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Abstract: Visual localization refers to the process of determining an observer’s pose by analyzing
the spatial relationships between a query image and a pre-existing set of images. In this procedure,
matched visual features between images are identified and utilized for pose estimation; consequently,
the accuracy of the estimation heavily relies on the precision of feature matching. Incorrect feature
matchings, such as those between different objects and/or different points within an object in
an image, should thus be avoided. In this paper, our initial evaluation focused on gauging the
reliability of each object class within image datasets concerning pose estimation accuracy. This
assessment revealed the building class to be reliable, while humans exhibited unreliability across
diverse locations. The subsequent study delved deeper into the degradation of pose estimation
accuracy by artificially increasing the proportion of the unreliable object—humans. The findings
revealed a noteworthy decline started when the average proportion of the humans in the images
exceeded 20%. We discuss the results and implications for dataset construction for visual localization.
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1. Introduction

In augmented reality (AR), achieving robust registration of virtual objects in a user’s
3D space is a crucial feature, attainable through accurate pose estimation of the user’s head
or the AR device’s camera [1,2]. Modern AR devices default to exploiting a technique
called simultaneous localization and mapping (SLAM), coupled with various sensor fusion
algorithms [3,4]. As its name implies, SLAM concurrently builds a map of the previously
unseen environment while continuously estimating the device’s pose within the map. Lidar
and cameras commonly serve as sensors for SLAM, with further categorization as visual
SLAM when cameras are predominantly utilized, and in the case of a single camera, it is
referred to as monocular SLAM [5]. Smartphone-based AR frameworks, such as ARCore
and ARKit, predominantly utilize variants of monocular SLAM.

While visual SLAM provides sufficient tracking performance for room-sized indoor
AR cases, it often falls short in large outdoor spaces. Apart from the unpredictable lighting
conditions outdoors, which pose challenges for most color imaging sensors, the size of
the space itself can be problematic. For instance, to achieve localization, a robust and
reliable map must be constructed. For this purpose, visual features in the space need
to be observed multiple times from various angles for a so-called bundle adjustment
procedure [6]. However, users may only cover sub-areas of the space, and in the worst-case
scenario, they might follow a linear path, resulting in high uncertainties in the poses of the
visual features. The consideration of alternative solutions, such as long-range lidar or GPS
receivers for outdoor AR scenarios, may arise. However, long-range lidars, while effective,
are often too bulky for integration with AR headsets or smartphones, and GPS suffers from
significant pose estimation errors.
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The fundamental concept behind visual localization (VL) contrasts with the dynamic
map-building approach, suggesting the notion of constructing the map in advance [7,8].
Instead of generating a map on the fly, VL relies on a pre-built, extensive image dataset.
With this pre-built dataset, VL creates a 3D structural map from the images or assigns
relative poses to each image for later use. When a query image is fed, a VL algorithm
extracts visual features from the image and identifies matches with those in the pre-built
dataset, leading to a Perspective-n-Point problem for pose estimation [9]. Consequently,
VL can be effectively applied in both large indoor and outdoor settings, given sufficient
images are captured from the environments. Additionally, it is compatible with devices
equipped with only a single camera, which includes the majority of smartphones.

In this paper, our focus delves into assessing the sufficiency of the image dataset for
VL. Instead of merely considering the number of images in the dataset, we concentrate on
the influence of the objects included in the dataset. Non-uniform surfaces, dynamically
changing shapes, or textures are types of properties an object can have, which may result in
generating different sets of visual features from an identical object under varying lighting
conditions and viewing angles, disrupting feature matching. Furthermore, moving objects
appearing in multiple images could further degrade pose estimation. Thus, the reliability
of each object, in terms of pose estimation, could differ.

In the initial experiment, we examined the frequency of object appearances in VL
datasets and assessed the reliability of each object class. To achieve this, we used an outdoor
dataset consisting of six distinct locations for VL and conducted semantic segmentation
on the images in the dataset. We identified the most frequently appearing object classes
and further explored their effects on pose estimation performance. This was achieved by
masking each class during the feature extraction phase of VL. Across all the locations, the
human class consistently demonstrated negative impacts on pose estimation accuracy. We
also investigated to what extent the inclusion of humans should be permissible in dataset
creation, considering the impracticality of completely removing humans from spaces. For
this purpose, we created synthetic datasets in which we controlled the average proportion
of pixels occupied by humans in the images. The experiment confirmed that pose esti-
mation accuracy decreased as the average proportion of humans in the dataset increased.
A significant drop in performance was observed when this proportion exceeded 20%.

