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Abstract: The development of emerging information technologies, such as the Internet of Things
(IoT), edge computing, and blockchain, has triggered a significant increase in IoT application services
and data volume. Ensuring satisfactory service quality for diverse IoT application services based
on limited network resources has become an urgent issue. Generalized processor sharing (GPS),
functioning as a central resource scheduling mechanism guiding differentiated services, stands as a
key technology for implementing on-demand resource allocation. The performance prediction of
GPS is a crucial step that aims to capture the actual allocated resources using various queue metrics.
Some methods (mainly analytical methods) have attempted to establish upper and lower bounds
or approximate solutions. Recently, artificial intelligence (AI) methods, such as deep learning, have
been designed to assess performance under self-similar traffic. However, the proposed methods in
the literature have been developed for specific traffic scenarios with predefined constraints, thus
limiting their real-world applicability. Furthermore, the absence of a benchmark in the literature
leads to an unfair performance prediction comparison. To address the drawbacks in the literature, an
AI-enabled performance benchmark with comprehensive traffic-oriented experiments showcasing
the performance of existing methods is presented. Specifically, three types of methods are employed:
traditional approximate analytical methods, traditional machine learning-based methods, and deep
learning-based methods. Following that, various traffic flows with different settings are collected,
and intricate experimental analyses at both the feature and method levels under different traffic
conditions are conducted. Finally, insights from the experimental analysis that may be beneficial for
the future performance prediction of GPS are derived.

Keywords: IoT; resource allocation; performance prediction; benchmark; artificial intelligence

1. Introduction

The rapid growth of Internet of Things (IoT) technology has brought an increase in
IoT application services and data volume. Specifically, a wide array of physical devices
connected to the IoT network has resulted in an exponential increase in the number of
devices generating data. The diverse applications in areas such as healthcare, agriculture,
and transportation have yielded a wide range of IoT data types and use cases [1,2]. Different
IoT application services have different requirements for the quality of service (QoS) [3].
Ensuring satisfactory service quality for diverse IoT application services is a critical issue,
especially considering limited network resources. Specifically, the diverse nature of IoT
applications makes it challenging to adopt a one-size-fits-all approach to ensuring service
quality. For example, many IoT applications, such as autonomous vehicles, demand real-
time data processing and low-latency communication. Delays or disruptions in service can
have severe consequences in these mission-critical scenarios. In contrast, mobile phones are
relatively delay-tolerant and bandwidth-tolerant, as small packets are delivered [4]. In the
context of limited resources, allocating too many resources to phones and too few resources
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to autonomous vehicles will result in wasted resources for mobile phones and dangerous
consequences for autonomous driving applications. Therefore, network resource allocation
in terms of different requirements for the QoS has always been a hot topic. To allocate
network resources among different application services in terms of the corresponding
QoS requirements, fair resource scheduling has drawn broad attention [5–8]. Fair means
providing the QoS on demand.

Generalized processor sharing (GPS) scheduling, as the fairest scheduling mechanism
with the byte as the minimum scheduling unit, has been widely utilized as the fairness
guidance for central resource scheduling. Specifically, GPS scheduling functions as a central
resource scheduling mechanism, as it enables different application services to share the
network resources (such as the service capability of a server or an entire cloud service
center). GPS scheduling allocates the network resource to different application services
based on the weight assigned to each application service through scheduling the application
requests. In addition, by comparing the QoS for differentiated services achieved in the
resource allocation system and the fair QoS obtained under the GPS scheduling mechanism,
GPS scheduling guides differentiated services for on-demand resource allocation. To be
suitable for a variety of application services, multi-queue GPS has been mainly studied. As
long as the QoS obtained by each application service is not worse than that obtained using
the GPS scheduling mechanism, the resource allocation is regarded as fair and can provide
differentiated services on demand.

The performance prediction of each queue in multi-queue GPS corresponding to each
type of application service is of significance for fair scheduling. First, the performance
prediction of the GPS enables the provision of QoS guarantees to different IoT applications.
Knowing how resources will be allocated helps in setting appropriate weight assignments
to ensure fairness and meet the QoS for different application services. Second, the perfor-
mance prediction of GPS allows for dynamic adjustments of weights for IoT application
services based on different QoS demands, which helps in adapting to changing network
conditions and traffic patterns. Third, network administrators can optimize the config-
uration of the GPS and other scheduling algorithms to achieve better overall network
performance through performance prediction. In addition, it is also crucial to capture actual
allocated resources using various queue metrics. Specifically, different queue metrics pro-
vide information about different aspects of the network, such as the total queue length for
all application services and the queue length for each application service. Specifically, the
total queue length reflects the overall congestion situation of the scheduling system, which
can quickly locate the congested server or cloud service center, but it cannot determine the
specific data source of congestion. The queue length of each application reflects the con-
gestion of each application requesting the server. By monitoring the queue length of each
application, the resource allocation weight of the application can be adjusted appropriately,
or the flow of the application can be limited to relieve congestion.

Many researchers have focused on the performance prediction of the multi-queue
GPS scheduling mechanism. Existing methods mainly predict the performance metrics
using analytical methods and deep learning-based methods. For example, in [9,10], the
authors employed large deviation principles-based (LDPs) analytical methods to derive
the total queue length distribution for the overall GPS scheduling. In [11], the authors
used empty buffer approximate (EBA)-based analytical methods to derive the queue length
distribution of each application service. In addition, to obtain accurate performance metrics,
Zhang et al. [12] tried to predict the performance of the GPS scheduling mechanism by
employing a deep learning-based method, where the queue theory and the attention
network are combined. Although there has been much work on the performance prediction
for the GPS scheduling mechanism, limitations remain. Specifically, for the simplicity of
performance prediction, a particular traffic model (e.g., short-range dependent (SRD) or
long-range dependent (LRD)) has often been considered in existing methods. The traffic
arriving from different application requests in the real IoT environment is heterogeneous,
and only considering a particular traffic model will lead to the deviation of the GPS
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performance prediction. In addition, there is no unified benchmark in the open literature
for fairly comparing existing methods.

To consider the heterogeneity of traffic models and explore the fair comparison of
different performance prediction methods of GPS scheduling mechanisms, this paper
innovatively designed an AI-enabled traffic-oriented benchmark (ToGPS), which is shown
in Figure 1. To involve the heterogeneous network flow in the performance prediction
of GPS, ToGPS combines two classical traffic models: the Poisson traffic model and the
self-similar traffic model, which are proven to be representative traffic models for SRD
and LRD traffic models, respectively. Based on the different combinations of the two
kinds of traffic models, five types of datasets, including Lower burst flow, Higher burst
flow, Hybrid burst flow, Non-burst flow, and Heterogeneous flow, have been designed,
which are shown in Figure 2. In addition, for the fair comparison of different performance
prediction methods of GPS, a unified dataset format and unified evaluation metrics have
been designed. Specifically, the unified dataset was formed through a dataset preparation
module, including a label generation module and a feature extraction and processing
module. First, through the label generation module, labels for five datasets were generated
using an improved GPS simulator, where the average queue length of each application
service queue and the total queue length can be obtained. Then, the feature extraction
and processing module reconstructed the final dataset format corresponding to different
kinds of performance prediction methods of GPS. To clarify, the performance prediction
methods of the GPS were divided into machine learning methods, deep learning methods,
and analytical approximate solutions. Although the existing methods are only based
on deep learning-based methods and approximate analytic methods, to conduct a more
comprehensive exploration of the performance prediction methods, the benchmark fills
the gap in the performance prediction of GPS in traditional machine learning methods,
where classical traditional machine learning methods (i.e., decision tree and XGBoost) are
included. Then, unified evaluation metrics were designed by combining the total queue
length for the overall GPS scheduling system and the queue length for each application
service queue, where the root-mean-square error (RMSE) and mean squared error (MAPE)
were utilized to evaluate the accuracy of each performance metric for the application
service. Based on the performance benchmark, extensive traffic-oriented experiments
were conducted on five traffic datasets, and three types of performance prediction of the
GPS and the results from a knowledge perspective and a data perspective were analyzed
comprehensively. Through the experimental analysis, it is observed that the network traffic
has a significant impact on the accuracy of different performance prediction methods for
GPS. This variability is attributed to differences in traffic characteristics and the burstiness
of the traffic. In addition, knowledge-driven information is effective in GPS performance
prediction in terms of different server loads and traffic patterns. Deep learning-based
methods, in particular, show promise when combined with knowledge-driven information.

