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Abstract: Vegetation in East Antarctica, such as moss and lichen, vulnerable to the effects of climate
change and ozone depletion, requires robust non-invasive methods to monitor its health condition.
Despite the increasing use of unmanned aerial vehicles (UAVs) to acquire high-resolution data for
vegetation analysis in Antarctic regions through artificial intelligence (AI) techniques, the use of
multispectral imagery and deep learning (DL) is quite limited. This study addresses this gap with
two pivotal contributions: (1) it underscores the potential of deep learning (DL) in a field with
notably limited implementations for these datasets; and (2) it introduces an innovative workflow
that compares the performance between two supervised machine learning (ML) classifiers: Extreme
Gradient Boosting (XGBoost) and U-Net. The proposed workflow is validated by detecting and
mapping moss and lichen using data collected in the highly biodiverse Antarctic Specially Protected
Area (ASPA) 135, situated near Casey Station, between January and February 2023. The implemented
ML models were trained against five classes: Healthy Moss, Stressed Moss, Moribund Moss, Lichen,
and Non-vegetated. In the development of the U-Net model, two methods were applied: Method
(1) which utilised the original labelled data as those used for XGBoost; and Method (2) which
incorporated XGBoost predictions as additional input to that version of U-Net. Results indicate
that XGBoost demonstrated robust performance, exceeding 85% in key metrics such as precision,
recall, and F1-score. The workflow suggested enhanced accuracy in the classification outputs for
U-Net, as Method 2 demonstrated a substantial increase in precision, recall and F1-score compared
to Method 1, with notable improvements such as precision for Healthy Moss (Method 2: 94% vs.
Method 1: 74%) and recall for Stressed Moss (Method 2: 86% vs. Method 1: 69%). These findings
contribute to advancing non-invasive monitoring techniques for the delicate Antarctic ecosystems,
showcasing the potential of UAVs, high-resolution multispectral imagery, and ML models in remote
sensing applications.

Keywords: antarctic specially protected area (ASPA); machine learning; gradient boosting; convolu-
tional neural network; unmanned aerial vehicle (UAV); lichen; moss; antarctic

1. Introduction

Due to the extreme climate conditions, Antarctica’s terrestrial ecosystems are com-
monly dominated by moss and lichen vegetation. Vegetation is restricted to ice-free areas
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and is consequently distributed primarily in coastal regions and inland nunataks where
ice-free land is available [1]. The Windmill Islands coastline in East Antarctica is home
to some of the largest “moss forests” on the continent. These moss forests experience
extremes of temperature, light and water [2–4]. The growth and health of Antarctic moss
beds relies heavily on the availability of liquid melt water from snow and ice, which is
unreliable from year to year and over the course of the summer season [3]. The supply of
liquid water is likely to become more unreliable for Antarctic mosses under continuing
climate change, as snow banks retreat and precipitation patterns change [5]. Long-term
monitoring has revealed a regional drying trend in the Windmill Islands that has resulted
in changes in moss community assemblages and moss health in this region [6]. Specifically,
as the region dries, green healthy moss becomes red and brown and finally turns black and
becomes encrusted with lichens [4]. Remote monitoring techniques are required in order to
accurately map and monitor changes in these ecosystems [4].

Traditional remote sensing, particularly satellite-based, has been instrumental over the
decades but is now complemented by the emergence of consumer grade advanced sensors
mounted on Unmanned Aerial Vehicles (UAVs) offering unprecedented detail [7–9]. This
transition marks a significant advancement in monitoring techniques, with UAVs providing
centimetre scale spatial resolution [10]. UAVs have been used in remote sensing to detect
and segment numerous types of objects and different environments, such as agricultural
fields, urban areas, forests, and bodies of water, providing valuable data for various
applications including environmental monitoring, disaster management, and infrastructure
inspection [11–17]. These technological tools, often accompanied by classical machine
learning (ML) and deep learning (DL) methodologies, enhance the accuracy and efficiency
of different vegetation mapping [18–23]. Studies have demonstrated the effectiveness of
employing DL for accurately monitoring and classifying these delicate species like moss
and lichen in diverse environmental settings [24–26].

The spatial-temporal monitoring of the Antarctic ecosystem has seen a shift towards
remote sensing as an alternative to conventional methods, particularly with the widespread
availability of high-resolution satellite imagery [10,27–30]. In particular, the last decade
has witnessed an increase in UAV use in Antarctic research, offering a unique perspective
on monitoring and mapping of vegetation [29,31–33]. In recent years, the integration of
UAVs equipped with RGB, multispectral, and hyperspectral cameras have revolutionised
vegetation mapping in Antarctica [34–38]. Mapping vegetation in the Antarctic environ-
ment through remote sensing techniques is constrained by the diverse and uneven nature
of its surface coverage. This variability includes sparse vegetation, isolated individuals
scattered amidst soil and rocks, small communities forming biocrusts on soil or rock, and
more extensive vegetation mats in larger communities [10]. Such variability makes drones
an attractive option due to the high resolution of imagery compared to satellites, but also
means fewer studies have integrated UAV and AI for monitoring and mapping vegetation
in the Antarctic environment [27,28,39]. In addition, only a limited number of studies have
incorporated multispectral sensors to enhance the precision and accuracy of vegetation
mapping in various environments [40,41].

Limited attention has been paid to the application of UAV multispectral data in clas-
sifying moss health classes including healthy moss, stressed moss, and moribund moss
using DL techniques. Gaps persist, including the limited use of multispectral imagery and
especially the need for sufficient ground truth data for robust modelling. This research
addresses these gaps by employing high-resolution RGB and multispectral UAV data and
leveraging AI for automatic classification and mapping of moss health in Antarctica. The
primary objectives of this project were to develop and validate a methodology applicable
to fragile environments, with a specific focus on identifying health risks and supporting
conservation initiatives. The project aimed to assess the effectiveness of two ML methods
for semantic segmentation of drone remote sensing data: (1) Extreme Gradient Boosting
(XGBoost), a decision tree-based classifier; and (2) U-Net, a convolutional neural network
(CNN)-based classifier. This paper provides additional validation for the workflow pre-
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sented, as it now encompasses the processing of multispectral data obtained during the
data collection campaign [39]. In summary, this research contributes to the evolving land-
scape of Antarctic vegetation monitoring by utilising advanced UAV technologies and
AI methodologies. By addressing existing gaps, particularly in multispectral data usage
and ground truth validation, the project aims to enhance the accuracy and effectiveness of
monitoring changes in Antarctic moss health in the face of climate change.

