 1⃝.

(i) A T2 patient in Restaurant.
(ii) A T3 patient in School.

(4) Restaurant and School send 911 Center information about the patients, and AmbulanceY
receives the information from 911 Center: 2⃝.

(5) AmbulanceX moves to Office and House, and the patients are transported by AmbulanceX
to HospitalB: 3⃝.

(6) AmbulanceY moves to School and Restaurant, and the patients are transported by
AmbulanceY to HospitalA: 3⃝.

(7) The patients from School and Restaurant are provided with medical treatment in
HospitalA: 4⃝.

(8) The patients from Office and House are provided with medical treatment in Hospi-
talB: 4⃝.

4.3.3. Probability Analysis

Figure 11 shows all possible execution paths in the Execution Model for SEMS. Note
that this figure is also included in Appendix A for clearer visualization. The execution
model consists of a total of 16 distinct paths for the execution, generated by the SAVE tool.
This means that all possible probabilistic execution paths are generated with probabilities
determined by choice operations. The criteria in Table 8 show that a patient with higher
priority must be transported first to the hospital. Figure 12 shows the composition of
probabilistic choice operations in terms of these criteria.

Sensors 2024, 24, 767 21 of 35Sensors 2024, 24, x FOR PEER REVIEW 22 of 38

Figure 11. Execution model for SEMS.

Figure 12. Safety and security requirements.

When AmbulanceX and AmbulanceY perform choice operations for the patients, the
operations are determined by priority, with probabilities defined in Table 8. In SEMS, it is
assumed that a higher priority patient has a higher probability than a lower priority pa-
tient. In addition, as AmbulanceX and AmbulanceY take patients, they make probabilistic
choices, as shown in Table 9, generated by the criteria in Table 8.

Figure 11. Execution model for SEMS.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 38

Figure 11. Execution model for SEMS.

Figure 12. Safety and security requirements.

When AmbulanceX and AmbulanceY perform choice operations for the patients, the
operations are determined by priority, with probabilities defined in Table 8. In SEMS, it is
assumed that a higher priority patient has a higher probability than a lower priority pa-
tient. In addition, as AmbulanceX and AmbulanceY take patients, they make probabilistic
choices, as shown in Table 9, generated by the criteria in Table 8.

Figure 12. Safety and security requirements.

Sensors 2024, 24, 767 22 of 35

Table 8. Prioritized choice probabilities between Patients.

Types of Illness Branch A Branch B

T1 T2 90% 10%

T2 T3 70% 30%

T1 T3 90% 10%

Etc. 50% 50%

When AmbulanceX and AmbulanceY perform choice operations for the patients, the
operations are determined by priority, with probabilities defined in Table 8. In SEMS, it is
assumed that a higher priority patient has a higher probability than a lower priority patient.
In addition, as AmbulanceX and AmbulanceY take patients, they make probabilistic choices,
as shown in Table 9, generated by the criteria in Table 8.

Table 9. Probabilities of choice operations by AmbulanceX and AmbulanceY.

Ambulance Branch A, B Former Latter

AmbulanceX

House vs. Office 90% 10%

HosptialB vs. Office 90% 10%

HosptialB vs. House 10% 90%

AmbulanceY

Restaurant vs. School 70% 30%

HosptialA vs. School 70% 30%

HosptialA vs. Restaurant 30% 70%

4.3.4. Safety and Security Requirements

In SEMS, all patients must be transported to designated hospitals within their dead-
lines. When multiple patients are transported, they have to follow the rules to satisfy the
requirements of SEMS. The ambulance transports the patient with higher priority first. The
definitions of the criteria for the safety requirements are as follows:

(1) Req1: The ambulance must satisfy the transport deadlines of the patients.
(2) Req2: The ambulance must transport the patient with higher priority first when there

is competition among patients.
(3) Req3: The ambulance must transport the patients to their assigned hospitals.

Specifications derived from these safety requirements are shown in Table 10. Note that
each requirement is specified with GTS Logic, visually represented in Figure 13. As stated,
the logic is out of the scope of this paper and is briefly described in the next subsection.

Table 10. Safety requirements for SEMS.

Req’ # Description and Predicate

Req1-1
AmbulanceX must inform HosptialB through TRANSFER_to_HospitalB that Patient(info_T1_HD) will arrive

ACTION(AmbulanceX, Send, TRANSFER_to_HospitalB(in f o_T1_HD))

Req1-2
AmbulanceX must inform HosptialB through TRANSFER_to_HospitalB that Patient(info_T2_FP) will arrive

ACTION(AmbulanceX, Send, TRANSFER_to_HospitalB(in f o_T2_FP))

Req1-3
AmbulanceY must inform HosptialA through TRANSFER_to_HospitalA that Patient(info_T2_FP) will arrive

ACTION(AmbulanceY, Send, TRANSFER_to_HospitalA(in f o_T2_FP))

Req1-4
AmbulanceY must inform HosptialA through TRANSFER_to_HospitalA that Patient(info_T3_HBP) will arrive

ACTION(AmbulanceY, Send, TRANSFER_to_HospitalA(in f o_T3_HBP))

Sensors 2024, 24, 767 23 of 35

Table 10. Cont.