The contributions of this paper can be summarized as follows:

• This paper is the first to provide a benchmark for the performance prediction of the
multi-queue GPS scheduling in terms of different network flow characteristics. The
benchmark makes it possible to compare different performance prediction methods
under a consistent experimental environment and comparison metrics.

• The benchmark first combines traffic with different characteristics (i.e., LRD traffic
and SRD traffic) to design five traffic datasets to involve traffic heterogeneity. Then, a
unified dataset format and unified evaluation metrics are designed for fair comparison
of the performance prediction of the GPS.

• This paper concludes the best-fit method considering different network flow charac-
teristics and server loads.

• This paper further performs complex experimental analysis at both the feature level
and method levels under different traffic flows. The experimental analysis shows that
the combination of knowledge-driven information and machine learning technology
contributes significantly to the performance prediction of the GPS.
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The rest of the paper is organized as follows. Section 2 introduces related works.
Section 3 details the motivations for the performance prediction benchmark. Then, the
detailed benchmark system design is introduced in Section 4. Section 5 details the ex-
periments. Section 6 covers discussions and the future work. Lastly, Section 7 concludes
this paper.

Figure 1. The overview framework of the benchmark.
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Figure 2. The five datasets.

2. Related Works

This section first introduces the related work on GPS scheduling performance predic-
tion under the IoT resource allocation field, including traditional machine learning-based
methods and deep learning-based methods. Then, related works on approximate analytic
methods for the GPS performance prediction are shown .

2.1. Traditional Machine Learning-Based Methods

Traditional machine learning methods [13–15] refer to a class of machine learning
algorithms that appeared earlier and were widely used before the rise of deep learning. It
mainly learns patterns and rules from data to perform task prediction, classification and
clustering, etc. These methods often rely on feature engineering, which manually extracts
and selects appropriate features to represent the data. They have the advantages of strong
interpretability, fast training, the ability to process small datasets, few hyperparameters, and
feature engineering. While they also have the advantage of complex feature engineering,
they feature poor generalization ability limitations in dealing with nonlinear relationships.

Traditional machine learning is widely used in resource allocation management in
IoT networks [16,17], including resource scheduling and traffic classification. For instance,
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Junaid et al. [1] proposed a resource-efficient clustering framework for social IoT applica-
tions that performs geographic text clustering hierarchically without significantly reducing
clustering quality. Chauhan et al. [18] studied the resource scheduling method based on the
Q-learning algorithm for smart home applications. To dynamically adapt to various traffic
in real-life scenarios, Chinchali et al. [19] proposed a reinforcement learning (RL)-based
method for scheduling traffic to improve the network performance in resource allocation.
In addition, Rjoub et al. [20] employed a machine learning method to schedule tasks in a
cloud-assisted IoT network. In [20], multiple criteria were used to improve the network
performance. As traffic classification plays a crucial role in resource allocation, many works
have focused on machine learning-based methods for traffic classification. For example,
Qiao et al. [21] combined a time window method and machine learning-based methods to
identify traffic. Specifically, a time window method was used to analyze and extract features
from various IoT application flows, and a support vector machine and back propagation
neural network were employed to identify the network traffic. To study the performance
of the machine learning-based classification methods, Perera et al. [22] compared multi-
ple widely used machine-learning methods such as the naive Bayes net, random forest,
and decision tree algorithm, where random forest and decision tree proved to be the best
classifiers for classifying traffic. Though lots of work has been conducted in the resource
allocation field, there is little literature that focuses on performance prediction of resource
allocation utilizing machine learning. To this end, this work studies the performance of the
machine learning methods in the performance prediction of resource allocation.

2.2. Deep Learning-Based Methods

Traditional machine learning algorithms have certain advantages and limitations in
solving various problems, and it is very important to select an algorithm that is suitable for
the nature of the problem and the characteristics of the data. In recent years, with the rise
of deep learning methods [23–25], some problems have achieved better results using deep
learning methods. Deep learning uses artificial neural network models to learn and repre-
sent complex data features, which is suitable for various tasks, such as image recognition,
natural language processing, speech recognition, etc. Common deep learning methods
include multilayer perceptions, convolutional neural networks [26], transformers, etc. Deep
learning methods have significant advantages in dealing with large-scale complex data,
thereby achieving high accuracy prediction and flexibility. However, these methods also
present some challenges, such as the demand for large amounts of data and computational
resources, as well as interpretability issues of the model used. In practice, deep learning
methods are usually used in combination with traditional machine learning methods to
give full play to their respective advantages. Zhang et al. [27] developed a deep reinforce-
ment learning approach to optimize spectrum resource allocation, where a cooperative
strategy between secondary users and primary users is used. Zhou et al. [28] proposed
a deep learning-based framework for traffic prediction. In [28], the deep learning-based
framework can adaptively choose the optimal model for traffic prediction, and internal rela-
tionships among traffic flow data can be extracted. To maximize the classification accuracy
of the sensor data in IoT networks, Chun et al. [29] proposed a resource allocation scheme
based on binarized neural networks, which utilizes wireless channel state information
and data-driven methods to maximize the classification accuracy on the server side while
meeting the total transmit power constraints. To solve the problem of resource allocation in
the Internet of Things, ElHalawany [30] proposed two recursive neural network models.
Through these models, IoT nodes can upload information to a nearby centralized gateway
by reusing the communication channels of traditional cellular users, thus achieving the allo-
cation of underlying IoT resources. To obtain accurate performance prediction for resource
allocation on demand, Zhang et al. [12] designed a knowledge-driven multi-queue GPS
performance prediction method, called DLPE, which manually selects relevant features and
introduces them into the original features by analyzing the relevant theoretical knowledge
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of multi-queue GPS. In [12], the authors were the first to try to combine feature engineering
traditional machine learning with a deep neural network.

2.3. Approximate Analytical Methods

For approximate analytical methods of performance prediction problems in on-demand
resource allocation, much work has focused on the performance prediction of GPS schedul-
ing systems. Zhang et al. [31,32] analyzed the asymptotic decay rate of the queue length
tail distribution of two-queue and multi-queue systems under the GPS scheduling system,
and the results were obtained by using the principle of large deviation of sample paths.
Both works focused on the G/D/1 queue. Bertsimas et al. [33] obtained the lower and
upper bounds of the asymptotic large deviation of each buffer overflow probability under a
discrete-time GPS scheduling mechanism. Mannersalo et al. [10] proposed an empty buffer
approximation (EBA) method for priority queues and a rough full link approximation
method (RFLA)for the GPS scheduling mechanism to infer the queue length distribution
(QLD). A multi-queue priority queue (PQ) scheduling system and a two-queue GPS schedul-
ing system were studied. Jin and Min [34] proposed a new flow decomposition method
for a PQ-GPS system, which decomposes the integrated system into three independent
single-queue single-server systems. Their integrated system consists of a priority queue
system and a two-queue GPS scheduling system. EBA is used to analyze the QLD of each
subsystem. In addition, Ashour et al. [35] provided an analytical framework to evaluate the
performance of multi-queue PQ systems, and they modeled the multi-queue as a two-queue
system. At the same time, they also provided an analytical technique to infer the queue
length of a multi-queue system under the principle of generalized processor sharing [36].
Although Ashour et al., have studied multi-queue PQ and multi-queue GPS, no general
analysis result of the multi-queue GPS scheduling system has been obtained. multi-queue
GPS mainly refers to a GPS system with more than two queues, and it is difficult to analyze
its performance. Based on this, Zhang et al. [11] gave an approximate analytical solution
of the queue length distribution for multi-queue GPS. In order to further improve the
accuracy of the multi-queue GPS performance prediction results, Zhang et al. [12] designed
a knowledge-driven performance prediction method based on a deep learning network by
combining GPS theoretical analysis and deep learning.

