
Citation: Kose, N.A.; Jinad, R.;

Rasheed, A.; Shashidhar, N.; Baza, M.;

Alshahrani, H. Detection of Malicious

Threats Exploiting Clock-Gating

Hardware Using Machine Learning.

Sensors 2024, 24, 983.

https://doi.org/10.3390/

s24030983

Academic Editors: Jun Wu and

Qianqian Pan

Received: 4 December 2023

Revised: 19 January 2024

Accepted: 29 January 2024

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Detection ofMalicious Threats Exploiting Clock-Gating
Hardware Using Machine Learning
Nuri Alperen Kose 1 , Razaq Jinad 1, Amar Rasheed 1, Narasimha Shashidhar 1, Mohamed Baza 2,*
and Hani Alshahrani 3

1 Department of Computer Science, Sam Houston State University, Huntsville, TX 77340, USA;
nxk022@shsu.edu (N.A.K.); raj032@shsu.edu (R.J.); axr249@shsu.edu (A.R.); nks001@shsu.edu (N.S.)

2 Department of Computer Science, College of Charleston, Charleston, SC 29424, USA
3 Department of Computer Science, College of Computer Science and Information Systems, Najran University,

Najran 61441, Saudi Arabia; hmalshahrani@nu.edu.sa
* Correspondence: bazam@cofc.edu

Abstract: Embedded system technologies are increasingly being incorporated into manufacturing,
smart grid, industrial control systems, and transportation systems. However, the vast majority
of today’s embedded platforms lack the support of built-in security features which makes such
systems highly vulnerable to a wide range of cyber-attacks. Specifically, they are vulnerable to malware
injection code that targets the power distribution system of an ARM Cortex-M-based microcontroller
chipset (ARM, Cambridge, UK). Through hardware exploitation of the clock-gating distribution
system, an attacker is capable of disabling/activating various subsystems on the chip, compromising
the reliability of the system during normal operation. This paper proposes the development of
an Intrusion Detection System (IDS) capable of detecting clock-gating malware deployed on ARM
Cortex-M-based embedded systems. To enhance the robustness and effectiveness of our approach, we
fully implemented, tested, and compared six IDSs, each employing different methodologies. These
include IDSs based on K-Nearest Classifier, Random Forest, Logistic Regression, Decision Tree, Naive
Bayes, and Stochastic Gradient Descent. Each of these IDSs was designed to identify and categorize
various variants of clock-gating malware deployed on the system. We have analyzed the performance
of these IDSs in terms of detection accuracy against various types of clock-gating malware injection
code. Power consumption data collected from the chipset during normal operation and malware code
injection attacks were used for models’ training and validation. Our simulation results showed that
the proposed IDSs, particularly those based on K-Nearest Classifier and Logistic Regression, were
capable of achieving high detection rates, with some reaching a detection rate of 0.99. These results
underscore the effectiveness of our IDSs in protecting ARM Cortex-M-based embedded systems
against clock-gating malware.

Keywords: malware; embedded systems; machine learning; intrusion detection; ARM cortex

1. Introduction

Power optimization mechanisms have been widely adapted by today’s microcontroller
designers to minimize the chip’s dynamic power consumption. Smart sensing technologies
with limited energy resources (e.g., IoT platforms, health monitoring devices, energy
monitoring systems, and radio communication modules) are widely integrated with a
power-efficient microcontroller chipset based on an ARM Cortex M core to support low
energy processing capabilities.

Microcontrollers based on the ARM Cortex M chipset become the ultimate choice for
supporting low-cost and power-efficient processing on embedded systems. Low energy
processing on the ARM Cortex M chipset is supported via the deployment of clock-gating
methodology [1–5]. Clock-gating methodology is a hardware feature that enables dynamic

Sensors 2024, 24, 983. https://doi.org/10.3390/s24030983 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24030983
https://doi.org/10.3390/s24030983
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8328-0631
https://orcid.org/0000-0001-5153-8693
https://orcid.org/0000-0002-8799-9448
https://doi.org/10.3390/s24030983
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24030983?type=check_update&version=2


Sensors 2024, 24, 983 2 of 21

activation/ deactivation of various subsystems on the chip to minimize dynamic power
consumption. Examples of subsystems that are clock-gated include interrupt vector mod-
ules, USB, RTC, I2C, UART, and RNG. Via chip configuration code running on the chipset
during boot time, subsystems that are not used by the embedded system application can
be deactivated to lower dynamic energy consumption.

Although hardware-based optimization techniques based on the clock-gating ap-
proach enable power-efficient processing, such techniques can be exploited by an attacker
to target the subsystems’ availability during software execution. A recent study presented
by A. Rasheed et al. (2021) [1] showed that embedded systems implemented with an ARM
Cortex M microcontroller chipset are vulnerable to clock-gating-assisted malware attacks.
The author introduced new malware threats that compromise the chipset configuration file
during boot time by injecting malicious code. It aims at modifying the chip’s configuration
parameters during the initialization process by disabling/enabling various subsystems
on the chipset. For example, an attacker will be able to disable the RNG module on the
chipset, impacting the reliability of cryptographic computations. Another example includes
disabling serial communication ports on the chipset where sensor systems became unable
to transmit and receive data. Several variants of the malware were presented in [1] and
include Power Hungry, PIT-off, UART-killer, and I2C killer.

Signature-based approaches to malware detection in embedded systems are limited
by their reliance on known malware signatures. Zero-day attacks and advanced malware
variants that can modify their signatures make this approach inherently ineffective. The
malware signature database must be constantly updated in signature-based systems in
order to keep up with the evolving landscape of malware threats [6,7]. They are also less
effective at detecting sophisticated attacks that exploit hardware vulnerabilities, such as
clock-gating, which are difficult to detect with traditional signatures [8].

In contrast, the proposed Intrusion Detection Systems (IDSs) in this research leverage
machine learning techniques to overcome these limitations. Our IDSs analyze power
consumption data and employ advanced classification algorithms to detect anomalies and
patterns indicative of clock-gating-assisted malware, regardless of the attack signature. With
this approach, embedded systems can be protected against evolving threats by detecting
zero-day attacks and sophisticated malware variants that exploit hardware features.

This paper proposes the development and implementation of two IDSs capable of
detecting several variants of the clock-gating-assisted malware presented in [1]. Six IDSs
leveraging machine learning approaches based on K-Nearest Classifier, Random Forest,
Logistic Regression, Decision Tree, Naive Bayes, and Stochastic Gradient Descent have
been trained and validated using a dynamic power dataset collected from the chipset
during malware execution and under normal operation. To the best of our knowledge,
this research effort introduces the first solution for detecting hardware-based malware via
classifying and identifying malware code injection attacks that exploit vulnerabilities in
the clock-gating mechanism of the ARM Cortex M chipset. Our proposed IDSs consider
unique characteristics of the ARM-based embedded system power consumption data for
detecting and classifying clock-gating-assisted malware effectively. During this effort,
we proposed the development of reliable and efficient IDSs that can operate within the
resource-constrained nature of embedded systems. Our proposed IDSs aim to overcome
the limitations of signature-based approaches by utilizing machine learning techniques for
hardware-based malware detection on embedded systems with ARM Cortex M chipset. The
proposed IDSs implement machine learning algorithms that have the capacity to accurately
detect and categorize zero-day malware on hardware. The proposed IDS is capable of
combining anomaly-based recognition, misuse-based recognition, and specification-based
recognition procedures [2].