Req’ # Description and Predicate

Req2-1
In 10 time units, AmbulanceX must inform HosptialB through TRANSFER_to_HospitalB that Patient(info_T1_HD)

will arrive

BEFORE((AmbulanceX, Send, TRANSFER_to_HospitalB(in f o_T1_HD)), 10)

Req2-2
In 20 time units, AmbulanceX must inform HosptialB through TRANSFER_to_HospitalB that Patient(info_T2_FP)

will arrive

BEFORE((AmbulanceX, Send, TRANSFER_to_HospitalB(in f o_T2_FP)), 20)

Req2-3
In 20 time units, AmbulanceY must inform HosptialA through TRANSFER_to_HospitalA that Patient(info_T2_FP)

will arrive

BEFORE((AmbulanceY, Send, TRANSFER_to_HospitalA(in f o_T2_FP)), 20)

Req2-4
In 30 time units, AmbulanceY must inform HosptialA through TRANSFER_to_HospitalA that Patient(info_T3_HBP)

will arrive

BEFORE((AmbulanceY, Send, TRANSFER_to_HospitalA(in f o_T3_HBP)), 30)

Req3-1

The AmbulanceX’s informing to HosptialB through TRANSFER_to_HospitalB that Patient(info_T1_HD) will arrive
must occur earlier than the AmbulanceX’s informing to HosptialB through TRANSFER_to_HospitalB that

Patient(info_T2_FP) will arrive

TIME
(

(AmbulanceX, Send, TRANSFER_to_HospitalB(in f o_T1_HD)),
(AmbulanceX, Send, TRANSFER_to_HospitalB(in f o_T2_HBP)), ‘be f ore′

)

Req3-2

The AmbulanceY’s informing to HosptialA through TRANSFER_to_HospitalA that Patient(info_T2_FP) will arrive
must occur earlier than the AmbulanceX’s informing to HosptialA through TRANSFER_to_HospitalA that

Patient(info_T3_HBP) will arrive

TIME
(

(AmbulanceY, Send, TRANSFER_to_HospitalA(in f o_T2_FP)),
(AmbulanceY, Send, TRANSFER_to_HospitalA(in f o_T3_HBP)), ‘be f ore’

)

Sensors 2024, 24, x FOR PEER REVIEW 26 of 38

in paths 1, 2, 5, and 6. Note that the ambulance transports T1-type patients to assigned
hospitals within deadlines in paths 1, 2, 5, and 6.

In addition, paths 1 to 8 satisfy the deadlines for all patients (A, B, C, and D). The
total probability of paths 1 to 8 is 89.9%. It is not appropriate for probabilistic requirements
to have a total probability greater than 90%. Paths 1, 2, 5, and 6 satisfy all safety require-
ments. However, the total probability for Paths 1, 2, 5, and 6 is 61.8%, which does not
satisfy the probabilistic requirement of the total probability needing to be greater than
65%. This means that the probabilities in Tables 8 and 9 have to be adjusted, as shown in
Tables 12 and 13.

Figure 13. Meta snap of verification results in Execution Path 6.

In Tables 12 and 13, the probability of Branch A for T1-type patients is increased from
90% to 98%, which means that prioritizing life-threatening patients has the most critical
value for probability. As shown in the adjusted Table 14, the total probability from Path 1
to 8 is 98%, aligning appropriately with the probabilistic requirements for a total proba-
bility greater than 90%. In addition, the total probability for Paths 1, 2, 5, and 6 is 69.5%,
meeting the probabilistic requirements for a total probability greater than 65%.

The worst-case scenarios where all requirements, that is, Req2-1, Req3-1, and Req3-2,
are not satisfied are Paths 11, 12, 15, and 16, and the summed probability of the cases is
about 0.7% in total. Since the total probability of the worst cases was 2.7% before adjust-
ment, it can be shown that the probability after adjustment was reduced by 2%.

In summary, this demonstrates how the analysis can influence results in controlling
probability to meet the safety requirements of SEMS. SEMS is a representative example
of Smart IoT Systems in Digital Twin.

It should be noted that the SAVE tool suite is freely accessible to the public and can
be downloaded from the OMiLAB [27].

Figure 13. Meta snap of verification results in Execution Path 6.

Sensors 2024, 24, 767 24 of 35

4.3.5. Analysis of Probabilistic Verification for Requirements

In order to analyze the verification results for the requirements with probability, the
following conditions are assumed:

(1) The total probability for paths that satisfy the safety requirements must be greater
than 65%.

(2) The total probability for paths that satisfy only the deadline requirements must be
greater than 95%.

Table 11 shows whether all the safety requirements are satisfied or not for all possible
execution paths from Figures 11 and 12. The symbol ‘O’ signifies satisfaction, while ‘X’
denotes dissatisfaction.

Table 11. Analysis of probabilistic verification for SEMS.

Req’ #
Path

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

Prob. 1.7 3.7 2.1 0.9 17.2 39.2 17.1 8.0 1.1 5.7 2.1 0.4 0.2 0.4 0.1 0.1 100
Req1-1 # # # # # # # # # # # # # # # # 100
Req1-2 # # # # # # # # # # # # # # # # 100
Req1-3 # # # # # # # # # # # # # # # # 100
Req1-4 # # # # # # # # # # # # # # # # 100
Req2-1 # # # # # # # # ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 64.8
Req2-2 # # # # # # # # # # # # # # # # 100
Req2-3 # # # # # # # # # # # # # # # # 100
Req2-4 # # # # # # # # # # # # # # # # 100
Req3-1 # # # # # # # # ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 64.8
Req3-2 # # ✕ ✕ # # ✕ ✕ # # ✕ ✕ # # ✕ ✕ 69.2

The execution paths with dissatisfaction are described in detail as follows:

(1) Req2-1: Paths with dissatisfaction for Req2-1 are Paths 9~16. As stated, Req2-1 is the
requirement that AmbulanceX should transport patients within 10 time units. This
dictates that the requirement for patients with T1 priority should be satisfied first.