The rest of this paper is organized as follows: Section 2 presents previous work on
visual localization, encompassing visual features and datasets. Sections 3 and 4 detail the
two experiments conducted. These include assessing object reliability and determining
the allowable proportion of humans in VL datasets, with a discussion on implications for
feature extraction and dataset creation in VL. Finally, we conclude the paper and discuss
future work in Section 5.

2. Related Work
2.1. Visual Localization Method

Visual localization can be categorized into three methods: the structure-based method,
the absolute pose estimation method (APE), and the relative pose estimation method (RPE).

Structure-based methods [10–13] estimate camera pose through 2D-3D matching
between 3D points in a point cloud obtained using structure from motion [14,15] and local
features in an image. This matching is mainly performed by calculating the geometric
relationship and solving the Perspective-n-Point [16] problem. Recently, research has
been conducted to perform 2D-3D matching through Deep Neural Networks [17–20]. The
structure-based method has the advantage of high accuracy in pose estimation because it
uses geometric relationships through dense point clouds. However, it has the disadvantage
of requiring a significant amount of computation time as it needs to perform 2D-3D
matching with a large number of 3D points. In addition, it is not possible to estimate
the locations of points that were not captured during the point cloud creation process. For
this reason, it is not suitable for AR, which requires real-time pose estimation with a mobile
device over a large space.
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APE represents a method where the traditional pose estimation process is entirely re-
placed by AI-driven techniques [21–26]. APE mainly uses Convolutional Neural Networks
(CNNs), such as GoogLeNet [21,22] and ResNet [24], utilizing an end-to-end method that
inputs an image and outputs its pose. APE has the advantage of a simple process and low
computational effort because it uses only one AI model to estimate the pose of the image.
However, when the location to be estimated changes, the AI model requires retraining, and
since its pose estimation accuracy is lower than that of other techniques [27], it is not yet
suitable for AR applications.

RPE performs pose estimation by analyzing the relative poses between images [28–31].
In RPE, a set of images comprises reference images, which contain pose information about
the space where the pose estimation is conducted, and query images, whose poses are to be
estimated. Additionally, RPE utilizes two types of features for matching: global features,
representing the overall characteristics of the images, and local features, highlighting
specific, important points within the images. Global features are used to select reference
images similar to the query image, while local features are used to estimate the relative pose
of the query image to the reference images, employing either geometric relations [28,29]
or AI [32,33]. Global-feature-based image similarity comparison utilizes cosine similarity,
which requires less computation and enables fast estimation, even with a large number of
images. Furthermore, local-feature-based relative pose estimation uses a fixed, relatively
small number of images selected based on global feature similarity. Therefore, RPE has the
advantage of estimating the pose in real time with reduced computation, making it suitable
for use in large areas. Additionally, since poses are estimated through the relative poses
between images, it is possible to estimate the pose, to some extent, even for viewpoints not
captured during the data collection process.

While RPE, compared to other VL methods, appears suitable for outdoor AR, it still
faces many challenges. RPE’s pose estimation relies on matching local features between the
query image and reference images. Accurate pose estimation can be difficult if the local
features at the same location change. Common causes of such changes include variations
in lighting [34], weather, or seasons [35] as well as the inherent dynamics of objects, like the
movement of tree leaves. Additionally, the appearance or disappearance of moving objects,
such as pedestrians or vehicles, can obscure important local features of the background
or introduce new features, leading to incorrect pose estimation [36]. Therefore, this paper
focuses on analyzing each object’s impact on visual localization, with the aim of improving
estimation performance in the context of RPE-based VL. For convenience, we will refer to
VL utilizing the RPE method simply as VL in the following sections of the paper.