The methods are presented in two sections. Section 2 focuses on data collection
and curation, while Section 3 investigates ML models designed for vegetation mapping.
Results are presented in Section 4, followed by discussion (Section 5), and conclusion and
recommendations for future work in Section 6.

2. Data Collection and Curation

Figure 1 depicts the proposed process pipeline used to prepare the data for developing
the segmented maps using both XGBoost and U-Net classifiers. This process is broken
down into five components: data acquisition, data pre-processing, data labelling, region of
interest (ROI) extraction, and statistical analysis.
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• Step 1: Data Collection

2.1. Study Area

This study was conducted within Antarctic Specially Protected Area (ASPA) 135
(66◦16′60′′ S, 110◦32′60′′ E), located in the Windmill Islands region of East Antarctica as
seen in Figure 2. This area is extremely rich in moss and lichen communities and spans
an estimated area of 0.28 km2. The ASPA was visited three times between 2 January and
2 February 2023. Trips to the ASPA were restricted to periods between 3:30 and 6:30 pm
(UTC+9) when light conditions were optimal. The average temperature during these visits
was −2 ◦C, with typical wind gusts measuring 5.14 m/s.
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Figure 2. Geographical representation of ASPA 135 outlined by the red polygon, and the study area
delineated by the green polygon on the map.

2.2. Airborne Data Acquisition

Aerial data collection was carried out using a custom built BMR3.9RTK UAV devel-
oped by SaiDynamics Australia (Gold Coast, Australia). This quadrotor UAV, designed
for extreme conditions, accommodates a multi-sensor payload of up to 7 kg (Table 1).
The multi-sensor payload comprises a MicaSense Altum (AgEagle, Wichita, KS, USA)
multispectral camera and a Sony Alpha 5100 (Sony Group Corporation, Tokyo, Japan)
high-resolution RGB camera (Table 2). The ASPA was surveyed with the BMR3.9RTK using
lawnmower patterns with an above ground level (AGL) height of 70 m. Imagery side and
front overlap used was 80%, and the horizontal speed was 3.6 ms−1. Ground sampling
distances (GSD) of multispectral and RGB sensors were 3.2 and 1.5 cm/pixel, respectively.
In addition to this, the DJI Mini 3 Pro was used to get ultra-high resolution RGB data
(Table 1).

Table 1. Key specifications of different aircraft used in this study.

Specifications BMR3.9RTK DJI Mini 3 Pro

Weight 12 kg,
Maximum take-off weight of 14 kg Less than 249 g

Battery type Two six cell LiPo batteries Li-ion

Flight time 30 min with dual payload capability
34 min (with Intelligent Flight
Battery measured while flying at
21.6 kph in windless conditions)
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Table 2. Key specifications of different sensors used in this study.

Specifications MicaSense Altum Sony Alpha 5100 DJI Mini 3 Pro
Inbuilt Camera

Number of bands Five multispectral and a
thermal band Three Three

Bands
blue, green, red, red-edge,
and near-infrared, short
wave infrared (thermal)

blue, green, red blue, green, red

Resolution
Multispectral: 3.2
megapixels (MPs) and
Thermal: 320 × 256 pixels.

24.3 MPs 48 MPs

Field of view 50.2◦ × 38.4◦ 83◦ 82.1◦

2.3. Ground Truth Data Collection

The ground truth data collection involved the collection of accurate geolocation data
of moss within the study site exhibiting various health states, from healthy to stressed
and moribund. Health states were classified through colour changes of moss [42]. Table 3
details the criteria defining moss health and outlines the process by which judgments were
made based on colour observations.

Table 3. Comprehensive overview of moss health states and descriptions.

Health Status of Moss Description

Healthy

Moss in good health exhibits shades ranging from dark (ms_gr) to
bright green (ms_bg), indicating healthy chloroplasts and plenty
of chlorophyll. It is typically found in regions with consistent
meltwater availability.

Stressed

Moss undergoing stress experiences a reduction in chlorophyll
pigments, appearing red or brown (ms_rd) due to the presence of
carotenoids and other photoprotective pigments, as noted by
Waterman et al. (2018). Stressors such as drought or intense solar
radiation can contribute to this condition. However, if the stress is
reversed, the moss turf has the potential to regain its green colour,
facilitated by the formation of new leaves [4].

Moribund

Intense or prolonged stress leads to the moribund state of moss,
where leaves undergo pigment loss, rendering them grey in
colour (ms_bw and ms_mm). Additionally, these stressed moss
specimens may become encrusted with lichens.

In conjunction with the UAV footage captured, the team collected 68 ground truth
points on foot. GNSS RTK data was taken at ground truth points to georeference the UAV
data. An industry standard Trimble GNSS system was used ensuring up to 2 cm accuracy
on all ground truth points. By combining this high-precision GNSS technology with ground
control points and the UAV’s RTK feature, the approach guaranteed precise alignment
between aerial imagery and ground scans. This comprehensive strategy not only adhered
to industry standards but also demonstrated a commitment to achieving the highest level
of accuracy in geospatial data acquisition for the study. Figure 3 shows the study area and
in Figure 4, the accurate depiction of ground truth points is highlighted as they overlay
seamlessly on the RGB Orthomosaic, providing a visual reference for precise labelling.
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Figure 4. Ground truth points overlaid on RGB Orthomosaic: Healthy moss, characterised by a
green colour, is labelled as ms_gr & ms_bg. Stressed moss, displaying shades of orange or red, is
denoted as ms_rd. Moribund moss, with brown or black hues, is identified by the labels ms_bw
& ms_mm. Featured lichen, include those with “hairy” (fructicose Usnea spp.) black, and crusty
(crustose) attributes, were classified using the labels lk_hr & lk_bk & lk_crusty.

• Step 2: Image Pre-Processing

The raw footage from the cameras was transformed into geometrically rectified images
called orthomosaics. Image orthomosaics were obtained using Agisoft Metashape 1.6.6
(Agisoft LLC, Petersburg, Russia). The multispectral orthomosaic error metrics include
X error (0.800178 metres (m)), representing the deviation in the longitudinal dimension
(east-west direction); Y error (0.501047 m), indicating the error in the latitudinal dimension
(north-south direction); and Z error (1.07776 m), representing the error in the altitude
dimension. Additionally, the XY error (0.944104 m) signifies the combined error in both
longitudinal and latitudinal directions, while the total error is reported as 1.4328 m. These
values collectively provide a comprehensive understanding of the spatial accuracy of the
orthomosaic, reflecting the accuracy of the georeferencing process for the multispectral
imagery. After completing the orthomosaic generation, georeferencing was performed
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using the image registration tool in ArcGIS Pro 3.1.2 (Esri, Redlands, CA, USA). A 2nd
order polynomial transformation method was applied, employing eight ground control
points to enhance precision. Indicators of the georeferencing quality were provided through
root mean square (RMS) errors. The forward transformation yielded a value of 0.005452,
the inverse transformation recorded 0.005476, and the combined forward-inverse trans-
formation exhibited 0.000003. The observation of lower RMS errors implies a heightened
accuracy in aligning the imagery with the Earth’s surface. This critical information ensures
that the spatial data extracted from the datasets maintains accurate geographic positioning.
Figure 5 showcases a high-resolution RGB image created using the Sony high-resolution
RGB Camera. Figures 6 and 7 show a region (red colour polygon in Figure 5) of high
resolution RGB imagery and georeferenced multispectral region of interest, respectively.