Malware data samples including nonanomalous data samples obtained from previous
research efforts conducted by Rasheed et al. (2021) [1] were utilized for model training,
testing, and validation. Our main objective in this paper is the development of IDSs
capable of classifying malware presence via analyzing power consumption data of the



Sensors 2024, 24, 983 3 of 21

ARM Cortex M chipset during program execution. To test our proposed IDSs, multiple
embedded systems were employed and deployed with various variants of clock-gating-
assisted malware codes. To truly simulate the behavior of a system under malware threat,
each system was incorporated with multi-sensor modules capable of capturing sensor data
from the infected embedded platforms, including measurements of light, temperature,
humidity, accelerometer, and pressure readings. Among the sensing unit and the primary
chip, data from these sensors were sent utilizing the uart and I2C serial communication
channels. In order to make use of the SIM module, the malware altered the bits of values in
the system clock-gate management registers. For all variations of the suggested malware,
malicious code injections were made into the “systemInit()” method. Intruders could
access these registers during the boot-up process by inserting malicious code within the
“systemInit()” function. During this research, our IDSs were tested against four distinct
malware strains: Power Hungry, PIT-off, uart killer, and I2C killer.

The proposed IDSs employ various models on a power consumption dataset, including
four types of clock-gating-assisted malware and normal clock-gating operations. Our main
objectives in this research are the following:

• To highlight software threats and attacks against clock-gating techniques in embed-
ded systems.

• To propose IDSs using machine learning models to identify and classify clock-gating-
assisted malware correctly.

• To examine the effectiveness and efficiency of the proposed IDSs and compare them
against various machine learning baseline models for identifying and categorizing
malware that uses clock-gating.

The remaining part of this paper follows this structured outline: In Section 2, we
review prior research pertaining to the topic at hand. Section 3 outlines the methodology
applied in this study, while Section 4 presents the analysis and findings. Finally, in Section 5,
we conclude and discuss potential future lines of exploration.

2. Related Work

This section aims to highlight the emergence of malware threats to clock-gating oper-
ation and refine malware identification and classification within the embedded systems
landscape. Previous research works have explained and analyzed clock-gating and other
ways of preventing power dissipation. In addition, threats to the hardware of embedded
systems have been analyzed. However, little research has been done on threats to clock-
gating and the software involved in embedded systems. For these reasons, we seek ways
to improve and rectify these shortcomings. We want to identify and classify malware in
embedded systems correctly.

Several works have been proposed to secure embedded systems [9–11]. Zareen et al. [8]
present an approach to embedded device security through the development of a Hardware
Immune System (HWIS), leveraging Artificial Immune Systems for effective malware detection
in IoT devices. In resource-constrained environments, the HWIS demonstrates high efficiency
in detecting botnet activities, achieving 96.7% accuracy with minimal overhead in power and
area and no impact on processor delay. In the context of IoT device security, this method
represents a significant improvement over traditional software-based malware detection.

Tamil et al. [12] described the use of clock-gating, which decreases the dissipation
of dynamic power in synchronous circuits. The paper explained how clock-gating works
and also outlined different clock-gating techniques. Various types were considered, such
as latch-based, flip-flop-based, gate-based, synthesis-based, and look-ahead-based clock-
gating. The paper also discussed other power reduction techniques, such as power gating
and adiabatic logic. In conclusion, the paper presented a summary of the issues that are
associated with clock-gating.

Shila et al. [13] proposed the design and implementation of Hardware Trojan Threats
(HTTs) in Field-Programmable Gate Arrays (FPGA). The paper also proposed a detectability
metric, called HTT detectability metric (HDM), to assess the efficiency of HTT detection



Sensors 2024, 24, 983 4 of 21

techniques. A security analysis of the HTTs was conducted, and their detectability was
evaluated using the proposed metric. Testbeds were put into use on MicroZed’s Xilinx
Zynq-based FPGA development board. The paper showed that the proposed HTTs can
be successfully implemented in the FPGA testbed. The detectability metric proposed by
the paper effectively evaluated the detectability of HTTs. The security analysis of the HTTs
showed that they can be used to leak secret information or cause denial-of-service attacks.

Subramanian et al. [14] proposed an Adaptive Counter-Clock (ACC) S-Box algorithm
for Advanced Encryption Standard (AES) [15] that corrects errors while encryption takes
place, as well as ensuring the security of data during encryption. The paper also aimed
to reduce area size, power dissipation, and consumption. The round keys were obtained
by running a key expansion code on three different key lengths of AES (128, 192, and
256 bits). Errors in data encryption were fixed using the ACC S-Box technique. As part of
the encryption process, the paper made use of Field-Programmable Gate Arrays (FPGAs).
The results show that the ACC S-Box algorithm improves the security of AES by rectifying
errors during data encryption.

Mehta et al. [16] have proposed a method for detecting suspicious activity in Internet
of Things (IoT)-embedded devices. The proposed method is based on a hierarchical design
that distributes computational resources over IoT devices, making it scalable. The approach
observes the device’s performance and correlation to similar devices to detect anomalies.
Experiment findings demonstrate that the proposed strategy effectively identifies suspi-
cious activity. The proposed approach is also resilient, meaning it can continue operating
with minimum functionality even if an intrusion is detected.

Hunter et al. [17] investigated the viability of resource-constrained embedded devices
frequently utilized in Internet of Things (IoT) systems by utilizing deep learning for in-
trusion detection. In the paper, four deep learning models that had already been trained
were tested on devices with different capacities for resources. The models were trained on
separate intrusion detection datasets, and their accuracy, precision, recall, F1 score, and pre-
diction rate were evaluated. The paper also included testing the models’ responses to new
attack patterns using separate datasets. The research also covered the usage of thin neural
network structures for outstanding performance with little computation and potential
consumption of energy. The study’s findings, which assessed whether deep learning-based
intrusion detection could be implemented on embedded devices with minimal resources,
were given in the publication. According to the paper’s findings, lightweight neural
network topologies can deliver enough performance with few calculations and potential
power requirements.

Emnett et al. [18] discuss a design methodology using RTL clock-gating in ASICs to
significantly reduce power consumption, with a successful application in a 200K-gate ASIC
reducing power by two-thirds. The method also integrates with full scan techniques for
low-power and testable designs.

Shinde et al. [19] investigate various clock-gating techniques for power optimization
in VLSI circuits at RTL level, used extensively in the Pentium 4 processor. The paper
emphasizes the importance of considering power optimization early in the design process,
at the RTL stage.

Wu et al. [20] propose two clock-gating techniques based on a quaternary variable
model of the clock in sequential circuits. The method demonstrates power savings and
the potential for synchronous operation with the master clock, while also addressing
engineering challenges for practical application.