Although many methods can be used to solve the problem of GPS performance
prediction, such as traditional machine learning methods, deep learning methods, and
approximate analytical methods, there is a lack of a benchmark for the unified comparison
and analysis of GPS performance prediction methods. This is not conducive to the further
improvement of the accuracy of multi-queue GPS performance prediction. Based on this,
this paper aims to design a benchmark to provide a unified platform for evaluating various
performance prediction methods.

3. Motivations

To clarify the motivations of this work, this section first emphasizes the significance of
GPS scheduling, thus introducing a classic application under centralized resource allocation
scenarios. Then, the importance of benchmarking is illustrated.

3.1. Application Scene

Fairness guidance for the resource allocation: The development of IoT technology
promotes the growth of the number of access devices to the network. Plenty of devices such
as smartphones, intelligence appliances, and smart cars access the network competing for
network resources (i.e., communication resources and computation resources). Resource
allocation is required to be efficient and fair for resource limitations. Efficiency means that
the proper resource allocation can be achieved quickly and flexibly. Fairness means that
each device can obtain a satisfactory quality of service. For the sake of fairness and flexible
parameter settings, GPS can be regarded as an ideal scheduling mechanism guiding fair
and efficient resource allocation.
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3.2. Motivations for Performance Benchmarking

The performance prediction of multi-queue GPS has always been the focus of the
research. However, no closed-form solutions can be found to obtain the exact performance
prediction of each queue in the GPS, thereby limiting the application of GPS on fair resource
allocation. In order to find an accurate solution for the performance prediction of each
queue, a benchmark comparing the varieties of methods is of vital importance. Suitable
methods can be selected that correspond to certain scenarios. Based on the optimization
methods, the following targets can be achieved:

• To find out bottlenecks and gaps for improvement and whether the server capacity
should be improved for the sake of the fairness objective.

• To provide fairness guidelines on the parameter configuration weights assigned to
each flow network flow control.

• To propose and implement optimizations to improve performance.

4. Benchmark System Design

For clarity, this section begins with an introduction of the problem statement for the
performance prediction of multi-queue GPS. Then, the design of the benchmark system is
introduced, as shown in Figure 1. Firstly, the network flow preparation part is introduced to
generate the network flows. Then, feature extraction and processing are employed to extract
and process features. Following that, benchmark baselines are organized, which include
machine learning-based methods and approximate analytical solutions for the performance
prediction of multi-queue GPS. Lastly, RMSE and MAPE are utilized as evaluation metrics.

4.1. Problem Statement

This section intends to introduce the problem statement of the performance prediction
of multi-queue GPS and the goal of this work. For the sake of understanding, Table 1 lists
the definitions of the terminology.

Table 1. The definition of the terminology.

Terminology Definition

C The server capacity of the multi-queue GPS system
M The number of the traffic flow

f lowm The mth traffic flow served by the multi-queue GPS system
f The type of traffic stochastic model, where f = 0 denotes the Poisson process, and f = 1 denotes the self-similar traffic

P f
m(t) The cumulative arrival process of the traffic f lowm until time t and flow_m obey f
rm The weight assigned to f lowm
gm The guaranteed service rate of f lowm
LP The vector of the average queue length of each traffic flow
lpm The average queue length of f lowm
LD The vector of the average queue delay of each traffic flow
ldm The average queue delay of f lowm

A f
m The arrival rate of f lowm, where f lowm obeys the stochastic model f

Hm The Hurst parameter of f lowm
NF The flow-related features
Arr The vector of the mean arrival rate

GPSS The server-related features
EF The extended features
IF The input features of the performance prediction

The performance prediction of the multi-queue GPS system: Given a multi-queue
GPS server with a server capacity C serving M(M ≥ 1) flows, we assume that the arrival
process of the flow obeys different traffic stochastic model f , where f ∈ {0, 1} and 0
denote the Poisson traffic, and 1 denotes the self-similar traffic. Poisson traffic and self-
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similar traffic will be introduced in the flowing part. Then, we denote P f
m(t), t ∈ R as the

cumulative arrival process of the network, where m ∈ {1, 2, ..., M}.
To allocate service capacities to different flows, each flow is assigned a fixed weight

rm, where 0 < rm < 1 and ∑M
m=1 rk = 1. Then, each flow f lowm is guaranteed a minimum

guaranteed service rate of gm = rmC, when it is served, based on the definition of the GPS
mechanism referring to [37]. Waiting queues for each single flow, SF = {s f1, s f2, ..., s fM},
appear when the arrival rate exceeds the service rate, thereby referring to the single queue.
The performance prediction of the multi-queue GPS system is to evaluate the performance
of each single queue, such as average queue length LP = {lp1, lp2, ..., lpM} and average
queue delay LD = {ld1, ld2, ..., ldM}. Referring to the statement in [12], this problem is
denoted as the multi-queue GPS problem.

The goal: The goal is to conduct an in-depth study of the performance prediction for
the multi-queue GPS system, the learning-based methods—including traditional learning
methods and deep learning methods—and the approximate analytical methods used on
the multi-queue GPS system in terms of different flow characteristics are compared. Upon
examining the experiment results, some observations aimed at analyzing the limitations of
these methods and finding the proper methods to deal with the multi-queue GPS problem
under a certain scenario are included.

4.2. Dataset Preparation

Network services put packets on the network link when waiting for the process of the
server. Due to the uncertainty of the network service requirements, it is of great significance
to accurately describe network flow characteristics. Extensive empirical and theoretical
studies have been devoted to characterizing network traffic [38]. Various network flow
models have been studied, which can be divided into two types: the short-range depen-
dence traffic model (SRD) and the long-range dependence traffic model (LRD). Different
network flow models focus on different characteristics of the network flow. As the clas-
sical traffic models, the Poisson process [39], and self-similar process [40,41], which are
the representative traffic models for the SRD and LRD, respectively, play a vital role in
characterizing traffic behaviors. This work mainly explores the effect of the Poisson process,
the self-similar process, and the heterogeneous traffic comprising the Poisson process and
the self-similar process on the performance prediction of the multi-queue GPS system. The
following will introduce the Poisson traffic and the self-similar traffic.

Poisson traffic flow: The Poisson model can well meet the early network modeling
requirements and has played a great role in network design, maintenance, management,
and performance analysis [42]. Some researchers claim that the Poisson model may fail to
characterize the present network flow [43]. Others argue that current network traffic can
also well characterize the Poisson model in terms of subsecond time scales [44]. Assume
that packets are distributed independently when they arrive and are only related to a single
rate parameter. If the number of packets arriving in the time series [t1, t2] conforms to
the Poisson distribution with parameter A0

m ∗ (t2 − t1), the arrival process of the packet is
called a Poisson process, where A0

m is the arrival rate of the Poisson flow, and the number
of the flow is m. Then, based on the Poisson process, the probability of the arrival of n
packets within time [t1, t2] can be expressed through Equation (1). In Equation (1), P0

m(t1)
and P0

m(t2) denote the cumulative arrival amount at time t1 and t2, respectively, for the
f lowm, and the flow obeys a Poisson process.

Pr[(P0
m(t2)− P0

m(t1)) = n] =
e−A0

m(t2−t1)(A0
m(t2 − t1))

n

n!
n = 0, 1, . . .

