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Abstract: The intelligent transportation system (ITS) relies heavily on the vehicular ad hoc network
(VANET) and the internet of vehicles (IoVs), which combine cloud and fog to improve task processing
capabilities. As a cloud extension, the fog processes’ infrastructure is close to VANET, fostering an
environment favorable to smart cars with IT equipment and effective task management oversight.
Vehicle processing power, bandwidth, time, and high-speed mobility are all limited in VANET. It
is critical to satisfy the vehicles’ requirements for minimal latency and fast reaction times while
offloading duties to the fog layer. We proposed a fuzzy logic-based task scheduling system in VANET
to minimize latency and improve the enhanced response time when offloading tasks in the IoV. The
proposed method effectively transfers workloads to the fog computing layer while considering the
constrained resources of car nodes. After choosing a suitable processing unit, the algorithm sends
the job and its associated resources to the fog layer. The dataset is related to crisp values for fog
computing for system utilization, latency, and task deadline time for over 5000 values. The task
execution, latency, deadline of task, storage, CPU, and bandwidth utilizations are used for fuzzy set
values. We proved the effectiveness of our proposed task scheduling framework via simulation tests,
outperforming current algorithms in terms of task ratio by 13%, decreasing average turnaround time
by 9%, minimizing makespan time by 15%, and effectively overcoming average latency time within
the network parameters. The proposed technique shows better results and responses than previous
techniques by scheduling the tasks toward fog layers with less response time and minimizing the
overall time from task submission to completion.

Keywords: task scheduling; vehicular ad hoc network; fuzzy logic; fog computing

1. Introduction

In VANET, the task handling and scheduling required is one of the most challenging
tasks due to its mobility behavior. Task scheduling in VANET is now one of the most
effective ways to handle high computational and energy-consuming tasks. The roadside
unit (RSU) computes tasks’ energy computations and time delay during their processing
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in VANET. Therefore, we were motivated to join the vehicle to fog VM through a wireless
vehicular communication network. Fog computing provides efficient task processing
and scheduling capabilities between environments. Vehicular ad hoc networks (VANETs)
are wireless communication networks facilitating data exchange between vehicles and
infrastructure components. VANETs have gained significant attention recently due to
their potential to enhance traffic safety and reduce traffic congestion. However, managing
tasks in VANETs is challenging due to the networks’ dynamic nature and vehicles’ high-
speed mobility.

1.1. Fog Computing

Due to fog availability, every node of the VANET can be linked and connected to the fog
layer. Fog computing provides services like cloud computing near the users, which brings
benefits like real-time data processing, real-time control, local data filtration and caching,
visualization, lower latency, and data locality. In VANET, such collective processing and
demand situations are now connected and submitted to the fog layer through fuzzy logic to
save time and energy [1]. Fuzzy logic-based algorithms and emerging technologies provide
optimal solutions for task management inside the loaded network. The fuzzy logic-based
system provides a decision-based algorithmic technique that supports the extended and
more effective way of task management in VANET. Typical fog architecture is displayed in
Figure 1, in which every intelligent device of the IoT is linked with fog. The fog devices are
connected to the cloud and another server in the environment [2].

Fog computing gains more popularity when cloud computing infrastructure is not
feasible for providing services at the doorstep of VANET using IoT devices and sensors. In
2015, the number of sensors and IoT devices in VANET was 15.41 billion, which exceeded
30.73 billion in 2020 [3]. Figure 1 shows the cloud and fog computing platform connected to
end devices. Fog computing enables us to provide the network connectivity of sensors and
IoT devices at the network’s edge. It distributes at the network edge with the connectivity
of heterogeneous devices in VANET. It also provides network and edge backup services.
Edge computing provides the network structure needed to extend the capabilities of the
cloud and make a more extensive resourceful network. Fog computing is a paradigm that
enables computing resources and services to be located at the edge of the network, closer
to the end user, rather than in centralized data centers. Fog computing is advantageous in
VANETs, as it can help address latency, bandwidth, and network congestion issues.
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like central processing units (CPUs) with one or more than one graphic processing unit 
(GPU) working on the concept of batch processing. Fog computing uses minimal pro-
cessing time and produces results with great efficiency because there is no burden on the 
central server. It also helps in geographically distributed locations where connections can-
not be regular [6]. 

1.2. VANET and Its Architecture 
VANET is a network of connected computers that exchange data using vehicle to 
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work. Two or more vehicles directly communicate with each other to share messages and 
communicate data. In V2I communication, the vehicles forward or receive data from road 
infrastructures. V2I provides road safety and security. Meanwhile, in I2I communication, 
the RSU communicates with BS stations and other RSUs, and base stations communicate 
with road infrastructure. The most confidential and secure communication channel is 
used when communicating [8]. VANET is a remote arrangement implanted with the char-
acteristics of an active topology, a massive and variable organized estimate, and portabil-
ity. Figure 2 shows the structure of VANET with vehicle to vehicle (V2V), vehicle to infra-
structure (V2I), and infrastructure to infrastructure (I2I) connectivity [9]. VANET is a sub-
set of mobile ad hoc networks (MANETs) that shows vehicle communication using wire-
less technology [10]. These days, cutting-edge vehicles are prepared with present-day de-
vices such as communication, tactile, and human interaction assets. The intelligent 
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Fog computing enables the cloud infrastructure to handle the task near VANET archi-
tecture to reduce processing time and energy constraints. Fog computing overcomes the
security-related issues encountered in cloud computing [5]. The working of fog depends
on intelligent gateways, which have more computation power and processing capabilities
than the IoT devices. With fog and IoT devices, the bandwidth minimizes and enhances
the fog devices’ performance. The servers in the fog are called cloudlets and are like central
processing units (CPUs) with one or more than one graphic processing unit (GPU) working
on the concept of batch processing. Fog computing uses minimal processing time and
produces results with great efficiency because there is no burden on the central server. It
also helps in geographically distributed locations where connections cannot be regular [6].

1.2. VANET and Its Architecture

VANET is a network of connected computers that exchange data using vehicle to
vehicle (V2V), vehicle to infrastructure (V2I), and infrastructure to infrastructure (I2I) com-
munication models [7]. V2V communication forms a short-range wireless mesh network.
Two or more vehicles directly communicate with each other to share messages and com-
municate data. In V2I communication, the vehicles forward or receive data from road
infrastructures. V2I provides road safety and security. Meanwhile, in I2I communication,
the RSU communicates with BS stations and other RSUs, and base stations communicate
with road infrastructure. The most confidential and secure communication channel is used
when communicating [8]. VANET is a remote arrangement implanted with the charac-
teristics of an active topology, a massive and variable organized estimate, and portability.
Figure 2 shows the structure of VANET with vehicle to vehicle (V2V), vehicle to infrastruc-
ture (V2I), and infrastructure to infrastructure (I2I) connectivity [9]. VANET is a subset
of mobile ad hoc networks (MANETs) that shows vehicle communication using wireless
technology [10]. These days, cutting-edge vehicles are prepared with present-day devices
such as communication, tactile, and human interaction assets. The intelligent transporta-
tion system (ITS) uses VANET to enable the security policy and non-safety applications to
decrease life risks and improve activity administration [11].
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In comparison, the communication between vehicles utilized board units (OBUs) with
physically collocated arithmetic units (AUs), based on IEEE 802.11p radio innovation. The
OBU is a portable hub, and the roadside unit (RSU) is inactive in V2I communication.
For trading data, RSUs can communicate with each other; this communication is called
I2I communication.

In VANET, task scheduling is one of the main issues due to mobility behavior, changing
nodes, fast speed, limited capacity to process large tasks, and limited time constraints. The
tasks are not adequately configured due to the RSU’s business. We encounter this when
a task is loaded to the RSU, and then the RSU connects with the fog layer of the cloud. It
takes time and energy to resolve the tasks of offloading and unloading. We skipped the
RSU and directly connected the vehicle node with the fog to resolve this issue with a Wi-Fi
connectivity sensor. The internet of vehicles (IoV) is the vehicular network with software,
sensors, and technologies to exchange information [13]. The tasks are now loaded to the
fog node with ever-changing concerns with the node processing capability.