Li et al. [21] introduce deterministic clock-gating (DCG) for microprocessors, show-
ing an average of 19.9% reduction in processor power with no performance loss. DCG
is contrasted with pipeline balancing (PLB), demonstrating greater power savings and
simpler implementation.

Casillo et al. [22] present an embedded Intrusion Detection System (IDS) for auto-
motive cybersecurity, using a Bayesian Network approach to quickly identify malicious



Sensors 2024, 24, 983 5 of 21

messages in the vehicle’s Controller Area Network (CAN-Bus). Initial experiments with an
automotive simulator show promising results for the system’s effectiveness.

Sayadi et al. [23] propose a lightweight, machine learning-based HMD framework
for embedded devices, utilizing Hardware Performance Counter (HPC) features for run-
time malware detection. The research highlights that while complex classifiers like MLP,
BayesNet, and SMO show higher detection accuracy, lightweight classifiers like JRip and
OneR offer high accuracy per unit area for different malware classes. The study demon-
strates a significant improvement in malware detection accuracy using the customized
HMD approach, providing insights into selecting suitable ML classifiers for embedded
system malware detection.

Rahmatian et al. [24] present a hardware-assisted intrusion detection technique for
secure embedded systems, focusing on real-time detection of malware execution. The
method uses FPGA logic to detect behavioral differences between correct system operation
and malware and is adaptable to new malware and changing system behaviors. The system
extracts the Process ID (PID) from the OS, using it to monitor system call sequences on
the FPGA. The technique is shown to be effective in handling real-world programs with
minimal runtime performance overhead, making it a promising approach for application-
specific embedded processors requiring fast and accurate attack detection.

Previous research underscores the evolving challenges in power optimization and
malware detection in embedded systems, with a focus on clock-gating techniques and
hardware-assisted solutions. While these studies lay a solid groundwork, our research
distinguishes itself by specifically addressing the vulnerabilities in ARM Cortex-M-based
microcontrollers. We propose an innovative Intrusion Detection System (IDS) tailored for
these systems, utilizing advanced machine learning techniques for heightened accuracy in
detecting and categorizing clock-gating malware, a crucial step forward in bolstering the
security of modern embedded platforms.

3. System Architecture and Attack Models

In this section, we describe the malware types that were implemented, how they were
achieved, and the effect of the malware. In addition, we show the details of the testbed for
the experiments. Figure 1 illustrates the components of the IoT malware testbed system
and the four types of malware deployed.

Figure 1. System architecture and attack models.



Sensors 2024, 24, 983 6 of 21

3.1. System Architecture

The testbed consists of the experiments’ hardware and software development boards.
The hardware components include the IoT system, sensing components, and power profiler
platform. The software components consist of a real-time embedded operating system and
a sensor fusion algorithm.

3.1.1. Hardware Component

• IoT System: To evaluate the proposed malware code, a Freedom-K64F [25] low-cost
development board was used. Two free software operating systems that facilitate IoT
implementation on the board are ARM mbed OS version 5.0 and Zephyr OS version
3.5.0. The ARM Cortex-m4 processor (ARM, Cambridge, UK) has (MK64FN1M0VLL12
MCU) 256 KB of RAM, 1 MB of flash memory, and 120 MHz clock rate; the board
features dual-role USB connectors, Ethernet, and SDHC [26,27].

• Sensing Component: As part of the proposed IoT testbed, a sensor board, namely, the
FRDM-STBC-AGM01 is included. There is a three-axis motion sensor on the sensor
shield (with a selectable sensitivity of ±2 g/±4 g/±8 g) and a 3D magnetometer. Its
purpose is to facilitate the testing of various malware types within a comprehensive
IoT system environment.

• Power Profiler Platform: Nordic Semiconductor has developed the Power Profiler
Kit II to measure the power usage of infected IoT systems. This platform has a broad
dynamic span from 1 µA to 1 A with a resolution ranging from 100 nA to 1 mA and a
sampling rate of 100k samples each second. Power spectral density data were gathered
to examine the proposed malware’s behavior.

Figure 2 provides a visual representation of these hardware components, showcasing
their configuration and interconnectivity within the testbed.

Figure 2. Hardware component.

3.1.2. Software Component

• Real-time Embedded Operating System: On the testbed, an ARM Mbed 5.0 OS (ARM,
Cambridge, UK) is used. Mbed OS is capable of running multithreaded IoT pro-
grams in real time for rapid prototyping. To implement the malware code, the file
system_MK64F12.c within the Mbed OS was modified; the “systemInit()” function
was modified as well [28]. In Mbed OS, the code for modifying the contents of con-
trol registers controlling the clock-gating of each malware type is contained. A code
compilation and flashing of the OS code were then performed on the IoT testbed.

• Sensor Fusion Algorithm: For the FRDM-STBC-AGM01 sensor to measure the impact
of real-time malware operating on the IoT system, software code is required. To
implement and deploy the sensing fusion algorithm on the IoT system, an Mbed
online compiler tool was used.



Sensors 2024, 24, 983 7 of 21

3.2. Attack Model

On the testbed, there are four types of malware deployed. The malware types include
Power Hungry, PIT-off, uart killer, and I2C killer.

3.2.1. Power Hungry

This form of malware allows unauthorized access to the chip’s clock signals dur-
ing system startup, causing excessive energy consumption and rapid battery drain. Its
primary aim is to disrupt the system’s functionality by keeping all chip modules active,
irrespective of their power states (e.g., Run, Wait, Stop). In the example provided (see
Figure 3), the malware manipulates clock-gating control registers by setting their bits to
high values. The SIM module is utilized to change these register values, specifically the
SIM_SCGC1 gating control variable. This manipulation involves injecting code, such as
“SIM->SCGC1=0x0000c40U”, into the “systemInit()” method. As a consequence of this
action, it activates the uart4, aurt5, and I2C modules, while setting their clock-gate control
bits to 1.

Figure 3. Code sample for Power Hungry malware utilizing SIM-SCGC* register contents (Rasheed
et al. (2021) [1]).



Sensors 2024, 24, 983 8 of 21

3.2.2. PIT-Off

The Periodic Interrupt Timer (PIT) module plays a crucial role in generating timed
interrupts within a system. However, a specific type of malware can disrupt the PIT module,
leading to the blockage of external hardware that relies on serial communication. Through
embedding malicious code into the “systemInit()” method via dynamically online mbed OS
changes, this malware successfully achieves its goal of deactivating the PIT module. As a
consequence, this disruption causes runtime errors when external sensor modules attempt to
transmit information to the IoT system. Consequently, the IoT system enters a perpetual boot
cycle, rendering it nonfunctional. An illustrative example of this malware’s code insertion can
be seen in Figure 4, where code such as SIM-> SCGC6 = 0x40000001U is employed to access
and manipulate the PIT’s bit module content during the “systemInit()” method.

Figure 4. Code example for disabling PIT-off malware using the contents of SIM-SCGC6 registers
(Rasheed et al. (2021) [1]).

