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Abstract: Metamaterials exhibit unique ultrasonic properties that are not always achievable with
traditional materials. However, the structures and geometries needed to achieve such properties are
often complex and difficult to obtain using common fabrication techniques. In the present research
work, we report a novel metamaterial acoustic delay line with built-in impedance matching that is
fabricated using a common 3D printer. Delay lines are commonly used in ultrasonic inspection when
signals need to be separated in time for improved sensitivity. However, if the impedance of the delay
line is not perfectly matched with those of both the sensor and the target medium, a strong standing
wave develops in the delay line, leading to a lower energy transmission. The presented metamaterial
delay line was designed to match the acoustic impedance at both the sensor and target medium
interfaces. This was achieved by introducing graded engineered voids with different densities at both
ends of the delay line. The measured impedances of the designed metamaterial samples show a good
match with the theoretical predictions. The experimental test results with concrete samples show
that the acoustic energy transmission is increased by 120% and the standing wave in the delay line is
reduced by over a factor of 2 compared to a commercial delay line.

Keywords: acoustic (ultrasonic) impedance; impedance matching; delay line; metamaterial; additive
manufacturing (AM); concrete inspection

1. Introduction

Ultrasonic (acoustic) testing is a widely accepted nondestructive evaluation method.
Ultrasonic inspection methods are generally used for flaw detection, material property
identification, precise measurements, process monitoring, etc. [1–3]. Ultrasonic delay
lines (sometimes also referred to as delay blocks or buffer rods) are used to delay the
response that is typically used in the pulse-echo inspection mode, where echoes need
to be separated temporally from large initial excitation pulse. Another very common
application of delay lines (DLs) is in high temperature inspection where the sensor element
cannot be attached directly to the target [4–6]. DLs are generally fabricated using a single
material, and their impedance is matched only with the sensor, leading to a potentially
large impedance mismatch between the target and DL. If the impedance mismatch is
large, it causes a large amount of the acoustic energy to be reflected at the interface,
and also creates a strong standing wave in the DL [7]. A single quarter wavelength
matching (λ/4) layer is a popular solution to couple the source and target that has different
impedance by taking advantage of the constructive and destructive interferences in the
matching layer [8,9]. However, this method leads to a narrow operational frequency
range [7]. Stacking multiple matching layers would theoretically improve the broadband
characteristic of transmission, but it undesirably lengthens the coupling medium, especially
for low-frequency (20–100 KHz) applications. Therefore, there is a need to develop novel
DLs that provide a wide bandwidth (or, short pulse-width) impedance matching between
the sensors and the interrogated structures.
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A potential solution could be found in acoustic metamaterials. Acoustic metamaterials
are artificial structures with unusual material properties that can control and manipulate
acoustic signals. In general, most acoustic metamaterials consist of a periodic or aperiodic
arrangement of small features, which overall behave like a continuous material with
unconventional acoustic properties [10]. Metamaterials exhibit extraordinary acoustic
properties, such as a negative refractive index [11], acoustic cloaking, and a local resonant
structure [12–14]. One of the key drawbacks to metamaterials is the need for a high accuracy
and precision in the fabrication of the oftentimes complex structures and geometries,
which makes the use of common fabrication techniques time-consuming and costly [15].
Recent advances in additive manufacturing have greatly enhanced the ability to fabricate
acoustic metamaterials [15,16]. The problem of acoustic impedance mismatch has also
started to be addressed by various groups using acoustic metamaterials [17–20]. Research
work by [7,21,22] showed that graded impedance matching metamaterials can improve
broadband energy transmission in high frequency (1–5 MHz) applications.

Most existing state-of-the-art solutions involve complex metamaterial fabrication
processes and are only focused on high-frequency applications. In this work, we developed
a novel metamaterial DL that can be fabricated using a simple additive manufacturing (AM)
process, which is particularly suited to long-wavelength, low-frequency applications, such
as concrete or building material inspections. To accomplish a wide bandwidth (i.e., short
pulse-width) performance, the impedance is gradually varied along the wave propagation
direction, while matching the sensor impedance on one end and the interrogated structure
on the other end. To determine the acoustic impedance of any material, the following
two equations can be used. According to Equation (1), the acoustic impedance Z of a
material is the product of its density ρ and acoustic bulk wave velocity V. Equation (2)
shows how V depends on the elastic modulus E and Poisson’s ratio υ.

