
Citation: Liao, L.X.; Zhao, C.; Lai,

R.X.; Chao, H.-C. Explainable

Learning-Based Timeout

Optimization for Accurate and

Efficient Elephant Flow Prediction in

SDNs. Sensors 2024, 24, 963.

https://doi.org/10.3390/s24030963

Academic Editor: Shaoen Wu, Periklis

Chatzimisios, Jinbo Xiong and

Mahmoud Daneshmand

Received: 18 December 2023

Revised: 23 January 2024

Accepted: 29 January 2024

Published: 1 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Explainable Learning-Based Timeout Optimization for Accurate
and Efficient Elephant Flow Prediction in SDNs
Ling Xia Liao 1, Changqing Zhao 1, Roy Xiaorong Lai 2 and Han-Chieh Chao 3,4,5,*

1 School of Electronic Information and Automation, Guilin University of Aerospace Technology,
Guilin 541004, China; liaolx@guat.edu.cn (L.X.L.); zhaochq@guat.edu.cn (C.Z.)

2 Confederal Networks Inc., Seattle, WA 98055, USA; roy.lai@confedtech.net
3 Department of Artificial Intelligence, Tamkang University, New Taipei City 251301, Taiwan
4 Department of Electrical Engineering, National Dong Hwa University, Hualien 974301, Taiwan
5 Institute of Computer Science and Innovation, UCSI University, Kuala Lumpur 56000, Malaysia
* Correspondence: hcc@ndhu.edu.tw

Abstract: Accurately and efficiently predicting elephant flows (elephants) is crucial for optimizing
network performance and resource utilization. Current prediction approaches for software-defined
networks (SDNs) typically rely on complete traffic and statistics moving from switches to controllers.
This leads to an extra control channel bandwidth occupation and network delay. To address this
issue, this paper proposes a prediction strategy based on incomplete traffic that is sampled by the
timeouts for the installation or reactivation of flow entries. The strategy involves assigning a very
short hard timeout (Tinitial) to flow entries and then increasing it at a rate of r until flows are identified
as elephants or out of their lifespans. Predicted elephants are switched to an idle timeout of 5 s.
Logistic regression is used to model elephants based on a complete dataset. Bayesian optimization
is then used to tune the trained model Tinitial and r over the incomplete dataset. The process of
feature selection, model learning, and optimization is explained. An extensive evaluation shows
that the proposed approach can achieve over 90% generalization accuracy over 7 different datasets,
including campus, backbone, and the Internet of Things (IoT). Elephants can be correctly predicted
for about half of their lifetime. The proposed approach can significantly reduce the controller–switch
interaction in campus and IoT networks, although packet completion approaches may need to be
applied in networks with a short mean packet inter-arrival time.

Keywords: explainable learning algorithms; logistic regression; Bayesian optimization; elephant flow
prediction; flow entry timeout; statistics sampling

1. Introduction

Packets are the fundamental unit of communication that move data on the Internet.
A flow is a sequence of packets that share the same source and destination IP addresses,
source and destination port numbers, and IP protocol. While flows vary in volume and type,
a rather small number of flows consume the majority of the network bandwidth. These
flows are elephant flows (elephants), and they typically last for a long time and consist of
many packets and bytes. The remaining flows are mice flows (mice). In general, elephants
are bandwidth-consuming. When two elephants share the same link, this may cause a
link congestion that degrades the network’s quality of service (QoS) [1]. As the Internet
becomes extremely complex due to the vast interconnection of hosts and items with widely
varying intelligence and flexible QoS requirements, it is significant to accurately, efficiently,
and effectively predict elephants to optimize network resources and QoS management in a
global and dynamic manner.

Elephant prediction approaches in traditional networks can be applied to hosts or
switches. They typically rely on the packet traffic and statistics collected by the hosts or
switches to catch elephants. Since hosts and switches can only collect their local traffic in

Sensors 2024, 24, 963. https://doi.org/10.3390/s24030963 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24030963
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3222-1708
https://doi.org/10.3390/s24030963
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24030963?type=check_update&version=1

Sensors 2024, 24, 963 2 of 23

the network, there is additional cost and difficulty in collecting global traffic to optimize
network resources and QoS management across the network [2].

Software-defined networks (SDNs) address this issue by predicting elephants at con-
trollers based on global statistics [3]. SDNs have decoupled control and data planes.
Controllers in the control plane can maintain global network statistics by polling the
statistics from switches in the data plane or by allowing switches to report their statistics
to controllers.

However, regardless of the approach controllers use to collect statistics, the statistics
generated at the data plane need to be periodically transported to the control plane, result-
ing in additional control channel bandwidth usage [3]. Picking the right statistics update
period to accurately and efficiently predict elephants at controllers is also a major challenge.
The control channel is the infrastructure that connects switches to the controllers, and the
data channel is the infrastructure that connects the switches to each other. Higher control
channel bandwidth consumption leads to longer network latency in SDNs.

To reduce control channel bandwidth usage, current research often employs two meth-
ods: (1) deploying sampling agents on switches to sample packet traffic forwarded to
controllers and (2) allowing switches to have low intelligence to sample or aggregate the
statistics forwarded to controllers. However, the first method often requires software up-
dates to the switches, and the second method lacks standardized hardware and interfaces
to support programmable data planes, raising major concerns about system compatibility,
interoperability, and usability in the field [4].

To fill this gap, this paper proposes including the timeouts of flow entries to sample
packet traffic at switches, which allows the controllers to generate statistics and predict
elephants. It completely avoids consuming the control channel bandwidth by moving the
packet traffic dedicated to elephant prediction to the controllers. As shown in Figure 1,
the flow entries in SDNs are forwarding rules generated by the controllers and installed at
switches to guide the forwarding of flow packets. Flow entries on switches have timeouts to
determine their lifetime. An SDN switches the forward packets to controllers if no matching
flow entries are found for the packets. Accordingly, a flow forwards its first packet (in
reactive flow set-up mode) and some specific subsequent packets to controllers because
the matching entry has not been established or has timed out. Using flow entry timeouts
to sample the packets of flows ensures that each flow forwards at least one packet to
controllers, and elephants, which have more packets and longer life spans, tend to forward
more packets and bytes to controllers than mice. It is possible to predict elephants based on
the packets forwarded to controllers for the installation or activation of flow entries.

Such a strategy completely avoids the compatibility and deployment issues caused by
inserting sampling agents into switches, as described in method (1), and the interoperability
and usability issues caused by nonstandard programmable data planes, as described in
method (2). Because the controllers predict elephants based on the packets received rather
than on statistics that move periodically from the switches, the prediction can be made at
any time a packet is received by the controllers, and thus the statistics update period at the
controllers is no longer an issue. However, predicting elephants based on sampled traffic
leads to a major problem in building robust elephant models based on the dataset with
packet loss, specifically how dynamically adjusting the timeouts of flow entries affects the
total number of packets that each flow forwards to controllers and which packets of a flow
are actually forwarded. They also determine the accuracy, efficiency, and effectiveness of
the elephant prediction.

This paper addresses this issue by applying explainable logistic regression (LR) to
model elephants and explainable Bayesian optimization (BO) to further tune the model and
timeouts. We interpret the feature selection, the learned model, and the tuned parameters.
To the best of our knowledge, this is the first effort that uses the packets sampled by the
timeouts of flow entries to predict elephants and apply explainable machine learning (ML)
techniques for high prediction accuracy, efficiency, and effectiveness. In particular, this
paper makes the following three contributions:

Sensors 2024, 24, 963 3 of 23

• Explainable LR is used to construct two elephant models, with one for all flows and
the other with submodels dedicated to TCP and UDP flows.

• To maximize the prediction accuracy and efficiency and to minimize the controller–
switch interactions, an optimization problem is formulated to find the best initial
timeout value, the rate of increase of the timeout, and the probability used to classify
an elephant. BO algorithms are used to solve the problem. Optimized parameters
are interpreted.

• An extensive evaluation based on seven real traffic traces from six different networks is
provided to demonstrate a generalization prediction accuracy of over 90% in about half
of the lifetime. A simple packet completion approach is also provided to significantly
improve the prediction accuracy while limiting the increase in network latency.

Figure 1. The interaction between SDN switches and controllers.

The rest of this paper is organized as follows. Sections 2 and 3 discuss the related
work and the feasibility of using packets forwarded to controllers to predict elephants,
respectively. The elephant model and the timeout optimization algorithms are proposed
and explained in Section 4, followed by the evaluation in Section 5 and the conclusions in
Section 6.

2. Background and Related Work
2.1. SDN Architecture and Flow Entries

Unlike traditional networks, which have devices that tightly couple network control
and data forwarding, SDNs have separate control and data planes, as shown in Figure 1.
The SDN control plane consists of one or more controllers, and the SDN data plane includes
multiple hosts and dumb switches. Dumb switches have no control capabilities and rely
on SDN controllers to generate rules to guide data forwarding. Flow entries in SDNs
are the forwarding rules generated by the controllers but installed in the ternary content-
addressable memories (TCAMs) of the switches. Because TCAMs are power-hungry,
expensive, and have limited space on the switches, each flow entry has a lifetime controlled
by its timeout to effectively utilize the capacity of the TCAMs.