(2) Req3-1: Req3-1 is the requirement that patients with T1 priority should be transported
earlier than patients with T2 priority. Paths with dissatisfaction for Req3-1 are Paths
9~16. This shows that the requirement for patients with the priority T1 was not
satisfied due to the fact that the patient with T2 priority was transported before those
with T2 priority.

(3) Req3-2: Req3-2 is the requirement that patients with T2 should be transported earlier
than patients with T3. Paths with dissatisfaction for Req3-2 are Paths 3, 4, 6, 7, 11, 12,
15, and 16. Among these, Paths 11, 12, 15, and 16 are the worst cases that do not satisfy
requirements Req2-1, Req3-1, and Req3-2, and the sum of their probabilities is about 2.7%.

The results for the probabilities are generated by the Simulator of the SAVE tool,
and the verification of requirements is also generated by the Analyzer and Verifier of the
tool. Figure 13 shows the verification results as a GTS output with blue-colored arrows,
generated for Path 6 of the Execution Model. Note that the figure is also included in
Appendix A for clearer visualization.

As stated, GTS (Geo-Temporal Space) is a 2-dimensional graph used to formalize the
visual representation of the system behavior of Smart IoT Systems in dTP-Calculus [18,19].
It consists of System, Process, and Action Blocks, and Interaction Edges of Communication
and Movement among synchronous actions, as defined in dTP-Calculus. It shows the geo-
graphical relations among blocks in one dimension and the time-dependent synchronous
relations for interactions of communication and movements among synchronous actions in
another dimension. It is used to visually represent how a system executes itself in a specific
geographical space at a specific time frame.

Sensors 2024, 24, 767 25 of 35

GTS-VL (Geo-Temporal Space-Visual Logic) is a first-order logic designed to formalize
the visual representation of the requirements on GTS for Smart IoT Systems [18,19,21]. It
follows the basic definition of first-order logic: terms and formulas. The main difference is
the way of representing terms and formulas visually on GTS. Predicates are classified into
the following categories:

(1) Block predicate: Represents the relations between System, Process, Action, and Inter-
action Blocks.

(2) Temporal predicate: Represents the temporal properties or relations for a block or
among blocks.

(3) Geo predicate: Represents the geographical relations among blocks.
(4) Interaction predicate: Represents the occurrences of interactions.

Once the requirements are specified, the Verifier is responsible for checking whether
each predicate is valid in the given GTS for the selected path of the EM of the systems or
not. If a requirement is satisfied, the color of the graphical predicate is represented in blue;
if not, in red. In Figure 13, all predicates are colored blue, implying visually that all the
requirements in Table 10 are satisfied.

As a result of the verification for all the requirements of each path in Figure 12, Table 11
shows the summary of the verification. For example, safety requirements are satisfied
in paths 1, 2, 5, and 6. Note that the ambulance transports T1-type patients to assigned
hospitals within deadlines in paths 1, 2, 5, and 6.

In addition, paths 1 to 8 satisfy the deadlines for all patients (A, B, C, and D). The total
probability of paths 1 to 8 is 89.9%. It is not appropriate for probabilistic requirements to
have a total probability greater than 90%. Paths 1, 2, 5, and 6 satisfy all safety requirements.
However, the total probability for Paths 1, 2, 5, and 6 is 61.8%, which does not satisfy the
probabilistic requirement of the total probability needing to be greater than 65%. This means
that the probabilities in Tables 8 and 9 have to be adjusted, as shown in Tables 12 and 13.

Table 12. Adjusted probability for Table 8.

Types of Illness Branch A Branch B

T1 T2 98% 2%

T2 T3 70% 30%

T1 T3 98% 2%

Etc. 50% 50%

Table 13. Adjusted probability for Table 9.

Ambulance Branch A, B Former Latter

AmbulanceX

House vs. Office 98% 2%

HosptialB vs. Office 98% 2%

HosptialB vs. House 2% 98%

AmbulanceY

Restaurant vs. School 70% 30%

HosptialA vs. School 70% 30%

HosptialA vs. Restaurant 30% 70%

In Tables 12 and 13, the probability of Branch A for T1-type patients is increased from
90% to 98%, which means that prioritizing life-threatening patients has the most critical
value for probability. As shown in the adjusted Table 14, the total probability from Path 1 to
8 is 98%, aligning appropriately with the probabilistic requirements for a total probability
greater than 90%. In addition, the total probability for Paths 1, 2, 5, and 6 is 69.5%, meeting
the probabilistic requirements for a total probability greater than 65%.

Sensors 2024, 24, 767 26 of 35

Table 14. Analysis of adjusted probabilistic verification for SEMS.

Path 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

Prob. 0.5 0.9 0.5 0.2 19.7 48.4 19.9 7.9 0.3 1.0 0.5 0.2 0.0 0.0 0.0 0.0 100

The worst-case scenarios where all requirements, that is, Req2-1, Req3-1, and Req3-2, are
not satisfied are Paths 11, 12, 15, and 16, and the summed probability of the cases is about
0.7% in total. Since the total probability of the worst cases was 2.7% before adjustment, it
can be shown that the probability after adjustment was reduced by 2%.

In summary, this demonstrates how the analysis can influence results in controlling
probability to meet the safety requirements of SEMS. SEMS is a representative example of
Smart IoT Systems in Digital Twin.

It should be noted that the SAVE tool suite is freely accessible to the public and can be
downloaded from the OMiLAB [27].

5. Proof of Concept

This section describes the proof of concept for the approach in this paper: SMES in
Digital Twin.