• Step 3: Data labelling

The RGB and multispectral orthomosaics were utilised for labelling (Figure 8). The
ground truth data was overlayed on the orthomosaics using QGIS (Version 3.2.0; Open-
Source, Geospatial Foundation, Chicago, IL, USA) which is free and open-source geographic
information software. Using the ground truth data, five classes were assigned for the
segmented maps. In ASPA 135, labelling was applied to moss with varying health levels
(Table 3) as well as three lichen types (Figure 4 legend). The class list for segmented
vegetation consists of Healthy Moss, Stressed Moss, Moribund Moss, Lichen, and Non-
Vegetation, assigned IDs from 1 to 5 respectively [4]. Polygons were manually drawn
around the pixels within the ground truth quadrant that were associated to the ground
truth label by checking the high resolution RGB imagery. After labelling, the labelled
vector data was converted to a raster format, resulting in the generation of a labelled mask,
through the utilisation of the rasterising tool in QGIS.
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• Step 4: ROI extraction

The whole multispectral orthomosaic (13,659 × 6453 pixels) was cropped into a smaller
region of interest (ROI) with 6004 × 4499 pixels based on the ground truth locations to
train the XGBoost model, and it was further tiled into 15 smaller different dimensions
of tiles (Dimension between 400 × 400 pixels and 900 × 700 pixels) to train the U-Net
model and reduce computational complexity. This approach enabled the U-Net model
to concentrate on localised data for alignment, enhancing efficiency and accuracy in the
process. Additionally, labelled masks corresponding to the ROIs were extracted, each
sharing the same dimensions as the multispectral ROI, to facilitate model training.

• Step 5: Statistical analysis

Correlation analysis was performed between moss health and twenty-one spectral
indices as listed in Table 4 and four statistical features including mean, variance, skew-
ness, and kurtosis. Following the correlation analysis, the estimation of feature impor-
tance was conducted using XGBoost, using spectral indices, all bands from multispectral
imagery (blue, green, red, red edge, NIR, and thermal), and all the statistical features
mentioned above.

Table 4. Comprehensive overview of the various spectral indices utilised in the current study, offering
a detailed compilation of the specific indices employed to analyse and interpret spectral data.

Spectral Indices Formula Literature Review

Normalised Difference Vegetation Index (NDVI) NIR−R
NIR+R [43]

Green Normalised Difference Vegetation Index (GNDVI) NIR−G
NIR+G [44–46]

Modified Soil-Adjusted Vegetation Index (MSAVI) 2×NIR+1−
√

2(2×NIR+1)−8(NIR−R)
2

[47]

Enhanced Vegetation Index (EVI) 2.5(NIR−R)
NIR+6R−7.5B+1

[48]
Simple Ratio Index (SRI) NIR

R [49]
Atmospherically Resistant Vegetation Index (ARVI) NIR−(R−2(B−R))

NIR+(R−2(B−R))
[47]

Structure Insensitive Pigment Index (SIPI) NIR−B
NIR−R [50]

Green Chlorophyll Index (GCI) NIR
G − 1 [51,52]

Normalised Difference Red Edge Index (NDRE) NIR−RedEdge
NIR+RedEdge

[53–55]

Leaf Chlorophyll Index (LCI) NIR−RedEdge
NIR+R [48]

Difference Vegetation Index (DVI) NIR − R [46,51,56]
Triangular Vegetation Index (TVI) 60(NIR − G)− 100(R − G) [48]
Normalised Green Red Difference (NGRDI) G−R

G+R [46,57]
Optimised Soil-Adjusted Vegetation Index (OSAVI) 1.16(NIR−R)

NIR+R+0.16
[58]

Green Optimised Soil Adjusted Vegetation Index (GOSAVI) NIR−G
NIR+G+0.16 [58]

Excess Green (EXG) 2G−R−B
R+G+B [59]

Excess Red (EXR) 1.4R−G
R+G+B [59]

Excess Green Red (EXGR) ExG − ExR [59]
Red Green Index (RGI) R

G [59]
Green Red Vegetation Index (GRVI) R−G

R+G [59]
Enhanced Normalised Difference Vegetation Index (ENDVI) (NIR+G)−2B

(NIR+G)+2B
[50]

R: Red; G: Green; B: Blue: NIR: Near Infra-Red.

3. Machine Learning Models for Vegetation Mapping

Once the training data was prepared, it was then fed into the ML classifiers. The
training phase of the model was carried out using Python 3.8.10. For data processing and
ML tasks various libraries were utilised, including Geospatial Data Abstraction Library
(GDAL) 3.0.2, XGBoost 1.5.0, Scikit-learn 0.24.2, OpenCV 4.6.0.66, and Matplotlib 3.8.2. The
training for the U-Net model was performed in Google Colab, which is equipped with
a graphics processing unit (NVIDIA T4 GPU, NVIDIA: Santa Clara CA, USA). Figure 9
depicts the proposed process pipeline for ML model training for developing segmented
maps using both XGBoost and U-Net classifiers.
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3.1. XGBoost Model Training and Fine Tuning

XGBoost stands for extreme gradient boosting library [60], and it is designed to be
a highly efficient, flexible, and portable ML algorithm. It is a state-of-the-art classifier
that implements parallel tree boosting. It is known for its high execution speed and good
performance. XGBoost was chosen for this project as it is a popular ML framework that
is used widely in industry and academia, especially for detecting different vegetation
types [61,62]. The XGBoost classifier script was fed the ROI multispectral and mask files
described in the XGBoost ROI extraction section. The XGBoost model followed the pipeline
described in Figure 10.