Sensors 2024, 24, 963 4 of 23

As illustrated in Figure 1, switches contact controllers when a flow entry needs to be
created or updated. When flow entries are generated reactively, switches do not have a
matching flow entry for a new flow. Therefore, a switch forwards the first packet of a flow
to controllers for installation of a matching flow entry so that the subsequent packets of
the flow arriving at the switch can be forwarded directly without involving the controllers
again. However, flow entries have timeouts. Such timeouts can force some of the flow’s
subsequent packets to be sent to controllers to reactivate the matching flow entries that
have timed out. Since elephants often consist of many packets and last for a long time, they
tend to forward more packets to the controllers than mice (see Section 3 for details). Such
an observation motivated us to collect the packets forwarded to controllers to install or
reactivate entries in order to predict elephants.

2.2. Flow Entry Timeouts

Flow entries generally have hard and idle timeouts, where an entry times out when
the time it has been in existence and idle is greater than the set value, respectively. The
SDN architecture allows controllers to configure the timeouts of flow entries. Current
proposed controller solutions often give a fixed idle timeout value to the order of seconds
across flows. However, the lifetime and packet inter-arrival time of flows in a network vary
widely, making fixed timeouts neither resource-efficient nor performance-friendly [5].

Dynamic timeouts can address or mitigate this problem. In current research, dy-
namic timeouts are typically used to manage TCAMs while achieving various optimization
goals [6]. Since dynamic idle timeouts were set to flows based on the longest inter-arrival
time of the matched flow in history to improve flow table utilization [7], dynamic hard
timeouts were set to improve the hit ratio of the flow table while reducing the number of
capacity misses and occupancy [8,9]. Although Li et al. [10] used a hybrid of hard and idle
timeouts to improve the same objective, Panda et al. [11] used the hybrid timeouts to en-
hance the durability of TCAMs during flow table overload DDoS attacks. Isyaku et al. [12]
dynamically configured hybrid timeouts according to the traffic pattern based on the packet
arrival time to reduce additional flow set-up requests. They adaptively allocated hybrid
idle-hard timeouts to control the frequent flow set-up requests, considering the traffic
pattern and flow table utilization ratio, and appropriately returned the timeout to different
flows. However, to the best of our knowledge, our work is the first effort for applying ML
techniques to optimize dynamic hybrid timeouts and elephant models for high elephant
prediction accuracy, efficiency, and effectiveness.

2.3. Elephant Prediction

Elephants are predicted using a model based on the features in flow or packet levels.
Flow-level models compute the size, packet counts, and duration time of flows after a
sufficient number of packets in a received flow, while packet-level models compute them
in the early stage of flows. Flow-level models can typically achieve a high prediction
accuracy [13,14], while packet-level models may find a particular type of elephant in their
extremely early stages to enable better resource management [15,16].

Elephants over SDNs can be predicted at the host [17,18], switch [17,19], and
controller [20,21] of the packet statistics and traffic, which may be complete or incomplete.
In general, predictions based on the former can achieve high accuracy, while predictions
based on the latter may not. Because hosts originate flows and flow entries at an SDN
switch update the flow counters when they are invoked, hosts and switches can maintain
complete but local statistics to enable host-based and switch-based approaches, respec-
tively. SDNs also allow controllers to maintain global and complete packet statistics by
actively polling the statistics from all the switches in the networks or by allowing all the
switches in the network to automatically report their statistics to the controllers to support
controller-based approaches [3].

Although many prediction approaches over SDNs, such as Mahout [17], DeveFlow [22],
and Hedara [20], gather complete statistics or traffic for high prediction accuracy, they

Sensors 2024, 24, 963 5 of 23

have to move statistics or traffic from data to the control planes, leading to huge control
channel bandwidth consumption. To avoid this, packet sampling is often used to generate
incomplete statistics or traffic. For instance, Mori et al. [23] applied sFlow and determined
the sampling period threshold based on Bayes’ theorem (BT) but could not reliably pre-
dict elephants until more than 10,000 packets or about 15 million bytes of a flow were
received. Afaq et al. [24] enabled elephant prediction in real time by using sFlow-RT for
packet sampling but could not achieve a high enough prediction accuracy. Afeq et al. [25]
and Xiao et al. [26] introduced two-stage elephant prediction approaches that coordinate
switches and controllers to predict elephants accurately and efficiently. Suspect elephants
are determined at the switches based on the local and incomplete statistics or traffic, but
complete statistics or traffic for the suspect are collected by the controllers to enable ele-
phant prediction with higher accuracy and lower bandwidth consumption. We list these
approaches in Table 1 for comparison, and to the best of our knowledge, no elephant
prediction method based on the packets forwarded to controllers for flow entry installation
and reactivation has been investigated.

Table 1. Elephant prediction approaches comparison. FL = flow level; PL = packet level; A = accuracy;
B = bandwidth cost; D = network delay.

Work Location Model Traffic Sampled and How A B D

[13] controller FL not high high mid
[14] FPGA FL not high - low
[15] controller PL using first 5 pcks mid mid low
[16] controller PL using first 10 pcks mid mid low

[17] host FL not high high mid
[18] host FL not high high mid
[22] switch FL not high high mid
[19] switch FL not high high mid

[20] controller FL not high high mid
[21] controller FL sampling based on ISN high mid mid
[23] controller FL sampled by sFlow high mid mid
[24] controller FL sampled by sFlow-RT high mid mid

[25] hybrid FL Sampling and pick algorithm high mid low
[26] hybrid FL not high mid low

this work controller FL flow entry timeout high low mid

2.4. Explainable Machine Learning Techniques

Since SDNs have built-in traffic statistics collection mechanisms that enable controllers
to establish the global knowledge of traffic, various ML techniques have been applied
to controllers based on the global knowledge to optimize flow routing [27], resource
management [12,28,29], and traffic classification or prediction [2,30].

Based on the complete packet traffic, Glick et al. [31] applied a neural network (NN) to
classify elephants and mice at the network edge for better flow scheduling in electric/optical
hybrid data centers, and Xiao et al. [26] employed decision trees (DT) to quickly and
efficiently detect elephants from the suspicious elephants identified by switches based on
the statistical thresholds and flow-level features. Although Rossi et al. [32] proposed an
approach similar to this work by using incomplete packet traffic to predict elephants, they
applied support vector machines (SVM) to finely classify UDP flows based on aggregated
packet traffic, whereas our proposed approach involves LR to model elephants and further
applies BO to optimize the model and sampling parameters based on incomplete packet
traffic sampled by the flow entry timeouts.

In terms of flow entry management over SDNs, Yang et al. [29] and Kannan et al. [33]
applied random forest (RF) and Markov-based learning, respectively, to predict the duration
of flow entries in flow tables; Al-fuqaha et al. [28] applied a deep neural network (DNN)

Sensors 2024, 24, 963 6 of 23

to determine the preserved flow between elephants and mice for flow table management,
and Yang et al. [34] applied multiple ML techniques to generate the best prediction model
to classify flows as active and inactive to determine the correct flow to be removed. Both
Li et al. [10] and this work apply the ML technique to determine the value of flow entries.
However, Li et al. [10] used Q-learning to optimize the flow table resource management
online, while this work applies BO to optimize the elephant model and the timeouts to
maximize the elephant prediction accuracy and efficiency while maintaining the controller–
switch interaction.

Many proposed ML approaches are typically black boxes with a huge parameter space
and complex structure, resulting in a model that is difficult to understand, justify, and trust.
The explainable artificial intelligence (XAI) technique is a way to interpret the entire model
learning process. Rahman et al. [35] proposed a framework that includes explainable deep
learning and edge computing to support COVID-19 diagnosis. Although Ahn et al. [36]
applied a genetic algorithm (GA) to explain the feature selection for learning-based traffic
classification, both Sarica et al. [37] and Mahbooba et al. [38] applied XAI to classify traffic
for intrusion detection. However, the former applied the explainable RF classifier, while the
latter used the explainable DT. We list these related approaches in Table 2. Our proposed
approach applies statistical analysis, explainable LR, and explainable BO to select features,
learn models, and tune parameters.

Table 2. ML-based approach comparison. DRL = deep reinforcement learning.

Objective Works ML XAI Method

traffic classification

this work LR Yes predict elephants
BO Yes tune timeout value

[32] SVM No classify UDP flows
[31] DNN No classify elephants
[26] DT No detect elephants
[36] GA Yes feature selection
[37] RF Yes intrusion detection
[38] DT Yes intrusion detection

flow table management
[29] RF No predict entry duration
[33] Markov No predict entry duration
[10] Q-learning No select entry timeouts

routing optimization [27] DRL No optimize parameters

image identification [35] DNN Yes COVID-19 diagnose

3. Feasibility Analysis

To analyze the feasibility of classifying elephants using incomplete statistics sampled
by the timeouts of flow entries, we captured two packet traces from the border router
connecting the campus network of Guilin University of Aerospace Technology in China
to the Internet in January 2020 (TR1) and January 2021 (TR2). Each trace lasted 5 min
and consisted of over 570,000 flows. We used TR1 for the feasibility analysis. We allowed
the flow entries to have idle or hard timeouts and increased the values of the timeouts
from 0.05 to 0.1, 1, 5, and 10 s. We computed the packet ratio using the total number
of packets sent to the controllers over the total number of flow packets. As shown in
Figure 2A, the packet ratio was highly dependent on the timeout of the flow entries. The
shorter the timeout of the entries, the more often the entries timed out, and the more flow
packets were forwarded to the controllers for entry renewal. Given the same timeout value,
flows under hard timeouts sent more packets to the controllers than under idle timeouts,
because idle timeouts may cause switches to forward only the first packets of elephants to
the controllers, whereas hard timeouts force switches to forward the packets of flows to
controllers periodically if the elephants have packets arriving at the switches frequently.