The basic architecture for the proof of concept is shown in Figure 14. It demonstrates
how the SEMS example in Digital Twin can be implemented in the real world with the
SAVE tool on ADOxx for dTP-Calculus. Basically, the virtual part is implemented mainly
with SAVE on ADOxx. However, there is additional information about the physical world,
as well as the interface between the virtual and physical world. For the physical world,
an experimental smart city platform was constructed to show the feasibility of how the
smart city can be built and how the SEMS can be activated in the city for the application.
Finally, the simulation of the SEMS by SAVE in the virtual world is triggered by the Digital
Twin Scheduler, and the Smart IoT System for the SEMS in the physical world is activated
accordingly, as commanded by the scheduler.

Sensors 2024, 24, x FOR PEER REVIEW 27 of 38

Table 12. Adjusted probability for Table 8.

Types of Illness Branch A Branch B
T1 T2 98% 2%
T2 T3 70% 30%
T1 T3 98% 2%

Etc. 50% 50%

Table 13. Adjusted probability for Table 9.

Ambulance Branch A, B Former Latter

AmbulanceX
House vs. Office 98% 2%

HosptialB vs. Office 98% 2%
HosptialB vs. House 2% 98%

AmbulanceY
Restaurant vs. School 70% 30%
HosptialA vs. School 70% 30%

HosptialA vs. Restaurant 30% 70%

Table 14. Analysis of adjusted probabilistic verification for SEMS.

Path 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 total
Prob. 0.5 0.9 0.5 0.2 19.7 48.4 19.9 7.9 0.3 1.0 0.5 0.2 0.0 0.0 0.0 0.0 100

5. Proof of Concept
This section describes the proof of concept for the approach in this paper: SMES in

Digital Twin.
The basic architecture for the proof of concept is shown in Figure 14. It demonstrates

how the SEMS example in Digital Twin can be implemented in the real world with the
SAVE tool on ADOxx for dTP-Calculus. Basically, the virtual part is implemented mainly
with SAVE on ADOxx. However, there is additional information about the physical world,
as well as the interface between the virtual and physical world. For the physical world, an
experimental smart city platform was constructed to show the feasibility of how the smart
city can be built and how the SEMS can be activated in the city for the application. Finally,
the simulation of the SEMS by SAVE in the virtual world is triggered by the Digital Twin
Scheduler, and the Smart IoT System for the SEMS in the physical world is activated ac-
cordingly, as commanded by the scheduler.

Figure 14. Architecture for the SEMS Example in Digital Twin.

5.1. Architecture

The architecture in Figure 14 consists of the following components:

(1) Virtual World:
1⃝ SEMS Virtual Requirements: SAVE

Sensors 2024, 24, 767 27 of 35

(i) SEMS Operational Requirements: Section 4.3.1
(ii) SEMS Safety/Security Requirements: Section 4.3.4

2⃝ SEMS Physical Requirements: Mapper

(2) Physical World:
1⃝ City Map: A miniature of the target smart city consisting of:

(i) 911 Center
(ii) Places

(iii) Hospitals
2⃝ Smart IoT for Ambulance: Consists of the following devices and modules for

the SEMS:

(i) Arduino: Plays a central role in controlling the IoT devices.
(ii) DC Motor: Controls the wheels of the IoT devices.

(iii) Line Tracer: Controls the direction of the IoT devices.
(iv) Wifi Module: Performs communication with the SAVE Scheduler on

ADOxx in the virtual world.
3⃝ Patients

(3) SAVE Scheduler: An engine designed to schedule the processes of the SEMS us-
ing SAVE for smart IoT devices in the physical world. It generates commands for
communication and movement actions of processes through the NodeJS server for
interactions between the virtual world and the physical world.

(4) API: All interactions to/from the smart IoT devices in the physical world are imple-
mented in the JSON data format for communication from the virtual world.

5.2. Mapper

As stated, Mapper is a tool to model physical objects, that is, the smart IoT devices
distributed across a smart city in the physical world within Digital Twin. This tool is
developed on ADOxx to demonstrate the feasibility of the approach for the SEMS example
in this paper, as part of the proof of concept. For the SEMS example, Figure 15 shows a city
map where 911 Center, Places, Hospitals, and Patients and Doctors are distributed.

Sensors 2024, 24, x FOR PEER REVIEW 29 of 38

Figure 15. The SEMS map example.

5.3. SAVE Scheduler
As stated, the Scheduler is an engine to activate smart IoT devices in the physical

world from the Simulator of the SAVE tool in the virtual world. Each process in SAVE is
assigned to an IoT device in the SEMS System. Their communications and movements are
triggered by the scheduler in real-time during simulation by the SAVE tool. An example
of the API from the schedule to the IoT device is shown in Figure 16.

Figure 16. API Example from the Scheduler to the IoT Device in the SEMS example.

5.4. API

Figure 15. The SEMS map example.

Sensors 2024, 24, 767 28 of 35

5.3. SAVE Scheduler

As stated, the Scheduler is an engine to activate smart IoT devices in the physical
world from the Simulator of the SAVE tool in the virtual world. Each process in SAVE is
assigned to an IoT device in the SEMS System. Their communications and movements are
triggered by the scheduler in real-time during simulation by the SAVE tool. An example of
the API from the schedule to the IoT device is shown in Figure 16.

Sensors 2024, 24, x FOR PEER REVIEW 29 of 38

Figure 15. The SEMS map example.

5.3. SAVE Scheduler
As stated, the Scheduler is an engine to activate smart IoT devices in the physical

world from the Simulator of the SAVE tool in the virtual world. Each process in SAVE is
assigned to an IoT device in the SEMS System. Their communications and movements are
triggered by the scheduler in real-time during simulation by the SAVE tool. An example
of the API from the schedule to the IoT device is shown in Figure 16.