2.2. Local Features

The accuracy of VL in pose estimation varies depending on the types of features used
for image matching; therefore, extracting consistent features across diverse scenarios is
essential for precise position estimation. Traditionally, procedural algorithms like SIFT [37]
or Harris corner [38] were employed for feature-point extraction. However, a challenge
emerged as the extracted feature points were prone to change due to factors such as
variations in illumination from day to night or weather or seasonal changes. To address
this issue, recent efforts have focused on data-driven approaches using deep learning for
feature-point extraction [39–42]. While initial efforts aimed to replicate procedural features,
recent research has shifted towards using various loss functions such as triplet loss [43]
and Average Precision (AP) loss [40,44] to enhance feature extraction. Furthermore, recent
research suggests extracting features based on their reliability and focusing on repeated
patterns or objects in the image rather than indiscriminately extracting features from
all areas.

One such AI-based feature extractor is the Repeatable and Reliable Detector and
Descriptor, known as the R2D2 [40]. The main idea of the R2D2 is to reduce the reliability of
repeated patterns or featureless areas in an image, thus extracting features that are valid for
image matching. It exploits unsupervised learning so that no features are extracted from
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those unreliable areas. The R2D2 learns a reliability map that represents the reliability of an
image and a descriptor together, dividing the image into multiple patches and matching
each patch with a patch of another image to calculate the Average Precision (AP) for each
patch. In this process, the threshold value k is set for the AP loss to reduce the reliability of
patch areas with an AP lower than k to 0 while increasing the reliability of those with an AP
higher than k to 1. The authors demonstrated that the R2D2 outperformed existing feature
extractors by reducing the likelihood of extracting features from unreliable areas, like the
sky and water, while enhancing feature extraction from reliable areas, such as buildings.

While the R2D2 uses image patches without intending to distinguish individual
objects, the authors of BiasAttNet focused on features from individual objects [32]. They
proposed a pipeline consisting of two main modules: the Bias Net and the Attention Net.
This pipeline performed semantic segmentation to extract the region of each object using
PSPNet [45], then trained the weights of each object through the Bias Net, which consists
of a CNN layer. Subsequently, the Attention Net, consisting of a Residual Network and
Convolution Block Attention Module [46], extracts local features. The authors demonstrated
that the proposed pipeline improved pose estimation accuracy. However, their results were
confined to the inclusion of the building class, without specific reasons provided, while
other object classes were left unexplored.

Thus, in this study, we aim to extend the reliability assessment to different object classes
commonly appearing in VL datasets. In Experiment 1, we examine how the pose estimation
performance varies by excluding each class of objects in the feature extraction phase.

2.3. Localization Dataset

VL has been significantly enriched by the creation of various benchmarking datasets.
These datasets are designed to encompass a wide range of challenges in VL, such as
spatial scale, illumination variations, weather and seasonal changes, as well as dynamic
and moving objects. A typical VL dataset is composed of query images and reference
images, with baseline pose estimates or 3D models for validating VL models and methods.
Depending on the target applications, e.g., AR or autonomous driving, various indoor
and/or outdoor spaces have been captured for VL datasets.

Outdoor datasets typically encompass a broad range of environmental conditions. The
RobotCar Seasons dataset [35], comprising images in Oxford, UK, spans an entire year and
captures diverse seasonal and weather conditions, rendering it invaluable for scenarios like
autonomous driving, where accurate localization against a potentially outdated reference
scenes is crucial. In contrast, the Aachen Day-Night dataset [34], featuring the city of
Aachen, Germany, focuses on the day–night dichotomy. It provides a robust platform
for testing nighttime image localization against daytime 3D models, crucial for under-
standing outdoor localization amidst varying weather, seasonal, and day–night cycles,
especially with pedestrian presence. Notably, images in this dataset were collected using
mobile devices, making it especially useful for AR applications. The Cambridge Land-
marks dataset [21] adds another dimension to outdoor urban localization. Covering six
distinct areas around Cambridge University, this comprehensive dataset includes original
videos, extracted image frames labeled with their 6-DOF camera poses, and visual scene
reconstructions essential for large-scale and detailed visual localization in urban settings.