3.2.3. Uart Killer

Embedded systems affected by the strain of the power-off-uart malware experience
a disruption in their clock-gate signals associated with uart modules, resulting in the
disabling of these modules. Consequently, peripheral devices and sensor components lose
their ability to communicate data with the processor through the uart bus. This situation
may result in the risk of data loss. The mechanics of the uart malware attack are visually
depicted in Figure 5.



Sensors 2024, 24, 983 9 of 21

Figure 5. Code Example for uart killer malware leveraging SIM-SCGC4 register contents (Rasheed
et al. (2021) [1]).

3.2.4. I2C Killer

The I2C killer behaves similarly to the uart killer by disabling serial communication
modules. In contrast to the uart killer, it deactivates the I2C module while configuring the
clock signals for the uart0 and uart1 modules. In SIM->SCGC4 = 0xf0100c30U, b7 and b6
are cleared to 0, while b10 and b11 are set to 1 in the SCGC4 register. Figure 6 illustrates the
I2C malware attack.

Figure 6. Code sample for I2C killer malware utilizing SIM-SCGC4 register contents (Rasheed et al.
(2021) [1]).

4. Proposed Methodology

Figure 7 illustrates the methodological steps employed in this research to develop and
evaluate an Intrusion Detection System (IDS) for detecting and classifying malware on
embedded systems. According to Figure 7, here are our methodology steps:

• Data Loading and Preprocessing: This initial step involves loading the dataset used for
experimentation and preprocessing the data. The dataset consists of two features, time
and current, and is labeled with distinct classes representing different malware types.

• Model Training and Evaluation: The preprocessed dataset is used to train the chosen
machine learning models. This involves feeding the models with labeled data and
allowing them to learn patterns and features associated with malware detection.



Sensors 2024, 24, 983 10 of 21

Subsequently, the trained models are evaluated using appropriate metrics to assess
their performance.

• Machine Learning Models: In this phase, various traditional machine learning models
are considered for the IDS. These models include K-Nearest Classifier (KNN), Random
Forest (RF), and Logistic Regression (LR).

• Result Analysis: The outcome of model training and evaluation is thoroughly analyzed.
Evaluation metrics such as accuracy scores, as mentioned in the paper, are used to
measure the effectiveness of the IDS in detecting and classifying malware.

• Experiments and Validation: The authors conduct experiments to compare the perfor-
mance of different machine learning models.

Figure 7. The methodology of the proposed Intrusion Detection System (IDS) for malware detection
on embedded systems.

The algorithm used to carry out the experiment is described in Algorithm 1.

Algorithm 1 Classification Algorithm.

1: D← LoadData(); where D = [d1, d2, d3, . . . , dn] ▷ Load data into dataset
2: Check if dk ∈ D is empty or null; impute if yes
3: Initialize D as feature vector: X = [x1, x2, x3, . . . , xn]
4: Normalize feature vector: X = normalize(X)
5: Split feature vector X into training (Xtrain) and testing (Xtest) data
6: model_list = [Model1, Model2, Model3, . . . , Model6]
7: model_prediction = [0]× len(original_list) ▷ List to hold model predictions
8: iterations = 10
9: total_prediction = 0

10: for model in model_list do
11: for 1 : iterations do
12: Initialize model
13: Train model(Xtrain)
14: prediction = Test model(Xtest)
15: total_prediction+ = prediction
16: end for
17: model_prediction[model] = total_prediction/Iterations
18: print classification report
19: total_Prediction = 0
20: end for



Sensors 2024, 24, 983 11 of 21

4.1. Dataset

This study involved the collection of current/power consumption data under normal
device operation and when the device was infected. Various malicious codes, including
Power Hungry, PIT-off, I2C killer, and uart killer, were executed on separate IoT platforms,
simulating a total duration of 600 s. Current/power measurements were recorded at a sample
rate of 1000 samples per second, with a current resolution of 1 µA. For each malware strain,
600,000 data points were gathered during the experiment. Additionally, a dataset comprising
700,000 current measurements was collected for an IoT testbed without infection.

4.2. Intrusion Detection System Based on Machine Learning Approaches

The proposed Intrusion Detection System (IDS) is designed to detect malware on
embedded systems based on the “systemInit()” function. The “systemInit()” method is
responsible for initializing the system after booting. We intend to check the “systemInit()”
during boot time to detect and correctly classify malware types. The IDS uses the signature-
based technique for malware detection. The signature-based detection technique detects
known malware based on its signature and pattern.

The design consists of two main components: preprocessing and detection modules.
The preprocessing module is responsible for collecting and preprocessing data from the
“systemInit()” method. This module collects the necessary data that are needed to detect
malware. The collected data are then preprocessed to extract features. The detection
module uses machine learning models to classify the extracted features as malicious or
benign. It will also classify the subcategory of the malware where necessary.

Our proposed IDS is expected to be an effective tool for detecting malware on em-
bedded systems. By monitoring the “systemInit()” method and using machine learning
to classify the extracted features, the IDS can detect and respond to malware in real time,
preventing potential damage to the system. We have employed various traditional machine
learning models to detect and classify clock-gating-assisted malware. Six machine learning
approaches were utilized for the proposed IDS, namely, K-Nearest Classifier, Random
Forest, Logistic Regression, Decision Tree, Naive Bayes, and Stochastic Gradient Descent.

4.2.1. K-Nearest Classifier (KNN)-Based Detection Approach

This is a classification algorithm that is commonly used in machine learning. To imple-
ment the K-Nearest Classifier algorithm, we used Python and its built-in library for machine
learning, sci-kit-learn. To optimize the algorithm’s performance, we experimented with
different values of the hyperparameter k, which determines the number of nearest neigh-
bors to consider when classifying a new sample. Tuning this hyperparameter improved
classification accuracy, especially for the clock-gating-assisted malware dataset [29].

The K-Nearest Neighbors classification formula is a fundamental concept in machine
learning for classifying data points based on the majority class of their nearest neighbors.
Ŷ(x) represents the data point’s expected class label x. arg maxj is used to find the class
label j that maximizes a specific expression. ∑k

i=1 represents the summation over k terms,
where k is the number of nearest neighbors considered. I(yi = j) is an indicator function
that equals 1 when yi = j, indicating that the ith neighbor belongs to class j.

Ŷ(x) = arg max
j

k

∑
i=1

I(yi = j)

4.2.2. Random Forest (RF)-Based Detection Approach

Multi-decision tree ensemble learning improves classification accuracy by combining
multiple decision trees. With Python and scikit-learn, we implemented the Random
Forest algorithm and tuned its hyperparameters, including the number of trees and their
maximum depth. By using this algorithm, we were able to achieve high accuracy in
detecting and classifying clock-gating-assisted malware. Although Random Forests are
robust and perform well on many datasets, they can be computationally expensive and



Sensors 2024, 24, 983 12 of 21

may overfit on noisy datasets [30]. In the formula below, Ŷ(x) represents the predicted
class label for the data point x. It is determined by taking the mode (the most frequently
occurring class label) of the predicted class labels from n individual decision trees, where
Yi(x) is the prediction made by the i-th decision tree. Random Forest leverages the diversity
of multiple trees to improve the overall accuracy and generalization of the classification,
making it a powerful machine learning algorithm for various tasks.