Figure 16. API Example from the Scheduler to the IoT Device in the SEMS example.

5.4. API

Figure 16. API Example from the Scheduler to the IoT Device in the SEMS example.

5.4. API
5.4.1. ADOxx Building Block

ADOxx Building Blocks are function blocks in ADOxx, whose functionalities are
extended by importing external modules into the ADOxx platform. The building blocks
supported by the current ADOxx platform from the ADOxx site are as follows [29]:

(1) Remote model documentation
(2) ADOxx web API
(3) ADOxx web dashboard
(4) LoLA Petri Net verification
(5) ADOxx web simulation
(6) Extended HTTP request

For the API between the SAVE scheduler and the smart IoT devices, the Extended
HTTP Request Block has been utilized. The figure shows the data format for exchanging
HTTP messages between a server and clients, where the request is the message from a
client to a server to trigger an action from the server, and the response is the reply from
the server to the client for the request. Here, the collection of the beginning line of the
message and the HTTP header is called the request header, and, conversely, the payload of
the message is called the request body.

The API from ADOxx utilizes the request message at the time of sending data to
the server. The server receives the data stored in the HTTP request and sends the data
to the target IoT device directly. For that, ADOxx provides the basic API, known as
HTTP_REQUEST, for HTTP request communication.

Sensors 2024, 24, 767 29 of 35

5.4.2. NodeJS Communication Server

NodeJS is a platform used to develop network applications for extension. It guarantees
high-processing performance for transactions through a single thread and an event loop by
using JavaScript as an embedded language [30].

NodeJS works without other additional SW like Apache since it includes internal HTTP
serve libraries. Consequently, NodeJS guarantees more control over web server operations.

More importantly, ADOxx provides developers for Digital Twin with such a service
for communication between ADOxx and Arduino, as stated in the ADOxx Building Blocks.

5.4.3. Json Data Format

JSON (JavaScript Object Notation) is an open standard format for sending or receiving
a data object, consisting of both key and value, in human-readable text format. It is known
as a method to exchange data on the Internet. There is no limit to the types of data, and it is
especially suitable for describing the values of parameters in computer programs [31].

Originally extended from JavaScript construct format, JSON has its own independent
data format. In other words, since it is independent of programming languages and
platforms, the codes for construct analysis and JSON data generation can be easily used in
many programming languages.

In this paper, JSON is used as the basic data format for communication between
ADOxx and NodeJS, as well as between NodeJS and Arduino.

5.4.4. Arduino

Arduino is an open-source electronic prototyping platform allowing users to develop
interactive electronic devices. More specifically, it allows users to develop electronic objects
that receive data from a number of switches and sensors and interact with an environment
by controlling LED monitors and external electronic devices [32].

In this paper, a mobile IoT device is built on an Arduino board, installing a DC Motor,
Line Tracer (TCRT500), Wifi module, etc., and is used as an Ambulance for the SEMS
example in the physical world.

5.5. Activation of Smart IoT Devices in the Physical World

As stated, the real physical system in Digital Twin, based on Smart IoT Devices, is
activated by the SAVE scheduler in the virtual world from SAVE and Mapper. A snapshot
of the miniature of the smart city for the example is shown in Figure 17. It is the moment
that two Ambulances are moving toward the places where their patients are located at
House, Office, Restaurant, and School.

Sensors 2024, 24, x FOR PEER REVIEW 31 of 38

In this paper, a mobile IoT device is built on an Arduino board, installing a DC Motor,
Line Tracer (TCRT500), Wifi module, etc., and is used as an Ambulance for the SEMS ex-
ample in the physical world.

5.5. Activation of Smart IoT Devices in the Physical World
As stated, the real physical system in Digital Twin, based on Smart IoT Devices, is

activated by the SAVE scheduler in the virtual world from SAVE and Mapper. A snapshot
of the miniature of the smart city for the example is shown in Figure 17. It is the moment
that two Ambulances are moving toward the places where their patients are located at
House, Office, Restaurant, and School.

Figure 17. A snapshot of ambulances transporting patients in the SEMS system.

6. Comparative Study
This section presents a comparative study with related research, based on process

algebra with probability, as follows:
(1) PALOMA [33]: PALOMA allows the specification of geographical information for

each agent in systems, using an exponential distribution probability model. It is use-
ful for analyzing systems with distributed agents over geographical space by apply-
ing M2MAM (multi-class, multi-message Markovian Agent Models).

(2) PACSR (Probabilistic ACSR) [34]: PACSR is a process algebra extended from ACSR
(Algebra of Communicating Shared Resources) [35] with a probability property. It
allows the specification of systems with probability for discrete distribution, particu-
larly for the availability of the resources in the algebra. It defines transition rules for
the following three actions only: timed actions, untimed events, and probabilistic ac-
tions. Based on the transition rule for the probabilistic action, it analyzes the possibil-
ity of using the resource needed for the action.

(3) TPCCS (Timed Probabilistic CCS) [36]: TPCCS is a process algebra extended from
CCS (Calculus of Communicating systems) [37] with a probability property. It pro-
vides transition rules for the composition of time and probability, and it allows sim-
ple probabilistic analysis through the definitions of probabilistic equivalences and
bisimulations on processes.
The above process algebras allow only specific static probability models for specifi-

cation of the systems. Further, there are limitations, such as PALOMA lacking the ability
to specify operational requirements for systems, since it is not allowed to specify the mo-
bility of the processes. In addition, there are no automatic functionalities for analyzing the

Figure 17. A snapshot of ambulances transporting patients in the SEMS system.