Sensors 2024, 24, 963 7 of 23

Figure 2. The ratio of packets sent to controllers and the elephant prediction accuracy using these
packets under various timeouts. Labels with i and h indicate idle and hard timeouts were applied,
respectively. (A) The ratio of packets sent to controllers. (B) The elephant prediction accuracy using
the packets sent to controllers under various flow entry timeouts.

Although only less than 20% of the total number of packets of flows were sent to the
controllers, we estimated the accuracy of using such packets to predict the elephants. We
considered the set of flows in TR1 (F) and the set of flows being sent to the controllers (Fsent).
We first sorted both sets in descending order by the packet count of a flow. We selected the
top 10–30% of the flows from both sets and computed their intersection (F ∩ Fsent) under
various timeouts. Since elephants consist of more packets and last longer, it is reasonable
for elephants to forward more packets to controllers than mice. Therefore, the top flows
in set F implied the real elephants in TR1, the top flows in set Fsent implied the predicted
elephants, and |F ∩ Fsent|/|F| implied the accuracy (recall) of the elephant prediction. As
shown in Figure 2B, having shorter timeouts made more top flows in both flow sets match,
suggesting a higher prediction accuracy. For the same timeout value, hard timeouts led
to higher prediction accuracy than idle timeouts. Accordingly, it is feasible to give flow
entries short hard timeouts to achieve high elephant prediction accuracy.

However, simply configuring a short hard timeout for all the flow entries may generate
a huge amount of controller–switch interaction, consuming the valuable control channel
bandwidth while adding additional delay to the flow packet forwarding. To address this
issue, this paper proposes applying dynamic hard-idle timeouts and optimizing their initial
values and change rates using BO algorithms.

4. Elephant Prediction Based on Incomplete Traffic Sampled by Timeouts

This section proposes using the packets of flows forwarded to the controllers to
generate or update the flow entries for prediction elephants. This completely avoids
moving statistics from switches to controllers dedicated to elephant prediction. Since
the flows used to predict elephants are not complete, simply applying the thresholds or
models trained on complete datasets is not suitable. Since entry timeouts affect the number
of packets forwarded to controllers, which further affects the elephant model used for
prediction, we propose a two-step approach to maximizing elephant prediction accuracy
(F1) and efficiency (E) while minimizing controller–switch interaction (I): (1) using LR
based on the complete traffic dataset to learn an elephant model that inputs the selected
features of a flow in TR1 and outputs the probability of that flow being an elephant, as well
as (2) applying BO to find the best initial timeouts (Tinitial), the rate (r) at which timeouts
increase, and the probability threshold (Pelephant) for a flow to be an elephant.

Sensors 2024, 24, 963 8 of 23

In the rest of this section, we first analyze the features of elephants and mice and the
TCP and UDP elephants in TR1 to determine the features used to model the elephants.
Second, we apply LR to actually model the elephants. Third, we formulate an optimization
problem that finds the best [Tinitial , r, Pelephant] to maximize F1 and E while minimizing I.
Finally, we apply BO to solve it.

4.1. Elephant Modeling Features

To determine the features of the flows used to model elephants, the flows of TR1 with
more than 10,000 bytes were marked as real elephants because more than 90% of the total
bandwidth usage is occupied by such flows. The cumulative distribution functions (CDFs)
of the packet counts, flow size, flow duration, and mean packet size and packet inter-arrival
time of all the elephants in TR1 were computed as shown in Figure 3.

Figure 3. The features of flows, where the labels of elephant and mouse are the elephant flows and
the mouse flows, respectively, and the labels of TCP and UDP mean the TCP and UDP elephant flows,
respectively. (A) The CDF of packet count of elephant and mouse flows, (B) the CDF of flow duration
of elephant and mouse flows, (C) the CDF of flow size of elephant and mouse flows, (D) the CDF of
mean packet size of elephant and mouse flows, (E) the CDF of the mean packet inter-arrival time of
elephant and mouse flows, (A’) the CDF of packet count of TCP and UDP elephant flows, (B’) the
CDF of flow duration of TCP and UDP elephant flows, (C’) the CDF of flow size of TCP and UDP
elephant flows, (D’) the CDF of mean packet size of TCP and UDP elephant flows, and (E’) the CDF
of mean packet inter-arrival time of TCP and UDP elephant flows.

Sensors 2024, 24, 963 9 of 23

We found that over 95% of the elephants had 8+ packets, while over 92.5% of the mice
had 5 or fewer packets, including 62% of them having only 1 packet. While over 70% of the
mice lasted less than 0.38 s, over 95% of the elephants lasted longer than 0.38 s. Although
most of the elephants had flow sizes between 10,000 and 500,000 bytes, 50% and 97% of the
mice had flow sizes of less than 144 and 6,000 bytes, respectively. While 80% of the mice
had a mean packet size of less than 400 bytes, over 90% of the elephants had a mean packet
size greater than 400 bytes, and over 80% of the elephants had a mean packet size greater
than 1,000 bytes. While over 80% of the elephants had a mean packet inter-arrival time
greater than 0.2 s, over 70% of the mice had one of less than 0.2 s, and 62% of the mice had
one of 0 because only 1 packet was included. These demonstrate that the elephants and
mice had distinct distributions in the five features, and all these features should be used to
model elephants.

Since elephants can be TCP or UDP flows generated by various applications, we
further analyzed the features of the TCP and UDP elephants in TR1. We found that in
TR1, 63% and 37% of the elephants were TCP and UDP flows, respectively. Although TCP
and UDP elephants do not have many differences in the CDF of flow size, as shown in
Figure 3C’, the TCP elephants often had more packet counts, lower flow durations, and
shorter packet inter-arrival times than the UDP elephants. As shown in Figure 3A’B’E’,
over 50% of the TCP elephants had 19-packets, while over 70% of the UDP elephants had
19+ packets. Although over 70% of the TCP elephants lasted 50-s, over 70% of the UDP
elephants lasted 50+ seconds. While over 70% of the TCP elephants had a mean packet
inter-arrival time of less than 0.92 s, over 70% of the UDP elephants had one longer than
that. The TCP and UDP elephants also varied in their mean packet sizes. While 80% of
the UDP elephants had 800–1200 bytes per packet, over 80% of the TCP elephants had
1200–1500 bytes per packet.

Therefore, TR1 had TCP and UDP elephants that differed greatly in features other
than flow size. Given two networks, they may have similar feature distributions for
dedicated TCP or UDP elephants, since TCP and UDP elephants on two networks are often
generated by similar types of applications. However, the overall elephant distribution
between two networks can be widely different due to the various ratios of TCP and
UDP elephants that make up the network. Accordingly, an elephant model trained by
TR1 may not be able to achieve high generalization accuracy over another network. These
observations motivated us to train dedicated models for TCP and UDP elephants to improve
the robustness of the models.

Since we used complete packet traffic to train the elephant models but predicted
elephants based on the packet traffic sampled by flow entry timeouts, the two packet
traffic datasets had a large difference in packet count and mean packet inter-arrival time.
Therefore, we chose the accumulated flow duration (f duration), flow size (f size), and mean
packet size (psize) to model the TCP and UDP elephants and improve the robustness of
the models.

4.2. Explainable Logistic Regression for Elephant Modeling

LA is a classification algorithm used to assign observations to a discrete set of classes.
We chose it for its simplicity and explainability. In our case, we had two classes of flows:
elephants and mice. We labeled elephants as one and mice as zero. LA generates a
hyperplane, as shown in Equation (1), to separate the samples in the dataset and further
transforms the output to a probability using the logistic sigmoid function, as shown in
Equation (2). This probability is then further mapped to elephants or mice using a threshold
Pelephant, where F is the set of flows in TR1 and i is a flow in the set F:

Zi = WiXT
i + b (1)

P(Zi) =
1

1 + e−Zi
(2)

Xi = [psizei, f sizei, f durationi] (3)

Sensors 2024, 24, 963 10 of 23

Wi = [w1i, w2i, w3i] (4)

Let Pelephant be 0.5. Then, the flow i is classified as an elephant if P(Zi) is greater than
Pelephant. We applied the built-in LA function in Python to learn Wi for the feature Xi and
the parameter b. As illustrated in Equation (3), for each flow i ∈ F, the features of the mean
packet size psizei, flow size f sizei, and flow duration f durationi are the inputs of LA, and
w1i, w2i, and w3i are the weights of the features. We consider two scenarios: (1) training
a model for all elephants and (2) training a model with submodels dedicated to TCP and
UDP elephants.