First, the ROI was loaded in and then the desired spectral indices were calculated.
These spectral indices help the classifier to see data without the distortion of shadows or
other anomalies. These indices become features in the training data set. Hyperparameter
tuning for the XGBoost model was regarded as a critical aspect of the analysis. The optimal
configuration, encompassing a maximum depth of 10, a learning rate of 0.02, 250 estimators,
a subsample rate of 0.8, and a colsample_bytree of 0.8, was determined. Additionally,
hyperparameters such as gamma, reg_alpha, and reg_lambda were systematically set to 0.0,
0.0, and 1.0, respectively. The entire process was carried out to ensure the model’s effective-
ness and robustness, and the outcomes of this methodological approach are detailed in the
subsequent sections. After completion, XGBoost conducts feature importance analysis to
identify the features that exert the most influence on the model’s predictions. Subsequently,
the trained model is validated using the test data.
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Figure 10. Processing pipeline employed for XGBoost segmentation, showcasing the sequential steps
and pivotal components involved in the methodology.

3.2. U-Net Model Training and Fine-Tuning

U-Net is a network architecture known for its U-shaped encoder-decoder structure [63].
The architecture is simple, efficient, and widely used for semantic segmentation tasks. The
15 tiles, specified in the step 4 were uploaded to Google Drive so they could be accessed by
the Google Colab script. Alongside the tiles, the labelled polygon file was rasterised and
cropped to be the same size as each ROI. A custom U-Net architecture was designed for
this project. Figure 11 demonstrates the pipeline of the U-Net model.
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Figure 11. Processing pipeline employed for U-Net segmentation, delineating the sequential steps
and critical components integral to the methodology.

The process involves cropping the collected data into tiles of a predetermined size,
employing the U-shaped architecture of U-Net. This architecture includes encoder layers, a
bottleneck layer, and decoder layers, with subsequent resizing of the patches. A loss func-
tion, specifically Sparse Categorical Cross-Entropy, is then defined to evaluate the disparity
between predicted masks and labelled data masks. The training process utilised the Adam
optimiser to minimise the specified loss function, with hyperparameters tailored for model
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training. Table 5 provides an overview of the essential parameters and configurations
utilised in the development of the model. It summarises the preprocessing procedures,
model architectures, and training settings. The preprocessing phase encompasses the patch
sizes and overlap settings, as well as the application of low-pass and Gaussian blur filters.
The dataset was partitioned into training and testing sets, with specified random state
values to ensure reproducibility. Multiple model architectures were employed, each charac-
terised by distinct elements such as the number of convolution layers, kernel sizes, and
dropout rates. Additionally, diverse learning rates, batch sizes, and epochs were applied
during model training and tuning. The optimal hyperparameters for the U-Net model that
yielded the best results included a patch size of 128 × 128 with a 30% overlap, no filters
applied, and a train-test split of 25%. Additionally, the optimal configuration involved
convolution layers spanning from 64 to 1024, a dropout rate of 0.2, a learning rate set
to 0.001, and a batch size of 25. To achieve optimal performance, the model underwent
training for 400 epochs.

Table 5. Parameter tuning for U-Net training.

Preprocessing

Patch size 32, 64, 128, 256
Overlap 0.1, 0.2, 0.3
Low pass filter Without filter, 3 × 3, 5 × 5, 7 × 7
Gaussian blur filter Without filter, 3 × 3, 5 × 5, 7 × 7
Train test split 20%, 25%, 30%

Model Architecture
Convolution layers

8–1024, 16–1024, 32–1024, 64–1024,
128–1024, 16–512, 32–512, 128–512,
8–256, 16–256, 32–256

Kernal size 1 × 1, 3 × 3, 5 × 5
Dropout 0.1, 0.2

Model compile
and Training

Learning rate 0.1, 0.01, 0.001, 0.0001
Batch size 10, 15, 20, 25, 30, 35
Epochs 50, 75, 100, 150, 200, 250, 300, 400

3.3. Verification

Once both algorithms had been trained, the model was applied to the test data set.
A series of evaluation metrics were established to ensure that the model was handling
the test data well. Evaluation descriptors, including true positive (TP), false positive (FP),
true negative (TN), and false negative (FN), were used to estimate the precision, recall,
F1-score, and Intersection over Union (IoU). Equation (1) shows the formula for precision,
which is the ratio between the correctly labelled pixels and the total count of pixels that
were correctly labelled as well as those that were mislabelled within a specific class. Recall,
as seen in Equation (2), is the proportion between the correctly labelled pixels and the
summation of correctly labelled pixels and pixels that should have been labelled for a
particular class but were not. F1-score, Equation (3), is a metric that measures a model’s
accuracy. It combines both precision and recall metrics and computes how many times the
model correctly predicted a pixel in a class. IoU stands for intersection over union and is
a percentage indicating the amount of overlap between the expected number of labelled
pixels and the actual area of labelled pixels (Equation (4)). This metric was only applied to
the U-Net model. Another validation method for the model is called K-fold cross validation.
This is where k number of folds are put into a dataset (split up). For each fold, training is
conducted on the remaining folds and the data in the specified fold is used as validation
data. This tests the model’s ability to handle new unseen data.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)
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F1 − score =
2TP

FP + 2TP + FN
(3)

Intersection over Union (IoU) =
Area of intersection

Area of Union
(4)

3.4. Prediction

After training the XGBoost model, the outcomes were assessed through the application
of inference using the trained model. The entire multispectral orthomosaic was cropped
into tiles, each measuring 700 × 700 pixels. A batch processing script facilitated the
application of inference to individual tiles, which were subsequently assembled in QGIS
to generate the final segmented map. For the U-Net model prediction, a different tile size
of 128 × 128 pixels was employed. Similarly, to the XGBoost prediction, inference was
applied using a batch processing script. The resulting predicted tiles were then stitched
together using QGIS, producing the final segmented map for the U-Net model.