Ŷ(x) = mode{Y1(x), Y2(x), . . . , Yn(x)}

4.2.3. Logistic Regression (LR)-Based Detection Approach

For binary classification applications, the logistic regression approach is frequently
utilized. We implemented the Logistic Regression algorithm using Python and scikit-learn,
and we tuned the hyperparameters, including the regularization strength and the solver
used. By fine-tuning these hyperparameters, we were able to improve the accuracy of the
algorithm in detecting and classifying clock-gating-assisted malware. We were able to
improve the accuracy of the algorithm in detecting and classifying clock-gating-assisted
malware. Logistic Regression is simple and efficient but may not perform well when the
decision boundary is nonlinear [31]. In the formula below, P(Y = 1|X) represents the
conditional probability that the target variable Y takes the value 1 given the input features
X. The equation involves model parameters w0, w1, w2, . . . , wn that are learned during
training, and x1, x2, . . . , xn are the input feature values. The logistic function 1

1+e−z , where z
is the linear combination of the features and parameters, is used to model the probability
of the positive class. One-vs.-all (OvA) or softmax regression approaches can be used to
expand the utility of logistic regression to multiclass issues, which are particularly beneficial
for binary classification applications.

P(Y = 1|X) =
1

1 + e−(w0+w1x1+w2x2+...+wnxn)

4.2.4. Decision Tree (DT)

This is a widely used algorithm in machine learning that is commonly used for
classification tasks. Based on a tree-like model, decisions are modeled along with their
possible consequences. Using a recursive process, the algorithm divides the data into
smaller groups at every tree node by focusing on the most important feature. The Decision
Tree algorithm’s hyperparameters, such as the tree’s deepest point and the lowest possible
number of samples necessary to divide a node, were adjusted using grid search. The
Decision Tree is easy to interpret and can handle categorical and numerical data, but it can
easily overfit and perform poorly on complex datasets [32]. A Decision Tree, denoted as
T, recursively partitions the feature space into regions by evaluating feature conditions
at each node. T represent a Decision Tree with nodes Ni, feature conditions Fi, and child
nodes NiL and NiR:

T(Ni) =


Leaf node, if Ni is a terminal node
T(NiL), if Fi(x) = True for x and Ni is not a terminal node
T(NiR), if Fi(x) = False for x and Ni is not a terminal node

4.2.5. Naive Bayes (NB)

This is a probabilistic method that is frequently used for classification tasks, particu-
larly in Natural Language Processing (NLP). We implemented the Naive Bayes algorithm
using the scikit-learn library in Python. We tuned the hyperparameter alpha, which con-
trols the strength of the smoothing applied to the probabilities. To improve the accuracy
of the algorithm, we experimented with different values of the hyperparameter “alpha”,
which controls the strength of the smoothing applied to the probabilities. Naive Bayes
is fast and efficient for high-dimensional datasets, but it assumes independence between



Sensors 2024, 24, 983 13 of 21

features and may perform poorly when this assumption is violated [33]. Naive Bayes
is a probabilistic classifier that estimates the probability of a data point belonging to a
particular class y based on the likelihood of the features X given that class and the prior
probability of class y. It simplifies the computation by assuming that characteristics are
conditionally independent. In the following equation, P(Y = y|X) signifies the probability
that a particular class y is the correct one given the input features X. P(X|Y = y) represents
the likelihood of encountering the input features X when the class is y. P(Y = y) indicates
the initial probability of class y, while P(X) refers to the overall probability of observing
the input features X.

P(Y = y|X) =
P(X|Y = y) · P(Y = y)

P(X)

4.2.6. Stochastic Gradient Descent (SGD)

An iterative optimization algorithm is used to train large-scale machine learning
models. At each iteration, the model’s parameters are updated by computing the gradient
of the loss function on a subset of the training data. It can optimize logistic regression
or linear SVM models for classification tasks. Hyperparameters such as learning rate,
regularization parameter, and batch size can be selected using grid search and cross-
validation. Due to its efficiency and effectiveness in large-scale problems, SGD is widely
used in machine learning libraries [34]. In the formula below, wt+1 represents the updated
model parameters at iteration t + 1, wt is the current model parameter vector at iteration
t, η is the learning rate that controls the step size, and ∇L(wt) is the gradient of the loss
function L(wt) with respect to the model parameters. SGD is suitable for large datasets
and online learning since it iteratively changes the model variables in a direction that
minimizes the loss. The learning rate η plays a crucial role in controlling the step size and
convergence speed.

wt+1 = wt − η∇L(wt)

5. Performance Analysis
5.1. Experimental Setup

Configuring the hardware and software environments is crucial for strong and repeat-
able experiments. This section details the carefully selected settings that supported our
research, ensuring the reliability and scalability of our research.

5.1.1. Hardware Configuration

In this study, Google Colab, a cloud-based platform known for its versatility in facili-
tating machine learning experiments, was used to facilitate the computation. The study’s
computational infrastructure was enhanced by utilizing Google Colab’s “Pro” subscrip-
tion, which provided access to premium resources. To speed up model development and
training, both A100 and V100 Tensor Core GPUs (NVIDIA, Santa Clara, USA) were utilized
within this subscription.

The availability of premium GPUs played a pivotal role in the research process. For
computing-intensive experiments, the V100 GPUs, distinguished by their exceptional
computing capabilities, were strategically employed. The A100 GPUs provided robust
performance for various machine learning tasks. As a result of this dynamic allocation
of GPU resources, machine learning models were trained efficiently across 100 epochs
of experiments.

5.1.2. Software Configuration

Using Google Colab, the software environment was meticulously configured to in-
tegrate hardware resources and essential software tools. The Google Colab environment
accommodated a wide range of software components:

• Operating System: The research was conducted within the Google Colab environment,
eliminating the need to manage the operating system manually. By abstracting the



Sensors 2024, 24, 983 14 of 21

underlying operating system complexity, Colab provided a consistent and reliable
environment.

• Python: For modeling, Python served as the foundational programming language. It
is regarded as one of the most prominent languages in machine learning. The codebase
was executed using Python 3.10, enabling access to various machine learning libraries
and frameworks.

• Machine Learning Libraries: The study leveraged an ensemble of machine learning
libraries, including Scikit-learn, Keras, and TensorFlow. The Colab environment makes
it easy to develop and evaluate machine learning models using these libraries.

• Data Preprocessing Tools: With Scikit-learn’s robust preprocessing module, data
preprocessing tasks such as data cleaning, feature scaling, and encoding were seam-
lessly performed.