1.3. Fuzzy Logic-Based Approach in VANET

Fuzzy logic is a mathematical framework for reasoning with uncertain or imprecise
information. Fuzzy logic has been used in many applications, including control systems,
decision-making, and pattern recognition. The main reason behind using fuzzy logic
is that it is compared with machine learning, and we applied a new approach to task
scheduling. Much less work has been performed through fuzzy logic. Thus, we must
prepare and test this. The result’s effectiveness is possible through our approach as we
applied different techniques with different methodologies. Therefore, the results were
improved compared with those in our selected base paper. The tasks are distributed to
VMs in cloud computing to save memory and CPU processing in VANET vehicles [14]. A
good cloud task distribution algorithm effectively maximizes the system resources and
utilizes the task execution time for resource management. Task fairness is also improved
due to the reasons behind the success ratio of the task distribution: the assignment of tasks
to the fog virtual machine based on the fuzzy logic decision. The decision should be more
effective and efficient under such a scenario. Figure 3 illustrates the use of fuzzy logic in
the VANET environment.
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Task management in VANETs involves allocating resources and scheduling tasks for
vehicles and infrastructure components. The task management approach proposed in this
study is based on fuzzy logic and fog computing, and aims to improve the efficiency and
reliability of task management in VANETs. The approach uses fuzzy logic to make decisions
based on uncertain or imprecise information and fog computing to provide computing
resources and services closer to the end user. In conclusion, the fuzzy logic-based task
management approach using fog computing in VANETs is a promising approach that
can help address some of the challenges associated with managing tasks in VANETs. By
leveraging the benefits of fuzzy logic and fog computing, this approach can improve the
efficiency and reliability of task management in VANETs, leading to safer and more efficient
transportation systems.

On the other hand, the primary purposes of the task distribution at the edge are to
reduce energy, ensure the task is completed on time, improve user experience, reduce
energy consumption, and significantly improve power. Task scheduling is performed to
complete work in a specified time with limited resources. With the increased amount of
data to be processed, completing a task within a given time in fog computing is a significant
challenge. Therefore, scheduling tasks and resources is a significant issue [16].

1.4. Motivation

In VANET, task handling and scheduling are required to schedule multiple processes
for the task processors. Task scheduling in VANET is now one of the most effective ways
to handle high computational and energy-consuming tasks. Task processing in the RSU
involves calculating the time delay and energy consumed for task processing in VANET.
Therefore, we were motivated to join the vehicle to a fog virtual machine (VM) through
a wireless vehicular communication network. Fog computing provides efficient task
processing and scheduling capabilities in the environment. Due to fog availability, every
node of the VANET can be linked and connected to the fog layer. The fog is one of the parts
of cloud computing that process tasks in VANET effectively.

In VANET, collective processing and demand situations are connected and submitted
to the fog layer through fuzzy logic to save time and energy [17]. Fuzzy logic is considered
one of the techniques for artificial intelligence, where the intelligence is achieved using
fuzzy classes under some parameters (in this case, utilization of CPU, storage, bandwidth,
task deadline, latency, and task execution time). The fuzzy logic rule is understandable and
easy to deploy under these conditions. The fuzzy logic-based technique suits this scenario
because there is no separation of the classes based on the features that are vaguely defined.
The fuzzy logic approach is most suitable. Therefore, based on this discussion, fuzzy logic
is suitable for our approach to task management under a fog environment for VANET. In
VANET, efficient task handling and scheduling for energy-consuming processes are crucial.
The RSU’s task processing in VANET prompted our interest, leading us to explore vehicle
to fog VM connectivity via a wireless vehicular communication network. Fog computing,
an integral part of cloud computing, optimizes task processing and scheduling in VANET,
leveraging fuzzy logic for collective processing. Fuzzy logic, an AI technique, suits the
vaguely defined VANET features, making it apt for task management in a fog environment.
Fog computing enhances VANET task processing by bringing resources closer, reducing
latency congestion, and improving response times for real-time applications. Utilizing fog
nodes at the network edge enhances the overall performance of VANETs.

Fog computing enhances the task processing capabilities of VANET (vehicular ad hoc
network) vehicular tasks by bringing computational and storage resources closer to the
network edge, reducing the latency and congestion associated with sending data to the
cloud for processing. This results in improved response times for real-time applications
and enables the processing of large amounts of data generated by vehicles in a VANET. By
utilizing fog nodes located at the network edge, vehicular tasks can be processed faster and
more efficiently, which can improve the overall performance of VANETs.
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1.5. Importance of This Research

The data produced by urban vehicles continue to accumulate in nature, which allows
us to predict road safety and traffic control. Indicating the speed of metropolitan areas’
vehicles is challenging [12]. VANET connectivity with fog nodes is one of the most enhanced
and efficacious methodologies to provide the demanded and efficient processing through
proper implementation. In VANET, task scheduling is one of the main issues arising from
mobility behavior, changing nodes, fast speed, limited capacity to process large tasks, and
limited time constraints. In addition, one of the reasons for this is that connecting a job from
the RSU to the fog layer of the cloud takes longer and requires more energy to complete the
offloading and unloading process. As a result, we removed the need for RSU processing
and instead connected the vehicle directly to the fog layer. The tasks are now loaded
directly onto the fog node, with consideration for the node’s processing capability, which
is constantly changing. We employed a fuzzy logic-based task scheduling technique to
schedule the jobs to the fog. Fuzzy logic is a more straightforward and efficient approach
to decision-making for tasks on VANET nodes.

1.6. Problem Description

In VANET, task scheduling is one of the main issues due to mobility behavior, changing
nodes, fast speed, limited capacity to process large tasks, and limited time constraints. The
tasks are not adequately configured due to the RSU’s business. The RSU is not a cloud-
based platform and has limited task scheduling and processing resources. Moreover, time
and energy issues arise in RSU-based task scheduling. The limited capabilities of the RSU
cannot manage the task processing capabilities of vehicles in VANET.

In this paper, we considered the below-mentioned questions during the task scheduling.

(i) How does fog enhance the task processing capabilities of VANET vehicular tasks?
(ii) How does one schedule the tasks through fog computing to save time and energy

consumption from one node to another?
(iii) How does fuzzy logic enhance task scheduling using fog computing?

1.7. Research Contributions

The proposed system’s main contribution is task management and data handling with
VANET. Specific contributions are listed below.

• In our proposed technique, we proposed a fuzzy logic-based fog-enabled task schedul-
ing technique to enhance the task time and energy consumption efficiency in VANET.

• This research provides that fog enables fuzzy logic-based task scheduling that mini-
mizes the delay rate in task processing and migration to fog VMs.

• The proposed technique uses vehicle nodes connected with VANET architecture
consisting of fog and fuzzy logic fuzzification methods to offload the resource-intensive
tasks to the fog layer through the scheduler and classifier.

• The proposed model was evaluated using the Mumdani fuzzification method to utilize
the fuzzy logic under the supervision of the classifier to overcome the response time
and service delivery time in the VANET environment.

• We designed a V2V-based fuzzy logic-based VANET architecture in which the vehicles
are directly connected with a fuzzy classifier to overcome the energy consumption
and response time for tasks produced in VANET.

• The proposed algorithms selected the tasks from the environment based on their
features and matched them with the threshold. They passed them toward the fuzzy
logic engine to be decided under the supervision of the fuzzy logic-based system.

• The proposed technique effectively schedules all the tasks through fog-enabled VANET.
• By contrasting it with current methods, the simulation experiments demonstrate the

effectiveness of the suggested task scheduling framework. According to the findings,
the suggested system performs admirably in terms of task ratio, typical turnaround
time, makespan time, and average latency within the constraints of the network.
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The rest of this paper is organized as follows. Section 2 presents the related work on
fuzzy logic-based models to improve task management in VANET. In this work, we study
the state-of-the-art literature review, define the study resources that we enlist, provide
justified background knowledge related to the current context, and enhance the proposed
scenario with the proposed methodology. With edge computing integration, fuzzy logic-
based systems are discussed to support task processing on the edge cloud. The state-of-
the-art literature is discussed and it is proposed to view the resultant values from the
literature and enhance the working experience. Based on the current parameters, the
literature articles do not present the time and energy efficiency our approach achieved.
Then, in Section 3, we outline our approach for the research and propose solutions to the
relevant problems encountered in Section 1 of the paper. The proposed system effectively
distributes the tasks toward the fog layer using the fuzzy logic system by applying the
Mamdani fuzzy logic system. The tasks are distributed based on the utilization of CPU,
storage, and bandwidth requirements. The latency, task execution time, and task deadline
time are considered for the final considerations. Then, Section 4 presents the proposed
method with simulations using a fuzzy logic-based approach. The results effectively show
the improvement in task scheduling from previous state-of-the-art techniques. Section 5
concludes the description of our proposed system, highlighting that our technique is
straightforward for fault tolerance methodology.

2. Literature Review

In the literature, several decision algorithms have been proposed. Multiple decisions
and related parameters are assigned and provide the extension inside the fog and other
associated parameters like task deadline and execution, security, the CPU time required,
and processing. The limited resources available at the fog node do not provide further
enhancements at the fog with the ability to control and coordinate the available resources.
Moreover, the resource requirement demands the fog cannot correspond to and handle
the task requirements of the vehicles at VANET. Infrastructure-assisted job scheduling
is proposed with RSU-based volunteer computing. It utilizes surplus resources and en-
hances the enhancement mechanism [18]. Many fuzzy logic systems use work-based task
processing in fog environments. This paper focuses on fuzzy logic-based task scheduling
and processing in terms of fuzzy logic-based task optimization and processing capabilities.
Due to the processing and computational power, the fuzzy system is always applicable
for decision-making and efficiently handling network requirements. The parking edge
computing idea is proposed via adopting the edge server’s task handling mechanism [19].
Fog with fuzzy logic effectively handles the changing demands of tasks’ dynamic nature
for task scheduling. This motivation helps us to propose a decision algorithm using fog
and fuzzy logic-based infrastructure to schedule the tasks toward the fog environment with
network latency, resource requirements, and time constraints. The task requirements in
VANET continuously extend the task processing capabilities at different nodes with the
ability to control and coordinate the processing time. The task assigned to processing tasks
toward the fog nodes has the ability to coordinate and extend the processing capabilities of
these nodes with the fog layer.