4. Results
4.1. Correlation Analysis and Feature Ranking

Figure 12 illustrates the resultant correlation matrix between moss health and spectral
indices. In the results, as depicted in the correlation matrix, no significant correlations,
either positive or negative, were observed, with coefficients falling below 0.5, indicating a
lack of strong associations between moss health and the analysed spectral features.
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An additional approach to assess the significance of input features using XGBoost
models involves feature ranking, providing the importance of distinct features in influenc-
ing the model’s predictions. Figure 13 shows the relative importance of each feature in the
predictions for XGBoost. The red band (668), MSAVI, and kurtosis emerged as the top three
influential features in the model training process. The second highest spectral index was
GNDVI, while SIPI and EVI exhibited comparatively lower importance. It was found that
a series of eight spectral indices produced a better model. These eight indices included
GNDVI, MSAVI, LCI, GRVI, RGI, NDRE, EVI, and SIPI.
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4.2. Performance of XGBoost

The test data was used to verify the model’s capabilities after model training. The
classification report (Table 6) demonstrates the model’s ability to predict each class on the
test data and Figure 14 demonstrates the normalised confusion matrix for all classes. The
precision, recall, and F1-score of the whole model overall were significantly high (91%, 88%,
89% respectively), as this is combining all five classes. When investigating the individual
classes, healthy moss had the lowest recall and F1-score. This is because this class had
the lowest amount of labelling as seen in the support column. Due to the low number of
samples, not just for healthy moss but overall, the model could not perform better than
these results without serious overfitting. Though most of the healthy moss pixels are
categorised as the correct class, there are a lot of healthy moss pixels labelled as stressed
or moribund moss. This is why the recall value was so low and demonstrates that the
separability between these classes is very narrow. With the trained model, K-fold cross
validation was done using 10 folds, using the scikit-learn Python library. This technique
evaluates the accuracy of 10 sample combinations to observe whether the average accuracy
of labelled data was similar to the unseen data. The cross-validation results indicate that
the average accuracy was 98.5% and the standard deviation was 0.07%.
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Table 6. Classification Report summarising key metrics for an XGBoost model, including precision,
recall, and F1-score, across five classes.

Classes Precision Recall F1-Score

Healthy Moss 0.86 0.71 0.78
Stressed Moss 0.86 0.83 0.85

Moribund Moss 0.88 0.92 0.90
Lichen 0.94 0.91 0.93

Non-Vegetation 1.00 1.00 1.00
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4.3. Performance of U-Net

We explored two methods for U-Net model development. The first method involves
utilising the same labelled data employed in the development of the XGBoost model, while
the second method incorporates XGBoost predictions as inputs for the U-Net model, lever-
aging labelled data for enhanced performance. In Table 7, a comprehensive Classification
Report outlines key metrics such as precision, recall, and F1-score for a U-Net model, while
Figure 15 visually presents the normalised confusion matrix heatmap, providing a detailed
insight into the classification performance across the five classes using method 1.

Table 7. Classification Report summarising key metrics for a U-Net model, including precision, recall,
and F1-score, across five classes using method 1.

Classes Precision Recall F1-Score IoU

Healthy Moss 0.74 0.70 0.72 0.56
Stressed Moss 0.69 0.82 0.75 0.60

Moribund Moss 0.77 0.76 0.77 0.63
Lichen 0.86 0.84 0.85 0.74

Non-Vegetation 1.00 1.00 1.00 0.99
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The second method for U-Net model development yields significant improvements
in various performance metrics compared to the first method. Notably, Method 2 demon-
strates a marked increase in precision for Healthy Moss by 0.20 (from 0.74 to 0.94), Stressed
Moss by 0.17 (from 0.69 to 0.86), and Moribund Moss by 0.10 (from 0.77 to 0.87). In terms
of recall, Method 2 shows a slight improvement for Healthy Moss (up 0.01 from 0.70 to
0.71) and substantially better precision for Moribund Moss (up 0.18 from 0.76 to 0.94).
The F1-score sees noteworthy enhancements in Healthy Moss by 0.09 (from 0.72 to 0.81),
Stressed Moss by 0.11 (from 0.75 to 0.86), and Moribund Moss by 0.13 (from 0.77 to 0.90).
Additionally, Intersection over Union (IoU) values exhibit consistent improvements across
all classes, with gains in Healthy Moss by 0.11 (from 0.56 to 0.67), Stressed Moss by 0.15
(from 0.60 to 0.75), and Moribund Moss by 0.19 (from 0.63 to 0.82). These quantitative
improvements underscore the effectiveness of the second method, leveraging XGBoost
predictions for U-Net input, in enhancing the overall performance and accuracy of the
model compared to the first method.

Table 8 outlines the classification report, offering a detailed assessment of the U-Net
model’s performance metrics, including precision, recall, and F1-score, across five distinct
classes. Notably, the two-stage ensemble approach, incorporating predictions from the
initial XGBoost model as inputs for the subsequent U-Net model, yielded a discernible
enhancement in overall performance. Figure 16 further elucidates these advancements by
presenting a normalised confusion matrix heatmap, visually encapsulating the improved
classification performance of the U-Net across the diverse classes. The heatmap serves as a
compelling representation of the model’s ability to leverage the complementary strengths
of XGBoost, resulting in a refined and more accurate predictive framework. This observed
performance boost substantiates the efficacy of the proposed two-stage ensemble method-
ology in achieving superior outcomes compared to standalone models, underscoring the
synergy between XGBoost and U-Net in the context of the specific research objectives.



Sensors 2024, 24, 1063 17 of 29

Table 8. Classification Report summarising key metrics for a U-Net model, including precision, recall,
and F1-score, across five classes using method 2.

Classes Precision Recall F1-Score IoU

Healthy Moss 0.94 0.71 0.81 0.67
Stressed Moss 0.86 0.86 0.86 0.75

Moribund Moss 0.87 0.94 0.90 0.82
Lichen 0.95 0.85 0.90 0.82

Non-Vegetation 0.94 0.97 0.96 0.92
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representation spans epochs 0 to 400, providing an insight into the evolution of the model’s 
performance over a training period. 

Figure 18 provides an overview of the K-fold cross-validation results for the U-Net 
model. Figure 18a displays the accuracy of the model across different folds, demonstrating 
its consistency and performance, while Figure 18b visualises the loss, indicating the model’s 
error rate during cross validation. Additionally, the model’s overall performance across all 

Figure 16. Normalised confusion Matrix Heatmap representing the classification performance of a
U-Net across five classes using method 2.

The training and validation trends over the first 400 epochs show a positive trajectory
in terms of accuracy and a decreasing trend in loss. The model starts with an accuracy of
around 64.5% and steadily improves, reaching approximately 96.4% at epoch 400. Concur-
rently, the training loss decreases from over 6000 to around 0.09, indicating that the model
is learning and generalising well. The validation accuracy and loss also exhibit a positive
trend, although with some fluctuations. The validation accuracy starts from a very low
value (0.008) and increases to approximately 92.8%, while the validation loss decreases
from 6192 to around 0.23 (Figure 17). This suggests that the model is performing well on
both training and validation datasets, demonstrating good learning and generalisation ca-
pabilities. Regular fluctuations in validation metrics might indicate a degree of overfitting,
and further analysis, such as model fine tuning or the use of regularisation techniques,
could be explored to enhance generalisation.