Sensors 2024, 24, 767 30 of 35

6. Comparative Study

This section presents a comparative study with related research, based on process
algebra with probability, as follows:

(1) PALOMA [33]: PALOMA allows the specification of geographical information for
each agent in systems, using an exponential distribution probability model. It is useful
for analyzing systems with distributed agents over geographical space by applying
M2MAM (multi-class, multi-message Markovian Agent Models).

(2) PACSR (Probabilistic ACSR) [34]: PACSR is a process algebra extended from ACSR
(Algebra of Communicating Shared Resources) [35] with a probability property. It
allows the specification of systems with probability for discrete distribution, particu-
larly for the availability of the resources in the algebra. It defines transition rules for the
following three actions only: timed actions, untimed events, and probabilistic actions.
Based on the transition rule for the probabilistic action, it analyzes the possibility of
using the resource needed for the action.

(3) TPCCS (Timed Probabilistic CCS) [36]: TPCCS is a process algebra extended from CCS
(Calculus of Communicating systems) [37] with a probability property. It provides
transition rules for the composition of time and probability, and it allows simple proba-
bilistic analysis through the definitions of probabilistic equivalences and bisimulations
on processes.

The above process algebras allow only specific static probability models for specifica-
tion of the systems. Further, there are limitations, such as PALOMA lacking the ability to
specify operational requirements for systems, since it is not allowed to specify the mobility
of the processes. In addition, there are no automatic functionalities for analyzing the
probabilistic behaviors of systems with nondeterministic choice operations. Therefore, it is
necessary to calculate them manually. Thus, the probability model can be utilized only in
the specification step, but not in the analysis and verification steps.

Compared to the above process algebras, as shown in Table 15, dTP-Calculus allows
the specification of systems with geographical inclusion relations, temporal restrictions,
process mobilities, and nondeterministic choice operations with static and dynamic proba-
bility. With respect to the nondeterministic behavior of the systems, the calculus allows the
specification of choice operations with a number of probability models, that is, Discrete,
Normal, Exponential, and Uniform Models. It also supports the analysis of the nondeter-
ministic probabilistic behavior of the systems based on the models, with the customized
analysis service of the SAVE tool automatically performing the overload calculation of
various nondeterministic choice operations with probabilities in the models. Most impor-
tantly, it supports the analysis and verification of probabilistic execution of the systems to
determine the acceptance of the safety and security requirements of the systems based on
dynamic probability.

Table 15. Comparison of process algebras.

Process
Algebra Synchronization Determinism Probability

Type
Probability

Distribution Time Mobility Visualization

dTP-
Calculus Synch Deterministic and

Nondeterministic

Static
and

Dynamic

Discrete
Normal

Exponential
Uniform

#

PALOMA Synch Nondeterministic Static Exponential # ✕ ✕

TPCCS Synch Deterministic and
Nondeterministic Static Discrete # ✕ ✕

PACSR Synch Deterministic and
Nondeterministic Static Discrete # ✕ ✕

Sensors 2024, 24, 767 31 of 35

In addition, SAVE allows the visual representation of Smart IoT Systems for Digital
Twin in dTP-Calculus in different graphical views: System and Process views, as well as the
execution model of the systems. Further, the simulated output of each possible execution
path can be visualized on GTS, and all the safety and security requirements can be visually
analyzed and verified on GTS. Consequently, all the specification, simulation, analysis, and
verification processes can be consistently visualized in SAVE.

Most practically, the SAVE tool suite is available to the public as an open model in
OMiLAB [27].

7. Conclusions and Future Research

This paper proposed an approach for analyzing the verification of safety and security
requirements with static and dynamic probability using dTP-Calculus, and it also dealt with
the unconditional nondeterministic behavior of Smart IoT Systems for Digital Twin. The
approach was demonstrated with SEMS as a Digital Twin example in the SAVE tool. The
SAVE tool demonstrated the applicability and feasibility of the approach. The SAVE tool
can be very effective and efficient by visually generating all possible cases of the execution
paths, namely the Execution Model. The paper also demonstrated how to control unsat-
isfied probabilistic requirements by adjusting or tuning the given dynamic probabilities.
The utilization of dTP-Calculus makes the management of uncertainty possible through
incorporating dynamic probability features within unconditional nondeterministic choice
operations. In addition, a digital twin system for the SEMA example was constructed to
demonstrate the feasibility of Digital Twin as a proof of concept. In this perspective, the
SAVE tool can be used to apply the approach to real industrial applications of Smart IoT
Systems in Digital Twin. The SAVE tool is an open model, which can be downloaded from
OMiLAB [27].

Future theoretical research includes defining the basic notion of different probabilistic
equivalences between groups of processes in dTP-Calculus, developing a method to tune
the degree of dynamic probabilistic equivalences among the groups, and applying the
method to control risk situations occurring due to the lack of probabilistic equivalences
in terms of risk management in Smart IoT Systems for Digital Twin, among other aspects.
Future research in practice includes demonstrating the efficiency and effectiveness of
the approach by applying dTP-Calculus on SAVE to real Smart IoT industry cases in
Digital Twin.

Author Contributions: Conceptualization, M.L. and J.S.; methodology, M.L.; software, J.S., S.L. and
D.K.; validation, M.L., D.K. and J.S.; formal analysis, J.S. and S.L.; investigation, J.S. and S.L.; writing—
original draft preparation, J.S. and S.L.; writing—review and editing, M.L. and D.K.; visualization,
J.S. and S.L.; supervision, M.L.; project administration, M.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF-
2022K1A3A1A18079935).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare that they have no competing interests.