Z = ρV (1)

V =

√
E(1 − υ)

ρ(1 + υ)(1 − 2υ)
(2)

The idea of introducing cylindrical voids (much smaller than the propagating wave-
length) in the bulk material changes some of the important mechanical properties, such
as the effective density, elastic modulus, and Poisson’s ratio, which in turn change the
effective acoustic impedance of the material. The choice of introducing cylindrical voids is
only to ensure this is a simple additive manufacturing process. By carefully engineering
the void size, shape, and distribution, it is possible to tune the impedance of the material.
In this work, the relationship between the void density and the impedance of an addi-
tively manufactured material was studied experimentally, as well as theoretically using the
Halpin–Tsai model [23,24]. Based on this combined empirical–theoretical analysis, along
with the analysis of the accumulated printing errors, we designed a DL with gradually
varying impedance values from about 6.3 MRayls to about 2.5 MRayls (impedance of the
sensor). The performance of the fabricated metamaterial DL was compared to a commer-
cially available uniform impedance DL. The experimental results show that the developed
DL increased the energy transmission by 120% and reduced the strength of the standing
wave by over a factor of two in the DL.

This manuscript is organized as follows: Section 2 describes the material and AM
technique used to fabricate the void-engineered DL and discusses the error associated with
printing. Section 3 shows the impedance measurement and the theoretical and empirical
relationship between the void ratio and acoustic impedance of the printed samples. Further,
based on the combined empirical–theoretical analysis, a metamaterial DL is designed
and fabricated. In Section 4, the fabricated metamaterial DL and commercial DL are
experimentally analyzed to compare their energy transmission and damage detection
abilities. Finally, Section 5 summarizes the complete work and delivers the key conclusions
of this research work.
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2. Metamaterial Fabrication

Metamaterial delay lines were fabricated using the stereolithographic additive man-
ufacturing (SLA) method. A Form3+ SLA printer from Formlabs was used in this work.
Because of its high stiffness, Rigid 10k resin was used as the base material to fabricate the
samples. Preform, a software (version: V3.33.1) provided by Formlabs to convert design
samples into 3D-printing instructions, was used to slice the samples as well as provide
optimal printing parameters. To provide the most optimal printing parameters, Preform
allowed for an adaptive printing speed that optimized each layer’s details. The standard
parameters to create supports were provided by Preform and were left unchanged. These
parameters provided a reproducibility standard to allow the samples to remain consistent
while reproducing fine details. The printed samples were washed for 20 min using iso-
propyl alcohol, and ultraviolet curing was performed at 60 ◦C for 70 min, as suggested by
the manufacturer. The samples were also polished using a wet sander tabletop at 600 grits,
which allowed for an improved surface contact on the transmitting and receiving ends. For
the purpose of this work, it was assumed that the mechanical properties of the feedstock
materials were isotropic; however, it is important to note that the isotropicity of materials
fabricated using SLA is unresolved [25]. The designed samples were fabricated with open
paths for the voids, to allow for uncured resin to flow out during and after printing, as
shown in Figure 1. The size of the fabricated voids had a direct impact in the broadband
nature of the developed metamaterial DL; thus, different void diameters were tested. Also,
void diameters smaller than 1.8 mm caused significant clogging with resin. Therefore,
to achieve the best possible broadband frequency operation with minimal clogging, an
optimal void diameter of 1.85 mm was chosen for all samples. Further, it was also noticed
that cylindrical voids aligned in the direction of printing had clearer inner void surfaces
compared to the voids aligned perpendicularly or at an angle to the printing direction.
Thus, all the voids were fabricated with their alignment in the same direction, making the
overall DL anisotropic in nature (refer to Figure 1).
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Figure 1. Commercial delay line (Ultran, Inc., State College, PA, USA) and 3D-printed metamaterial
delay lines with different void ratios: (a) commercial delay line with a uniform acoustic impedance;
(b–f) fabricated metamaterial delay lines with a measured void ratio between 0% and about 35%.