Figure 18 provides an overview of the K-fold cross-validation results for the U-Net
model. Figure 18a displays the accuracy of the model across different folds, demonstrating
its consistency and performance, while Figure 18b visualises the loss, indicating the model’s
error rate during cross validation. Additionally, the model’s overall performance across all
folds is summarised, with an overall accuracy of approximately 93.23% with a standard
deviation of 0.19 and a loss of approximately 0.21 with a standard deviation of 0.04.
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4.4. Segmented Maps

In Figure 19, the XGBoost Segmentation results unfold, showcasing the model’s classi-
fication outcomes with precision across five distinct classes in the complex segmentation
task. Meanwhile, Figure 20 delves into the U-Net Segmentation results using method 2,
offering a detailed perspective on the model’s classification outcomes across the same five
distinct classes in the segmentation task.

Figure 21 showcases key visual outputs, including (a) a high-resolution RGB image,
(b) U-Net segmentation, and (c) XGBoost segmentation.

Table 9 illustrates the percentage distribution of vegetation classes within the specified
region of 931.12 m2 as shown in Figure 19, comparing the performance of the XGBoost
and U-Net models. Healthy moss, stressed moss, moribund moss, and lichen are the
identified classes, highlighting the varying proportions of each class as predicted by the
respective models.
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Table 9. Class distribution in the target area (931.12 m2) using XGBoost and U-Net Models.

Class XGBoost U-Net

Healthy Moss 6% 3%
Stressed Moss 15% 12%
Moribund Moss 20% 30%
Lichen 21% 21%

Figures 22–25 present a visual comparison between XGBoost predictions and U-Net
predictions within a defined ROI. The visualisation allows for a detailed examination of
the intersection and union between the two models. The overlay of XGBoost predictions
over U-Net predictions provides valuable insights into the complementary strengths and
weaknesses of the two approaches, contributing to a comprehensive understanding of their
performance in the specific targeted region.
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5. Discussion

The purpose of this paper was to verify a methodology of using multispectral imagery,
UAVs, and ML to classify moss health (healthy, stressed, and moribund) and lichen in
Antarctica. The methodology and segmented maps of ASPA 135 will help scientists to
perform non-invasive field tests to monitor the health of moss beds. The physical risk
to the moss during ground testing plus the labour demand is extremely high; therefore,
the utilisation of UAVs to conduct continuous monitoring will promote sustainability and
reduce future costs. The XGBoost model performed well with the limited range of samples.
With an F1-score of 89%, the model was able to accurately segment moss health and lichen
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out of the orthomosaic. Eischeid et al. had an F1-score of 85% for the Random Forest (RF)
algorithms used for disturbance mapping on tundra vegetation in the Artic [64]. Likewise,
Sotille et al. used an RF classifier on Antarctic vegetation and got an accuracy of 96.6% [65].
This supports the findings of Sotille et al. and Turner et al. as more ground truth data
would have allowed the RF model to be more transferable to new data [66]. In addition,
more ground truth data for the XGBoost model would have helped the labelling process as
the manual polygons would have been less subjective.

In comparison to prior studies employing semi-automatic object-based image analysis
(OBIA) for moss health classification in the same moss beds over the 2003–2013 timeframe,
our research introduces a pioneering approach [4]. While the conventional OBIA method
achieved 84% accuracy within fixed quadrat locations (25 cm × 25 cm), our methodology
utilises drone-based multispectral imaging and DL, enabling a larger spatial coverage and
automated classification. The key distinction lies in our ability to cover expansive areas,
providing a more comprehensive understanding of moss health dynamics. Additionally, the
integration of multispectral imagery enhances spectral resolution, contributing to a refined
and detailed classification of moss health. This novel approach represents a significant
advancement in the field, offering a more efficient and accurate means of assessing moss
health and mapping over larger territories.

In this study, a two-stage ensemble methodology was employed for predictive mod-
elling, leveraging the strengths of XGBoost and a U-Net architecture. In the initial stage,
XGBoost, a robust gradient-boosting algorithm, was utilised for making predictions on the
target variable. The outputs generated by XGBoost were subsequently employed as input
features for a U-Net model in the second stage. The U-Net, renowned for its effectiveness
in image segmentation tasks, harnessed the information encoded by XGBoost to refine
and enhance the predictive capabilities. This two-step modelling approach, involving the
sequential utilisation of XGBoost and U-Net, aimed to capitalise on the complementary
strengths of the two algorithms, potentially yielding improved predictive performance
compared to standalone models. The methodology encapsulates a novel strategy for en-
semble modelling, strategically incorporating the distinctive attributes of each model to
achieve a more robust and accurate predictive framework.

In the context of our research, the integration of the U-Net model with XGBoost predic-
tions is a novel approach designed to enhance segmentation accuracy. We acknowledge the
potential concern regarding the accuracy of initial XGBoost predictions and its influence
on subsequent U-Net segmentation. To address this, our methodology incorporates data
preprocessing (selection of tiles), parameter tuning (dropout, learning rate, and different
convolution layer), and model training strategies (batch size and epochs) to minimise the
impact of incorrect predictions. We emphasise the importance of transparently discussing
these challenges and limitations. Additionally, our experimental validation includes a thor-
ough assessment of model performance under various conditions (k-fold cross validation),
demonstrating the robustness and generalisability of our integrated methodology. This
proactive approach to addressing potential errors ensures a comprehensive understanding
of the model’s capabilities and limitations in real world applications.

The finer details of the moss could not be identified because of the resolution of the
Altum multispectral camera. The fidelity displayed in the Mini 3 Pro could not be replicated
in the XGBoost model because of the lower resolution. Higher resolution data would allow
for a more intricate segmented map, which would be more accurate as the moss classes are
not constrained to particular patches but are intertwined across the ASPA 135 landscape.
Also, higher resolution would have helped the labelling process. Turner et al. concluded
that imagery of 3cm/pixel was suitable enough for vegetation detection classification [66].
This paper found that having a higher resolution was necessary, especially when labelling
non-ground truth data points. The Mini 3 Pro dataset is a very small orthomosaic; having
access to the same high resolution all over ASPA 135 would have allowed labelling across
a much larger area, meaning better results. This would also have helped the U-Net
architecture. Sotille et al. came to the same conclusion when using GEOBIA to classify
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maritime Antarctic vegetation. However, labelling such an extensive data set involves a lot
of manual work [64].