Sensors 2024, 24, 767 32 of 35

Appendix A

Sensors 2024, 24, x FOR PEER REVIEW 34 of 38

Appendix A

Figure A1. dTP-Calculus in Figure 9. Figure A1. dTP-Calculus in Figure 9.

Sensors 2024, 24, 767 33 of 35Sensors 2024, 24, x FOR PEER REVIEW 35 of 38

Figure A2. Execution Model in Figure 11. Figure A2. Execution Model in Figure 11.

Sensors 2024, 24, 767 34 of 35Sensors 2024, 24, x FOR PEER REVIEW 36 of 38

Figure A3. GTS Model in Figure 13.

References
1. Grieves, M.W. Product lifecycle management: The new paradigm for enterprises. Int. J. Prod. Dev. 2005, 2, 71–84.

https://doi.org/10.1504/IJPD.2005.006669.
2. Yang, C.; Shen, W.; Wang, X. The internet of things in manufacturing: Key issues and potential applications. IEEE Syst. Man

Cybern. Mag. 2018, 4, 6–15. https://doi.org/10.1109/MSMC.2017.2702391.
3. Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415.

https://doi.org/10.1109/TII.2018.2873186.
4. Fertig, A.; Weigold, M.; Chen, Y. Machine Learning based quality prediction for milling processes using internal machine tool

data. Adv. Ind. Manuf. Eng. 2022, 4, 100074. https://doi.org/10.1016/j.aime.2022.100074.
5. Vandermerwe, S.; Rada, J. Servitization of business: Adding value by adding services. Eur. Manag. J. 1988, 6, 314–324.

https://doi.org/10.1016/0263-2373(88)90033-3.
6. Bumann, A. Navigating the Black Box: Generativity and Incongruences in Digital Innovation, Technical Report; Chalmers Tekniska

Hogskola: Göteborg, Sweden, 2022.

Figure A3. GTS Model in Figure 13.

References
1. Grieves, M.W. Product lifecycle management: The new paradigm for enterprises. Int. J. Prod. Dev. 2005, 2, 71–84. [CrossRef]
2. Yang, C.; Shen, W.; Wang, X. The internet of things in manufacturing: Key issues and potential applications. IEEE Syst. Man

Cybern. Mag. 2018, 4, 6–15. [CrossRef]
3. Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415.

[CrossRef]
4. Fertig, A.; Weigold, M.; Chen, Y. Machine Learning based quality prediction for milling processes using internal machine tool

data. Adv. Ind. Manuf. Eng. 2022, 4, 100074. [CrossRef]
5. Vandermerwe, S.; Rada, J. Servitization of business: Adding value by adding services. Eur. Manag. J. 1988, 6, 314–324. [CrossRef]
6. Bumann, A. Navigating the Black Box: Generativity and Incongruences in Digital Innovation, Technical Report; Chalmers Tekniska

Hogskola: Göteborg, Sweden, 2022.
7. Chen, X.; Wang, Z.; Hua, Q.; Shang, W.L.; Luo, Q.; Yu, K. AI-empowered speed extraction via port-like videos for vehicular

trajectory analysis. IEEE Trans. Intell. Transp. Syst. 2022, 24, 4541–4552. [CrossRef]

https://doi.org/10.1504/IJPD.2005.006669
https://doi.org/10.1109/MSMC.2017.2702391
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1016/j.aime.2022.100074
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1109/TITS.2022.3167650

Sensors 2024, 24, 767 35 of 35

8. Dai, Y.; Zhang, Y. Adaptive digital twin for vehicular edge computing and networks. J. Commun. Inf. Netw. 2022, 7, 48–59.
[CrossRef]

9. Tao, F.; Qi, Q. Make more digital twins. Nature 2019, 573, 490–491. [CrossRef] [PubMed]
10. Wagg, D.J.; Worden, K.; Barthorpe, R.J.; Gardner, P. Digital twins: State-of-the-art and future directions for modeling and

simulation in engineering dynamics applications. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2020, 6, 030901.
[CrossRef]

11. Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 2020, 7, 13.
[CrossRef]

12. Zheng, Y.; Yang, S.; Cheng, H. An application framework of digital twin and its case study. J. Ambient. Intell. Humaniz. Comput.
2019, 10, 1141–1153. [CrossRef]

13. Boyes, H.; Watson, T. Digital twins: An analysis framework and open issues. Comput. Ind. 2022, 143, 103763. [CrossRef]
14. Javaid, M.; Haleem, A. Digital Twin applications toward Industry 4.0: A Review. Cogn. Robot. 2023, 3, 71–92. [CrossRef]
15. Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Exploring the revolution in healthcare systems through the applications of digital

twin technology. Biomed. Technol. 2023, 4, 28–38. [CrossRef]
16. Cimino, C.; Terraneo, F.; Ferretti, G.; Leva, A. Efficient control representation in Digital Twins: An imperative challenge for

declarative languages. IEEE Trans. Ind. Informatics 2023, 19, 11080–11090. [CrossRef]
17. Wright, T.; Gomes, C.; Woodcock, J. Formally verified self-adaptation of an incubator digital twin. In International Symposium on

Leveraging Applications of Formal Methods; Springer Nature: Cham, Switzerland, 2022; pp. 89–109. [CrossRef]
18. Song, J.; Lee, M. Process Algebra to Control Nondeterministic Behavior of Enterprise Smart IoT Systems with Probability. In IFIP

Working Conference on The Practice of Enterprise Modeling; Springer: Cham, Switzerland, 2019; pp. 184–196. [CrossRef]
19. Song, J.; Choe, Y.; Lee, M. Application of probabilistic process model for smart factory systems. In International Conference on