In general, any feature or inclusions in the bulk material that are smaller than ap-
proximately one tenth of the wavelength (λ/10) of the acoustic signals are not expected
to produce any significant reflections and, thus, are expected to behave as an effectively
uniform material for the propagating wave. Therefore, for a given bulk wave velocity in
the DL, the operating frequency should be chosen such that λ/10 is always greater than
1.85 mm (the designed void diameter). The commercial delay line was provided by Ultran,
Inc, State College, PA, USA [26] for use with their sensor. As shown in Figure 1a, the
commercial delay line had a uniform impedance of 2.64 MRayl, and it was cylindrically
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shaped with a diameter of 6.35 cm and a height of 2.54 cm. It also had surface features
(grooves) to suppress side wall reflections to improve performance. The 3D-printed delay
lines shown in Figure 1b–e had the same dimensions as those of the commercial delay line,
with designed void ratios of 0, 10, 32, and 40%. The void ratio (VR) was calculated using
Equation (3):

VR =
ρr10k − ρDL

ρr10k
(3)

where VR is the void ratio of the printed DL; ρr10k is the density of the delay block with no
voids, as shown in Figure 1b; and ρDL is the density of the printed DL that is of interest.
Due to discrepancies between the designed geometries and the fabricated samples, the
actual VRs for the printed samples were 0, 8.33, 25.49, and 30.98%. Figure 2 shows the
discrepancies between the designed and printed samples. It can be clearly seen that there
is a cumulative error in printing as the VR increases. The knowledge of the printing error is
used in Section 3.2 when designing the final metamaterial DL.
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3. Theoretical and Empirical Analyses for the Design of the Metamaterial DL

In this section, the theoretical and empirical analyses of four initial samples were
performed, based on the analyses and printing error observed in Section 2. A graded
impedance metamaterial DL was designed and fabricated.

3.1. Impedance Measurement

Measuring the impedance (Z) of the printed samples is very important to understand
the acoustic behavior with different void ratios (VRs). The through-transmission exper-
imental setup shown in Figure 3 was used to measure the velocity of the longitudinal
or bulk acoustic wave in the samples. The density of each sample was calculated using
the bulk volume and weight measurements. The impedance (Z) was calculated using the
measured velocity (V) and density (ρ), as shown in Equation (1). The receiving and trans-
mitting sensors used in the setup were from The Ultran, Inc., which had a center resonating
frequency of 350 KHz (Model no: GRD350-D50). Data acquisition was performed using a
Handyscope (model: HS5-540XMS-W5) from Tie-Pie engineering, Koperslagersstraat, The
Netherlands. (A PC with the Python interface was used to control the DAQ and save the
data). A Gaussian pulse with a center frequency of 100 KHz with 0.5 bandwidth (fractional
bandwidth in the frequency domain of pulse) was used for all experiments. Glycerin
was used as the couplant at the sample and transducer interface. A 5 kg dead load was
applied on top of the receiver to ensure a good coupling and repeatable loading for all
samples. The time of flight (TOF) values for the different samples were calculated using
a cross-correlation function between the sensor–sensor and the acquired waveform from
each sample. Figure 4a shows the acquired signal for the different samples. Observing the
first arrived pulse within 100 µs, the longitudinal wave velocity is reduced as the VR in the
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sample increases. Figure 4b shows the frequency power spectrum for all acquired signals.
A uniform energy distribution for samples with different VR is observed. This confirms
that the selected frequency range (0–200 KHz) is not affected by introducing voids and/or
their intensity.
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Using the measured TOF and the length of the samples, the longitudinal velocity V in
each sample was calculated and is listed in Table 1. The density ρ was calculated as the
weight of the sample over the volume (excluding voids). Finally, the impedance Z of each
sample was calculated using Equation (1). Based on the initial experimental observations,
it is clear that the target impedance of the sensor (2.64 MRayls) is achieved with VRs below
0.4; thus, samples with higher VRs were not printed and studied in this paper.

Table 1. Designed, measured, and derived physical and acoustic properties of the commercial and
printed delay lines.