As shown in Table 3, we have Wi = [0.000166101, 0.00322325,−0.00011509] and
b = −32.2119 for scenario 1. In scenario 2, we have Wi = [−0.00029942, 0.00283122,−0.00342648]
and b = −27.2731 for the TCP elephants and Wi = [−0.00043848, 0.00260208,−0.003015]
and b = −25.6452 for the UDP elephants. It can be seen that the flow size feature had the
highest weight in both scenarios, implying that the total bytes of a flow are key for elephant
classification. Both models achieved a prediction F1 score of 99+% over TR1.

Table 3. Elephant models and F1 scores under a fixed hard timeout of 0.00001s.

Scenario Wi(10−4) b F1 Score (TR1) F1-Score
(Sampled)

1 [1.66101, 32.2325,−1.1509] −32.2119 0.99+ 0.89
2 (TCP) [−2.9942, 28.3122,−34.2648] −27.2731 0.99+ 0.89
2 (UDP) [−4.3848, 26.0208,−30.15] −25.6452 0.99+ 0.89

To roughly estimate the accuracy of such models over the sampled dataset, we used
a fixed hard timeout of 0.00001 s to sample TR1. We set Pelephant = 0.5. The prediction F1
scores of both models were around 0.89. Although the prediction accuracy can be measured
by the recall, precision, and F1 score, we chose the F1 score to balance the recall and precision
simultaneously. It is obvious that the two models had lower prediction F1 scores over the
sampled dataset because sampling leads to packet loss, which decreases the accuracy of
the model used to predict elephants. Accordingly, we needed to optimize the timeouts of
the flow entries as well as the elephant model to achieve a high prediction accuracy.

4.3. Optimization Problem Formulation

In our proposed approach, the prediction can be performed at any moment when the
controllers receive a packet of flows forwarded by switches. Since the traffic used to predict
elephants is sampled by the timeouts of the flow entries, a major challenge is to tune the
elephant model and the sampling timeouts. Accordingly, the elephant model generated by
the complete traffic dataset, as listed in Table 3, and the packet sampling timeouts should
be optimized.

As shown in Equations (1) and (2), given the packet count, flow size, and duration of
flow i to LR, it outputs the probability P(Zi). By comparing P(Zi) with the given threshold
Pelephant, the model classifies the flow i as an elephant if P(Zi) > Pelephant and as a mouse
otherwise. Since the chosen features are not significantly affected by sampling, the CDF of
such features over the sampled dataset has a high probability of having a similar shape to
that over the complete dataset. Therefore, we believe that simply adjusting the probability
threshold Pelephant instead of the parameters Wi and b of the model trained on a complete
dataset can achieve high prediction accuracy over the sampled dataset. Therefore, we
formulated an optimization problem that finds the best initial timeout (Tinitial), timeout
increase rate (r), and probability threshold (Pelephant) to maximize the elephant prediction
accuracy (F1) and efficiency (E) while minimizing the network delay (L).

Given [Tinitial , r, Pelephant] for each flow i ∈ F, a flow entry starts with a hard timeout of
Tinitial . When the timeout expires, the value of the timeout increases to r times the current
until the flow is classified as an elephant or out of its lifetime. When a flow is classified
as an elephant, its flow entry is configured with an idle timeout of 5s. In particular, when

Sensors 2024, 24, 963 11 of 23

a flow packet is forwarded to the controllers, Equations (1) and (2) are used to compute
the probability that this flow is an elephant. Let labeli be the label of flow i. It is one if
flow i is a real elephant and zero otherwise. We let plabeli be the label of flow i predicted
by the model. Since the controllers keep making predictions for each flow as the flow
accumulates, plabeli is the final decision made by the controllers. Then, the F1 score (F1) of
the target prediction can be computed using Equation (5), where Rec and Pre are the recall
and precision, which can be computed using Equations (6) and (7), respectively.

The elephant prediction efficiency (E) represents how long an elephant has lived
when it is correctly predicted. Let Telephanti be the cumulative time duration in which
flow i is predicted to be an elephant and Ti be the lifetime of flow i. Then, Telephanti/Ti
computes the prediction efficiency of flow i, and the overall prediction efficiency (E) is the
average prediction efficiency for all real elephants that are correctly predicted, as shown in
Equation (8).

Given [Tinitial , r, Pelephant], we simply use the total number of packets of flows for-
warded to the controllers (C[Tinitial ,r,Pelephant]

) over the total number of packets of flows for-
warded to the controllers under an idle timeout of 1 s (Cbaseline) to represent the increase in
network latency (L), as formulated in Equation (9), since the greater the volume of packets
forwarded to the controllers, the more extra network forwarding latency is added.

To compute C[Tinitial ,r,Pelephant]
, for each flow i ∈ F, we have a binary parameter bij. Let

bij be one if the j packet of flow i is forwarded to the controllers and zero otherwise. If tij is
the time at which the jth packet of flow i arrives at the switch, tactivatei is the most recent
activation time of the flow entry of flow i, and Tcurrenti is the current hard timeout value
of the flow entry of flow i, then the jth packet of flow i is forwarded to the controllers if
tij − tactivatei > Tcurrenti, and C[Tinitial ,r,Pelephant]

can be calculated using Equation (10). Ki

is the total number of packets of flow i forwarded to the controllers. Cbaseline can also be
calculated using Equation (10) if we let tcalli be the last call time of the flow entry of flow i,
and let bij be one if tij − tcalli > 1 and zero otherwise:

F1 =
2 × Pre × Rec

Pre + Rec
(5)

Rec = ∑i∈F plabeli × labeli
∑i∈F labeli

(6)

Pre = ∑i∈F plabeli × labeli
∑i∈F plablei

(7)

E =
∑i∈F plablei × labeli ×

Telephanti
Ti

∑i∈F plablei × labeli
(8)

L =
C[Tinitial ,r,Pelephant]

Cbaseline
(9)

C[Tinitial ,r,Pelephant]
= ∑

i∈F

Ki

∑
j=2

(1 + bij) (10)

Let S be the entire domain of [Tinitial , r, Pelephant]. The proposed optimization problem
can be formulated to find the best [Tinitial , r, Pelephant] ∈ S such that the elephant prediction
inaccuracy (1/F1), efficiency (E), and network latency increase (L) are minimized. Since
this optimization problem has three conflicting objectives, the best solution to the problem
is not unique. We then give weights [0.6, 0.2, 0.2] to the objectives [1/F1, E, L], respectively,
and the proposed optimization problem can be simplified as shown in Equation (11), where
the final objective function f ([Tinitial , r, Pelephant]) = 0.6/F1 + 0.2E + 0.2L, as shown in
Equation (12). All the symbols used in this paper are listed in Table 4:

[Tinitial , r, Pelephant]
∗ = argMin[Tinitial ,r,Pelephant]∈S f ([Tinitial , r, Pelephant]) (11)

Sensors 2024, 24, 963 12 of 23

f ([Tinitial , r, Pelephant]) =
0.6
F1

+ 0.2E + 0.2L (12)

Table 4. Symbols and their descriptions.

Symbol Description

Tinitial original timeout of flow entries
r timeout increase rate

Pelephant probability threshold for prediction
F1 elephant prediction F1 score
Rec elephant prediction recall
Pre elephant prediction precision
E elephant prediction efficiency
L controller–switch interaction
F flow set
i flow i in F
j the jth packet a flow forwards

Ki number of packets flow i forwards
labeli label of flow i
plabeli the final predicted label of flow i

Ti life span of flow i

bij the jth packet of flow i forwarded or not
tij the arrival time of the jth packet of flow i

tactivatei the recently activate time of flow i’s entry
tcalli the recently call time of flow i’s entry

Tcurrenti the current timeout of flow i’s entry
C[Tinitial ,r,Pelephant] total packet counts forwarded

Cbaseline total packet counts forwarded at base line
S domain of [Tinitial , r, Pelephant]

Tshortest shortest mean packet inter-arrival time
si a sample in BO

f (si) the objective function in BO
D samples and their costs in BO

4.4. Applying Explainable Bayesian Optimization

It is time-consuming for the proposed optimization problem to exhaustively search
the entire solution set (S) to find the best solution. Gradient descent-based optimization
approaches can quickly find the global optima but are not suitable for solving the proposed
problem because the proposed problem is discrete, and its derivative cannot be easily
achieved. Grid search, random search, and genetic search approaches are also unsuitable
because they are either too computationally expensive or cannot generate approximate
solutions of sufficient quality.

BO is a search mechanism based on BT. It performs searches efficiently and effectively.
Before applying BO to solve our proposed problem, we should (1) represent the parameters
as a vector; (2) define the search space; (3) formulate the objective function; and (4) calculate
the cost over the objective function.