Knowledge Science, Engineering and Management; Springer: Cham, Switzerland, 2019; pp. 25–36. [CrossRef]
20. Pressman, R.S. Software Engineering: A Practitioner’s Approach; Palgrave Macmillan: New York, NY, USA, 2005.
21. Song, J.; Karagiannis, D.; Lee, M. Modeling Method to Abstract Collective Behavior of Smart IoT Systems in CPS. Sensor 2022,

22, 5057. [CrossRef] [PubMed]
22. Karagiannis, D.; Mayr, H.C.; Mylopoulos, J. (Eds.) Domain-Specific Conceptual Modeling: Concepts, Methods and Tools; Springer

International Publishing: Cham, Switzerland, 2016. [CrossRef]
23. Karagiannis, D.; Lee, M.; Hinkelmann, K.; Utz, W. (Eds.) Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools;

Springer Nature: Cham, Switzerland, 2022. [CrossRef]
24. OMiLAB. OMiLAB NPO. Available online: https://www.omilab.org (accessed on 10 November 2023).
25. Muck, C.; Palkovits-Rauter, S. Conceptualizing design thinking artefacts: The Scene2Model storyboard approach. In Domain-

Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools; Springer International Publishing: Cham, Switzerland, 2021;
pp. 567–587. [CrossRef]

26. Morita, T.; Yamaguchi, T. Generating ROS codes from user-level workflow in PRINTEPS. In Domain-Specific Conceptual Modeling:
Concepts, Methods and ADOxx Tools; Springer International Publishing: Cham, Switzerland, 2021; pp. 435–455. [CrossRef]

27. SAVE v3.0. 2018. Available online: https://austria.omilab.org/psm/content/save/info (accessed on 11 November 2023).
28. OMiLAB NPO: MM-DSL toolkit: CoChaCo. Available online: https://www.omilab.org/activities/cochaco.html (accessed on

11 November 2023).
29. ADOxx Building Block. Available online: https://www.adoxx.org/live/building-blocks (accessed on 15 November 2023).
30. NodeJS. Available online: https://nodejs.org/en/learn/getting-started/introduction-to-nodejs (accessed on 15 November 2023).
31. Json. Available online: https://www.json.org/json-en.html (accessed on 15 November 2023).
32. Arduino. Available online: https://www.arduino.cc (accessed on 15 November 2023).
33. Feng, C.; Hillston, J. PALOMA: A process algebra for located markovian agents. In International Conference on Quantitative

Evaluation of Systems; Springer: Cham, Switzerland, 2014; pp. 265–280. [CrossRef]
34. Lee, I.; Philippou, A.; Sokolsky, O. Resources in process algebra. J. Log. Algebr. Program. 2007, 72, 98–122. [CrossRef]
35. Lee, I.; Brémond-Grégoire, P.; Gerber, R. A process algebraic approach to the specification and analysis of resource-bound

real-time systems. Proc. IEEE 1994, 82, 158–171. [CrossRef]
36. Hansson, H.A. Time and probability in formal design of distributed systems. Ph.D. Thesis, Dept. of Computer Systems, Uppsala

University, Uppsala, Sweden, 1994.
37. Milner, R. (Ed.) A Calculus of Communicating Systems; Springer: Berlin/Heidelberg, Germany, 1980. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.23919/JCIN.2022.9745481
https://doi.org/10.1038/d41586-019-02849-1
https://www.ncbi.nlm.nih.gov/pubmed/31554984
https://doi.org/10.1115/1.4046739
https://doi.org/10.1186/s40323-020-00147-4
https://doi.org/10.1007/s12652-018-0911-3
https://doi.org/10.1016/j.compind.2022.103763
https://doi.org/10.1016/j.cogr.2023.04.003
https://doi.org/10.1016/j.bmt.2023.02.001
https://doi.org/10.1109/TII.2023.3242806
https://doi.org/10.1007/978-3-031-19762-8_7
https://doi.org/10.1007/978-3-030-35151-9_12
https://doi.org/10.1007/978-3-030-29563-9_3
https://doi.org/10.3390/s22135057
https://www.ncbi.nlm.nih.gov/pubmed/35808556
https://doi.org/10.1007/978-3-319-39417-6
https://doi.org/10.1007/978-3-030-93547-4
https://www.omilab.org
https://doi.org/10.1007/978-3-030-93547-4_25
https://doi.org/10.1007/978-3-030-93547-4_19
https://austria.omilab.org/psm/content/save/info
https://www.omilab.org/activities/cochaco.html
https://www.adoxx.org/live/building-blocks
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://www.json.org/json-en.html
https://www.arduino.cc
https://doi.org/10.1007/978-3-319-10696-0_22
https://doi.org/10.1016/j.jlap.2007.02.005
https://doi.org/10.1109/5.259433
https://doi.org/10.1007/3-540-10235-3

	Introduction
	Digital Twin
	Process Algebra
	Approach
	Proof of Concept
	Contribution
	Organization

	dTP-Calculus
	Main Characteristics
	Mobility
	Synchronization
	Priority
	Time
	Probability

	Syntax
	Semantics

	Conceptual Approach
	Specification Step
	Analysis Step
	Verification Step

	Smart EMS Example Using SAVE
	ADOxx Meta-Modeling Platform
	SAVE
	Example
	Description
	Specification
	Probability Analysis
	Safety and Security Requirements
	Analysis of Probabilistic Verification for Requirements

	Proof of Concept
	Architecture
	Mapper
	SAVE Scheduler
	API
	ADOxx Building Block
	NodeJS Communication Server
	Json Data Format
	Arduino

	Activation of Smart IoT Devices in the Physical World

	Comparative Study
	Conclusions and Future Research
	Appendix A
	References