Samples Designed VR
(%)

Printed VR
(%)

Weight
(g)

Density, ρ
(Kg/M3)

Velocity, V
(M/s)

Impedance, Z
(MRayl)
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Delay line - - 85.7 1070 2473 2.64
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3.2. Theoretical Verification of the Measured Impedances

Introducing voids in the bulk material, as shown in the previous section, is analogous
to the case of unidirectional fiber-reinforced composite materials, where the fibers were
replaced by voids in this study. Among the various composite approximation methods,
the Halpin–Tsai model is popular due to its semi-empirical formulation and simplicity.
In this study, we used the Halpin–Tsai model, as shown in Equation (4), to estimate the
equivalent elastic modulus Ee f f in the direction of the wave propagation [23,24]. On
the other hand, the effective density and Poisson’s ratio were calculated as described in
Equations (6) and (7), respectively.

Ee f f =
1 + 2ηVR
1 − ηVR

(4)

where,

η =
Ev
Em

− 1
Ev
Em

+ 2
(5)

ρe f f = (ρv VR) + (ρm (1 − VR)) (6)

υe f f = (υv VR) + (υm (1 − VR)) (7)

where Ev and Em are the elastic moduli of the void filler (air) and matrix (cured Rigid
10k resin), respectively; VR is the void ratio, as described in Equation (3); ρv and ρm
are the density of the void filler and matrix, respectively; and υv and υm are the Poisson’s
ratios. The approximate material properties of the void filler and matrix [27,28] are shown in
Table 2. Using the effective material properties in Equations (1)–(3), the effective impedance,
Ze f f , was calculated for various VRs, as shown in Figure 5. The model predictions and
experimental results show a good match with some discrepancies at low VRs. These
discrepancies could primarily be due to the approximate material properties used in the
Halpin–Tsai model.

Table 2. Material properties of the void filler and matrix.

Material Properties Void Filler (Air) Matrix (Cured Rigid 10k Resin)

Elastic modulus (E) 0 GPA 10 GPA
Poisson’s ratio (υ) 0 0.36

Density (ρ) 1.293 kg/m3 1750 kg/m3
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3.3. Design of the Metamaterial Delay Line

Figure 6a shows the change in impedance with the increase in the void ratio. Sam-
ple 1, representing the acoustic response of the pure Rigid 10K resin, has an impedance
of 6.32 MRayl. With the increase in the void ratio, the impedance value decreases to
3.15 MRayl at a 30.98% VR, whereas the sensor and the commercial delay line have the
same impedance of 2.64 MRayl. To achieve the best coupling, the impedance of the printed
sample (DL) needs to be perfectly matched to that of the sensor. Using a linear curve fit
over the measured impedance values and theoretical predictions, the predicted void ratio
to achieve the optimal impedance match to the sensor was found to be about 35%, as shown
in Figure 6a. The cumulative printing error described in Section 2 is plotted against the
designed VR in Figure 6b. This figure also includes the quadratic curve fit over measured
printing error to predict the printing error for the other void ratios. Based on the predictions
in Figure 6b, a designed VR of 46% with a printing error of 11% was expected to provide
an actual printed sample of 35% VR.
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Figure 6. (a) Experimentally measured impedance of the printed samples at different void ratios,
with the linear empirical impedance prediction (red dotted line) and theoretical Halpin–Tsai model
prediction (black line). The impedance of the sensor is also included as a reference. (b) Accumulation
of printing errors at different design void ratios, with the quadratic error prediction (red dotted line).

The fifth printed sample, shown in Figure 1f, exhibited a VR of 34.54%, very closely
matching the required VR of 35%. The impedance of the fifth sample was measured
using the same experimental setup and procedure discussed in Section 3.1, yielding an
experimental impedance value of 2.55 MRayl (shown as a green diamond marker in
Figure 6a), which closely matched the 2.64 MRayls impedance of the sensor. Thus, a delay
line that was impedance-matched with the sensor was successfully fabricated using this
3D-printing approach. The designed and actual acoustic properties for all printed samples
and the commercial delay line are listed in Table 1.