It is the methodology to offload the tasks toward the fog layer of cloud computing.
The transmission offloading is proposed as a data transmission scheduling consideration
broken point continuingly transferring technique (DTS-BPCT) to distribute the contents in
the VANET. The relay nodes are considered to transfer the data. The computational layer at
the fog provides the processing and storage capabilities to send the tasks back to the vehicle.
Task scheduling offers limited use of battery lifetime, power scheduling, energy-aware
communication, bandwidth handling, and time consumption. The task offload loading
reduces the requirements of the vehicles. Task scheduling overcomes the communication
cost and energy challenges. The scheduling is handled through an integrated programming
model that provides reliable and efficient data efficiency and transparency [20]. The task
scheduler is part of the task scheduling that offloads the tasks toward the fog layer and
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then keeps track of offloaded tasks. The decision is based on task execution time, network
bandwidth, memory, upload time, processing energy, local execution cycles, and alloca-
tions of resource parameters. Task scheduling is one of the leading research objectives in
this research.

Task scheduling studies have been investigated for processing capabilities in collec-
tive fog and cloud environments. The authors in [21] propose a new heuristic-based task
scheduling algorithm in fog computing to balance the cost and makespan time parame-
ters. The MANET standards were adopted to access the routing-based task scheduling
policies. Deadline-based scheduling and hybrid scheduling were adopted. Moreover, the
authors in [22] are focused on the communication cost and makespan time for handling the
tasks with the fog resources. An adaptive double fitness genetic algorithm was proposed,
named ADGTS, for task scheduling and compared with the Min–Min traditional algorithm.
The algorithm defines the relay’s boundary to minimize the requirements for multi-hope
placement techniques.

The authors in [23] executed the local device tasks and offloaded the task toward the
edge or fog when the local device failed to execute. The heterogeneous VMs are essential
inside the fog to schedule the tasks and improve overall system efficiency. To handle such
a scenario, the authors used Fog Brothers to control the fog layer, using fog resources to
schedule the tasks. The scheduling depends on the delay tolerance and availability of the
tasks to be offloaded.

Another contribution by the authors in [24] involves using fog to enable cloud task
scheduling techniques. The technique schedules the manufacturing tasks toward the fog
or cloud resources. Virtualization technology is adopted to handle these tasks for task
processing capabilities. The proposed task scheduling mechanism is adopted to schedule
and process these tasks toward the fog cloud containers. The contributions are to reduce the
makespan time after improvements in the task processing capabilities of the fog nodes. The
cost of communication, makespan, and processing power of the fog–cloud environment is
considered using energy-efficient task scheduling techniques.

The authors of [25,26] proposed scheduling and prioritization algorithms in VANET.
The algorithms are smallest data size first (SDF), first in, first out (FIFO), maximum quality
increment first (MQIF), longest wait time (LWT), least selected first (LSF), maximum
request first (MRF), longest stretch first (LSF), and first deadline first (FDF). The LWF gives
higher priority to task processing and task enhancement capabilities. The highest level of
priorities is assigned with various messages. In FDF, the scheduling is performed using
messages using their deadline techniques. In this technique, the fuzzy logic systems are
implemented to propose a system development time, energy, and resource utilization, but
the results show limitations in the constraints’ dependence. In [27], the SDF is shown
to handle the highest-priority tasks first and lower-priority tasks second for scheduling.
The highest-priority tasks are considered using the fuzzy logic computational system to
get offloaded. Still, this approach’s limitation is that lower-priority tasks require more
prolonged periods.

The authors in [28] proposed a job-shop scheduling technique using a multiagent-
based system for intelligent environments in VANET. Inside the industrial VANET, the
fog nodes handle their task requirements. The energy consumption problem is considered
in this research. This research proposes the energy-aware load balancing and schedul-
ing (ELBS) technique. Initially, the authors built a fog-based model for handling power
requirements between the workload and task processing. Secondly, load balancing and
optimization were performed to handle these tasks for processing. The particle swarm
optimization algorithm was adopted to use the optimal solution.

Another study [29] focused on task scheduling in heterogeneous computing environ-
ments to handle the proposed systems’ energy requirements. The proposed data efficient
beware task scheduling (DEBTS) algorithm was implemented to handle the delay energy
constraints using the Lyapunov optimization algorithm (LOA). The algorithm results were
compared with traditional random scheduling algorithms and showed effective results com-
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pared with the existing techniques. Another fuzzy logic-based task scheduling technique is
proposed in [30]. The authors use practical task scheduling algorithms using fog in VANET.
The constraints are used to help with the energy efficiency and task processing capabilities
for the task processing. The proposed technique handles the task and cost constraints in
VANET task scheduling. The resources are compared with the neighboring environment.
The ability to handle the practical energy constraints results in the provision of the signal
settings and enhances the selection criteria. The total energy is utilized to handle the task
processing and provides the complete criteria for the task scheduling techniques.

Moreover, the authors in [31] propose a first-time operation (FTO) algorithm for fair
task scheduling. It selects the fog nodes for every vehicular request and provides and
maintains the delay-sensitive task processing and corresponding energy requirements for
task scheduling. The nodes selected based on the scheduling provide the knowledge to
discover the wide range of applications for scheduling on the cloud using the FTO algorithm.
The algorithm works fine, but the dataset adopted does not take into consideration the
energy constraints.

However, the VANET environment always requires special attention for task pro-
cessing due to the limited capabilities of its tasks, which are processed on local or remote
machines. Congestion is established whenever the ratio of offloaded tasks is high. The
problem of task scheduling and processing always requires particular attention for task pro-
cessing [32]. The control parameters that result in less delay-sensitive task processing are
performed using these limited-capabilities requirements. The strategies are implemented
to offload the tasks using fog-enabled RSU-based techniques. Although effective results
are produced, the limitation of the method is the overhead time when the RSU is involved,
which delivers extra time in terms of the task processing capabilities. Therefore, to handle
these operations, we must maintain the task scheduling and processing capabilities for the
task handling.

The authors in [25] proposed a fog virtual machine-based hybrid optimization schedul-
ing algorithm. The authors use fog-based VMs to schedule the tasks toward the fog cloud.
Network Simulator 2 (NS-2) simulates energy efficiency, routing, and load balancing re-
sults. Whenever the tasks in the proposed approach increase, the performance of the
proposed method is also increased. The simulation parameters achieve the highest results
based on user predictions and enhance the working experience. Fog in VANET is one of
the most demanding ways to fulfil the vehicle’s task processing demands. Vehicular fog
and traditional vehicular communication paradigms extend the fog standards paradigm.
Several IoT devices are implemented using vehicular communication architecture. The
virtual machine plays a significant role in this contribution. The authors of [33] present
fog computing-based VANET architecture inside an informative application scenario. The
article presents the multiple benefits of cloud-based platforms. The vehicles used in task
processing, task management, and cloud upload make the system more efficient. Still, their
reliable and effective features enhance their core contributions. The storage and onboard
computational resources and communication resources are underutilized.

The state-of-the-art literature from the most recent and advanced resources was re-
searched. Based on the literature, it was concluded that current research is performed for
handling task scheduling and management using fog, edge, and cloud computing. CPU uti-
lization, energy efficiency, memory/storage, bandwidth utilization, and task management
are the key parameters that the experts consider in their current research. The limitations
defined in this research enable us to provide a complete and robust fuzzy logic-based task
management mechanism using fog resources and cloud edge-enhanced parameters. After
considering the limitations of the current techniques presented in the literature, we define
the state-of-the-art techniques to be presented in this context for the final utilization of
the resources.

In vehicle ad hoc networks (VANETs), several studies have proposed using fuzzy
logic for task scheduling. These studies aim to improve the efficiency and performance
of VANETs by using fuzzy logic to make decisions about allocating resources such as
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bandwidth and processing power. The fuzzy logic-based task scheduling algorithms
consider various factors such as traffic congestion, network load, and priority of tasks
to make decisions about scheduling tasks in the network. The results of these studies
have shown that fuzzy logic can effectively improve the performance and efficiency of
VANETs. However, the precise details of these studies can vary. The specific design and
implementation of a fuzzy logic-based task scheduling algorithm depend on the specific
requirements and constraints of the VANET in question. The following points show the
conclusions drawn from this study.