The solution is represented as [Tinitial , r, Pelephant]. Since BO requires a continuous
solution domain, we let Tinitial be a real number in [Tshortest, 5], and Tshortest is a short value
that should consider the shortest packet inter-arrival time of the elephants in the training
dataset (we let Tshortest = 0.00001 s in TR1). We let r be a real number in [1, 5], since we
preferred the timeouts to grow continuously to reduce the total number of packets of a
flow forwarded to the controllers. We let Pelephant be a real number in [0.2, 0.9] to adjust
the probability of elephant prediction without actually changing the elephant model. The
objective function is 0.6/F1 + 0.2E + 0.2L, where F1, E, and L are formulated as shown in
Equations (5), (8) and (9), and the cost is the output of the objective function.

Sensors 2024, 24, 963 13 of 23

Let A and B be two events, where P(B|A), P(A), and P(A|B) refer to the likelihood,
prior, and posterior probabilities, respectively. According to BT, we have
P(A|B) = P(B|A)× P(A) (given P(B) to be normalized), which provides a framework
to quantify the beliefs about an unknown objection function given samples that form the
domain and their evaluation via the objective function. In our case, a sample refers to
si = [Tinitial , r, Pelephant], and it is estimated using the objective function (f (si) = 0.6/F1 +
0.2E + 0.2L), while f (si) also refers to the cost of si. The samples and their costs were
collected sequentially to form data D = [s1, f (s1), ..., sn, f (sn)] to define the prior P(f). The
likelihood P(D| f) is defined as the probability of observing data D given P(f) and keeps
changing as more observations are collected.

The posterior (P(f |D) = P(D| f)× P(f)) represents what we have known about the
objective function. It is an approximation of the objective function and can be used to
estimate the cost of different candidate samples that we may want to evaluate. It is a
surrogate objective function that probabilistically summarizes the conditional probability
of the objective function f , given the available data (D) or P(f |D). Here, we chooe Gaussian
process regression (GPR) to estimate f , since it is widely used and is capable of efficient
and effective summarization of a large number of functions and smooth transition as
more observations are made available to the model. Based on the estimate, an acquisition
function is involved in finding the samples in the search space that are most likely to pay
off. As additional samples and their evaluation via the objective function are collected, they
are added to the data D, and the posterior is then updated. This process is repeated until
the given number of iteration is exhausting. Our proposed BO algorithm is illustrated in
Algorithm 1.

Algorithm 1 BO algorithm for our proposed problem

1: INPUT: the number of iterations, the set S, and the data D = ∅
2: OUTPUT: the best [Tinitial , r, Pelephant]
3: initialize D
4: compute the GP over D
5: pick a new [Tinitial , r, Pelephant] using acquisition function
6: compute its cost
7: update D
8: if the number of iterations has been exhausted then
9: go to 2

10: else
11: go to 4
12: end if

The algorithm was applied to both scenarios 1 and 2, as listed in Table 3. While a
set of [Tinitial , r, Pelephant]

∗ was optimized for all flows in scenario 1, two dedicated sets of
[Tinitial , r, Pelephant]

∗ were optimized for the TCP and UDP flows separately in scenario 2.
The results show that [0.00001, 1.047, 0.7] was best for scenario 1 and [0.00001, 1, 0.566] was
best for the TCP and UDP elephants in scenario 2. This implies that giving the fixed hard
timeout of 0.00001 s over TR1 or slightly increasing the timeout value to 1.047 times the
current timeout once the flow entries are timed out (until the flows are predicted to be
elephants or out of their lifetime) can minimize the elephant prediction accuracy, efficiency,
and the increase in network latency. After a flow was predicted to be an elephant, its flow
entry was switched to an idle timeout of 5 s.

It should be noticed that the probability threshold Pelephant was adjusted to 0.7/0.566
from 0.5. In LR, the flows were placed with P(Z) = 0.5 on plane h1, as shown in Figure 4.
In the trained model, the flows with P(Z) > 0.5 were predicted to be elephants, and
they were placed on top of plane h1. Adjusting Pelephant to 0.7/0.566 from 0.5 implies that
the hyper-plane that separated the elephants and mice moved to h2. This is because the
traffic sampled by the timeouts was incomplete, and a flow needs more time to accumulate
packets so that the features generated on the incomplete traffic can have a similar value to

Sensors 2024, 24, 963 14 of 23

those based on complete traffic. Moving hyper-plane h1 to h2 indicates the increase in the
probability threshold, as shown in Figure 4.

Figure 4. The hyper-plane used to predict elephants in logistic regression, where h1 is the hyper-plane
under a probability of 0.5 and h2 is the hyper-plane under probabilities greater than 0.5.

5. Evaluations

In this section, we collect seven traces of campus (TR1, TR2, Simpleweb [39], UNIBS [40],
and UNIV1 [41]), backbone (MAWI, http://www.fukuda-lab.org/mawilab/, accessed on
20 October 2023), and IoT (IoT [42]) networks from different countries, as listed in Table 5. We
first evaluate the robustness of the proposed elephant model and the parameters optimized by
BO algorithms. Second, we analyze how the parameters affected the three objectives. Third,
we estimate the overall performance of the BO algorithms. Finally, we discuss the weakness of
the proposed approach, the methods to overcome the weakness, and how this approach can be
applied to other scenarios.

Table 5. Traces (5 min) used for evaluation. MAWI only includes the IPV4 flows. TF, UF, TE, and UE
are the short forms of TCP flows, UDP flows, TCP elephants, and UDP elephants, respectively.

Traces TR1 TR2 Simpleweb UNIBS UNIV1 MAWI IoT

Type campus campus campus campus campus backbone IoT
Coun. China China Netherlands Italy US Japan-US Australia
Year 2020 2021 2003 2009 2009 2013 2016

Flows 571,009 803,315 70,116 265 7562 504,637 187
TF 0.53 0.74 0.86 0.68 0.42 0.79 0.45
UF 0.47 0.26 0.14 0.32 0.58 0.21 0.55
TE 0.37 0.69 0.988 1 0.97 0.94 0.66
UE 0.63 0.31 0.012 0 0.03 0.06 0.34

Pcks/s 70,200 77,050 2070 83.99 2800 92,650 5

5.1. Robustness

This subsection applies the two sets of parameters optimized by BO in Section 4.4
([Tinitial , r, Pelephant] can be [0.00001, 1.047, 0.7] or [0.00001, 1, 0.566]) and computes the
values of the three objectives over the seven datasets as listed in Table 5.

As shown in Figure 5, although both two-parameter sets achieved high generalization
accuracy over seven datasets, using dedicated TCP and UDP elephant models obtained
a prediction F1 score that was about 0.01 higher than using the same model for both the
TCP and UDP flows. In high-performance networks such as UNIBS, UNIV1, and MAWI,
having an F1 score of 1% higher implies that hundreds or thousands more elephants can
be predicted correctly, leading to better network performance and resource management.
Although the elephant predictions over all datasets achieved an F1 score of over 90%, the

http://www.fukuda-lab.org/mawilab/

Sensors 2024, 24, 963 15 of 23

F1 score over UNIV1 was the lowest in both scenarios. More research should be carried out
in the future to further improve the robustness of the elephant model.

Figure 5. The three objectives given [Tinitial , r, Pelephant] in two cases. The labels without −2 indicate
the values for scenario (1) (a general model for both TCP and UDP elephants). The labels with
−2 indicate the values for scenario (2) (dedicated models for TCP and UDP elephants).

All the datasets except UNIV1 could predict elephants in half of the elephants’ lifetime.
In practice, this implies that the proposed approach can detect elephants in their early stages
so that the routes of elephants can be optimized for their subsequent packets to achieve
better resource utilization and performance management. UNIV1 had lower prediction
efficiency because its elephants had a shorter lifetime and a smaller mean packet size,
causing late elephant prediction.

Regarding the third objective of minimizing the increase in network latency, we
calculated the ratio of packet counts forwarded to the controllers. It can be seen that TR1
and TR2 forwarded more packets to the controllers than the other campus datasets. This
is because (1) they had packets arriving much faster than the other campus networks, as
listed in Table 5, and (2) they had more UDP elephants (ratio) than the other datasets,
while UDP elephants typically have longer packet inter-arrival times and lifetimes than
TCP elephants. We noticed that the ratio of packet counts forwarded to the controllers
over MAWI was lower than those over TR1 and TR2, although MAWI was the trace of the
carrier-level network. This may have been caused by the packets with sizes greater than
1,500 bytes in MAWI. Such an observation implies that some small packets were aggregated
by the network interface cards to improve the overall performance, and the real packet
arrival frequency should be much higher than that calculated by the trace. This leads to a
decreased ratio of packet counts forwarded to the controllers.

5.2. Sensitive Analysis

BO requires Tinitial , r, and Pelephant to have continuous domains, and the domains of
Tinitial , r, and Pelephant can affect the output of BO. Since the elephant prediction accuracy
had the weight of 0.6 in the proposed objective function, and the probability threshold
affected the elephant prediction accuracy, we varied the domain of Pelephant and saw how it
affected the output of BO. Specifically, we let the domain of Pelephant be [0.2, 1], [0.2, 0.9],
[0.2, 0.8], and [0.2, 0.7] and applied BO over all the datasets, as listed in Table 5. The
parameters optimized by BO are listed in Table 6, where parameters 1, 2, 3, and 4 used
the same model for both the TCP and UDP flows, while parameters 5, 6, 7, and 8 applied
dedicated models for the TCP and UDP flows. The models are listed in Table 3.