While various environmental conditions are included in outdoor datasets, the Gang-
nam Station and Hyundai Department Store dataset [36] specifically addresses challenges
posed by crowded indoor environments. Collected in high-density urban settings, such
as department stores and subway stations, it highlights the impact of human presence on
VL performance. The authors’ initial investigation into how crowd density affects pose
estimation revealed a decrease in performance for crowded images, defined as those where
20% of pixels represent people, in comparison to less crowded images. They concluded that
human presence interferes with pose estimation. Investigating the effect of crowdedness on
VL performance is essential for dynamic, densely populated indoor spaces, where human
movement and interaction significantly influence pose estimation accuracy. However, the
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decrease in VL performance reported might also stem from occlusions or interference from
other objects, underscoring the need for further research. Experiment 2 mainly addresses
this issue.

3. Experiment 1

In this experiment, we assessed the reliability of each object class for visual localization.

3.1. Dataset

Given the variety of locations and objects, we selected the Cambridge Landmarks
dataset for this experiment. This dataset includes a total of 8454 reference images and
4864 query images, distributed across six locations: Great Court, King’s College, Old
Hospital, Shop Facade, St. Mary’s Church, and Street. Table 1 illustrates the image count in
the dataset, and Figure 1 displays example images from each location.

Table 1. The number of images per location.

Reference Query Total

GreatCourt 1533 761 2294
KingsCollege 1220 345 1565
OldHospital 902 182 1084
ShopFacade 231 103 334

StMarysChurch 1488 530 2018
Street 3080 2943 6023

Figure 1. Sample images from the six locations included in the Cambridge Landmarks dataset.

3.2. Selected Object Classes

We first analyzed the frequency of each object’s appearance in the dataset to select
specific object classes for further investigation. For this task, we employed SEEM [47],
a multimodal semantic segmentation AI, which enabled us to accurately classify objects.
During this process, we aggregated similar classes, such as motorbikes and bicycles, for
a more streamlined analysis. Ultimately, we chose to focus on object classes that appeared
in more than 20% of the images. This led us to identify eight primary classes for our
detailed assessment: bicycle, building, car, grass, human, road, sky, and tree. The frequency
distribution of these selected object classes is presented in Figure 2.
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Figure 2. The average appearance frequency distribution for each object class.

3.3. Class-Masked Visual Localization

We conducted a pose estimation performance analysis using the selected object classes
by excluding feature points from each object class during pose estimation. For this anal-
ysis, we adopted the RPE method and implemented VL using Kapture, an open-source
framework developed by Naver Labs [29]. We employed AP-GeM [48] for global feature
extraction to select reference images from the dataset, with a configuration set to choose
five reference images per query image. Subsequently, local features from the query and
reference images were extracted and matched using the R2D2 [40].

For class-specific masking, we utilized SEEM. Figure 3 demonstrates the process
of creating a mask image for the building class using SEEM as an example. The initial
step involved performing panoptic semantic segmentation on the dataset images, which
classified all pixels into 133 distinct classes. Subsequently, we isolated pixels associated
with the eight selected classes to create specific masks for each class. During the extraction
of local features from these images, we utilized these class masks to prevent the extraction
of local feature points from the masked areas. To assess the impact of each class on
pose estimation accuracy, we compared results with and without the exclusion of each
object class.

Figure 3. The process of creating class-specific mask images, illustrated with the building class as
an example.

3.4. Results

In this study, we evaluated pose estimation performance using a metric commonly
applied in VL research: the percentage of query images whose pose estimation error falls
within a specific threshold relative to the total number of query images [34]. We set our
thresholds at 0.25 m for positional error and 2.0 degrees for rotational error. As our primary
aim was to analyze performance changes, we compared the performance metrics of VL with
and without class-specific masking for each class. This comparison involved calculating
the difference in the percentage of query images within the threshold out of the total query
images for each class across six distinct locations.

Table 2 displays the changes in localization performance for each object class. The
results indicated a decrease in pose estimation performance for the building class, while
there was an increase for the bicycle, car, grass, human, road, sky, and tree classes. Notably,
the human and car classes were the only categories showing consistent performance
improvement across all locations.
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Table 2. Changes in localization performance by object class when excluded.