(1)

Self-similar traffic flow: With the development of network technology, the data carried
by network traffic present diversity (such as text, images, video, real-time services, etc.),
which makes network traffic characteristics more complex and bursty. Existing studies have



Sensors 2024, 24, 980 9 of 22

found that the network flow shows self-similarity through studies on the flow analysis of
the local area network, the IP business flow of the World Wide Web, and the VBR video
business flow [40,45,46]. Fractal Brownian motion has proved to be the most efficient
approach for modeling self-similar traffic, which is called fractal Brownian network flow.

Denote the cumulative arrival process of the self-similar traffic by P1
m(t), t ∈ R,

where P1
m(t) = A1

mt + Ym(t), and the amount of f lowm arrives in an interval of [t1, t2]
by αm(t1, t2) = P1

m(t)− P1
m(s). A1

m is the mean arrival rate, and Ym(t) =
√

am A1
mZ̄m(t).

Here, am is the variance coefficient of βm(t), and Z̄m(t) is a centered fBm with the variance
function v̄m(t) = t2Hm , where Hm ∈ [0.5, 1] is the physically significant range of the Hurst
parameter, which indicates the degree of self-similarity [47] and the long-range dependence.
Then, the variance function of αm(t) can be given by the following:

Var{αm(t)} = Var{Ym(t)} = ak A1
mv̄m(t) = am A1

mt2Hm (2)

4.2.1. Label Generation

Dataset classification based on network flow models: In order to study the effect of
the performance prediction methods for the multi-queue GPS system, a GPS simulator was
utilized to obtain the performance of each queue. Five datasets were obtained, as are shown
in Figure 2. To study the effect of the different network flows on the performance prediction
of the multi-queue GPS system, these datasets were derived in terms of different network
flow models. As Figure 2 shows, the first three datasets are based on self-similar traffic
considering different Hurst parameters. H = 0.75 and H = 0.8 were chosen as examples,
for they have proven to be more efficient in the modeling of modern network traffic [48].
The five datasets are introduced in detail as follows:

• Dataset Lower burst flow: Each flow obeys the self-similar process, and the Hurst
parameter of each flow is set as H = 0.75;

• Dataset Higher burst flow: Each flow obeys the self-similar process, and the Hurst
parameter of each flow is set as H = 0.8;

• Dataset Hybrid burst flows: Each flow obeys the self-similar process, and each flow is
set with different Hurst parameters.

• Dataset Non-burst (SRD) flow: Each flow in the multi-queue GPS that has arrived
obeys the Poisson process.

• Dataset Heterogeneous flows: Some flows have arrived obeying the Poisson, and
others obey the self-similar process.

The distribution of the dataset: To make the setup of the platform transparent and
prove the effectiveness and applicability of the dataset selection, the distribution of these
five datasets is mainly introduced in the following. The data distribution of these five
datasets is shown in Figures 3–5. Without a loss of generality, three-queue GPS has been
mainly considered. Figure 3 shows the server utilization distribution of each flow on
the five datasets, where the server utilization is calculated according to the guaranteed
service capacity of each flow, that is, ρm = A f

m/gm. Figure 3 shows that in each dataset, the
distribution of the server utilization of the three network flows has similarity, including
upper bound, lower bound, median, upper quartile, and lower quartile. There are great
differences among the datasets.
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Figure 3. The distribution of the utility of each flow in five datasets. (a) Lower burst flow; (b) Higher
burst flow; (c) Hybrid burst flows; (d) Heterogeneous flows; (e) Non-burst flow.



Sensors 2024, 24, 980 10 of 22

Queue 1 Queue 2 Queue 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

Queue 1 Queue 2 Queue 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Queue 1 Queue 2 Queue 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

Queue 1 Queue 2 Queue 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d)

Queue 1 Queue 2 Queue 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e)

Figure 4. The distribution of the proportion of the arrival rate of each flow in five datasets. (a) Lower
burst flow; (b) Higher burst flow; (c) Hybrid burst flows; (d) Heterogeneous flows; (e) Non-burst flow.
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Figure 5. The distribution of the utility.

Figure 4 shows the distribution of the proportion of the arrival rate of each network
flow in the five datasets, that is, prm = A f

m/ ∑M
k=1 A f

k . As shown in Figure 4, the distri-
bution of the proportion of arrival rates of the corresponding network flows among the
datasets is similar, while the distribution of each network flow in the same dataset has
certain differences.

Figure 5 shows the distribution of the overall server utilization, where the overall
server utilization is the server-based service capacity, which is A f

m/C. As shown in Figure 5,
the server utilization of the selected dataset is consistent with the characteristics of network
flows. For example, due to the burstiness of self-similar network flows, the server utilization
of self-similar network flows was smaller than that of non-burst flows as a whole.

Multi-queue GPS simulator: The inputs of the GPS simulator are various network
flow sequences generated according to the network flow model, and the output is the
queue performance metric of the corresponding queue of the network flow processed by
the GPS scheduling mechanism, such as queue length. The principle of the multi-queue
GPS simulator is detailed in the following. Suppose that M network flows arrive; the
server has a service capacity of C, and the weights are {r1, r2, . . . , rm, rM}. When only
one network flow f lowm, m ∈ (1, M) arrives at the requested service, the server allocates
all its service capacity to f lowm. When any two network flows arrive with f lowm and
f lowk, m, k ∈ (1, M), the server allocates service resources to these two flows according
to their relative weights, namely f lowm. The service capacity obtained is rm

rm+rk
C, that is,

the service capacity obtained by f lowk is rk
rm+rk

C; similarly, when more than two network
flows arrive, each network flow obtains the service capacity resource according to its
relative weight.

4.2.2. Feature Extraction and Processing

In order to achieve the fairness and reliability of the benchmark platform, the input
features were normalized and unified. The input features were divided into basic features
and extended features. Basic features mean features obtained through the general statistical
analysis (i.e., average value and variance) in terms of the network flow and the GPS’s
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definition. Extended features denote knowledge-driven features based on in-depth theory
analysis (i.e., queue theory).

Basic features: The basic features (BFs) were divided into two parts: network flow-
related and the GPS server-related. Considering the effect on the quality of the service (QoS)
and the network flow model mentioned above, the network flow-related features included
the mean arrival rate, the variance of the arrival of the flow, and the packet length, which
can be denoted as NF = (Arr, Var, Pl), where Arr{A f

1 , A f
2 , ..., A f

M} denotes the vector of
the mean arrival rate. Based on the definition of GPS, the GPS server-related basic features
can be denoted as GPSS = (W, C), where W denotes the weight assigned to each flow, and
C denotes the resource capacity that the GPS server can provide.

Extended features: Based on the queue theory, the basic features can be extended to
capture better effective features that affect GPS performance. Referring to Jin’s work [49], the
extended features (EFs) mainly include the minimum guaranteed capacity MU, the proportion
of the arrival rate PA, and the utility based on the minimum guaranteed capacity UM for each
flow feeding into the GPS server, which can be denoted as EF = (MU, PA, UM).

Therefore, the knowledge-driven features comprise basic features and the extended
knowledge features, which can be denoted as IF = (NF, EF).

4.3. Performance Prediction of the Multi-Queue GPS System in the Benchnmark

This section illustrates the variety of performance prediction methods for multi-queue
GPS employed in the benchmark. Traditional approximate analytical methods, traditional
machine learning-based methods, and deep learning-based methods are three different
types of methods that can conduct performance prediction for GPS scheduling. Existing
methods mainly predict the performance metrics using traditional approximate analytical
methods and deep learning-based methods. For example, Mannersalo et al. [9] employed
large deviation principle-based (LDPs) analytical methods to derive the total queue length
distribution for overall GPS scheduling. In [11], the authors use empty buffer approximate
(EBA)-based analytical methods to derive the queue length distribution of each application
service. Due to the limitations of analytical methods, only approximate solutions for perfor-
mance prediction can be obtained. To obtain accurate performance metrics, Zhang et al. [12]
predicted the performance of the GPS scheduling mechanism by employing a knowledge-
driven deep learning-based method, where queue theory and the attention network are
combined. This marked a successful endeavor in leveraging deep learning-based methods
for GPS performance prediction, thereby highlighting the considerable potential in this
domain. However, it is essential to recognize that the application of deep learning-based
methods necessitates an extensive dataset and prolonged training periods, thus making
them less viable in situations where datasets are scarce and time constraints are high. While
there is no research on the application of traditional machine learning with respect to the
performance prediction of the GPS scheduling mechanism, it serves as a viable alterna-
tive method for its excellent performance of machine learning methods in handling small
datasets and time constraints. In addition, traditional machine learning has demonstrated
strong performance in network resource allocation [22] To undertake a more exhaustive
investigation of the performance prediction methods for GPS, the AI-enabled benchmark
incorporates classical traditional machine learning methods, specifically decision tree and
XGBoost. To clarify, the deep learning-based methods for the performance prediction of
GPS have been further divided into deep learning methods without knowledge-driven
information and the knowledge-driven deep learning method in the benchmark. Three
types of methods are introduced as follows.