• Hyperparameter: For each model, we use a different set of parameters and hyperpa-
rameters. We use the Gini impurity as the criterion to partition at each node and set the
maximum depth to three in the Decision Tree classifier. Both parameters were chosen
due to their simplicity computational simplicity. The Gini impurity is also suitable for
multiclass classification. The maximum depth was also set to three because it gave
the best result during testing. Similarly, in the Random Forest model, the random
state is set at zero with a maximum depth of three. In KNN, the number of neighbors
is set to seven. To determine the K-value, the odd values were first tested since this
eliminates ties and gives a majority class. As a result, we tested K values of 3, 5,
and 7, with 7 showing the highest level of performance. For SGD, the maximum
iteration parameter is 100. The value was chosen based on resource availability and
faster convergence of the SGD model. In conclusion, we used different values and
combinations of parameters and hyperparameters to achieve the best results.

5.2. Metrics

A set of key performance metrics was used to evaluate our models, including precision,
recall, accuracy, and F1-score. Each of these metrics is crucial in assessing the model’s
performance.

The accuracy of the model’s favorable predictions is referred to as precision. It indicates
the proportion of accurate positive predictions out of all positive examples. A model’s
precision measures its ability to identify relevant instances while minimizing false positives.
Precision is defined as: Precision = True Positives

True Positives+False Positives .
A model’s recall measures how well it can identify all relevant instances. It reflects the

percentage of real positive predictions that were successfully detected, based on all actual
positive events. The majority of positive cases are accurately captured by a model with a
high recall. Recall is defined as Recall = True Positives

True Positives+False Negatives .
A model’s accuracy is measured by how well it predicts the future. From all instances

in the dataset, it represents the percentage of correctly classified instances (both true posi-
tives and true negatives). For all classes, accuracy provides an overview of the model’s per-
formance. It is defined as Accuracy =

True Positives+True Negatives
True Positives+True Negatives+False Positives+False Negatives .

An F1-score is a harmonic mean of precision and recall. This metric measures the
model’s ability to achieve high precision and recall simultaneously. In imbalanced datasets,
where precision and recall may trade off, the F1-score is especially useful. It is defined as
F1-score = 2× Precision×Recall

Precision+Recall .
Ultimately, these performance metrics provide a nuanced evaluation of machine

learning models, encompassing precision, recall, accuracy, and F1-score. By considering
these metrics, we can determine how well the models perform in various aspects of
classification and prediction.

5.3. Results and Discussion

In this section, we delve into the findings of our study, starting with the visualization
of our data and extending through the performance of various machine learning models



Sensors 2024, 24, 983 15 of 21

in classifying clock-gating-assisted malware. Our results show the effectiveness of our
approach as well as the complexity of the task.

5.3.1. Initial Data Characterization

Before applying machine learning algorithms, it is critical to understand the data’s
inherent structure and any observable patterns. To this end, we employed a scatterplot,
as depicted in Figure 8, to visualize the distribution of different malware types alongside
normal operation data. Classes 1, 2, 3, 4, and 5 represent Power Hungry, I2C killer, normal
operations, PIT-off, and uart killer, respectively. This preliminary analysis helps to set
expectations regarding the complexity of the classification task and to underscore the
necessity for sophisticated analytical techniques such as machine learning. It becomes
evident from this visualization that while certain malware classes, specifically classes 1
and 2, appear similar in the context of current consumption, others are more distinctly
separable, suggesting varied levels of difficulty that one might encounter during the
classification process.

Figure 8. Scatter plot of the malware types and normal operations.

5.3.2. Machine Learning Model Efficacy

Table 1 shows the comparison results of our proposed approaches. It can be seen that
the K-Nearest Classifier and Logistic Regression achieved the highest accuracy, precision,
recall, and F1-score values, above 0.97. The Decision Tree model achieved an accuracy of
0.80 and an F1-score of 0.73, slightly lower than the other models.

Table 1. Results for the machine learning models.

Model Accuracy Precision Recall F1-Score

Decision Tree 0.80 0.69 0.80 0.73
Stochastic G. D. 0.91 0.92 0.91 0.90
K-Nearest Classifier 0.99 0.99 0.99 0.99
Naive Bayes 0.98 0.98 0.98 0.98
Random Forest 0.97 0.97 0.97 0.97
Logistic Regression 0.99 0.99 0.99 0.99

5.3.3. Training Performance Analysis

The machine learning models defined above were trained and evaluated over 100 epochs
with our dataset, utilizing a data split of 70% for training, 15% for validation, and 15%
for testing. Figures 9–14 display accuracy and loss plots for both training and validation



Sensors 2024, 24, 983 16 of 21

of Decision Tree, K-Nearest Neighbors, Linear Regression, Naive Bayes, Random Forests,
and Stochastic Gradient Descents to evaluate their training performances. These figures
provide an overview of each model’s training performance. The accuracy plots illustrate
the models’ ability to learn from training data. Furthermore, the loss plots demonstrate the
convergence of the models’ training processes, indicating their ability to minimize errors
and improve prediction. Combined, these plots provide valuable insights into the training
performances of the models and highlight their strengths and effectiveness.

Figure 9. Decision Tree.

Figure 10. K-Nearest Neighbors.

Figure 11. Linear Regression.



Sensors 2024, 24, 983 17 of 21

Figure 12. Naive Bayes.

Figure 13. Random Forest.

Figure 14. Stochastic Gradient Descent.

5.3.4. Post-Training Classification Insights

After the training phase, we evaluated the performance of each model through confu-
sion matrices, presented in Figure 15. The confusion matrices of machine learning models,
including Decision Tree (a), K-Nearest Neighbors (b), Linear Regression (c), Naive Bayes (d),
Random Forest (e), and Stochastic Gradient Descent (f) are shown. These matrices provide
a stark contrast to the initial scatterplot Figure 8 by revealing the effectiveness of each
algorithm in classifying the data post-learning. In these matrices, classes 0, 1, 2, 3, and 4
represent Power Hungry, I2C killer, normal operations, PIT-off, and uart killer, respectively.



Sensors 2024, 24, 983 18 of 21

(a) Decision Tree (b) K-Nearest Neighbors (c) Linear Regression

(d) Naive Bayes (e) Random Forest (f) Stochastic Gradient Descent

Figure 15. Confusion matrices for machine learning models.

The K-Nearest Neighbors (KNN) and Logistic Regression (LR) models notably out-
performed other models with remarkably high accuracy rates of 99%. This impressive
performance indicates not just their ability to learn from the training data but also their
robustness in distinguishing between classes that appeared similar in the raw data. Their
success in accurately classifying closely clustered data points, as seen in the scatter plot,
validates their capability to handle real-world scenarios where malware types may not be
distinctly separable.

The confusion matrices serve as a detailed record of each model’s classification
strengths and potential areas for improvement. For instance, while the Decision Tree
model demonstrated lower accuracy, this was mitigated by the Random Forest model,
which leverages the power of multiple decision trees to improve the overall classification
results. In light of this observation, careful model selection must be tailored to the specific
characteristics of the dataset and the details of the classification task.

The efficacy of the KNN and LR models, in particular, suggests their strong potential
for application in embedded systems for malware detection and prevention. These models
have proven to be highly reliable in distinguishing clock-gating-assisted malware from
legitimate operations. In contrast, the lower reliability of the Decision Tree model suggests
that while it may contribute to an ensemble method like Random Forest, it might not be
the best independent choice for this specific task.