Bicycle Building Car Grass Human Road Sky Tree

GreatCourt - −39.16 - 0.47 0.47 0.05 0.29 0.31
KingsCollege −0.06 −43.03 0.06 −0.23 0.53 0.00 0.12 −0.17
OldHospital - −49.12 - −0.11 - 0.11 1.21 4.39
ShopFacade 0.39 −22.33 0.00 - 0.19 0.39 −0.78 0.39

StMarysChurch −0.08 −33.74 - - 0.00 −0.49 −0.53 −0.80
Street 0.17 −39.08 0.27 −0.04 0.60 0.68 0.13 0.22

Average 0.11 −37.74 0.11 0.02 0.36 0.12 0.07 0.72

3.5. Discussion

In this experiment, we focused on analyzing changes in VL performance by masking
eight prominent object classes during local feature extraction, aiming to assess the reliability
of each object class in VL. The results showed that the building class was the most reliable
among the tested classes. It demonstrated a significant decrease in localization performance
when masked, a trend consistent across all six locations. On the other hand, the car
and human classes had a negative impact on localization performance in all locations,
rendering them unreliable for VL. While these findings were somewhat anticipated, they
offer objective and empirical support for the inclusion or exclusion of specific object classes
in VL datasets, as seen in previous studies.

We also noted considerable variations in the impact—the performance changes—of
different object classes. We speculate that this might be related to the proportion of image
pixels occupied by each class. Our analysis indicated that the building class accounted for
an average of 51.63% of image pixels, compared to only 0.69% and 1.15% for the car and
human classes, respectively. This disparity raises a question about the acceptable pixel ratio
for less reliable objects when creating VL datasets, especially in locations where evacuating
the area for dataset collection is impractical.

4. Experiment 2

AR typically involves an individual wearing AR devices and viewing virtual content
or objects superimposed onto a real-world background. Unlike autonomous driving, the
spaces where VL occurs in AR are areas where humans are present. Consequently, images
captured in these spaces are highly likely to include pedestrians. In this experiment,
we aimed to investigate two key aspects: (1) whether increasing the proportion of the
unreliable object class, specifically humans, in a VL dataset leads to a decrease in localization
performance and (2) to what extent the inclusion of humans should be allowed in a VL
dataset. To this end, we synthetically added humans to the reference images in a VL dataset
to increase their proportion while keeping the query images unchanged.

To quantify the proportion of humans in a dataset, we defined the Human Pixel Ratio
(HPR), adopting the concept of “crowdedness” from the previous work by Lee et al. [36].
The HPR measures the proportion of pixels in an image that represent humans. For this
experiment, we utilized Yolo v7 [49] for human segmentation instead of SEEM, owing to its
superior segmentation quality with the dataset used in our study. For the pose estimation,
we utilized the same VL implementation as described in Section 3.3, which was carried
out using Kapture with AP-GeM as the global feature extractor and the R2D2 as the local
feature extractor.

4.1. Base Dataset

In this experiment, we opted for the Aachen Day-Night dataset [34] as our base dataset
to create Human-Synthesized datasets with varying HPRs. This decision was driven by the
need to minimize repeated use of the same human figures in the synthesis. Such repetition
was a challenge with the Cambridge Landmark dataset, which had a limited number of
images containing humans in certain locations.
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The Aachen Day-Night dataset comprises 6848 reference images, 824 daytime query
images, and 191 nighttime query images. Our preliminary analysis showed that 3881 of
the reference images featured humans, averaging an HPR of 2.25%. We then examined the
influence of human presence on pose estimation within this dataset. This involved counting
the total and human-inclusive matched reference images as well as the local feature points
matched between query and reference images, specifically those within human-occupied
areas. It should be noted that we aggregated the data obtained from all Aachen Day-Night
query images by summing them respectively. Additionally, the number of reference images
set for pose estimation was limited to five. Table 3 summarizes the results with the base
dataset. It shows that while humans appeared in 14.48% of the matched images, the actual
use of local feature points located in human areas for matching was a mere 0.361%.

Table 3. The number of matched reference images and feature points in pose estimation using the
Aachen Day-Night dataset.