It can be seen that varying the domain of Pelephant did change the final r and Pelephant
output by BO, but Tinitial remained unchanged at 0.00001 s, implying that giving a shorter
Tinitial to the sample traffic could achieve a higher prediction accuracy, since the packet
loss generated by sampling would be reduced. As the domain of Pelephant varied, the r and
Pelephant optimized by BO changed, causing a large difference in the prediction accuracy,
efficiency, and the increase in network latency.

As shown in Figure 6A, parameters 1, 6, and 8 had higher generalization F1 scores
than the others. Although parameters 1, 6, and 8 had Pelephant values of 0.7, 0.9, and 0.2,

Sensors 2024, 24, 963 16 of 23

respectively, their r values had an equal value or were slightly greater than 1, whereas the
values of r for the other parameters were much larger. This indicates that having a short
and uniform sampling period for flow packets has a significant chance for the features of
flows to maintain the same distribution, which leads to higher generalization accuracy.

Table 6. Parameters optimized by BO algorithms under various domains. D1 is the domain of Tinitial ,
D2 is the domain of r, and D3 is the domain of Pelephant.

Num. TCP/UDP Model D1 D2 D3 Tinitial r Pelephant

1 same [0.00001, 5] [1, 5] [0.2, 0.7] 0.00001 1.047 0.7
2 same [0.00001, 5] [1, 5] [0.2, 0.8] 0.00001 2.6674 0.8
3 same [0.00001, 5] [1, 5] [0.2, 0.9] 0.00001 2.798 0.2
4 same [0.00001, 5] [1, 5] [0.2, 1.0] 0.00001 3.19 0.2
5 various [0.00001, 5] [1, 5] [0.2, 0.7] 0.00001 1.86 0.7
6 various [0.00001, 5] [1, 5] [0.2, 0.8] 0.00001 1 0.566
7 various [0.00001, 5] [1, 5] [0.2, 0.9] 0.00001 2.589 0.9
8 various [0.00001, 5] [1, 5] [0.2, 1.0] 0.00001 1 0.2

Figure 6. The three objectives given [Tinitial , r, Pelephant] for parameters of 1–8 as listed in Table 6.
(A) The F1 score of elephant prediction. (B) The elephant prediction efficency. (C) The network
latency increase.

As shown in Figure 6B, the elephant prediction efficiencies of Simpleweb, UNIBS, and
IoT were highly impacted by the parameters. However, such datasets achieved higher
prediction efficiency when using parameters 1, 6, and 8 because such parameters forced

Sensors 2024, 24, 963 17 of 23

more flow packets to be forwarded to the controllers in the early stages of the flows. The
IoT dataset could not predict elephants in their early stages when having r equal to or
greater than 1.8, because the elephants in the IoT dataset had quite small packet sizes and
long packet inter-arrival times.

As shown in Figure 6C, although Simpleweb, UNIBS, UVIC1, and the IoT forwarded
a rather small quantity of traffic to the controllers, the volume of traffic forwarded by
TR1, TR2, and MAWI to the controllers was 0.9–1.8 times the base line. This is because
TR1, TR2, and MAWI have shorter packet inter-arrival times, causing more flow packets
to be forwarded. The same short Tinitial with a larger r can reduce the quantity of traffic
forwarded to the controllers, but the generalization prediction accuracy over networks can
be decreased. It can also be noticed that the same approach over TR1 and TR2 forwards a
higher ratio of packets to the controllers than MAWI, though TR1 and TR2 were the traces
of campus networks, while MAWI was the trace of a carrier-level network. This is because
TR1, TR2, and MAWI are from 10G+ networks. However, we carefully configured the
network interface cards for TR1 and TR2 to avoid generating packets with sizes greater
than 1,500 bytes, while MAWI’s was not. Since such large packets (with packet sizes greater
than 1,500) do not reflect the real behaviors of packets at links, the prediction F1 score,
network efficiency, and the increase in network latency over MAWI may not represent the
real performance of the models in reality.

In summary, the strategy that set a short enough Tinitial to flow entry timeouts and
remain unchanged until identifying flows as elephants, followed by changing the flow
entries of the elephants to an idle timeout of 5 s, could achieve high generalization accuracy
across seven different datasets. The generalization accuracy is highly sensitive to the rate at
which timeouts increase (r). Maintaining a rate of one or slightly above one could keep the
prediction F1 score above 90% over various networks. The prediction efficiency and the
increase in network latency were both impacted by the value of r and the features of the
network. For instance, the prediction efficiency was highly dependent on the flows’ mean
packet size, and the increase in network latency was heavily determined by the flows’ mean
packet inter-arrival time. Therefore, the IoT dataset showed poor prediction efficiency for
certain parameters, and TR1, TR2, and MAWI forwarded more packets to the controllers
when a higher prediction F1 score was demanded.

5.3. Performance of BO

The BO algorithms used in this work are based on the function BayesianOptimization
in the package of bayes_opt in Python. This function applies GPR with the Mertin kernel
to construct a posterior distribution that best describes the optimized cost function. The
function was set to the default parameters. For example, the number of steps in BO was
25, the number of initial points was 5, and they were randomly selected in the domains,
while the acquisition function used was the upper confidence bound. The algorithms were
executed on a laptop with an Intel i7-8750H CPU running at 2.20 GHz and 8 GB of RAM.

Let m (|F| = m) flows in the dataset, where each flow has n packets on average and
the time complexity of solving Equation (11) is O(mn). Let the number of steps of BO be a
and the number of initial points be b, while the time complexity of the BO algorithms is
O(abmn).

Compared with a grid search, which may take several days to find the best parameters
from the parameter domain, the overall running time of the BO algorithms was about
3 h, regardless of whether they used the same or dedicated models for TCP and UDP
elephants over TR1. Using a computer with a stronger computation capability, applying a
dataset with fewer flows, and reducing the number of iterations could decrease the time
cost. However, increasing the number of iterations did not ensure better parameter outputs,
although the overall time cost was increased. In fact, we did not find better parameters
when increasing the number of iterations to 60.

We also let the acquisition function be the experience improvement and the probability
of improvement, alongside the upper confidence bound. We applied the BO algorithm to

Sensors 2024, 24, 963 18 of 23

the TR1 dataset. We did not find a significant improvement in the quality of the parameters
or the overall time cost. Since we let BO randomly generate five initial points in their
domains, BO may output various parameters in different runs. In this work, we let BO run
several times for each set of inputs and chose the best outputs.

5.4. Discussion
5.4.1. Bandwidth Usage

As shown in Figure 6C, our proposed approach forwarded more packets to the con-
trollers and consumed more control channel bandwidth than the base line over TR1, TR2,
and MAWI. However, it should be noticed that our proposed approach did not need to
move traffic or statistics from the switches to the controllers dedicated to elephant predic-
tion. In fact, typical controller-based elephant prediction approaches not only consume
control channel bandwidth to forward packets from switches to controllers for installation
and reactivation flow entries, but they also move network traffic or statistics from switches
to controllers periodically to predict elephants. According to DevoFlow [17], a switch can
return 1.3 million bytes of statistics to the controllers. Let the controllers poll the switch
twice per second [20]. Then, 780 million bytes (1.3 × 2 × 60 × 5 = 780) of statistics are
forwarded to the controllers in 5 min. Since the mean packet size of TR1 is 800 bytes,
780 million bytes of statistics is roughly 975,000 (780 × 106/800 = 975,000) packets, which
is roughly 0.54 times the base line (the number of packets forwarded to the controllers
under an idle timeout of 1 s). In fact, the real control channel bandwidth usage over TR1
for a typical controller-based approach should be 1 + 0.54n of the base line, where n is
the number of switches in a network, because each switch in the network has to send its
flow statistics to the controllers periodically. Since our proposed approach only requires
the first switch along the route of a flow to forward packets to the controllers, while the
real control channel bandwidth usage for our proposed approach is less than 1.8 times
the base line (as shown in Figure 6C), the real control channel bandwidth usage for our
proposed approach is lower than that of a typical controller-based approach over a network
consisting of 1+ switches.

5.4.2. The Increase in Network Latency

More packets forwarded to controllers in our proposed approach means more in-
teraction between the controllers and the switches, leading to increased network latency.
Increasing the value of r can effectively reduce the number of flow packets forwarded
to the controllers and maintain the overall network latency. However, this results in a
decrease in prediction accuracy, as shown in Figure 6A. To address this issue, we propose a
packet completion approach that improves elephant prediction accuracy while limiting the
number of packets forwarded to the controllers. Our approach involves inserting packets
between two packets received by the controllers. We set the initial timeout to 0.00001 s
and used the inter-arrival time of the first two packets forwarded to the controllers (t12)
to represent the actual packet inter-arrival time at the switches. Note that t12 may not
accurately represent the inter-arrival time of packets in a flow at the switches and is instead
used for packet completion. Let pcurrent denote the size of the packet just received by the
controllers and tctimeout denote the current timeout of the flow entry. The ratio tctimeout/t12
indicates the number of packets that should be inserted, with each packet having a size
of pcurrent. The packet completion approach was applied to the TR2 and MAWI datasets.
The prediction accuracy, efficiency, and network latency increase for each adjustment were
recomputed, and they are listed in Table 6. The results are displayed in Figure 7.