In order to obtain the best coupling between the sensor and the target medium, a
delay line with a continuously varying impedance from 2.55 MRayls to 6.32 MRayls was
designed, as shown in Figure 7a. Due to the graded impedance, the overall velocity of the
longitudinal wave in the metamaterial DL was higher than that in the DL with a uniform
impedance of 2.64 MRayls. The metamaterial DL had a cylindrical design with a diameter
of 6.35 cm and a height of 5.08 cm. The void density was gradually reduced from 34.5% to
0 (column vice, with two rows having the same void density), as shown in the Figure 7a.
Voids were equally distributed across the cross-section such that the propagating wave did
not feel any local material change due to voids. It is important to note that the cylindrical
void design, void diameter, and distribution were purely controlled and chosen to facilitate
a simple additive manufacturing process. The appearance of the fabricated metamaterial
DL was compared to that of the commercial DL, as shown in Figure 7b. The commercial
DL had the same dimensions but a uniform acoustic impedance of 2.64 MRayls.
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4. Experimental Validation

In this section, the performance of the commercial and metamaterial DLs were com-
pared using a test involving concrete inspection. Experiments of through-transmission and
pulse–echo configuration were conducted to evaluate the energy transmission efficiency
and damage detection sensitivity, respectively.

4.1. Experimental Setup

Figures 8 and 9 show the experimental setup for through-transmission (TT) and
pulse–echo (PE) concrete testing, respectively. The sensors and DAQ system used in this
setup were the same as those in the experimental setup discussed in Section 3.1. In the
TT setup, a pre-amplifier from Olympus, Tokyo, Japan (Model no: 5660B, with a custom
frequency ranging from 20 KHz to 2 MHz), at a 40 db gain was used with the receiver to
amplify the acquired signal. The concrete sample used for testing was cylindrical with
a diameter of 21.6 cm and a height of 8.2 cm. The concrete sample had a density of
2242.5 kg/m3, longitudinal wave velocity of 3250 m/s, and an impedance of 7.3 MRayls.
In the TT measurement, the transmitter generated an ultrasonic Gaussian pulse with a
center frequency of 100 KHz with 0.5 bandwidth (fractional bandwidth in the frequency
domain of the pulse). The generated stress waves passed through the delay line and the
concrete sample before being acquired by the receiver (refer to Figure 8). A thin sheet of soft
silicone (Ecoflex™ 00-10) was used as the couplant between the receiver and the concrete
to increase the contact area. Glycerin was used as the couplant between the transmitter and
the delay line interface. The couplant has its own impedance, which may favor either the
commercial or metamaterial DL depending on their impedance value. Thus, to obtain a
fair comparison between the commercial delay line and metamaterial delay line, there was
no couplant used between the DL and concrete.

For the PE measurement, a Diplexer form RITEC, Inc., Warwick, RI, USA (Model No:
RDX-6, with a custom frequency range of 10 kHz–30 MHz), was used to send and acquire
the signal from a single transducer, as shown in Figure 9. The sensor, DAQ, and coupling
conditions remained the same as those of the TT experimental setup. The metamaterial
delay line was positioned in such a way that the circular surface with 2.55 MRayls was
in contact with the transducer, and the circular surface with 6.32 MRayls was in contact
with the concrete, as shown in Figures 8 and 9. A 5 kg dead weight was applied on top of
the transducer to ensure consistent coupling for all experiments. The experimental results
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for the PE and TT measurements using the commercial and metamaterial delay lines are
compared and discussed in Section 4.2.
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Figure 9. Schematic of the experimental setup for the pulse–echo measurement depicting a diplexer,
function generator, oscilloscope, and a laptop PC. Image with transducer, concrete, DL, and a dead
load can be seen in the PE configuration.

4.2. Results and Discussions

Figure 10a shows the complete time trace of the acquired signal along with a focus
window for the first pulse within 90 µs using both DLs during the TT experiment. The
amplitude of the first pulse received using the metamaterial DL is much higher compared to
the commercial DL case. This increase in amplitude indicates a better energy transmission
due to a better impedance matching. Since the impedance of the metamaterial DL is
matched well with the sensor and also the concrete–receiver interface is unchanged, it can be
assumed that the transmission loss across the transmitter DL and concrete–receiver interface
remains the same for both the DLs during the TT experiment. Given this assumption, the
only difference in transmission loss occurs at the DL–concrete interface. Equation (8) is
used to calculate the energy transmission coefficient T at the DL–concrete interface for the
commercial DL and metamaterial DL. The value of T for the commercial DL was 0.782 or
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−2.136 dB and for the metamaterial DL was 0.995 or −0.044dB. Thus, there was an expected
overall 2.092 dB gain or 127.2% increase in signal.