Day Night

Total Matched Images 3829 557
Matched Images with Human Presence 561 74
Total Matched Feature Points 249,314 14,592
Feature Points in Human Areas 851 104

4.2. Derived Datasets
4.2.1. Human Color-Changed Dataset

Due to the varying lighting conditions in each image, the color of the synthesized
humans may not always match the background. If such color discrepancies between
the synthesized humans and the background affect pose estimation accuracy, conducting
a proper analysis with synthesized images becomes challenging. To address this, we
created a color-modified dataset by altering the color of the human regions in the existing
images. This process involved extracting the human figures from the images, applying
color transformations, and then re-synthesizing them into the same positions, intentionally
creating color inconsistencies between the humans and their surroundings. For the color
variations in the human region, we utilized TensorFlow’s color jitter function. Since we
synthesized the same humans in identical locations, the HPR remained unchanged. Figure 4
shows examples from this modified dataset.

Figure 4. Example of the human color-changed dataset.

4.2.2. Human-Synthesized Dataset

To investigate the impact of HPR on VL performance, we generated the Human-
Synthesized dataset by adding additional human figures to the reference images in the
original dataset. To ensure a natural integration of the synthesized humans with the
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background, we selected human-containing reference images from the original dataset,
focusing on those with a pixel ratio above 0.5% to avoid incorporating only partial human
figures. Considering a typical AR application scenario, where images are often captured at
eye level, we positioned the synthesized humans at the same ground level as the capturing
human. Consequently, we placed these humans towards the bottom of the images. Figure 5
shows the process of creating the Human-Synthesized dataset.

Figure 5. Process of creating the Human-Synthesized dataset.

Using this approach, we continuously synthesized extracted human images into
the original images until the desired HPR was achieved. We allowed for a tolerance of
±1% deviation in each image and created datasets with average HPRs of 10%, 15%, 20%,
25%, and 30%. Figure 6 displays examples from these resulting datasets.

Figure 6. Sample images from the Human-Synthesized datasets at various HPRs.

4.3. Evaluation Metrics

Similar to Experiment 1, we assessed changes in localization performance by com-
paring the base dataset with each derived dataset. Performance was gauged using the
percentage of query images with pose estimation errors within specific thresholds relative
to the total number of query images. The thresholds were set at 0.25 m for positional error
and 2.0 degrees for rotational error.

Additionally, we introduced the Feature Ratio to evaluate the impact of synthetically
added humans on VL. The key to pose estimation lies in calculating the relative pose
through feature matching. The inclusion of human figures in the images may not always
influence pose estimation as feature points in human areas might be excluded from match-
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ing due to the characteristics of descriptors or RANSAC algorithms that filter out incorrect
matches [29]. In such cases, the human figures only contribute to occlusion. Consequently,
we defined the Feature Ratio as the percentage of feature points from human areas in the
reference images used for matching among all feature matching pairs. We then examined
how the Feature Ratio varied with changes in HPR.

4.4. Results
4.4.1. Color-Changed Dataset

In the Color-Changed dataset, we observed performance changes of 0.6% for day query
images and 0.5% for night query images. As for the Feature Ratio, it altered by 0.1% in night
query images and only 0.01% in day query images, as shown in Figure 7. These results
suggest that color discrepancies between synthesized humans and their surroundings in
the images have a negligible effect on feature matching. Furthermore, the higher Feature
Ratio during night queries indicates a greater impact of synthesis compared to day queries.

Figure 7. Changes in Feature Ratio associated with color changes.

4.4.2. Human-Synthesized Datasets

Our findings reveal a trend of diminishing localization accuracy with an increasing
HPR in both day and night query images within the Human-Synthesized datasets. Figure 8
summarizes these results. It is important to note that these scores were obtained by
subtracting the performance of the base dataset from each synthesized dataset. In both day
and night query images, a significant decrease in performance was observed at HPRs of
20% or higher.

(a) Results for day queries (b) Results for night queries

Figure 8. Comparative analysis of localization accuracy differences between the original dataset and
the Human−Synthesized datasets for (a) day and (b) night queries.

Regarding the Feature Ratio, our data indicated a consistent increase in Feature Ratio
as HPR increased (see Figure 9). In other words, the more humans present in a VL dataset,
the higher the likelihood of using feature points from human areas in pose estimation,
potentially leading to errors in estimation accuracy.
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Figure 9. Changes in Feature Ratio with increasing HPR.