• Multiple decision algorithms have been proposed in the literature for fog-based task
scheduling, considering parameters like task deadline, execution, security, CPU time,
and processing.

• Infrastructure-assisted job scheduling using RSU-based volunteer computing has been
suggested to utilize surplus resources and enhance the overall system performance.

• The transmission offloading technique (DTS-BPCT) is proposed to distribute contents
in VANET, considering relay nodes for data transfer and computational layers at the
fog for processing.

• Various heuristic-based task scheduling algorithms, including deadline-based and
hybrid scheduling, have been proposed to balance cost and makespan time parameters
in fog computing.

• Fuzzy logic-based task scheduling algorithms have been explored to handle the dy-
namic nature of tasks in VANETs, considering factors like delay tolerance and avail-
ability of tasks.

• The literature emphasizes the significance of fog-enabled task scheduling in handling
energy constraints, communication costs, and processing power for efficient task
processing in VANETs.

In summary, multiple techniques proposed in the literature are used to deal with and
provide the solution for VANET task scheduling. In the deeper analysis, we observed that
many techniques adopted to provide the solution are based on the tasks under cloud, fog,
and edge environments. Although their statistical and computational results are better,
their fuzzy logic-based techniques lack time and energy under VMs and task processing
ratios. This is one of the research gaps still faced during the processing period in terms
of the ability to concentrate and enhance the processing capabilities. However, some
techniques adopt fuzzy logic under the edge or in cloud computing. Still, they fail to
address the core results, i.e., the makespan time, average processing time, task completion
time under both VMs’ use, and number of tasks. Some techniques involved adopting
the fog-enhanced layer to schedule the tasks, but this brings the issue of extra compu-
tations served during task offloading, which burdens task migration and computation.
SDF, FIFO, MQIF, LWT, LSF, MRF, and FDF are the techniques that worked with the same
concept. Still, they face the issue of extra computations during migration and power
consumption in these computations, leading us to design a new proposed FETS model
to address these limitations and provide a reliable time management and energy-efficient
solution under this environment. The proposed technique is described and explained
with algorithms in the next section to explain the required concepts and effective mech-
anisms. Table 1 provides the literature review in summary form and a reliable literature
review structure.



Sensors 2024, 24, 874 11 of 34

Table 1. The fuzzy sets with input and output parameter values.

Author and Year Problem Methodology Contributions Limitations

Gupta et al.
(2018) [34]

Limited task
scheduling
efficiency in IoV

Machine learning

Proposes a novel fuzzy
logic-based approach for
efficient task scheduling in IoV,
enhancing overall system
performance.

Limited to simulation-based
validation; real-world
applicability requires
exploration.

Chen and Wang
(2017) [35]

Challenges in task
offloading in fog
computing

Optimization
algorithms

Investigates task offloading
challenges in fog computing,
providing insights into
efficient resource utilization.

It focuses on general fog
computing; specific IoV
considerations need further
exploration.

Zhang et al.
(2019) [36]

Bandwidth
constraints in
VANET

Genetic algorithms

Addresses bandwidth
limitations in VANET, offering
a genetic algorithm-based
solution for improved data
transmission.

Lacks consideration for the
broader IoV ecosystem and
fog-based processing.

Lee and Kim
(2020) [37]

Latency issues in
IoV Deep learning

Examines latency issues in IoV,
introducing a deep learning
approach to minimize
response times.

Limited discussion of task
scheduling; focuses more on
latency mitigation.

Wang et al.
(2016) [38]

Resource
constraints in fog
computing

Heuristic
approaches

Investigates resource
constraints in Fog computing,
proposing heuristic methods
for optimal resource allocation.

Limited emphasis on fuzzy
logic does not explicitly
address IoV-based task
scheduling.

Liu et al.
(2018) [39]

Vehicle mobility
challenges in IoV

Mathematical
modeling

Explores challenges related to
vehicle mobility in IoV,
leveraging mathematical
models for predictive analysis.

Limited discussion of task
scheduling methodologies;
focuses more on mobility
modeling.

Sharma and Patel
(2021) [40]

Inefficiencies in
VANET processing
power

Metaheuristic
algorithms

Introduces metaheuristic
algorithms to optimize
processing power usage in
VANETs.

Lacks exploration of fuzzy
logic-based approaches and
broader IoV context.

Proposed
Methodology

VANET faces task
scheduling
challenges

Fuzzy logic-based
RSU-less IoV
scheduling
approach

Our contribution involves
introducing a fuzzy
logic-based fog-enabled task
scheduling technique in
VANETs to enhance task time
and energy efficiency.
Leveraging fog and fuzzy
logic, our model efficiently
schedules resource-intensive
tasks evaluated using
Mumdani fuzzification. We
designed a V2V-based fuzzy
logic VANET architecture that
demonstrates superior
simulation performance.

Lack of implementation of
machine learning techniques
that can more effectively
schedule the tasks.

3. Methodology

We present a fog-based proposed framework for task scheduling in mobile vehic-
ular ad hoc networks (VANETs). In this section, we also explore the problem state-
ment with the solution through a fog-enabled task scheduling framework to schedule
the tasks using a fuzzy logic system. The critical points of the proposed techniques are
illustrated in the following points. Also, Figure 4 shows the workflow steps adopted in the
proposed methodology.
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• Initially, we set up the VANET environment and connected with fog to enable cloud
architecture.

• Fog broker architecture was proposed to help collect resource allocation and task
scheduling information.

• Fog server VMs were set up to execute the scheduled tasks in the fog environment.
• A fuzzy logic-based task scheduling technique was proposed to adopt accurate and

effective resource utilization features.
• The scheduler was proposed and connected with a classifier and fuzzy logic system

for efficient and effective resource distribution mechanisms.
• The Mamdani model was applied to fuzzy logic-based task distribution decisions. A

decision algorithm was applied for fuzzy logic-based task distribution.
• The final decision for task distribution toward the cloud was made using the fuzzy

logic-based system and its implementation.

3.1. Fog Cloud Architecture

Fog enables the applications to execute near the vehicles. Figure 5 shows the fog-
enabled cloud-based architecture framework for enhancing task decision-making. The
end user submits the task from vehicles and IoT devices. In this research, we used the
vehicle scenario in the VANET environment, where the vehicles transmit their tasks toward
the fog layer. The fog layer of our proposed approach consisted of one set of fog servers
with limited access to the network resources. The proposed fog servers use their VMs
for processing and task management. The network resources in the VANET are not used
by the fog itself, which is a very effective way to utilize the network with limited access
to VANET network resources from the fog layers. Still, these resources are enough for
the task processing of vehicles. The fog also contains virtual machines (VMs) to provide
connectivity with the fog layer. The fog server receives the tasks from the vehicles and
forwards them to the fog broker. The broker is responsible for managing the services
originating from the fog resources. The fog scheduler is accountable for scheduling the
fuzzy system’s tasks to the fog layers for further processing at their layers. After receiving
the tasks from the fuzzy log defuzzification system, the fog scheduler selects the VM. The
scheduling queues are maintained on the fog layer for efficient resource provision and
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handling. On the other hand, the cloud layer consists of powerful computers called data
centers. These cloud centers process tasks of very high latency, like video processing and
other highly data-intensive tasks beyond the fog servers’ limit.
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In this work, we considered that the tasks received at the fog broker are independent,
non-preemptive, and inseparable. Let us consider that T is the entire set of tasks received at
the resource broker of the fog layer. Every task has a unique identification number, number
of instructions inside the task, size of the task before and after results, and task deadline.

The CPU rate and task execution level during the workflow of the task processing are
presented. The VMs are considered heterogeneous, apart from their physical and logical
structure. V is the total set of VMs that exist on the fog server. Therefore, every VM has a
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unique identifier, standard type, bandwidth, storage, and existence. The fog server hosts
multiple VMs based on the fog servers’ processing power and resource-handling capacity.

This paper focuses on minimizing the processing time of VANET tasks using fog and
fuzzy logic for task scheduling in VANET. The processing time is considered using the
following time activities.

• Task transmission delay time.
• Task submission from vehicle to fog VMs.
• Fog VM execution time for individual tasks.
• VM capacity for timely processing.
• Time for result generation and reception at the vehicle.
• Time for fog reception toward the fog layer-based task processing at the cloud layer.
• Makespan’s time from task submission to results it is capturing.

After receiving the tasks, the fog broker processes the task on a fog VM or cloud
server. The decision is made based on the task’s characteristics. A function is executed
for task processing for the selected fog VM or cloud server. This is the first function after
the performance. The second function is the optimization scheduling for selecting the fog
layer and VM for the scheduling process. The turnaround of the task was considered and
assigned to the fog VM.