T =
4Z1Z2

(Z1 + Z2)
2 (8)

where T is the energy transmission coefficient, and Z1 and Z2 are the impedance of the selected
DL at the DL–concrete interface and the impedance of concrete (7.3 MRayls), respectively.
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both the DLs.

The pulse from the metamaterial DL arrives earlier than that from the commercial
DL, indicating an overall higher velocity in the metamaterial DL, as expected. Figure 10b
shows the frequency power spectrum for both the DLs. The similar energy distribution
indicates that there is no spectral filtering occurring in the fabricated DL. Further, the
energy transferred by the metamaterial DL at the peak frequency is higher than that by the
commercial DL.

For the metamaterial DL, the impedance at the sensor–DL interface is better matched
compared to that at the DL–concrete interface. This poorer match at the DL–concrete
interface is due to the maximum impedance limit of the Rigid 10K material at full density.
However, the commercial DL has a larger impedance mismatch at the DL–concrete interface,
leading to much of the energy being reflected at this interface. This phenomenon can
be visualized more clearly in the PE measurement, as shown in Figure 11a. The TT
measurement was repeated five times for each DL, and the statistical results of first pulse
magnitude are shown in Figure 12. The average maximum voltage of the first pulse with
the metamaterial DL was ~0.05 V, a 120% increase compared to the commercial delay line,
which also matched closely with the expected 127.2% increase. A relatively large variation
in the maximum voltage was noted for the metamaterial DL, which could be due to the
inconsistent coupling at the DL–concrete interface that is associated with the unknown and
non-uniform roughness of the printed metamaterial DL.

The acquired signals with the PE configuration for both the metamaterial and commer-
cial DLs are shown in Figure 11a. The commercial DL exhibited a larger reflected signal,
indicating a high impedance mismatch at the DL–concrete interface. Conversely, the re-
flected signal from the metamaterial DL was much lower, indicating that a better impedance
match at the DL–concrete interface was achieved. These results are also in accordance
with what was observed in the TT measurements, as shown in Figure 10. Similarly, the
impedance mismatch led to a strong standing wave with a longer duration (about 380 µs)
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in the commercial DL. The standing wave for the metamaterial DL was much weaker and
shorter (about 180 µs), as shown in Figure 11a. The characteristics of the standing waves in
these DLs clearly indicate that the metamaterial DL is better suited for inspecting damage
under these test conditions.
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To better visualize the concrete reflection signal in the PE signal output in Figure 11a,
the acquired signal was further processed, as follows. First, the transducer with the DL
was detached from the concrete and a PE measurement was taken (while it was in the
air). Then, the signals obtained while in contact with the concrete and air were subtracted.
Finally, the resultant signal was cross-correlated with the input Gaussian pulse, resulting in
the signal shown in Figure 11b. The concrete end reflection (at about 82 µs) can be clearly
seen using the metamaterial DL, whereas the commercial delay line response was noisy
and unable to detect the concrete end signal. This result, once again, indicates that the
metamaterial DL has a superior energy transmission and damage detection capability for
concrete inspections.

5. Summary, Conclusions, and Future Work

In this research work, we introduced the concept of void engineering using AM
to tailor the acoustic properties of 3D-printed materials. Some of the key findings and
conclusions are listed below.
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• Acoustic DL samples with different, and graded, void ratios were successfully fabri-
cated using additive manufacturing.

• The relationship between the void ratio and acoustic impedance was characterized,
resulting in a metamaterial DL being designed and fabricated to achieve impedance
matching both at the sensor and target interfaces.

• The experimental results, which are supported by the theoretical analysis, show the
metamaterial DL has a 120% increased energy transmission and more than two-fold
reduced standing wave ratio compared to the standard commercial DL; this enables
its significantly improved damage detection capability.

• Our work establishes a promising pathway to control acoustic properties using practi-
cal metamaterials, which are fabricated using common additive manufacturing tech-
niques, including achieving properties not readily available using natural materials.

In this research work, the application frequency and the range of tailorable impedance
were restricted by the material properties of the resin and the resolution of the 3D printer.
Our future work will focus on exploring other printing methods commercially available to
fabricate structures with required finer features and materials. Such effort will potentially
broaden the application areas of AM metamaterials to higher frequency and broadband
acoustic applications. The effects of the void shape and distribution along with the statistical
variability in the printed samples will also be explored as a part of our future work.
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