4.3.1. Traditional Machine Learning Method

Decision_CART: Decision trees are a supervised learning method that can be used
to deal with classification problems or regression problems. As a relatively effective and
powerful traditional machine learning method, the benchmark of this paper takes it as
one of the baselines to solve the GPS performance prediction problem. Specifically, the
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classification and regression tree (CART) algorithm [50] uses a binary tree to simplify the
size of the decision tree, which can improve the efficiency of decision tree generation.
Therefore, the decision tree implemented by the CART has been utilized in the benchmark,
and it is referred to as Decision_GBRT.

Boosting_Xgboost: When weak models are combined correctly, more accurate and/or
robust models can be obtained. The integration algorithm is exactly the algorithm that can
improve the efficiency of the machine learning model. Specifically, boosting, which is one
of the integration algorithms, learns these weak learners sequentially (each base model
depends on the one before it) in a highly adaptive way, and it combines them according
to some deterministic strategy. As demonstrated in Xgboost [51,52], one of the implemen-
tations of the boosting introduces a L2 regularization term of the leaf weight, which is
conducive to the model to obtain a lower variance. Xgboost is utilized for implementation,
which we refer to as Boosting_Xgboost.

4.3.2. Deep Learning Method without Knowledge-Driven Information

As a subdomain of machine learning, unlike traditional deep learning methods, deep
learning methods can automatically extract advanced features without the need for artificial
feature engineering [53].

MLP: Multilayer perception (MLP) [54] is the basic deep learning method that simply
concludes the input layer, hidden layer, and output layer. The different layers of MLP
neural networks are fully connected.

GCN: In order to deal with more complex data structures, graph convolutional net-
works (GCNs) [55] have attracted the attention of researchers. The GCN has designed an
elegant method to extract features from graph data so that these features can be used to
produce the node classification, graph classification, and link prediction of graph data.
In addition, graph embedding can be obtained by using a GCN. Considering the tightly
coupled relations among queues in GPS, the input features of each queue and the server
can be organized as graph data.

4.3.3. Knowledge-Driven Deep Learning Method

Zhang et al. [12] proposed a knowledge-driven deep learning method for the perfor-
mance prediction of the multi-queue GPS system called the DLPE. The input features of
the DLPE are the combining of the basic features and the extended knowledge-driven fea-
tures. In addition, an innovative fused model considering knowledge-driven information
is designed to dig out in-depth relations for each queue of the multi-queue GPS system.

4.3.4. Analytical Approximate Methods

Though it is significantly hard to derive the performance of each queue in the multi-
queue GPS system by utilizing the analytical methods, the approximate analytical methods
have played a vital role in the performance prediction of the multi-queue GPS system. In
this benchmark, the approximate analytical methods for the total queue (MPPA) [9] and for
each queue (EBA_Multi) [11] have been compared. In terms of the complicated relationship
among the queues and the server, only the upper and lower bounds can be devised exactly.
For uniform comparison, this benchmark uses the geometric mean of the upper and lower
bounds as the maximum performance value [56].

To clarify the approximate analytical methods, the determined function is introduced
first, as shown in Equation (3). In Equation (3), lx is the queue length at time t, and vm(t) is
the variance function of f lowm.

χ(t) =

(
−lx +

(
C − ∑M

m=1 θm

)
t
)2

∑M
m=1 vm(t)

(3)
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MPPA: Based on the most probable path method, the probability of the queue length
lx can be obtained using Equation (4). The MPPA mainly focuses on the total queue of the
GPS where the aggregate flows are considered.

exp
(
− 1

2 χ(tlx )
)

√
2π

(
1 +

√
χ(tlx )

)2
≤ P(Lx > lx) ≤ exp

(
−1

2
χ(tlx )

)
(4)

EBA_Multi: To obtain the queue length of each queue in the multi-queue GPS system,
Zhang et al. [11] further utilized the empty buffer approximate (EBA) method to estimate
the service capability actually obtained cap = (c1, c2, ..., cM) as the probability of the queue
length of each queue. We substitute M = 1 into Equation (3); then, the determining func-
tion and the bounds for each queue can be obtained by referring to Equations (3) and (4),
respectively. Equation (5) is the determining function for each queue.

χ(t) =
(−lx + (cm − θm)t)

2

vm(t)
(5)

4.4. Evaluation Metrics

In order to evaluate the effect of each method on the GPS performance prediction,
the benchmark uses the standard regression evaluation indicators root-mean-square error
(RMSE) and mean absolute percentage error (MAPE) to compare the performance of each
method. Different queue metrics provide information about different aspects of the network.
The total queue length for all application services is utilized to reflect the overall congestion
situation of the scheduling system to locate the congested server or cloud service center
and the congestion. The queue length for each application service is utilized to reflect each
application requesting the server. By monitoring the queue length of each application, the
resource allocation weight of the application is adjusted appropriately, or the flow of the
application is limited to relieve congestion.

5. Experiments

In order to evaluate the effect of each performance prediction method for the multi-
queue GPS system, extensive traffic-oriented experiments have been conducted on the
benchmark.

5.1. Experiment Settings

To dig out the in-depth effect of different methods on the performance prediction of
the GPS scheduling, two traffic-oriented experiments were conducted as follows.

First, to comprehensively explore the performance of each performance prediction
method considering different traffic patterns and different utilization loads, experiments
were conducted on five kinds of traffic datasets and three kinds of performance prediction
methods, which are shown in Section 4.3. Specifically, five datasets were generated based on
different traffic models, including Lower burst flow, Higher burst flow, Hybrid burst flows,
Non-burst flow, and Heterogeneous flows, as shown in Section 4.2.1. Three-queue GPS has
been considered here. Each of the five datasets was divided into three parts based on the
server’s utilization load, which is denoted as utility. As nearly no queues exist under the 70%
utility of the server and the server becomes heavily congested over 95%, the utilities from
70% to 95% were chosen. To refine the server utilization, the interval was divided into three
segments: server utility ranges from 70% to 80%, denoted as Ut = (0.7, 0.8); server utility
ranges from 80% to 90%, denoted as Ut = (0.8, 0.9); and server utility ranges from 90% to
95%, denoted as Ut = (0.9, 0.95). Then, the input data format of the five datasets was set to
correspond to different performance prediction methods. As shown in Section 4.1, machine
learning-based methods (i.e., Desision_CART and Boosting_Xgboost), deep learning-based
methods without knowledge-driven information (i.e., MLP, MLP1_Norm, and GCN) and
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analytical approximate methods were fed with datasets formatted with the basic features.
The knowledge-driven deep learning methods (i.e., the DLPE) were fed with datasets
formatted with the knowledge-driven features.

Second, to further explore the effect of the knowledge-driven feature on deep learning-
based methods, experiments were conducted on the five datasets and deep learning-based
methods without knowledge-driven information. Each dataset was also divided into three
parts, which are Ut = (0.7, 0.8), Ut = (0.8, 0.9), and Ut = (0.9, 0.95). In this scenario,
knowledge-driven features inspired by the DLPE were added as the input features of the
deep learning-based methods without knowledge-driven information.