In conclusion, the demonstrated ability of machine learning models, especially KNN
and LR, to detect and prevent clock-gated malware holds great promise for enhancing
the security framework of embedded systems. Their high performance in our evaluations
underscores the valuable role that machine learning can play in improving system security
and reliability against increasingly sophisticated cyber threats.

6. Conclusions

This study has presented a comprehensive approach to enhancing the security of
embedded systems through the development of an Intrusion Detection System (IDS) that
leverages machine learning techniques. By focusing on the classification of clock-gating-
assisted malware, the research aimed to address the software threats that exploit clock-
gating techniques in embedded systems. We identified and deployed four distinct types
of malware on a testbed, namely, Power Hungry, PIT-off, uart killer, and I2C killer, to
test the efficacy of the proposed IDS. The integration of machine learning models with
the “systemInit()” method provided a real-time response capability, crucial for reducing
potential damages to the system.



Sensors 2024, 24, 983 19 of 21

Based on the evaluation, we assessed the performance of several machine learning
models: K-Nearest Classifier (KNN), Random Forest (RF), Logistic Regression (LR), De-
cision Tree (DT), Naive Bayes (NB), and Stochastic Gradient Descent (SGD). The models
demonstrated a significant ability to detect and classify clock-gating-assisted malware,
with accuracy scores ranging from 0.80 to 0.99. The KNN and LR models, in particular,
showed exceptional performance and robustness, indicating their potential for real-world
application in embedded systems security.

The findings suggest that machine learning models are not only capable of providing a
reliable and efficient defense against clock-gating-assisted attacks but also show promise for
the continued advancement of security measures in the face of sophisticated and evolving
threats. Future research is encouraged to focus on refining these models to further enhance
the detection and classification capabilities for a broader spectrum of malicious activities.
Furthermore, the IDS could be extended to other types of embedded systems, adapting
to different hardware configurations and operating environments. It may be possible to
integrate real-time adaptive learning mechanisms in order to continually evolve in response
to emerging malware threats in the future.

In conclusion, this paper underscores the critical need for implementing advanced
security mechanisms in embedded systems. Embedding machine learning models into an
IDS framework offers an effective way to protect embedded systems against the increasingly
complex landscape of cyber threats.

Author Contributions: Methodology, N.A.K., R.J., N.S. and M.B.; Software, M.B.; Validation, R.J.
and H.A.; Formal analysis, R.J., A.R. and H.A.; Investigation, N.S.; Data curation, N.A.K. and
A.R.; Writing—original draft, N.S. and A.A.R.; Writing—review and editing, A.R., M.B. and H.A.;
Visualization, N.S. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are grateful to the Deanship of Scientific Research at Najran University for
funding this work under the Research Groups Funding Program Grant Code NU/RG/SERC/12/27.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used during this project was generated from a dedicated
testbed that is located in the Autonomous System and IoT Lab within Computer Science Department
at Sam Houston State University. All generated datasets are privately stored in the department data
center and our lab’s computing system. Datasets are made available to our research team to conduct
various research experiments.

Conflicts of Interest: The authors declare that there are no conflicts of interest.

References
1. Rasheed, A.A.; Varol, H.; Baza, M. Clock-gating-Assisted Malware (CGAM): Leveraging Clock-Gating on ARM Cortex M for

Attacking Subsystems Availability. In Proceedings of the 2021 9th International Symposium on Digital Forensics and Security
(ISDFS), Elazig, Turkey, 28–29 June 2021.

2. Ismail, I.; Nor, S.M.; Marsono, M.N. Stateless Malware Packet Detection by Incorporating Naive Bayes with Known Malware
Signatures. Appl. Comput. Intell. Soft Comput. 2014, 2014, 197961. [CrossRef]

3. Bace, R.; Mell, P. Intrusion Detection Systems; Technical Report 800-31; National Institute of Standards and Technology (NIST):
Gaithersburg, MD, USA , 2001.

4. Stavroulakis, P.; Stamp, M. Handbook of Information and Communication Security; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2010.

5. Rasheed, A.; Baza, M.; Khan, M.; Karpoor, N.; Varol, C.; Srivastava, G. Using Authenticated Encryption for Securing Controller
Area Networks in Autonomous Mobile Platforms. In Proceedings of the 2023 26th International Symposium On Wireless Personal
Multimedia Communications (WPMC), Tampa, FL, USA, 19–22 November 2023; pp. 76–82.

6. Celdrán, A.H.; Sánchez, P.M.S.; Castillo, M.A.; Bovet, G.; Pérez, G.M.; Stiller, B. Intelligent and behavioral-based detection of
malware in IoT spectrum sensors. Int. J. Inf. Secur. 2023, 22, 541–561. [CrossRef]

7. Rookard, C.; Khojandi, A. Applying Deep Reinforcement Learning for Detection of Internet-of-Things Cyber Attacks. In
Proceedings of the 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV,
USA, 8–11 March 2023; pp. 389–395. [CrossRef]

http://doi.org/10.1155/2014/197961
[
http://dx.doi.org/10.1007/s10207-022-00602-w
[
http://dx.doi.org/10.1109/CCWC57344.2023.10099349


Sensors 2024, 24, 983 20 of 21

8. Zareen, F.; Amador, M.A.F.; Karam, R. Malware Detection in Embedded Devices using Artificial Hardware Immunity. Res. Sq.
2023. [CrossRef]

9. Oladimeji, D.; Rasheed, A.; Varol, C.; Baza, M.; Alshahrani, H.; Baz, A. CANAttack: Assessing Vulnerabilities within Controller
Area Network. Sensors 2023, 23, 8223. [CrossRef] [PubMed]

10. Rex, A.; Amar, R.; Hacer, V.; Baza, M.; Louanne, M.; Mahapatra, R. Harnessing IoT Technology for the Development of Wearable
Contact Tracing Solutions. In Proceedings of the 2021 TRON Symposium (TRONSHOW), Tokyo, Japan, 8–10 December 2021;
pp. 1–9.

11. Rasheed, A.; Baza, M.; Badr, M.; Alshahrani, H.; Choo, K. Efficient Crypto Engine for Authenticated Encryption, Data Traceability,
and Replay Attack Detection over CAN Bus Network. IEEE Trans. Netw. Sci. Eng. 2023, 11, 1008–1025. [CrossRef]

12. Tamil, S.C.; Shanmugasundaram, N. Clock-Gating Techniques: An Overview. In Proceedings of the 2018 Conference on Emerging
Devices and Smart Systems (ICEDSS), Tiruchengode, India, 2–3 March 2018; pp. 217–221.

13. Shila, D.M.; Venugopal, V. Design, implementation and security analysis of hardware Trojan threats in FPGA. In Proceedings of
the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 719–724.