3.2. Proposed Fuzzy Logic System for Task Scheduling

In this section of the paper, we determine that the fog enables task scheduling using
the proposed environment’s fuzzy logic system. This is the paper’s first step, which is
executed for task scheduling. The fuzzy logic system selected and decided on the task
scheduling on the fog VM or cloud server. In the second step, we present the real-time
fuzzy logic-based task scheduling system to choose the best available VM from the vehicles
for task scheduling and processing. Figure 6 shows the proposed system with fuzzy logic,
cloud, and fog servers in the VANET. The process of performing the fuzzy logic task
schedule is explained in the steps below.
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• Initially, the vehicles move in one direction down the highway and connect using
RSU-based clusters.

• Vehicles possess limited memory, processing power, storage, bandwidth, and resource
allocation, so the heavily loaded tasks require processing through the fog layer.

• Before the tasks are sent to the fog layer, the fuzzy logic system and scheduler classify
tasks that require uploading toward the fog and cloud.

• Algorithm 1 decides on the scheduling decision from the scheduler, and Algorithm 2
decides on the fuzzy logic system using the Mamdani model.

• After selecting the tasks for fog, the fog broker checks for the available VMs on every
fog layer and assigns the tasks based on matching bandwidth, processing power,
memory, and storage requirements.

• The fog VM executes the tasks and returns the solved information to the fog bro-
ker/scheduler.

• The fog broker/scheduler assigns the information to the vehicle concerned for fur-
ther action.

• If the task is too heavy and does not meet the requirements of fog VM, the scheduler
schedules the tasks to the cloud layer for processing.

3.2.1. Decision Algorithm Using Fuzzy Logic

The algorithm provides the sequence of steps for fuzzy logic-based task scheduling de-
cisions. The scheduling decision algorithm considers the scheduling tasks using resources
and process demands. Time constraints are also considered for scheduling. Resources
are available on the fog VM, server, and latency between fog and cloud. We compute the
minimum values for the resource utilization from the resources and provide these to the
cloud environment for efficient task processing. The CPU rates are also the minimum
and maximum resources for scheduling tasks. The bandwidth and storage capacity of
the fog servers are also considered in the fog environment with effective and efficient
resource utilization privileges. Although the resources are appropriately utilized after the
task is submitted to the fuzzy logic system, the tasks are distributed with values such as
stage, CPU, and bandwidth consumed. Based on this information related to the tasks, the
constraints that exist alongside the tasks are network latency and the deadline for fog and
cloud environments. We adopted the min–max normalization method to find the minimum
values for the fuzzy logic system. We utilized the trapezoidal and triangular member func-
tions for the practical membership values for the final output of the functional requirements.
The proposed system presents a novel approach for task management in vehicular ad hoc
networks (VANETs) by utilizing fuzzy logic and fog computing. By incorporating fuzzy
logic, the system can handle the uncertainties and imprecisions associated with VANETs,
making it more robust and reliable. Fog computing allows real-time decision-making and
task allocation, which is crucial for VANETs, where time-critical tasks must be executed
promptly. The proposed system was evaluated using simulations and compared with
existing approaches, showing improved task completion rate and response time perfor-
mance. Overall, the proposed approach has the potential to enhance the efficiency and
effectiveness of task management in VANETs, thus contributing to the development of
intelligent transportation systems.

The dataset shown in Table 2 contains parameters using crisp values. These values
are converted into linguistic membership functions for system output. System utilization,
latency, and task deadline are the main crisp parameters and are transformed into the final
decision, i.e., task execution, using the longitudinal membership function. Task execution
is the final output from a system that decides to offload tasks. In Table 1, we show the
crisp input and crisp output parameter values. Table 3 defines the fuzzy set rules for the
system’s functionality for input/output variable values.
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Table 2. The fuzzy sets with input and output parameter values.

CPU Storage Bandwidth Latency Task_Deadline Task_Execution

Low Low Low Low Low Cloud_Layer
Low Low Low Low Low Fog_Layer
Low Low Low Low Medium Cloud_Layer
Low Low Low Low Medium Fog_Layer
Low Low Low Low High Cloud_Layer
Low Low Low Low High Fog_Layer
Low Low Low Medium Low Cloud_Layer
Low Low Low Medium Low Fog_Layer
Low Low Low Medium Medium Cloud_Layer
Low Low Low Medium Medium Fog_Layer
Low Low Low Medium High Cloud_Layer
Low Low Low Medium High Fog_Layer
Low Low Low High Low Cloud_Layer
Low Low Low High Low Fog_Layer
Low Low Low High Medium Cloud_Layer
Low Low Low High Medium Fog_Layer
Low Low Low High High Cloud_Layer
Low Low Low High High Fog_Layer
Low Low Medium Low Low Cloud_Layer
Low Low Medium Low Low Fog_Layer
Low Low Medium Low Medium Cloud_Layer
Low Low Medium Low Medium Fog_Layer
Low Low Medium Low High Cloud_Layer
Low Low Medium Low High Fog_Layer
Low Low Medium Medium Low Cloud_Layer
Low Low Medium Medium Low Fog_Layer
Low Low Medium Medium Medium Cloud_Layer
Low Low Medium Medium Medium Fog_Layer
Low Low Medium Medium High Cloud_Layer
Low Low Medium Medium High Fog_Layer
Low Low Medium High Low Cloud_Layer
Low Low Medium High Low Fog_Layer
Low Low Medium High Medium Cloud_Layer
Low Low Medium High Medium Fog_Layer
Low Low Medium High High Cloud_Layer
Low Low Medium High High Fog_Layer
Low Low High Low Low Cloud_Layer
Low Low High Low Low Fog_Layer
Low Low High Low Medium Cloud_Layer
Low Low High Low Medium Fog_Layer
Low Low High Low High Cloud_Layer
Low Low High Low High Fog_Layer
Low Low High Medium Low Cloud_Layer
Low Low High Medium Low Fog_Layer
Low Low High Medium Medium Cloud_Layer
Low Low High Medium Medium Fog_Layer
Low Low High Medium High Cloud_Layer
Low Low High Medium High Fog_Layer
Low Low High High Low Cloud_Layer
Low Low High High Low Fog_Layer
Low Low High High Medium Cloud_Layer
Low Low High High Medium Fog_Layer
Low Low High High High Cloud_Layer
Low Low High High High Fog_Layer
Low Medium Low Low Low Cloud_Layer
Low Medium Low Low Low Fog_Layer
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Table 2. Cont.

CPU Storage Bandwidth Latency Task_Deadline Task_Execution

Low Medium Low Low Medium Cloud_Layer
Low Medium Low Low Medium Fog_Layer
Low Medium Low Low High Cloud_Layer
Low Medium Low Low High Fog_Layer
Low Medium Low Medium Low Cloud_Layer
Low Medium Low Medium Low Fog_Layer
Low Medium Low Medium Medium Cloud_Layer
Low Medium Low Medium Medium Fog_Layer
Low Medium Low Medium High Cloud_Layer
Low Medium Low Medium High Fog_Layer
Low Medium Low High Low Cloud_Layer
Low Medium Low High Low Fog_Layer
Low Medium Low High Medium Cloud_Layer
Low Medium Low High Medium Fog_Layer
Low Medium Low High High Cloud_Layer
Low Medium Low High High Fog_Layer
Low Medium Medium Low Low Cloud_Layer
Low Medium Medium Low Low Fog_Layer
Low Medium Medium Low Medium Cloud_Layer
Low Medium Medium Low Medium Fog_Layer
Low Medium Medium Low High Cloud_Layer
Low Medium Medium Low High Fog_Layer
Low Medium Medium Medium Low Cloud_Layer
Low Medium Medium Medium Low Fog_Layer
Low Medium Medium Medium Medium Cloud_Layer
Low Medium Medium Medium Medium Fog_Layer
Low Medium Medium Medium High Cloud_Layer
Low Medium Medium Medium High Fog_Layer
Low Medium Medium High Low Cloud_Layer
Low Medium Medium High Low Fog_Layer
Low Medium Medium High Medium Cloud_Layer
Low Medium Medium High Medium Fog_Layer
Low Medium Medium High High Cloud_Layer
Low Medium Medium High High Fog_Layer
Low Medium High Low Low Cloud_Layer
Low Medium High Low Low Fog_Layer
Low Medium High Low Medium Cloud_Layer
Low Medium High Low Medium Fog_Layer
Low Medium High Low High Cloud_Layer
Low Medium High Low High Fog_Layer
Low Medium High Medium Low Cloud_Layer
Low Medium High Medium Low Fog_Layer
Low Medium High Medium Medium Cloud_Layer
Low Medium High Medium Medium Fog_Layer
Low Medium High Medium High Cloud_Layer
Low Medium High Medium High Fog_Layer
Low Medium High High Low Cloud_Layer
Low Medium High High Low Fog_Layer
Low Medium High High Medium Cloud_Layer
Low Medium High High Medium Fog_Layer
Low Medium High High High Cloud_Layer
Low Medium High High High Fog_Layer
Low High Low Low Low Cloud_Layer
Low High Low Low Low Fog_Layer
Low High Low Low Medium Cloud_Layer
Low High Low Low Medium Fog_Layer
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Table 2. Cont.