5.2. Experiment Results and Analysis

In this section, the experiment results and analysis are presented in three aspects: the
effect of the performance prediction methods under different server loads, the comparison
of the methods with and without knowledge-driven information, and the comparison of the
learning-based methods and the approximate analytical methods, where four observations
were obtained.

5.2.1. The Effect of Performance Prediction Methods under Different Server Loads

This section first analyzes the effect of multiple multi-queue GPS performance pre-
diction methods under different network traffic scenarios in detail from the perspective of
the GPS queue, average queue, and each subqueue, as shown in Tables 2–6. Secondly, by
further analyzing the effect of each prediction method from the perspective of total queue
prediction, several observations were summarized, as are shown in Figures 6 and 7.
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Figure 6. The RMSE of the total queue in GPS. (a) Lower burst flow; (b) Higher burst flow; (c) Hybrid
burst flows; (d) Heterogeneous flows; (e) Non-burst flow.
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Figure 7. The MAPE of the total queue in GPS. (a) Lower burst flow; (b) Higher burst flow; (c) Hybrid
burst flows; (d) Heterogeneous flows; (e) Non-burst flow.

Table 2. Performance comparison of different methods for the performance prediction of GPS under
lower burst traffic.

Utility of
the Server

Methods Decision_CART Boosting_Xgboost MLP MLP1_Norm GCN DLPE EBA_Multi MPPA

Metrics RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Ut = (0.7, 0.8)

GPS queue 1.363 45.271 0.322 36.077 0.326 40.635 0.430 60.215 0.610 65.425 0.510 31.757 6.965 503.397 0.524 81.482
Average queue 0.454 15.090 0.107 12.026 0.109 13.545 0.143 20.072 0.203 21.808 0.170 10.586 2.322 167.799 – -

Queue 1 0.192 13.202 0.093 10.862 0.123 17.539 0.129 17.639 0.132 16.117 0.075 7.107 2.465 133.338 - -
Queue 2 0.751 18.023 0.114 12.722 0.103 13.292 0.152 21.647 0.222 23.046 0.223 9.349 2.528 180.288 – –
Queue 3 0.420 14.047 0.115 12.493 0.100 9.804 0.149 20.929 0.256 26.262 0.212 15.301 1.972 189.771 – –

Ut = (0.8, 0.9)

GPS queue 2.931 50.022 1.943 31.019 2.048 42.268 2.251 77.182 1.817 33.534 1.669 39.024 45.525 265.149 1.677 39.126
Average queue 0.977 16.674 0.648 10.340 0.683 14.089 0.750 25.727 0.606 11.178 0.556 13.008 15.175 88.383 – –

Queue 1 0.551 14.041 0.478 9.195 0.497 19.987 0.580 24.513 0.460 8.651 0.386 8.221 29.014 75.945 – –
Queue 2 1.324 17.874 0.740 10.679 0.766 11.134 0.837 26.828 0.728 12.689 0.696 8.057 7.892 93.552 – –
Queue 3 1.056 18.107 0.725 11.145 0.785 11.147 0.834 25.841 0.629 12.194 0.587 22.746 8.619 95.651 – –

Ut = (0.9, 0.95)

GPS queue 10.483 70.283 10.123 70.770 10.495 67.321 11.367 110.224 8.771 60.211 4.705 47.388 24.120 564.242 5.227 30.160
Average queue 3.494 23.428 3.374 23.590 3.498 22.440 3.789 36.741 2.924 20.070 1.568 15.796 8.040 188.081 – –

Queue 1 0.146 10.926 0.189 11.022 0.129 11.437 0.646 28.921 0.140 10.753 0.341 10.019 11.106 65.160 – –
Queue 2 7.196 34.888 7.040 40.244 7.152 35.200 7.348 50.409 6.383 29.041 3.732 23.163 9.029 294.099 – –
Queue 3 3.141 24.470 2.894 19.504 3.214 20.684 3.373 30.894 2.248 20.417 0.632 14.206 3.985 204.984 – –

Table 3. Performance comparison of different methods for the performance prediction of the GPS
under higher burst traffic.

Utility of
the Server

Methods Decision_CART Boosting_Xgboost MLP MLP1_Norm GCN DLPE EBA_Multi MPPA

Metrics RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Ut = (0.7, 0.8)

GPS queue 0.794 33.342 0.262 24.557 0.325 103.707 0.776 142.814 0.712 55.628 0.277 23.824 8.037 510.786 0.532 82.498
Average queue 0.265 11.114 0.087 8.186 0.108 34.569 0.259 47.605 0.237 18.543 0.092 7.941 2.679 170.262 – –

Queue 1 0.253 10.729 0.067 7.142 0.107 31.132 0.398 78.09 0.137 13.304 0.047 4.706 3.125 144.057 – –
Queue 2 0.242 10.773 0.095 8.674 0.109 35.773 0.221 40.79 0.321 22.846 0.111 6.838 2.750 188.550 – –
Queue 3 0.299 11.840 0.100 8.741 0.109 36.802 0.157 23.934 0.254 19.478 0.119 12.28 2.162 178.180 – –

Ut = (0.8, 0.9)

GPS queue 1.124 43.674 0.714 25.873 0.821 59.717 1.151 108.249 0.675 32.012 0.807 19.473 32.700 145.361 1.111 29.788
Average queue 0.375 14.558 0.238 8.624 0.274 19.906 0.384 36.083 0.225 10.671 0.269 6.491 10.900 48.454 – –

Queue 1 0.270 13.924 0.146 7.438 0.167 12.02 0.345 40.86 0.136 9.263 0.102 4.792 12.743 35.707 – –
Queue 2 0.532 14.820 0.332 9.279 0.414 31.501 0.456 39.012 0.291 11.396 0.298 5.643 8.891 55.380 – –
Queue 3 0.322 14.931 0.236 9.156 0.24 16.196 0.35 28.377 0.248 11.353 0.407 9.038 11.066 54.274 – –

Ut = (0.9, 0.95)

GPS queue 0.338 36.473 0.427 30.165 0.474 54.739 0.898 103.795 1.046 55.446 1.730 63.018 3.148 215.842 0.424 42.577
Average queue 0.113 12.158 0.142 10.055 0.158 18.246 0.299 34.598 0.349 18.482 0.577 21.006 1.049 71.947 – –

Queue 1 0.121 10.266 0.059 6.094 0.193 24.735 0.298 37.085 0.109 11.979 0.040 4.259 1.899 71.371 – –
Queue 2 0.096 12.845 0.273 13.255 0.231 22.934 0.385 38.707 0.867 33.801 1.658 54.425 0.793 83.299 – –
Queue 3 0.121 13.361 0.095 10.816 0.050 7.070 0.215 28.003 0.070 9.666 0.032 4.334 0.456 61.171 – –
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Table 4. Performance comparison of different methods for the performance prediction of the GPS
under hybrid burst traffic.