It is apparent that the proposed packet completion approach can improve the predic-
tion F1 score for both TR2 and MAWI, especially when r is greater than one, as shown by
the F1 scores over labels 2, 3, 4, 5, and 7 in Figure 7A. When applying the same adjust-
ment strategy over the datasets, the datasets with packet completion achieved a slightly
improved prediction efficiency and latency increase. Since we could apply the approach
with larger r values over the datasets with packet completion to achieve a similar high

Sensors 2024, 24, 963 19 of 23

prediction F1 score to applying the approach with r = 1 over the datasets without packet
completion, the latency increase could be reduced due to a larger r value. More intelligent
data completion approaches can be applied to further improve the prediction accuracy,
efficiency, and latency increase in our future work.

Figure 7. The three objectives when [Tinitial , r, Pelephant] is as listed in Table 6 after packet completion.
(A) The F1 score of elephant prediction. (B) The elephant prediction efficency. (C) The network
latency increase.

5.4.3. Others

Since a short initial timeout of 0.00001 s is given to flow entries until flows are out of
their lifespans or identified as elephants, flow entries with short lifespans can be timed
out, and the flow table that is used to store such flow entries can be free for other flows,
leading to effective flow table usage. However, short timeouts can cause packets over
high-performance networks such as TR1, TR2, and MAWI to arrive at controllers very
frequently, especially in the early stages of flows. That may add extra overhead for the
controllers to quickly complete the prediction before the next packet arrives. To reduce this
overhead, controllers can perform the prediction for each flow after the first 3 or 4 packets
have been received. In high-performance networks with 10G+ link bandwidth, our future
work should investigate how to avoid packets with 1.5+K bytes when generating traces
and how such packets affect the elephant model and prediction. Similar approaches can
also be used to model and predict IoT and DDoS flows without adding dedicated devices
over SDNs.

Sensors 2024, 24, 963 20 of 23

6. Conclusions

This paper proposed an elephant prediction strategy in SDNs. The strategy uses
the timeouts of flow entries to sample packet traffic and accurately predict elephants in
the early stages while maintaining the overall network latency. By applying LR to the
carefully selected flow features, two sets of elephant models were trained on the TR1 dataset.
One was a general model for both TCP and UDP elephants, and the other, consisting of
two submodels, was dedicated to TCP and UDP elephants. Since the models were trained
on the complete dataset, while the real traffic used to predict elephants was sampled by the
timeouts of flow entries, we formulated an optimization problem that found the best initial
timeouts of the flow entries, the rate at which the timeouts varied, and the probability
threshold for elephant prediction to maximize the accuracy and efficiency of the elephant
prediction while maintaining the network latency increase. The BO algorithm was applied
to solve the problem.

Seven datasets were collected from different campus, backbone, and IoT datasets to
estimate the robustness of the proposed models and the parameters of the timeouts. The
results show that the proposed models could achieve a prediction F1 score greater than
0.9 over all the collected datasets. The proposed models and timeouts could efficiently
predict elephants in about half of their life spans. However, they may lead to a widely
varying increase in network latency over networks according to their mean packet inter-
arrival times. Networks with long mean packet inter-arrival times, such as UNIBS, UNIV1,
Simpleweb, and the IoT, can significantly reduce controller-switch interaction, leading
to significantly reduced network latency. Networks with short mean packet inter-arrival
times, such as TR1, TR2, and MAWI, may forward more traffic to controllers when applying
our proposed approach to predicting elephants. The volume of traffic forwarded to the
controllers may be larger. However, when using a larger r together with a finely tuned
probability threshold could reduce the volume of traffic forwarded to the controllers, the
prediction accuracy could be decreased. Our sensitivity experiments show that giving
a shorter initial timeout to flow entries and keeping it short until the flows have been
predicted to be elephants or out of their lifespan can maintain a high generalization accuracy
over many networks. However, a simple packet completion method that carefully inserts
packets into the packet series of flows received by the controllers can increase the prediction
accuracy while limiting the increase in network latency due to packet loss. Further research
on packet completion and the applications of the proposed approaches in other scenarios
should be carried out in our future work.

Author Contributions: Conceptualization, L.X.L. and C.Z.; methodology, L.X.L. and C.Z.; writing—
original draft preparation, L.X.L.; writing—review and editing, R.X.L.; supervision, H.-C.C.; fund-
ing acquisition, L.X.L. and C.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Nature Science Foundation of China (grant
number 61962016), the Ministry of Science and Technology of China (grant number G2022033002L),
the National Nature Science Foundation of Guangxi (grant number 2022JJA170057), and Guangxi
Education Department’s Project on Improving the Basic Research Ability of Young and Middle-aged
Teachers in Universities (grant number 2023ky0812).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset TR1 and TR2 are not available due to privacy. The
references or links for the other datasets used in this paper have been given.

Conflicts of Interest: Author Roy Xiaorong Lai was employed by the company Confederal Networks
Inc. The remaining authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

Sensors 2024, 24, 963 21 of 23

Abbreviations
The following abbreviations are used in this manuscript:

SDNs Software-defined networks
IoT Internet of Things
QoS Quality of service
BO Bayesian optimization
ML Machine learning
TCP Transmission Control Protocol
UDP User Datagram Protocol
TCAM Ternary content-addressable memories
DDoS Distributed denial-of-service attack
BT Bayes’ theorem
NN Neural network
DNN Deep neural network
DT Decision trees
DRL Deep reinforcement learning
RL Reinforcement learning
SVM Support vector machines
LR Logistic regression
RF Random forest
XAI Explainable artificial intelligence
GA Genetic algorithm
CDF Cumulative distribution function
GPR Gaussian process regression

References
1. Xiao, Y.; Liu, J.; Wu, J.; Ansari, N. Leveraging deep reinforcement learning for traffic engineering: A survey. IEEE Commun. Surv.

Tutorials 2021, 23, 2064–2097. [CrossRef]
2. Liao, L.X.; Chao, H.C.; Chen, M.Y. Intelligently modeling, detecting, and scheduling elephant flows in software defined energy

cloud: A survey. J. Parallel Distrib. Comput. 2020, 146, 64–78. [CrossRef]
3. Hamdan, M.; Mohammed, B.; Humayun, U.; Abdelaziz, A.; Khan, S.; Ali, M.A.; Imran, M.; Marsono, M.N. Flow-aware elephant

flow detection for software-defined networks. IEEE Access 2020, 8, 72585–72597. [CrossRef]
4. Xie, S.; Hu, G.; Xing, C.; Liu, Y. Online Elephant Flow Prediction for Load Balancing in Programmable Switch Based DCN. IEEE

Trans. Netw. Serv. Manag. 2023 . [CrossRef]
5. Rifai, M.; Huin, N.; Caillouet, C.; Giroire, F.; Moulierac, J.; Pacheco, D.L.; Urvoy-Keller, G. Minnie: An SDN world with few

compressed forwarding rules. Comput. Netw. 2017, 121, 185–207. [CrossRef]
6. Isyaku, B.; Mohd Zahid, M.S.; Bte Kamat, M.; Abu Bakar, K.; Ghaleb, F.A. Software defined networking flow table management

of openflow switches performance and security challenges: A survey. Future Internet 2020, 12, 147. [CrossRef]
7. Zhu, H.; Fan, H.; Luo, X.; Jin, Y. Intelligent timeout master: Dynamic timeout for SDN-based data centers. In Proceeding of

the 2015 IFIP/IEEE International Symposium on Integrated Network Management, Ottawa, ON, Canada, 11–15 May 2015;
pp. 734–737.

8. Zhang, L.; Wang, S.; Xu, S.; Lin, R.; Yu, H. TimeoutX: An adaptive flow table management method in software defined networks.
In Proceeding of 2015 IEEE Global Communications Conference, San Diego, CA, USA, 6–10 December 2015; pp. 1–6.

9. Sooden, B.; Abbasi, M.R. A dynamic hybrid timeout method to secure flow tables against DDoS attacks in SDN. In Proceeding of
THE 1st IEEE International Conference on Secure Cyber Computing and Communication, Jalandhar, India, 15–17 December 2018;
pp. 29–34.

10. Li, Q.; Huang, N.; Wang, D.; Li, X.; Jiang, Y.; Song, Z. HQTimer: A hybrid Q-Learning-Based timeout mechanism in software-
defined networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 153–166. [CrossRef]

11. Panda, A.; Samal, S.S.; Turuk, A.K.; Panda, A.; Venkatesh, V.C. Dynamic hard timeout based flow table management in openflow
enabled SDN. In Proceeding of the IEEE International Conference on Vision Towards Emerging Trends in Communication and
Networking, Vellore, India, 30–31 March 2019; pp. 1–6.