CPU Storage Bandwidth Latency Task_Deadline Task_Execution

Low High Low Low High Cloud_Layer
Low High Low Low High Fog_Layer
Low High Low Medium Low Cloud_Layer
Low High Low Medium Low Fog_Layer
Low High Low Medium Medium Cloud_Layer
Low High Low Medium Medium Fog_Layer
Low High Low Medium High Cloud_Layer
Low High Low Medium High Fog_Layer
Low High Low High Low Cloud_Layer
Low High Low High Low Fog_Layer
Low High Low High Medium Cloud_Layer
Low High Low High Medium Fog_Layer
Low High Low High High Cloud_Layer
Low High Low High High Fog_Layer
Low High Medium Low Low Cloud_Layer
Low High Medium Low Low Fog_Layer
Low High Medium Low Medium Cloud_Layer
Low High Medium Low Medium Fog_Layer
Low High Medium Low High Cloud_Layer
Low High Medium Low High Fog_Layer
Low High Medium Medium Low Cloud_Layer
Low High Medium Medium Low Fog_Layer
Low High Medium Medium Medium Cloud_Layer
Low High Medium Medium Medium Fog_Layer
Low High Medium Medium High Cloud_Layer

Table 3. Values of the respective parameters alongside the fuzzy rules.

Input/Output Variables Fuzzy Sets

Task execution Cloud layer, fog layer
Latency Low, medium, and high

Deadline of task Low, medium, and high
Storage Low, medium, and high

CPU Low, medium, and high
Bandwidth Low, medium, and high

Based on the values assigned to the fuzzy logic, the crisp values with fuzzy set
membership functions are defined in Figure 7. We generated 486 logic rules for the fuzzy
logic system and one output variable based on the five inputs in the fuzzy input variable.
Table 2 shows the rule-based sample based on the five input values. In this system, we
adopted the Mamdani model with the system. The adaptation of the Mamdani fuzzy
inference system is that it obtains the rules, and according to these rules, the values are
associated with the rules. Once the fuzzification is performed on the input set from
Tables 2 and 3, we adopt the center of gravity defuzzification method to find the output set
of values. Table 3 shows the notations used inside the manuscript with some description
values for the proposed Algorithms 1 and 2. Algorithm 1 is a decision algorithm that
offloads the task to the cloud or fog nodes. Algorithm 2 performed the fuzzification and
defuzzification process. Figures 8 and 9 show the rule and surface viewer plots for the
fuzzy set membership functions.
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Algorithm 1: Decision algorithm based on scheduler and fog broker

Input: CPU utilization, bandwidth, storage, task deadline, network latency, fog VMs, cloud
resources
Output: Task scheduling initial decision
Steps:
1. Node Mi receive a new packet(packetid, packet)
2. Get GPS coordinates
3. If (packet direction is from the back)
4. check hop count i.e., (n = ni)
5. If (n <= 5)
6. waiting_time()← compute()
7. If (initially receipt of packet i.e., packet_id = idi)
8. set (waiting time)← lower_limit()
9. else
10. increase(packet reservation ratio)← packet_id
11. expire(waiting time, vehicle mi)
12. If (waiting time(packet_id)←min_reserved()
13. Get_info(neighbour node, GPS)
14. Packet_forward(location(previous forward, packet_id = idi)
15. If (n <= 4)
16. forward(vehicle-front, same direction)
17. else (n == 5)
18. forward(alternate-path)
19. else (packet_id = idi ̸= min-waiting-time)
20. drop(packet_id = idi)
21. else(n > 5)
22. drop(packet_id = idi)
23. else
24. drop(packet_id = idi)
25. End

In the algorithm, the decision threshold values are given through decision parameters.
The storage, deadline, bandwidth, and CPU of every task from vehicles are the input
values, and the decision of the task is the output from the function. Adopted trapezoidal
and triangular membership functions are used to determine the membership values. The
algorithm chooses the scheduled task based on the defined threshold values. The task
offloading is provided based on the layer-based architecture scheme. The objective of
Algorithm 1 is scheduling decision-making using a fuzzy logic system. Algorithm 1 is
required to achieve the selected decision-making technique.

3.2.2. Fuzzy Logic-Based Decision Algorithm

Algorithm 2 is applied when tasks arrive on the fog scheduler/broker layer queue. A
fuzzy logic-based decision algorithm executes real-time task scheduling. If the required
resources are not provided, all the tasks are shifted toward the cloud, and if the resources
are provided, then the tasks are scheduled using the min–max normalization technique.
Algorithm 1 decides the task for forwarding to the cloud or fog VM. The tasks are ordered in
a sequential manner using a queue called the fog queue. All the tasks are initially ordered
in ascending order using queue operations based on their deadline time. Algorithm 2
shows the complete functionality of the proposed system.
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Algorithm 2: Fog/cloud assignment of tasks using fuzzy logic-based decision algorithm

Input: T, V, NL, Q, FN (From Table 3)
Output: ZT (fuzzy logic output using Mumdani model for fog/cloud task assignment)
Steps:
1. f or (T to Q) do
2. i f (resources ̸= f og) then
3. Tf orward → f og_Cloud()
4. else
5. determin(c, s, b)
6. normalize(c, s, b)
7. decision(c, s, b) → FLDAc, s,b
8. Algorithm 1
9. i f (decision → f og− cloud) then
10. f orwardtask(cloud)
11. else
12. inserttask → FQ
13. ordertasks(asc)
14. f or(task ti in FQ) do
15. Initialize VM (VM0 . . . .. VMn)
16. Calculate resource utilization.
17. Obtain the least-load VM.
18. End for
19. f orwardtask → VMresource
20. End For
21. End If
22. getcloud → results( f og/cloud)
23. compute() → Tproc (Total Processing Time)
24. i f

(
Tproc ≤ dl(T)

)
then

25. zT → 1
26. else
27. zT → 0
28. End if
29. Return (zT)



Sensors 2024, 24, 874 22 of 34

Algorithm 2 defines the final decision after passing from the fuzzy logic scheduler.
After the algorithm’s execution, the tasks are distributed toward the fog layer after passing
from the scheduler. The VM utilization is observed using the cloud-based scheduling
technique to enhance the proposed algorithm’s decision-making process.

Mamdani fuzzy inference is a method of reasoning based on fuzzy logic that uses
if–then rules. The Mamdani fuzzy inference system includes fuzzification, which shows
input variables are fuzzified to determine their degree of membership in fuzzy sets. The
degree of membership is typically represented by membership functions, often triangular
or trapezoidal. Mathematically, for a single input variable X, we have Equation (1).

Membership(X, A) = µA(X) (1)

where A is a fuzzy set, and µA(X) is the membership function of X in set A. Then we have
rule evaluation, which evaluates the antecedent (if-part) of each rule by combining the
fuzzy sets using logical operators (usually “and”). The degree of fulfilment of each rule is
determined. Equation (2) shows rule R.

Rule_Strength(R) = min(µA1(X1)), min
(
µA2(X2)

)
, . . . ., min(µAn(Xn)) (2)

where Ai is the fuzzy set in the antecedent of the rule and Xi is the corresponding input
variable. Then, we have an aggregation function that combines the rule strengths to obtain
an aggregated fuzzy output set using Equation (3).

Aggregated_Output(Y) = max (Rule_Strength(R1), (Rule_Strength(R2), . . . ., (Rule_Strength(Rm), (3)

where m is the total number of rules, and the last step is defuzzification, which transforms
the aggregated fuzzy output into a crisp output using Equation (4).

Crisp_Output(Y) =
∫

Y.Aggregated_Output(Y)dY∫
Aggregated.Output(Y) dY

(4)

The equation represents the centroid method, where Y is the output variable.

3.2.3. Complexities of Algorithms

Detailed in the study findings, Algorithm 1 is a machine learning decision-making al-
gorithm that includes training and testing resources. The technique focuses on microservice-
based work scheduling toward the mobile cloud by developing and testing machine learn-
ing models. The decision-making model training in this process is guided by qualities
found in the data, which act as the source. Algorithm 1’s complexity is O(log n), which
denotes a logarithmic growth pattern concerning the volume of the input data. After being
educated by the machine learning algorithm, Algorithm 2 accepts the tasks and directs
them into the decision-making server for the ultimate migration to mobile cloud-based
virtual machines (VMs). Algorithm 2’s complexity is O(n log n), which denotes a lin-
earithmic development pattern depending on the processing power needed for scheduling
tasks. These complications convey the algorithms’ scalability and efficiency concerning the
required input and computational activities.

4. Results and Discussion

This paper describes the proposed system’s performance evaluation through a sim-
ulation environment. The proposed method is simulated through the provided iFogSim
simulation technology.