14. Subramanian, K.; Venkatachalam, M.; Saroja, M. Adaptive counter clock gated S-Box transformation based AES algorithm of low
power consumption and dissipation in VLSI system design. J. Phys. Conf. Ser. 2021, 1979, 012066. [CrossRef]

15. National Institute of Standards and Technology. Advanced Encryption Standard (AES). Federal Information Processing Standards
Publication 197; Information Technology Laboratory: Gaithersburg, MD, USA, 26 November 2001; Updated 9 May 2023.

16. Mehta, D.; Mady, A.E.D.; Boubekeur, M.; Shila, D.M. Anomaly-based intrusion detection system for embedded devices on
internet. In Proceedings of the Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics, Venice,
Italy, 16–20 September 2018; pp. 16–20.

17. Hunter, J.; Huber, B.; Kandah, F. Towards feasibility of Deep-Learning based Intrusion Detection System for IoT Embedded
Devices. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas,
NV, USA, 8–11 January 2022; pp. 947–948.

18. Emnett, F.; Biegel, M.M. Power Reduction through RTL Clock Gating; Automotive Integrate Electronics Corporation, SNUG: San
Jose, CA, USA, 2000.

19. Shinde, J.; Salankar, S.S. clock-gating—A power optimizing technique for VLSI circuits. In Proceedings of the 2011 Annual IEEE
India Conference, Hyderabad, India, 16–18 December 2011; pp. 1–4. [CrossRef]

20. Wu, Q.; Pedram, M.; Wu, X. Clock-gating and its application to low power design of sequential circuits. IEEE Trans. Circuits Syst.
I Fundam. Theory Appl. 2000, 47, 415–420. [CrossRef]

21. Li, H.; Bhunia, S.; Chen, Y.; Vijaykumar, T.N.; Roy, K. Deterministic clock-gating for microprocessor power reduction. In Proceed-
ings of the Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings,
Anaheim, CA, USA, 12 February 2003; pp. 113–122. [CrossRef]

22. Casillo, M.; Coppola, S.; De Santo, M.; Pascale, F.; Santonicola, E. Embedded intrusion detection system for detecting attacks over
CAN-BUS. In Proceedings of the 2019 4th International Conference on System Reliability and Safety (ICSRS), Rome, Italy, 20–22
November 2019; pp. 136–141.

23. Sayadi, H.; Makrani, H.M.; Randive, O.; PD, S.M.; Rafatirad, S.; Homayoun, H. Customized machine learning-based hardware-
assisted malware detection in embedded devices. In Proceedings of the 2018 17th IEEE International Conference On Trust, Security
and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 1685–1688.

24. Rahmatian, M.; Kooti, H.; Harris, I.G.; Bozorgzadeh, E. Hardware-assisted detection of malicious software in embedded systems.
IEEE Embed. Syst. Lett. 2012, 4, 94–97. [CrossRef]

25. K64 Sub-Family Reference Manual. Available online: https://www.mouser.com/datasheet/2/813/K64P144M120SF5RM-107482
8.pdf (accessed on 1 July 2023 ).

26. arm mbed OS. Available online: https://os.mbed.com/mbed-os/ (accessed on 1 July 2023).
27. ARMmbed/mbed-os. Available online: https://github.com/ARMmbed/mbed-os (accessed on 1 July 2023).
28. System_MK64F12.c. Available online: https://github.com/ARMmbed/mbed-os/blob/master/targets/TARGET_Freescale/

TARGET_MCUXpresso_MCUS/TARGET_MCU_K64F/device/system_MK64F12.c (accessed on 1 July 2023).
29. Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In

Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17
May 2019; pp. 1255–1260. [CrossRef]

30. Jaiswal, J.K.; Samikannu, R. Application of Random Forest Algorithm on Feature Subset Selection and Classification and Regres-
sion. In Proceedings of the 2017 World Congress on Computing and Communication Technologies (WCCCT), Tiruchirappalli,
India, 2–4 February 2017; pp. 65–68. [CrossRef]

31. Yang, Z.; Li, D. Application of Logistic Regression with Filter in Data Classification. In Proceedings of the 2019 Chinese Control
Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 3755–3759. [CrossRef]

32. Charbuty, B.; Abdulazeez, A. Classification Based on Decision Tree Algorithm for Machine Learning. J. Appl. Sci. Technol. Trends
2021, 2, 20–28. [CrossRef]

[
http://dx.doi.org/10.21203/rs.3.rs-2758367/v1
http://dx.doi.org/10.3390/s23198223
http://www.ncbi.nlm.nih.gov/pubmed/37837053
http://dx.doi.org/10.1109/TNSE.2023.3312545
http://dx.doi.org/10.1088/1742-6596/1979/1/012066
[
http://dx.doi.org/10.1109/INDCON.2011.6139440
[
http://dx.doi.org/10.1109/81.841927
[
http://dx.doi.org/10.1109/HPCA.2003.1183529
http://dx.doi.org/10.1109/LES.2012.2218630
https://www.mouser.com/datasheet/2/813/K64P144M120SF5RM-1074828.pdf
https://www.mouser.com/datasheet/2/813/K64P144M120SF5RM-1074828.pdf
https://os.mbed.com/mbed-os/
https://github.com/ARMmbed/mbed-os
https://github.com/ARMmbed/mbed-os/blob/master/targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/TARGET_MCU_K64F/device/system_MK64F12.c
https://github.com/ARMmbed/mbed-os/blob/master/targets/TARGET_Freescale/TARGET_MCUXpresso_MCUS/TARGET_MCU_K64F/device/system_MK64F12.c
[
http://dx.doi.org/10.1109/ICCS45141.2019.9065747
[
http://dx.doi.org/10.1109/WCCCT.2016.25
[
http://dx.doi.org/10.23919/ChiCC.2019.8865281
[
http://dx.doi.org/10.38094/jastt20165


Sensors 2024, 24, 983 21 of 21

33. Yang, F.-J. An Implementation of Naive Bayes Classifier. In Proceedings of the 2018 International Conference on Computational
Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; pp. 301–306. [CrossRef]

34. Xiao, M.; Wang, H. Fast Distributed Stochastic Gradient Descent for Big Data Classification. In Proceedings of the 2021 IEEE 23rd
Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart
City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys),
Haikou, China, 20–22 December 2021; pp. 1707–1713. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

[
http://dx.doi.org/10.1109/CSCI46756.2018.00065
http://dx.doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00251

	Introduction
	Related Work
	System Architecture and Attack Models
	System Architecture
	Hardware Component
	Software Component

	Attack Model
	Power Hungry
	PIT-Off
	Uart Killer
	I2C Killer


	Proposed Methodology
	Dataset
	Intrusion Detection System Based on Machine Learning Approaches
	K-Nearest Classifier (KNN)-Based Detection Approach
	Random Forest (RF)-Based Detection Approach
	Logistic Regression (LR)-Based Detection Approach
	Decision Tree (DT)
	Naive Bayes (NB)
	Stochastic Gradient Descent (SGD)


	Performance Analysis
	Experimental Setup
	Hardware Configuration
	Software Configuration

	Metrics
	Results and Discussion
	Initial Data Characterization
	Machine Learning Model Efficacy
	Training Performance Analysis
	Post-Training Classification Insights


	Conclusions
	References