12. Isyaku, B.; Bakar, K.A.; Zahid, M.S.M.; Nura Yusuf, M. Adaptive and hybrid idle–hard timeout allocation and flow eviction
mechanism considering traffic characteristics. Electronics 2020, 9, 1983. [CrossRef]

13. Li, X.; Qian, C. Low-complexity multi-resource packet scheduling for network function virtualization. In Proceeding of the 2015
IEEE Conference on Computer Communications, Hong Kong, China, 26 April–1 May 2015; pp. 1400–1408.

14. Pan, T.; Guo, X.; Zhang, C.; Jiang, J.; Wu, H.; Liuy, B. Tracking millions of flows in high speed networks for application
identification. In Proceeding of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 1647–1655.

http://doi.org/10.1109/COMST.2021.3102580
http://dx.doi.org/10.1016/j.jpdc.2020.07.008
http://dx.doi.org/10.1109/ACCESS.2020.2987977
http://dx.doi.org/10.1109/TNSM.2023.3318752
http://dx.doi.org/10.1016/j.comnet.2017.04.026
http://dx.doi.org/10.3390/fi12090147
http://dx.doi.org/10.1109/TNSM.2018.2890754
http://dx.doi.org/10.3390/electronics9111983

Sensors 2024, 24, 963 22 of 23

15. Bernaille, L.; Teixeira, R.; Akodkenou, I.; Soule, A.; Salamatian, K. Traffic classification on the fly. ACM SIGCOMM Comput.
Commun. Rev. 2006, 36, 23–26. [CrossRef]

16. Peng, L.; Yang, B.; Chen, Y. Effective packet number for early stage internet traffic identification. Neurocomputing 2015, 156,
252–267. [CrossRef]

17. Curtis, A.R.; Kim, W.; Yalagandula, P. Mahout: Low-overhead datacenter traffic management using end-host-based elephant
detection. In Proceedings of the IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 1629–1637.

18. Zhao, M.; Li, M.; Mei, L.; Tian, Y. Flowwatcher: Adaptive flow counting for source routing over protocol independent sdn
networks. In Proceeding of the 8th International Conference on Electronics Information and Emergency Communication, Beijing,
China, 15–17 June 2018; pp. 237–242.

19. Wang, B.; Su, J.; Li, J.; Han, B. EffiView: Trigger-based monitoring approach with low cost in SDN. In Proceeding of the IEEE 19th
International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart
City; IEEE 3rd International Conference on Data Science and Systems, Bangkok, Thailand, 18–20 December 2017; pp. 309–315.

20. Al-Fares, M.; Radhakrishnan, S.; Raghavan, B.; Huang, N.; Vahdat, A. Hedera: Dynamic flow scheduling for data center networks.
Nsdi 2010, 10, 89–92.

21. AlGhadhban, A.; Shihada, B. FLight: A fast and lightweight elephant-flow detection mechanism. In Proceeding of the IEEE 38th
International Conference on Distributed Computing Systems, Vienna, Austria, 2–6 July 2018; pp. 1537–1538.

22. Curtis, A.R.; Mogul, J.C.; Tourrilhes, J.; Yalagandula, P.; Sharma, P.; Banerjee, S. DevoFlow: Scaling flow management for
high-performance networks. In Proceedings of the ACM SIGCOMM 2011 Conference, Toronto, ON, Canada, 15–19 August 2011;
pp. 254–265.

23. Mori, T.; Uchida, M.; Kawahara, R.; Pan, J.; Goto, S. Identifying elephant flows through periodically sampled packets. In
Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, Taormina Sicily, Italy, 25–27 October 2004;
pp. 115–120.

24. Afaq, M.; Rehman, S.; Song, W.C. Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN. J. Korea
Multimed. Soc. 2015, 18, 189–198. [CrossRef]

25. Afek, Y.; Bremler-Barr, A.; Feibish, S.L.; Schiff, L. Detecting heavy flows in the SDN match and action model. Comput. Netw. 2018,
136, 1–12. [CrossRef]

26. Xiao, P.; Qu, W.; Qi, H.; Xu, Y.; Li, Z. An efficient elephant flow detection with cost-sensitive in SDN. In Proceeding of the 1st
International Conference on Industrial Networks and Intelligent Systems, Tokyo, Japan, 2–4 March 2015; pp. 24–28.

27. Yu, C. DROM: Optimizing the Routing in Software-Defined Networks with Deep Reinforcement Learning.IEEE Access 2018, 6,
64533–64539. [CrossRef]

28. Mu, T.Y.; Al-Fuqaha, A.; Shuaib, K.; Sallabi, F.M.; Qadir, J. SDN flow entry management using reinforcement learning. ACM Trans.
Auton. Adapt. Syst. 2018, 13, 1–23. [CrossRef]

29. Yang, H.; Riley, G.F. Machine learning based flow entry eviction for OpenFlow switches. In Proceeding of the 27th International
Conference on Computer Communication and Networks, Hangzhou, China, 30 July–2 August 2018; pp. 1–8.

30. Cheng, T.; Wang, K.; Wang, L.C.; Lee, C.W. An in-switch rule caching and replacement algorithm in software defined networks.
In Proceeding of the IEEE International Conference on Communications, Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

31. Glick, M.; Rastegarfar, H. Scheduling and control in hybrid data centers. In Proceeding of the IEEE Photonics Society Summer
Topical Meeting Series, San Juan, PR, USA, 10–12 July 2017; pp. 115–116.

32. Rossi, D.; Valenti, S. Fine-grained traffic classification with netflow data. In Proceedings of the 6th International Wireless
Communications and Mobile Computing Conference, Caen, France, 28 June–2 July 2010; pp. 479–483.

33. Kannan, K.; Banerjee, S. Flowmaster: Early eviction of dead flow on sdn switches. In Proceeding of the 15th International
Conference on Distributed Computing and Networking, Coimbatore, India, 4–7 January 2014; pp. 484–498.

34. Yang, H.; Riley, G.F.; Blough, D.M. Stereos: Smart table entry eviction for openflow switches. IEEE J. Sel. Areas Commun. 2019, 38,
377–388. [CrossRef]

35. Rahman, M.A.; Hossain, M.S.; Alrajeh, N.A.; Guizani, N. B5G and explainable deep learning assisted healthcare vertical at the
edge: COVID-I9 perspective. IEEE Netw. 2020, 34, 98–105. [CrossRef]

36. Ahn, S.; Kim, J.; Park, S.Y.; Cho, S. Explaining deep learning-based traffic classification using a genetic algorithm. IEEE Access
2020, 9, 4738–4751. [CrossRef]

37. Sarica, A.K.; Angin, P. Explainable security in SDN-based IoT networks. Sensors 2020, 20, 7326. [CrossRef]
38. Mahbooba, B.; Timilsina, M.; Sahal, R.; Serrano, M. Explainable artificial intelligence (XAI) to enhance trust management in

intrusion detection systems using decision tree model. Complexity 2021, 2021, 6634811. [CrossRef]
39. Barbosa, R.R.R.; Sadre, R.; Pras, A.; van de Meent, R. Simpleweb/university of twente traffic traces data repository. In Centre for

Telematics and Information Technology; University of Twente: Enschede, The Netherlands, 2010.
40. Este, A.; Gringoli, F.; Salgarelli, L. On the stability of the information carried by traffic flow features at the packet level. ACM

SIGCOMM Comput. Commun. Rev. 2009, 39, 13–18. [CrossRef]

http://dx.doi.org/10.1145/1129582.1129589
http://dx.doi.org/10.1016/j.neucom.2014.12.053
http://dx.doi.org/10.9717/kmms.2015.18.2.189
http://dx.doi.org/10.1016/j.comnet.2018.02.018
http://dx.doi.org/10.1109/ACCESS.2018.2877686
http://dx.doi.org/10.1145/3281032
http://dx.doi.org/10.1109/JSAC.2019.2959184
http://dx.doi.org/10.1109/MNET.011.2000353
http://dx.doi.org/10.1109/ACCESS.2020.3048348
http://dx.doi.org/10.3390/s20247326
http://dx.doi.org/10.1155/2021/6634811
http://dx.doi.org/10.1145/1568613.1568616

Sensors 2024, 24, 963 23 of 23

41. Benson, T.; Akella, A.; Maltz, D.A. Network Traffic Characteristics of Data Centers in the Wild. In Proceedings of the 10th
Conference on Internet Measurement, ACM, Melbourne, Australia, 1–3 November 2010; pp. 267–280.

42. Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Classifying IoT devices in
smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 2018, 18, 1745–1759. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMC.2018.2866249

	Introduction
	Background and Related Work
	SDN Architecture and Flow Entries
	Flow Entry Timeouts
	Elephant Prediction
	Explainable Machine Learning Techniques

	Feasibility Analysis
	Elephant Prediction Based on Incomplete Traffic Sampled by Timeouts
	Elephant Modeling Features
	Explainable Logistic Regression for Elephant Modeling
	Optimization Problem Formulation
	Applying Explainable Bayesian Optimization

	Evaluations
	Robustness
	Sensitive Analysis
	Performance of BO
	Discussion
	Bandwidth Usage
	The Increase in Network Latency
	Others

	Conclusions
	References