Utility of
the Server

Methods Decision_CART Boosting_Xgboost MLP MLP1_Norm GCN DLPE

Metrics RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Ut = (0.7, 0.8)

GPS queue 1.817 35.324 1.057 23.298 1.269 68.845 1.268 59.329 1.086 58.139 0.925 23.276
Average queue 0.606 11.775 0.352 7.766 0.423 22.948 0.423 19.776 0.362 19.380 0.308 7.759

Queue 1 0.195 9.806 0.090 6.658 0.180 26.775 0.152 18.227 0.100 9.740 0.091 8.230
Queue 2 0.667 12.992 0.342 8.264 0.389 13.661 0.405 20.556 0.352 23.649 0.302 6.461
Queue 3 0.956 12.526 0.625 8.376 0.700 28.409 0.711 20.546 0.634 24.750 0.532 8.585

Ut = (0.8, 0.9)

GPS queue 2.138 50.139 1.398 29.310 1.603 79.850 1.733 87.859 1.379 43.704 1.035 34.939
Average queue 0.713 16.713 0.466 9.770 0.534 26.617 0.578 29.286 0.460 14.568 0.269 11.646

Queue 1 0.365 14.489 0.320 8.602 0.407 31.176 0.434 25.240 0.341 10.697 0.102 4.792
Queue 2 0.727 15.152 0.715 10.318 0.781 17.291 0.831 32.649 0.666 14.945 0.298 5.643
Queue 3 1.046 20.498 0.363 10.39 0.415 31.383 0.468 29.970 0.372 18.062 0.407 9.038

Ut = (0.9, 0.95)

GPS queue 2.760 72.729 2.625 78.986 2.440 86.612 3.374 121.628 2.351 52.921 2.003 47.945
Average queue 0.920 24.243 0.875 26.329 0.813 28.871 1.125 40.543 0.784 17.640 0.668 15.982

Queue 1 0.739 23.660 0.723 25.550 0.611 30.666 1.006 39.771 0.647 18.306 0.300 11.156
Queue 2 1.011 24.749 0.909 27.013 0.970 29.437 1.203 42.688 0.798 16.945 0.934 20.172
Queue 3 1.010 24.321 0.993 26.423 0.859 26.509 1.165 39.169 0.906 17.670 0.769 16.617

Table 5. Performance comparison of different methods for the performance prediction of the GPS
under non-burst traffic.

Utility of
the Server

Methods Decision_CART Boosting_Xgboost MLP MLP1_Norm GCN

Metrics RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Ut = (0.7, 0.8)

GPS queue 2.724 69.864 1.749 62.785 1.931 137.716 2.189 242.778 4.409 190.526
Average queue 0.908 23.288 0.583 20.928 0.644 45.905 0.730 80.926 1.470 63.509

Queue 1 0.157 14.380 0.181 18.405 0.288 35.753 0.382 68.040 1.681 65.080
Queue 2 1.978 32.060 1.219 21.229 1.342 55.426 1.360 82.488 1.326 59.362
Queue 3 0.589 23.424 0.349 23.151 0.301 46.537 0.447 92.250 1.402 66.084

Ut = (0.8, 0.9)

GPS queue 3.064 54.818 2.307 56.655 3.058 188.254 3.273 134.738 3.052 161.008
Average queue 1.021 18.273 0.769 18.885 1.019 62.751 1.091 44.913 1.017 53.669

Queue 1 1.077 18.029 0.893 18.060 1.098 57.326 1.184 42.322 1.165 56.523
Queue 2 0.953 18.392 0.699 19.299 0.961 63.847 1.031 46.773 0.916 50.380
Queue 3 1.034 18.397 0.715 19.296 0.999 67.081 1.058 45.643 0.971 54.105

Ut = (0.9, 0.95)

GPS queue 4.308 69.125 3.906 58.554 4.395 186.627 6.079 163.139 4.409 190.526
Average queue 1.436 23.042 1.302 19.518 1.465 62.209 2.026 54.380 1.470 63.509

Queue 1 1.441 22.375 1.463 18.945 1.570 56.631 2.204 54.974 1.681 65.080
Queue 2 1.557 23.746 1.249 20.036 1.442 60.863 1.962 53.989 1.326 59.362
Queue 3 1.310 23.004 1.194 19.573 1.383 69.133 1.913 54.176 1.402 66.084

Table 6. Performance comparison of different methods for the performance prediction of the GPS
under heterogeneous traffic.

Utility of
the Server

Methods Decision_CART Boosting_Xgboost MLP MLP1_Norm GCN

Metrics RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Ut = (0.7, 0.8)

GPS queue 0.193 17.440 0.765 32.583 1.097 189.256 0.736 154.571 0.929 192.627
Average queue 0.064 5.813 0.255 10.861 0.366 63.085 0.245 51.524 0.310 64.209

Queue 1 0.099 8.386 0.580 16.114 0.301 40.193 0.415 78.855 0.170 23.036
Queue 2 0.033 4.417 0.057 7.876 0.597 97.846 0.233 60.555 0.640 144.916
Queue 3 0.061 4.637 0.128 8.593 0.199 51.217 0.088 15.161 0.119 24.675

Ut = (0.8, 0.9)

GPS queue 0.708 38.107 0.529 23.798 1.516 154.923 0.933 112.942 0.988 135.806
Average queue 0.236 12.702 0.176 7.933 0.505 51.641 0.311 37.647 0.329 45.269

Queue 1 0.420 19.585 0.282 10.914 0.443 33.275 0.524 42.713 0.326 17.391
Queue 2 0.216 9.275 0.195 6.151 0.854 82.241 0.325 56.362 0.526 97.965
Queue 3 0.072 9.247 0.052 6.733 0.219 39.407 0.084 13.867 0.136 20.450

Ut = (0.9, 0.95)

GPS queue 1.248 59.123 1.295 60.963 2.534 197.001 1.989 145.675 1.698 130.040
Average queue 0.416 19.708 0.432 20.321 0.845 65.667 0.663 48.558 0.566 43.347

Queue 1 1.024 32.465 1.079 36.833 1.122 43.686 1.499 60.428 1.098 36.256
Queue 2 0.115 12.780 0.101 11.507 1.103 102.901 0.353 70.648 0.387 71.791
Queue 3 0.109 13.878 0.115 12.623 0.309 50.414 0.137 14.599 0.213 21.993
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Firstly, Tables 2–6 show the performance comparison of the multi-queue GPS per-
formance prediction methods under different network flow characteristics such as burst
network flow (LRD), non-burst network flow (SRD), and heterogeneous network flows.
Burst network flows were further divided into lower burst network flows, higher burst
network flows, and hybrid network flows.

Tables 2–4 show the performance of each performance prediction method under
burstiness (LRD) network traffic. Since the method of the MAPE can only predict the GPS
queue, but not the performance of each single queue and only for the case that each network
flow has the same burstiness, only the RMSE and MAPE of the MPPA predicted results
on the total GPS queue are shown in Tables 2 and 3. And the prediction results for the
MPPA are not shown in Table 4. Given that the DLPE is the performance prediction method
for burst (LRD) network flows, it can be seen from Tables 2–4 that the DLPE performed
best in most cases in terms of the GPS total queue and average queue. However, in a few
cases, the DLPE did not perform optimally in terms of the GPS total queue and average
queue. Except for the single queue prediction, the effect was better than the other prediction
methods. For example, in Table 2, when the utility was Ut = (0.7, 0.8), the DLPE predicted
that the RMSE values of the total queue and the average queue were not the smallest, but
the RMSE of queue 1 reached the optimal and was reduced by 19.35% compared to the
suboptimal Boosting_Xgboost. In addition, when the utility was Ut = (0.8, 0.9), the DLPE
predicted that the MAPE values of the total queue and the average queue were not the
minimums, while the MAPE values of queue 1 and queue 2 were both the minimums. The
same findings can be observed in Tables 3 and 4. Thus, it can be concluded that the DLPE,
which considers the knowledge information related to bursty network flows, has a great
advantage in predicting the performance of GPS for bursty network flows. No matter from
the perspective of GPS queue, average queue, or single queue, similar conclusions can
be obtained.

Tables 5 and 6 show the prediction effects of each GPS prediction method under
non-burst network traffic and heterogeneous network traffic, respectively. Since there is no
accurate prediction method for non-burst network flow and heterogeneous network flow
in the open literature, only the common traditional machine learning algorithms and deep
learning algorithms were compared here. It can be seen that traditional machine learning
methods seemed to demonstrate better prediction results compared to poorly designed
deep learning methods. Specifically, Boosting_Xgboost showed better prediction results on
non-burst network flows in most cases. However, Decision_CART showed its performance
advantage on heterogeneous network flows. It can be inferred that when the deep neural
network does not have a well-designed structure and knowledge-driven new assistance, its
prediction effect on GPS performance prediction is not as good as the traditional machine
learning method.