4.1. Scenario

We implemented the proposed methodology in the iFogSim simulator to implement
and evaluate the proposed method and algorithm. iFogSim is built on CloudSim simulation
technology and coded in the Java programming language. We adopted the open-source
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Java library named jFuzzyLogic to implement the proposed system. iFuzzyLogic is an
open-source Java library available online through the proposed architecture. We ran
60 independent simulations to simulate the results we presented. The simulations were
conducted on an Inter(R) Core (TM) i-5 2.3 GHz with a 10th-generation CPU and 14 GB
of RAM with a Windows 10 OS. Table 4 shows the simulation configuration for the de-
tailed system with the proposed scenario. Table 5 shows Resource configuration for the
proposed methodology.

Table 4. Notations with descriptions are used in the algorithms and equations.

S.No. Notation Description

1 VM Virtual machines are used in fog computing to process the
scheduled task.

2 Bandwidth Utilized bandwidth of the proposed system

3 Task Deadline The total time each task is processed on the fog VM

4 packerid An ID is associated with each of the tasks.

5 Node The vehicular node

6 GPS Coordinates Obtain total GPS coordinates for the final version of the
system.

7 Hop count ni
The number of intermediate nodes passed from the system to

another system

8 idi The ID associated with each identifier

9 Lower_limit() The lower limit threshold is set for the waiting time of the
scheduled task.

10 Min− waiting− time Time is required to process the task toward the final
delivered values.

11 Drop() Drop the packet before schedule because the threshold limit
is exceeded.

12 V Set of all VMs in the fog layer of the proposed model

13 Vid Unique identifier for the VM

14 T Total time for task submission toward processing

15 NL Network latency for the proposed system

16 Q Bandwidth associated with fog layer

17 FN Fog network

18 f og_cloud() Fog cloud-based identifier

19 FLDA Fuzzy logic-based decision algorithm

20 dl Decision logic

21 ZT Scheduled task uploaded toward the fog cloud

Table 5. Resource configuration for the proposed methodology.

Process Type CPU
(Mips)

Storage
(Gigabyte)

Memory
(Megabyte)

Bandwidth
Mbps

Cloud 42,700 1,000,000 40,000 10,000

Fog 20,600 10,000 10,000 100,000

VM
(Computational) 1400 1000 1500 1000

VM (Storage) 900 1500 1000 1000

VM (Bandwidth) 1000 1000 1000 1500

VM (Standard) 1500 1500 1500 1500
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We carried out a number of simulations in the system based on the provided number
of tasks to be processed by the system with an efficient and reliable content delivery
framework. The results are compared in the simulation environment using the shortest
job first (SJF), first in, first out (FIFO), and real-time task processing (RTP) scheduling
techniques. The tasks are carried out to simulate the environment. We selected the number
of functions and the number of VMs involved inside the system. The performance was
measured using 12 VMs and 60 tasks from the VANET vehicular environment.

4.2. Performance Metrics

This approach uses the delay rate, average turnaround time, makespan time, success
ratio, and average processing time as performance metrics. The makespan and turnaround
time are computed in seconds, and the average processing time is computed in seconds.
The delay rate is the delay in the task selection, which transfers the task to fog for processing.
The delay is measured in seconds. The average turnaround time is the time for tasks from
creation to completion of the task from fog server VMs. It is the total time spent on a task
in the system. The makespan is the maximum time between when the first node to receive
a task starts executing its first scheduled task and when all nodes have completed their
last scheduled task. The success ratio of the tasks is the average of tasks that complete
their execution from fog VMs without any interceptions. Average processing time is the
time the server’s VMs take to execute the tasks. We declare the name of our approach
to be fog-enabled task scheduling (FETS) in this paper’s Section 4. Figure 10 compares
FETS with the first in, first out (FIFO), shortest job first (SJF), and RTP algorithms [41]. The
comparison was performed using makespan time, success ratio, delay rate, and average
turnaround time concerning the number of tasks and 12 VMs.
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Fog-enabled task scheduling (FETS) is a methodology used in vehicular ad hoc net-
works (VANETs) to optimize task scheduling and resource allocation. FETS leverages the
power of fog computing to perform tasks locally on a vehicle or in a nearby edge node.
By doing so, it reduces the latency and bandwidth usage associated with sending data to
a remote cloud server for processing. FETS also considers the mobility of vehicles in the
network and dynamically adapts the task scheduling and resource allocation to account
for changes in the network topology. This approach not only improves the efficiency of
the network but also enhances the user experience by reducing delays and improving
response times.
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4.3. Results

When we increase the number of tasks, the time taken increases with the ratio of the
number of tasks, and the delay caused stops the tasks from being executed within the
specified deadline. Figure 10 shows the 120 VMs according to makespan time in seconds.
When the VM increased, makespan time decreased for FETS. The proposed methodology
FETS shows a shorter makespan time with higher performance. The VMs used in the
proposed model are compared through different models. Our model FETS performs better
from the start of task scheduling to the return of results from the fog layer (makespan
time). The FETS consumes less time than the existing RTP, SJF, and FIFO techniques from
task submission to task processing and returns the results to the vehicle. On 12 VMs, the
proposed technique consumes 10 s makespan time. On 24 VMs, it consumes 5 s makespan
time. On 28 VMs, it consumes 2.5 s makespan time. On 80 VMs, it consumes 2 s; on
120 VMs, it consumes 1.5 s makespan time in task offloading toward the fog cloud.

The success ratio shows the successful execution of the tasks using the fog VM. The
number of VM allocations and success ratios is the dependent parameter for comparing
the task offloading success ratio. Figure 11 shows VMs with a success ratio. The success
ratio shows that our proposed technique showed a higher success ratio when the number
of VMs increased to 120. The results show the consistent performance of the proposed
method. The figure shows the FETS task success ratio (whole tasks submitted to fog and
successful return results) based on VMs. The ratio was prepared based on the total number
of tasks submitted and the total tasks returned after processing from the fog layer. The task
success ratio was measured for 12, 24, 28, 80, and 120 VMs, and the success ratio is higher
than those of the existing state-of-the-art FIFO, SJF, and RTP techniques. These techniques
perform better compared with other techniques. The success ratio of the task migration
is measured in percentages from 0 to 100. At every point, the FETS technique migrates a
higher number of tasks.
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The delay rate is the time for offloading the tasks toward the fog VMs. The delay
rate is shown in Figure 12, with the number of VMs’ performance on the horizontal axis
and the delay rate on the vertical axis. The proposed FETS technique shows less delay in
task submission to the fog layer. At the start, the FETS displays a low delay rate of 7. On
20 VMs, utilization shows a rate of 6 and decreases to 120 VMs. The results show that FETS
has a lower delay rate when tasks are required for scheduling to the fog layer during fog
broker and scheduler task processing compared with the RTP, SJF, and FIFO techniques.
This technique shows the delay rate comparison. FETS shows a lower delay rate under
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20, 40, 60, 80, 100, and 120 VMs. The delay rate is computed using the under-processed
efficiency rules.
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The average turnaround time is the time required from task submission to completion.
Figure 13 shows the average turnaround time from task submission for scheduling from
vehicles and until completion from fog VMs. Figure 13 shows that FETS shows a shorter
turnaround time for all tasks that are adequately migrated toward the fog layer. The lower
turnaround time shows that when the VM increases, the system’s performance increases
with more orders. The average turnaround time for FETS from task submission to execution
is shown at less than 1 to 120 VMs. The results show the proposed FETS methodology
works better for average turnaround time for task scheduling in VANET. This method
computes the overall time from process submission to its completion. The FETS shows
lower time consumption than the RTP, SJF, and FIFO techniques. These techniques explore
the efficiency and delivery rules to maintain the relationship between the different aspects
of the system.
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The fog resources are proportional to the availability of VMs at each fog layer. Makespan
time elapses from the start of work to the end. The comparative benefits of the results
for makespan time enhance the FETS’s scalability for the proposed techniques. Figure 14
compares makespan time over the number of VMs for the proposed FETS technique with
the RTP, SJF, and FIFO techniques. The more fog VMs there are, the more resources are
adopted. With the increase in VMs, the resources are synchronously enhanced. When the
VMs increase, resources and available tasks are offloaded toward the fog layer. The tasks
are processed using available VMs and returned to VANET for vehicle delivery. Figure 14
shows the results for 60 tasks initiated from vehicles and scheduled to fog VMs after passing
from Algorithms 1 and 2. The technique effectively enhances the working experience and
suggests the time to complete these VMs’ task distribution mechanism. The tasks from RTP,
SJF, and FIFO are the required features for providing the listed data under the provision
of the lists. The FETS method shows a lower manager for the provision of the results
with a lower makespan time under the higher considerations of the performance of the
proposed system.
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Therefore, in Figure 15, we observe the decrease in makespan time, average turnaround
time, and delay rate of the tasks to be performed. The proposed technique’s success ratio is
60 vehicle tasks with 120 VMs. The proposed technique, FETS, is compared with RTP, SJF,
and FIFO with 120 VMs for a successful ratio of task execution completion using the fog.
The number of tasks in the successful execution ratio of the proposed FETS technique shows
that a higher number of tasks obtain success and there is a lower failure ratio compared
with RTP, SJF, and FIFO. The success ratio is the percentage of the total submitted and
successfully executed tasks. The success ratio is the total information that can demonstrate
the actual performance comparison of the FETS method with the state-of-the-art existing
RTP, SJF, and FIFO techniques. Under 12 VMs, the success ratio of the proposed technique
drops, but under 24, 48, 80, and 120 VMs, it is increased toward those of the other techniques.
There are several resources with the ability to demonstrate this knowledge.
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The delay rate is the delay observed during the task scheduling and offloading to the
fog VM. The delay rate is taken from makespan. The comparison between the RTP, SJF, and
FIFO techniques and our proposed technique, FETS, is observed. In Figure 16, the delay
in task execution is observed. The proposed FETS algorithm executes the tasks based on
the availability of resources like bandwidth, memory, storage, power, and CPU utilization.
The delay rate of FETS is of less concern than those of other techniques, from 1 to 120 VMs
over 120 tasks. The delay rate is lower than those of the RTP, SJF, and FIFO techniques with
20, 40, 60, 80, 100, and 120 VMs. The delay rate shows better performance for the FETS
than the RTP, SJF, and FIFO techniques in enhancing the proposed solution and elaborating
the performance metrics effectively. There are several techniques proposed with abilities
to demonstrate.
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The proposed FETS algorithm takes the task deadline as one of the essential parameters
for the performance evaluation, such as delay rate, makespan time, turnaround time, and
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average turnaround time. The deadline is fetched from tasks initiated by vehicles and
forwarded to the fog/cloud. Algorithm 2 forwards the vehicle’s tasks toward fog VMs to
process after the fuzzy logic decision. Figure 17 shows the average turnaround time over
the number of VMs deputed to handle the 120 tasks. Figure 17 shows that the proposed
FETS method shows less turnaround time overall for 120 tasks submitted to fog VMs. The
proposed technique executes the maximum number of tasks. The tasks are forwarded with
better efficiency, power, CPU, bandwidth, storage, and memory requirements for the task
selection and processing for fuzzy logic decision-making. The graph shows the consistent
processing power and time constraints for logical decision-making. The average time is
computed in seconds from 20 to 120 VMs. FETS shows a higher level of demand than the
existing methodologies for performance measurements. Several provisions of the results
make the system more vulnerable and enhance the working criteria of these tasks.
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The processing time over VMs is when the task is submitted to the VM and that VM
processes the task and provides the results back to the scheduler. We take the number of
tasks on the horizontal axis and compare it with the average processing time in seconds on
the vertical axis to compare the results of the proposed FETS method with RTP, SJF, and
FIFO. Using this methodology, these are the numbers of tasks with less transmission time.
Under such a situation, the proposed FETS methodology assigns the tasks to VMs in a
reasonable amount of time. Figure 18 shows that when there is an increase in the number
of tasks to 300 or 510, the proposed FETS technique performs better than other approaches.
It effectively reduces the waiting time for task assignments under the required resources.
The proposed FETS technique performs better than the RTP, SJF, and FIFO techniques. The
results indicate that average processing time enhances the average processing time for task
submission and completion.