Our study focuses on evaluating the health of moss and lichen using multispectral
imagery captured by UAVs, employing ML classifiers such as XGBoost for segmentation.
In contrast, another study by Sandino et al. primarily addresses the challenge of mapping
the same study location using a workflow that integrates UAV, hyperspectral imagery, and
same ML classifiers of XGBoost [39]. This approach resulted in an average accuracy of
95%, demonstrating the successful detection and mapping of moss and lichens. While both
studies leverage ML, the first emphasises health assessment, and the second focuses on
precise mapping, yet both contribute valuable insights into the potential applications of
remote sensing technologies in monitoring the impact of climate change on the Antarctic
ecosystem. Despite our adoption of the U-Net model in this study, the achieved results
were comparatively lower than those obtained in the hyperspectral study that utilised
XGBoost [39]. One prominent factor contributing to this performance gap is the insufficient
number of training samples available for U-Net. In ML, particularly for DL models like
U-Net, the quantity and diversity of training data play a crucial role in model performance.
The U-Net model requires a substantial volume of diverse training samples to effectively
learn and generalise patterns within the data. In our case, the limited availability of training
samples likely hindered the U-Net model’s ability to discern complex spectral patterns and
variations associated with the health assessment of moss and lichen. Shortage of diverse
training examples can result in suboptimal model performance, as the model struggles
to capture the full range of features necessary for accurate segmentation. This shortage
of diverse training examples can result in suboptimal model performance, as the model
may struggle to capture the full range of features necessary for accurate segmentation. On
the other hand, the XGBoost model employed in the hyperspectral study benefited from
a more extensive dataset, allowing it to better learn the intricate relationships between
spectral characteristics and vegetation classes. The abundance of training samples facili-
tated the XGBoost model’s ability to generalise and make accurate predictions, ultimately
contributing to the higher overall performance observed in the hyperspectral study.

The utilisation of UAVs in monitoring moss and lichen communities in East Antarctica
presents numerous advantages, underscoring its potential as a valuable tool for ecological
research in challenging environments. The high spatial resolution and multispectral capa-
bilities of UAVs allow for detailed and accurate vegetation assessments, offering insights
into the health and dynamics of moss and lichen communities. The non-invasive nature
of UAV-based data collection minimises disturbance to the delicate Antarctic ecosystems,
providing an environmentally sensitive approach to monitoring. However, it is imperative
to address certain limitations inherent in UAV-based studies. One notable constraint is the
limited endurance of UAV flights, restricting the coverage area per mission. This limitation
may necessitate multiple flights to adequately survey larger expanses, potentially leading
to increased logistical complexities and resource requirements. Moreover, the payload
capacity of UAVs may impose restrictions on the types of sensors and equipment that can
be deployed, influencing the comprehensiveness of data collection.

Another critical consideration is the susceptibility of UAV operations to adverse
weather conditions prevalent in Antarctica. Unpredictable weather patterns, including
strong winds, extreme cold, and snow coverage, can impede flight schedules and data
collection efforts. Ensuring reliable and consistent data acquisition becomes particularly
challenging in such extreme environmental conditions. Despite these challenges, the
study underscores the transformative potential of UAV technology in advancing non-
invasive monitoring techniques for polar ecosystems. The combination of high-resolution
imagery and ML classifiers facilitates an understanding of vegetation health, contributing
to biodiversity conservation efforts in remote and inaccessible regions. Future advances in
UAV technology, including increased flight endurance and enhanced weather resilience,
hold promise for overcoming current limitations and further expanding the applicability of
UAVs in polar ecological research.
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6. Conclusions and Recommendations

This paper presented a novel workflow that combined UAVs, multispectral and RGB
imagery, and ML to monitor the health of Antarctic vegetation, validated with a case study
for detection and mapping of moss and lichen from a dataset collected at ASPA 135 in early
2023. This study addressed a research gap found in previous works by comparing two
state-of-the-art ML classifiers: XGBoost and U-Net. The XGBoost model demonstrated
robust classification across various vegetation classes, showcasing high precision, recall,
and F1-score. The U-Net model, while adopting different segmentation methods, presented
different outcomes. Method 1 showed moderate performance, indicating potential limita-
tion of lack of training pixels to classify the health status of moss. In contrast, Method 2
illustrates improvements; the U-Net model’s performance is influenced by the availability
of training samples, underscoring the importance of the segmentation approach. The choice
between XGBoost and U-Net should consider the quantity of training samples because DL
models like U-Net require more training samples than XGBoost. However, the collection
of more ground truth information to increase the training samples from the Antarctic is
a challenging task. Therefore, one of the techniques to overcome this challenge is to use
classical ML like XGBoost for initial predictions which can then be used as inputs to DL
models. This presents a viable strategy to address this challenge.

Further exploration and refinement of ML techniques tailored to polar environments
will advance our understanding and monitoring capabilities in these critical ecosystems.
Future areas of work include capturing more high-resolution RGB data for increased la-
belling to enhance the CNN classifier performance and to visually verify polygon labelling.
Additionally, higher resolution multispectral data should be captured to create more ac-
curate segmented maps that mimic the dispersed characteristics of vegetation classes in
nature. Detailed analysis on which spectral indices impact what class should be investi-
gated. Furthermore, evaluation on other ML algorithms could improve the segmentation
of Antarctic vegetation. The use of UAVs in Antarctica is still relatively new; however,
it has effectively become the most non-invasive method to monitor the health of these
fragile ecosystems.

Author Contributions: Conceptualizations, D.R., J.S., N.A., B.B. and F.G.; methodology, D.R., J.S.,
N.A., B.B. and F.G.; software, D.R., J.S. and N.A.; validation, J.S.; formal analysis, D.R. and N.A.;
investigation, D.R., J.S., N.A. and B.B.; resources, B.B. and F.G.; data curation, J.S. and B.B.; writing—
original draft preparation, D.R. and N.A.; writing—review and editing, J.S., A.D., J.B., K.R., B.B., S.A.R.
and F.G.; visualisation, D.R., J.S., N.A. and B.B.; supervision, B.B. and F.G.; project administration,
B.B. and F.G.; funding acquisition, B.B., J.B., S.A.R. and F.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Australian Research Council (ARC) SRIEAS (grant
number: SR200100005) Securing Antarctica’s Environmental Future; Australian Antarctic Division
(AAS Project, 4628) and an NVIDIA academic grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Research data can be made available upon request to the
corresponding author.

Acknowledgments: We would like to acknowledge the Australian Antarctic Division (AAD) for field
and other support through AAS Project 4628. Special thanks to Gideon Geerling for his leadership
and technical support as field trip officer. We would like to thank NVIDIA for supporting the ARC
SRI SAEF via a Strategic Researcher Engagement grant, and the donation of the A6000 and A100
GPUs used to analyse and visualise the data. A huge thanks to SaiDynamics Australia for donating
the BMR3.9RTK drones, which were crucial to this research.