Secondly, to further analyze the prediction effect of each prediction method, Figures 6 and 7
show the bar charts of the comparison of different performance prediction methods for the
total queue length under different server utilizations. Based on the experimental results,
the following observations were made:

Observation 1: The well-designed knowledge-driven deep learning methods showed excellent
performance on the performance prediction of the multi-queue GPS system under lower utility
ranges. As the existing well-designed knowledge-driven method, which is denoted as
DBLP, is designed for self-similar traffic, only datasets Lower burst flow, High burst flow,
and Hybrid burst flows are analyzed here. As is shown in Figure 6a–c, the DBLP always
performed well under utility (0.7, 0.8) and utility (0.8, 0.9). However, under utility (0.9,
0.95), the DBLP failed to perform well under some scenarios such as Higher burst flow and
Hybrid burst flows. This may be because the percentage of the high utility ranges in the
dataset is rather smaller than the lower utility, which can be seen in Figure 5. In Figure 6,
the same results can be found for dataset Lower burst flow, dataset Higher burst flow, and
dataset Hybrid burst flows; the DBLP showed the lower MAPE under most utility ranges
than the other performance predictions.
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Observation 2: Deep learning methods may fail to work compared to the traditional machine
learning methods for multi-queue GPS’s performance prediction. As can be seen
in Figures 6d,e and 7d,e, for dataset Heterogeneous flows and dataset Non-burst flow, the
traditional machine learning methods CART and Xbboost showed lower RMSE and MAPE
values than the deep learning methods under most utility rages. Specifically, Xbboost al-
ways had the best performance in terms of the RMSE on dataset Non-burst flow under the
three utility ranges. For the MAPE, Xbboost also had a great performance. While for dataset
Heterogeneous flows, CART performed better on both the RMSE and MAPE under most
scenarios. Similar findings can also be noticed on the datasets Lower burst flow, Higher
burst flow, and Hybrid burst flows when the DLPE was not taken into consideration.

Based on this finding, why deep machine learning fails in this way can be explained
reasonably. Firstly, traditional machine learning methods have strong power on feature
acquirement and feature extraction, which enables the CART and Xbboost to show excellent
performance on the performance prediction of multi-queue GPS. Secondly, though deep
learning methods are famous for their powerful processing capability for complex problems,
many training parameters may lead to training bias and susceptibility to noise. Thus, a
well-designed structure for deep learning is necessary. MLP, Logistic, and the GCN are not
well designed for focusing on the performance prediction of the multi-queue GPS system,
which causes the failure.

5.2.2. The Comparison of the Methods with and without Knowledge-Driven Information

So what can contribute to the performance improvement of the performance prediction
of the multi-queue GPS system in terms of the deep learning methods? In order to clarify
this question, the main part of the DBLP needs to be reviewed. The DBLP creatively
introduces queuing theory-based knowledge-driven information leading to significant
improvement when considering all the utilities. First, the knowledge-driven features
are added as the input features. Then, a fusion model considering the queue theory is
designed to capture the in-depth characteristics of each queue. In a word, knowledge-
driven information plays a vital role in the performance improvement of the multi-queue
GPS’s performance prediction. Therefore, it can be easily concluded that the role of
knowledge-driven information is that the knowledge-driven features contribute to the
improvement of the performance for the performance prediction of the multi-queue GPS
methods employing deep learning methods. This will be verified in this part.

In order to verify that the knowledge-driven features play a significant role, the deep
learning methods with and without knowledge-driven information were compared. MLP,
Logistic, and the GCN were utilized as the base methods. Then, referring to the knowledge-
driven features designed for the DBLP, the knowledge-driven features were added as the
input features for MLP, Logistic, and the GCN to obtain the comparison methods. Through
the experiment results, the following observation can be found.

Observation 3: Knowledge-driven information does not work under the Hybrid burst flows.
Figure 8 compares the deep learning methods with the basic features as the input features
and the deep learning methods considering the knowledge-driven features. MLP, Logistic,
and the GCN were taken into consideration here. It can be noticed that for the RMSE, the
methods considering the knowledge-driven features all performed better than the methods
without knowledge-driven features. In addition, the methods considering the knowledge-
driven features showed better performance than the methods without knowledge-driven
features in most scenarios. For the dataset Hybrid burst flows, the MAPE of the MLP
considering the knowledge-driven features performances was not so good. The reason can
be easily explained. The knowledge-driven information is extracted from the queue theory
on the GPS subject to the self-similar traffic with the same Hurst parameter. In contrast,
the Hurst parameters in dataset Hybrid burst flows are different for each flow. Thus, the
knowledge-driven information may not be so correct where noise may be introduced into
the model, thereby resulting in training bias.
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Figure 8. Comparison of methods with and without knowledge-driven information. (a) Lower burst
flow; (b) Higher burst flow; (c) Hybrid burst flows; (d) Lower burst flow; (e) Higher burst flow;
(f) Hybrid burst flows.

5.2.3. The Comparison of the Learning-Based Methods and the Approximate
Analytical Methods

Observation 4: Learning-based methods show better performance than the approximate
analytical method for the performance prediction of the multi-queue GPS system in terms of each
queue. It can be seen from Figures 6 and 7 that the EBA_Multi method showed large peak
fluctuations. This may be because the EBA_Multi method performs better when not all
of the queues’ guaranteed service capacity is larger than the arrival rate [11]. While the
MPPA showed a small fluctuation, the MPPA focused on the total queue of the multi-queue
GPS system. It has been proven that the MPPA method can predict the total queue of
the multi-queue GPS system accurately. As the learning-based methods are data-driven
methods, in theory, given enough data, machine learning can achieve a perfect fit. When a
large amount of simulation data is obtained, the learning-based methods can easily perform
better than the approximate analytical method.

6. Discussions and Future Work

In this section, valuable insights for the research of GPS performance prediction meth-
ods based on experimental analysis are summarized, and future work based on these
insights is presented. Our observations indicate that the network traffic has a significant
impact on the accuracy of different performance prediction methods for GPS. This variabil-
ity is attributed to differences in traffic characteristics and the burstiness of the traffic. It is
evident that the high burstiness and heterogeneity of the traffic contribute to an unbalanced
distribution of the dataset, thus making performance prediction more challenging. To
address this issue in future GPS performance prediction, attention should be given to
preprocessing the dataset and finding viable methods to address dataset imbalance, such
as dataset expansion or the resampling of minority class samples. Furthermore, we have
found that knowledge-driven information is effective in GPS performance prediction. Deep
learning-based methods, in particular, show promise when combined with knowledge-
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driven information. To maximize the impact of knowledge information on improving deep
learning performance for GPS performance prediction, advancements in related theories
should be pursued, and prior knowledge should be actively applied in diverse ways,
including transfer learning, reinforcement learning, and data augmentation. Moreover,
learning-based methods consistently demonstrated exceptional performance across all
individual queues, whereas approximate analytical methods exhibited strong performance
in certain cases when considering the total queue. Given the favorable performance of
approximate analytical solutions in specific instances, there is potential to delve deeper
into the theory of these solutions and enhance the performance of deep learning methods.
For instance, integrating approximate analytical solutions into the optimization process of
neural network learning could yield substantial improvements.

7. Conclusions

In order to evaluate the effect of different performance prediction methods on the
multi-queue GPS system, this paper designed a benchmark in a unified way. This bench-
mark provides a way for comparing traditional machine learning methods, deep learning
methods and analytical approximate methods in terms of different network flow char-
acteristics. Through extensive experiments based on the benchmark, It was found that
knowledge-driven information plays a vital role in the improvement of the performance
of the deep learning methods for the performance prediction of the multi-queue GPS
system. First, traditional machine learning methods perform better than deep learning
methods in most scenarios when knowledge-driven information is not considered. Then,
knowledge-driven feature construction can improve the performance of the deep learning
methods.
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