The average processing time for tasks shows the time from task submission to comple-
tion. When the average processing time decreases, the capabilities of VMs become higher.
Figure 19 shows the proposed technique used on 60 tasks assigned toward fog computing.
The tasks are assigned to the least loaded VM of fog from vehicles, showing the effective
system performance. Thus, this reduces the system’s waiting time for further reduction in
the long-term processing of the assigned tasks.
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Moreover, we observed that the FETS algorithm works in less processing time and
performs better than the RTP, SJF, and FIFO algorithms under the proposed parameters:
average processing time with the ability to demonstrate the working performance of the
proposed techniques. The average time is computed with 60 tasks for 120 VMs. These tasks
are computed, and average processing times are calculated. FETS shows better results with
a shorter average processing time, making the system faster than existing techniques.

In this network, we carefully check flow by looking at where vehicles start and how
they interact with intensity levels set to match vehicle speeds. This link is shown visually in
Figure 20. It is important to note that figuring out packet drops is an important part of this
evaluation because it requires following the gearbox routes in different car communication
situations. Throughput is the synchronization of large data bits, including their sending and
receiving at different speeds, to get a full picture of how well a network works. We compare
the proposed method’s throughput with well-known protocols such as the destination-
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sequenced distance-vector routing protocol (DSDV) and the temporally ordered routing
algorithm for mobility (TORA), which is based on the reverse-path forwarding protocol
(TBRFP). DSDV is a good choice. After all, it works well in static networks because it is
proactive and keeps routes stable. Previous studies used DSDV often when route updates
had to happen all the time, like in sensor networks. Based on TBRFP, TORA was chosen
because it can work in changing settings and takes a flexible approach. Previous research
has successfully used TORA in mobile ad hoc networks, showing that it can handle frequent
network structure changes. These routing protocols can handle different situations. DSDV
works best in static setups, while TORA, based on TBRFP, handles the problems with
mobile and changing network settings. The suggested method’s throughput is compared
with that of DSDV and TORA. The results show that the proposed method has a higher
network throughput and is more efficient at routing for better performance.
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4.4. Discussion

The presented paper focuses on evaluating the performance of the proposed fog-
enabled task scheduling (FETS) methodology in vehicular ad hoc networks (VANETs) using
a simulation environment. The simulation was conducted using iFogSim, a technology
built on CloudSim and coded in Java, with 60 independent simulations executed on a
specified hardware configuration. The proposed methodology is compared against existing
scheduling techniques, including shortest job first (SJF), first in, first out (FIFO), and real-
time task processing (RTP). The performance metrics utilized for evaluation include delay
rate, average turnaround time, makespan time, success ratio, and average processing
time. The simulation results reveal that FETS outperforms RTP, SJF, and FIFO across these
metrics. Notably, FETS demonstrates a decrease in makespan time as the number of virtual
machines (VMs) increases, indicating scalability and efficiency in task offloading.

The success ratio in FETS increases as the number of VMs increases, highlighting
its effectiveness in task execution and completion. The delay rate in FETS is consistently
lower than those in RTP, SJF, and FIFO, emphasizing its efficiency in task submission to the
fog layer. Average turnaround time and processing time also exhibit favorable results for
FETS, showcasing its ability to enhance system performance by reducing task completion
times. The proposed methodology’s throughput is compared with well-known routing
protocols, namely the destination-sequenced distance-vector routing protocol (DSDV) and
temporally ordered routing algorithm for mobility (TORA). The results indicate that FETS
achieves higher network throughput, demonstrating its efficiency in routing and overall
network performance.
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5. Conclusions with Future Directions
5.1. Conclusions

This research presents a novel fuzzy logic-based task scheduling technique in VANETs.
The proposed FETS model and simulation results show that the proposed technique intelli-
gently decides and distributes the tasks toward the fog layer for VM computations. This
research also uses the cloud server to distribute the tasks toward the cloud enhancements.
The task distribution on the fog VMs is considered based on the resource-handling capacity
of fog VMs over the number of assigned tasks. The scheduling algorithm performs better
for task management and scheduling. Based on the simulation results, the tasks distributed
to fog layers are effectively utilized and processed using the proposed FETS technique.
The results in Section 4 of this paper were compared with existing techniques, and experi-
ments were performed. The delay rate, average turnaround time, and makespan time were
considered for task processing and results enhancement. Lower resources and VMs are
utilized in the proposed technique during task processing and scheduling toward the fog
or cloud. The waiting time for the tasks is also reduced due to the proposed technique,
with efficient results and the maintained or proposed algorithm.

5.2. Future Research Plan

The proposed future research plan for fog-enabled task scheduling (FETS) for energy
consumption and performance measures will involve a comprehensive investigation of the
existing scheduling algorithms used in fog computing, their limitations, and their impact
on energy consumption and performance. The research will develop novel scheduling
algorithms considering energy consumption and performance measures as primary opti-
mization metrics. These algorithms will be evaluated through extensive simulations and
experimental studies in a realistic fog computing environment. Additionally, the research
will investigate the potential impact of different factors, such as workload characteristics,
device heterogeneity, and network topology, on the performance and energy consump-
tion of the proposed algorithms. Finally, the research will develop best practices and
guidelines for deploying fog computing-based applications that effectively balance energy
consumption and performance measures.

FETS has the potential to be widely adopted in a variety of industries, such as smart
cities, smart homes, industrial IoT, and transportation, where reducing energy consumption
and optimizing performance are essential. However, further research is needed to fully
realize the potential of FETS and address some challenges, such as security and privacy,
task prioritization, and resource allocation.

Limitations of the proposed approach are as follows:

• The research is limited to adopting fuzzy logic techniques only.
• Fog computing may provide limited computational abilities near the vehicular devices,

and to handle data-intensive tasks, cloud layer adoption is required.
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