Despite the observed increase in the Feature Ratio, there remains a question as to
whether the observed decrease in localization accuracy is solely a result of occlusion by
humans or due to mismatches caused by unreliable feature points from human areas.
To explore this issue, we undertook a comparative performance analysis by applying
feature masking to the human regions in the images. This analysis was particularly fo-
cused on the dataset with a 30% HPR, where the impact of human-induced occlusion is
most pronounced.

Figure 10 depicts the differences in localization accuracy between the HPR 30% Human-
Synthesized dataset and the equivalent dataset with human feature masking (HPR
30% occlusion). The results indicated a decline in performance attributable to occlusion,
yet this decline was less pronounced than in the Human-Synthesized dataset. The disparity
was especially evident in the night query images.

(a) Results for day queries (b) Results for night queries

Figure 10. Localization accuracy comparison at 30% HPR: Human−Synthesized vs. occlusion for
(a) day and (b) night queries.

4.5. Discussion

In this experiment, we discovered that an increase in HPR leads to a decrease in
localization accuracy, with a more pronounced decline observed in night query images.
This suggests that the presence of humans significantly affects VL performance, particularly
under low-light conditions.

The reduction in localization accuracy was not solely due to occlusion by humans
obscuring reliable feature points. Our investigation, involving feature masking in human
regions in datasets with 30% HPR, indicated that performance changes also stemmed from
incorrect feature matching caused by feature points from human areas. This finding is
crucial as it differentiates the impact of human presence from simple occlusion.

However, completely excluding humans while constructing a VL dataset is practically
challenging. Therefore, we required a threshold for performance changes to establish
an appropriate HPR. Based on the localization performance changes under various local
feature extractors reported in the work of Lee et al. [36], we calculated an average difference
of 2.1% and set it as an indicator of significant performance change. With this threshold,
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our results suggest that images for VL should contain less than 20% human occupancy
to maintain accuracy. Filtering out images with more than 20% of pixels occupied by
unreliable objects, such as humans, can enhance the reliability of VL datasets. This approach
is particularly relevant for AR scenarios, where objects frequently appear and disappear.

Additionally, our findings can be applied to dataset creation through synthesis, espe-
cially in scenarios that are difficult to capture directly, like crowded spaces or the sudden
appearance of obstacles. Our experiment confirms that synthesis itself does not significantly
impact localization performance, thereby establishing it as a viable method for creating
datasets in challenging situations.

5. Conclusions and Future Work

In this study, we conducted two distinct experiments aimed at evaluating the re-
liability of various object classes for VL and examining the permissible proportions of
unreliable objects in VL datasets. In the first experiment, we identified eight common
object classes—bicycle, building, car, grass, human, road, sky, and tree—and assessed their
impacts on VL performance. Our results revealed the building class as a reliable object class,
whereas the car and human classes were identified as unreliable. Considering the typical
AR scenario where VL datasets are often generated in human-populated areas, we further
analyzed the influence of human presence at various inclusion ratios. We utilized the HPR
to quantify the proportion of pixels occupied by humans in the dataset and created datasets
with varying HPRs by synthetically adding human figures. The results indicated that
humans adversely affect localization performance, with significant degradation observed
starting from an HPR of 20%. Furthermore, we determined that the decrease in localization
accuracy was primarily due to the introduction of unreliable feature points from human
areas, although occlusion by humans also played a role.

While these findings are valuable for practitioners and researchers developing VL
datasets, it is important to note some limitations. First, the object classes we investigated
are specific to our chosen dataset, which covered six different locations. The range of
common object classes and their reliability might vary depending on geographical and
urban factors. Second, our study focused exclusively on outdoor datasets, while AR
applications are often used in indoor environments, highlighting the need for an analysis
specific to indoor settings.

In future work, we aim to address these limitations and further enhance our approach.
Our plan includes developing a more sophisticated synthesis method that not only con-
siders the locations within an image but also leverages an understanding of structures or
land use, such as stairs, rooftops, or crosswalks, appearing in the image. Additionally, we
intend to train the R2D2 to utilize class masks based on the assessed reliabilities of each
object class, incorporating these masks into the R2D2’s reliability map.
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