Conflicts of Interest: Johan Barthelemy was employed by NVIDIA. The remaining authors declare
that the research was conducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest. The funders had no role in the design of the



Sensors 2024, 24, 1063 27 of 29

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

References
1. Lee, J.R.; Waterman, M.J.; Shaw, J.D.; Bergstrom, D.M.; Lynch, H.J.; Wall, D.H.; Robinson, S.A. Islands in the Ice: Potential Impacts

of Habitat Transformation on Antarctic Biodiversity. Glob. Change Biol. 2022, 28, 5865–5880. [CrossRef]
2. Fretwell, P.T.; Convey, P.; Fleming, A.H.; Peat, H.J.; Hughes, K.A. Detecting and Mapping Vegetation Distribution on the Antarctic

Peninsula from Remote Sensing Data. Polar Biol. 2011, 34, 273–281. [CrossRef]
3. Yin, H.; Perera-Castro, A.V.; Randall, K.L.; Turnbull, J.D.; Waterman, M.J.; Dunn, J.; Robinson, S.A. Basking in the Sun: How

Mosses Photosynthesise and Survive in Antarctica. Photosynth. Res. 2023, 158, 151–169. [CrossRef] [PubMed]
4. King, D.H.; Wasley, J.; Ashcroft, M.B.; Ryan-Colton, E.; Lucieer, A.; Chisholm, L.A.; Robinson, S.A. Semi-Automated Analysis of

Digital Photographs for Monitoring East Antarctic Vegetation. Front. Plant Sci. 2020, 11, 766. [CrossRef] [PubMed]
5. Lee, J.-Y.; Fu, X.; Wang, B. Predictability and Prediction of the Madden-Julian Oscillation: A Review on Progress and Current

Status. In The Global Monsoon System; World Scientific: Singapore, 2017; pp. 147–159.
6. Robinson, S.A.; King, D.H.; Bramley-Alves, J.; Waterman, M.J.; Ashcroft, M.B.; Wasley, J.; Turnbull, J.D.; Miller, R.E.; Ryan-Colton,

E.; Benny, T.; et al. Rapid Change in East Antarctic Terrestrial Vegetation in Response to Regional Drying. Nat. Clim. Change 2018,
8, 879–884. [CrossRef]

7. Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and
Applications. Drones 2023, 7, 398. [CrossRef]

8. Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens. 2019, 11, 1443.
[CrossRef]

9. Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution
Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sens. 2012, 4, 1392–1410.
[CrossRef]

10. Sotille, M.E.; Bremer, U.F.; Vieira, G.; Velho, L.F.; Petsch, C.; Simões, J.C. Evaluation of UAV and Satellite-Derived NDVI to Map
Maritime Antarctic Vegetation. Appl. Geogr. 2020, 125, 102322. [CrossRef]

11. Xu, Z.; Shen, X.; Cao, L.; Coops, N.C.; Goodbody, T.R.H.; Zhong, T.; Zhao, W.; Sun, Q.; Ba, S.; Zhang, Z.; et al. Tree Species
Classification Using UAS-Based Digital Aerial Photogrammetry Point Clouds and Multispectral Imageries in Subtropical Natural
Forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102173. [CrossRef]

12. Hartling, S.; Sagan, V.; Maimaitijiang, M. Urban Tree Species Classification Using UAV-Based Multi-Sensor Data Fusion and
Machine Learning. GISci. Remote Sens. 2021, 58, 1250–1275. [CrossRef]

13. Liu, H.; Yu, T.; Hu, B.; Hou, X.; Zhang, Z.; Liu, X.; Liu, J.; Wang, X.; Zhong, J.; Tan, Z.; et al. Uav-Borne Hyperspectral Imaging
Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring. Remote Sens. 2021, 13, 4069.
[CrossRef]

14. Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping Maize Crop Coefficient Kc Using Random Forest
Algorithm Based on Leaf Area Index and UAV-Based Multispectral Vegetation Indices. Agric. Water Manag. 2021, 252, 106906.
[CrossRef]

15. Amarasingam, N.; Gonzalez, F.; Salgadoe, A.S.A.; Sandino, J.; Powell, K. Detection of White Leaf Disease in Sugarcane Crops
Using UAV-Derived RGB Imagery with Existing Deep Learning Models. Remote Sens. 2022, 14, 6137. [CrossRef]

16. Yang, W.; Xu, W.; Wu, C.; Zhu, B.; Chen, P.; Zhang, L.; Lan, Y. Cotton Hail Disaster Classification Based on Drone Multispectral
Images at the Flowering and Boll Stage. Comput. Electron. Agric. 2021, 180, 105866. [CrossRef]

17. Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV
and Ground-Based Remote Sensing Techniques for Landslide Mapping, Monitoring and Early Warning. Geoenviron. Disasters
2017, 4, 9. [CrossRef]

18. Tan, L.; Lu, J.; Jiang, H. Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine
Learning and Deep Learning Methods. AgriEngineering 2021, 3, 542–558. [CrossRef]

19. Vong, C.N.; Conway, L.S.; Zhou, J.; Kitchen, N.R.; Sudduth, K.A. Early Corn Stand Count of Different Cropping Systems Using
UAV-Imagery and Deep Learning. Comput. Electron. Agric. 2021, 186, 106214. [CrossRef]

20. Qin, B.; Sun, F.; Shen, W.; Dong, B.; Ma, S.; Huo, X.; Lan, P. Deep Learning-Based Pine Nematode Trees’ Identification Using
Multispectral and Visible UAV Imagery. Drones 2023, 7, 183. [CrossRef]

21. Genze, N.; Ajekwe, R.; Güreli, Z.; Haselbeck, F.; Grieb, M.; Grimm, D.G. Deep Learning-Based Early Weed Segmentation Using
Motion Blurred UAV Images of Sorghum Fields. Comput. Electron. Agric. 2022, 202, 168. [CrossRef]

22. Fragassa, C.; Vitali, G.; Emmi, L.; Arru, M. A New Procedure for Combining UAV-Based Imagery and Machine Learning in
Precision Agriculture. Sustainability 2023, 15, 998. [CrossRef]

23. Marin, D.B.; Ferraz, G.A.e.S.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Osco, L.P.; Ramos, A.P.M.; Guimarães, P.H.S. Detecting
Coffee Leaf Rust with UAV-Based Vegetation Indices and Decision Tree Machine Learning Models. Comput. Electron. Agric. 2021,
190, 106476. [CrossRef]
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