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Abstract: In this study, a quantitative detection method of pipeline cracks based on a one-dimensional
convolutional neural network (1D-CNN) was developed using the time-domain signal of ultrasonic
guided waves and the crack size of the pipeline as the input and output, respectively. Pipeline
ultrasonic guided wave detection signals under different crack defect conditions were obtained via
numerical simulations and experiments, and these signals were input as features into a multi-layer
perceptron and one-dimensional convolutional neural network (1D-CNN) for training. The results
revealed that the 1D-CNN performed better in the quantitative analysis of pipeline crack defects, with
an error of less than 2% in the simulated and experimental data, and it could effectively evaluate the
size of crack defects from the echo signals under different frequency excitations. Thus, by combining
the ultrasonic guided wave detection technology and CNN, a quantitative analysis of pipeline crack
defects can be effectively realized.
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1. Introduction

Owing to its evident advantages, including minimal environmental impacts, large
carrying capacities, high efficiencies, and low costs, pipeline transportation is expected to
play an increasingly important role in future transportation engineering [1]. However, in
pipeline engineering, the integrity and safety of pipeline structures form the premise of
smooth transportation. In their absence, a loss of transported materials caused by damaged
pipeline structures is expected to not only affect production and daily life, causing huge
economic losses, but also exert a huge impact on the environment, even leading to major
safety risks such as collapse and explosion [2,3]. Therefore, the nondestructive testing of
pipeline structures is of considerable significance. In this regard, ultrasonic guided wave
technology is widely used in long-distance pipeline inspection owing to its advantages,
such as easy excitation, a long propagation distance, wide coverage, high detection accuracy,
and low detection cost [4]. However, owing to the complex characteristics of ultrasonic
guided waves, such as multimode and dispersion, and the influence of noise, quantitative
evaluations of defect echoes in guided wave signals represent a significant challenge [5,6].

Interestingly, the majority of previous research on ultrasonic guided waves focuses on
the localization and qualitative analysis of defects, relying on the extraction of a series of
characteristic parameters from the original signals [7,8]. By contrast, quantitative research
on defects directly based on the original guided waves is rather limited. In particular, only
a few quantitative studies have been conducted on defects by directly using the original
guided wave signals. Zhan et al. [7] used a deep learning approach to classify and detect
pipe welds in noisy environments. Li et al. [8] used the CNN-LSTM hybrid model to classify
pipeline defects. This research has proposed a solution for classifying pipeline defects,
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but it has not thoroughly explored the quantification of pipeline damage. Quantifying
pipeline damage often requires a large amount of data to perform a regression analysis
across the full range of damage. Determining its impact on simulation and experimental
data regarding working condition diversity is a considerable challenge. Davies et al. [9]
analyzed the relationship between defect sizes of cracks and small apertures and the
defect echo amplitude when evaluating synthetic path image focusing and source imaging
methods. Zheng [10] used a matching pursuit algorithm to quantitatively analyze the axial
defect size of a pipeline. Both studies employed quantitative methods based on theoretical
calculations, which may be subject to errors after environmental changes. Neural networks
trained on real-time data can learn to adapt to specific environmental situations with greater
compatibility. Li [11] utilized a 2D blind convolution method to estimate the dimensions
of axial defects using multiple sets of data obtained from an axial sensor array. Li [12]
proposed a quantitative reconstruction method for ultrasonic guided wave defects based
on deep learning. This was achieved by combining the theoretical method of shear wave
quantitative reconstruction of plate thinning defects, wave number space domain transform,
and a convolutional neural network (CNN) using local fusion. Acciani et al. [13] used
wavelet transforms and neural networks to quantitatively evaluate pipe surface damage.
Preprocessing ultrasonic guided wave signals is necessary for these methods, which may
exclude significant information from the original signals. A CNN network that extracts
information directly from the ultrasound-guided wave response signal is highly effective
in avoiding this issue. Huang [14] proposed a damage detection method based on a CNN-
LSTM network for laser ultrasonic guided wave scanning detection. Miorelli et al. [15]
proposed an automatic method for localizing and quantifying structural health monitoring
defects based on guided wave imaging by combining convolutional neural networks. Yin
et al. [16] automated the detection of pipeline defects using closed-circuit television (CCTV)
and deep learning. Both studies relied on structural damage imaging and used training
samples directly derived from 2D images. This method is computationally demanding and
relies on image-based recognition, which can make predicting results challenging due to
the effects of image imaging. The use of CNNs for quantitative defect identification can
effectively prevent the masking of critical information and reduce the technical difficulty of
engineering applications.

Neural network-based algorithms have made it more convenient, efficient, and accu-
rate to quantitatively identify structural damage using ultrasonic guided wave technology.
With this background, this paper proposes a method for the end-to-end quantitative char-
acterization of pipeline defects by directly inputting the original ultrasonic guided waves
signal into a network model without any preprocessing. The goal of the method is to
predict the angles of radial defects on the pipe by regressing the angles of the defects
directly to the prediction. To achieve this task, ceramic piezoelectric sheets are used to line
a section of the pipe symmetrically at equal intervals for the excitation and reception of
ultrasonic guided waves. The received signals are then used as inputs for a neural network
for feature learning. The size of the penetrating crack in the pipeline is quantified using the
defect damage angle, and the amount of crack damage in the ultrasonic guided wave signal
is determined using a neural network method. By arranging the ceramic piezoelectric
sheet symmetrically and in the same direction on the pipe, it is possible to excite ultrasonic
guided waves of L mode. This mode is more sensitive to circumferential cracks in the pipe,
making it better suited for the quantitative characterization of such cracks.

2. Defect Quantification Method Based on Ultrasonic Guided Waves and CNN

An Artificial Neural Network (ANN) represents a type of simulation and approxima-
tion of a biological neural network. It is an adaptive nonlinear dynamic network system
composed of a large number of neurons connected through mutual connections, and it is
primarily composed of input, hidden, and output layers [17]. The most basic unit of an
ANN is a neuron, which can be expressed as Equation (1).
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y = f (ω1x1 + ω2x2 + ω3x3 . . . . . . ωnxn + b) (1)

where xi denotes the input n features in a neuron, ωi denotes the weight value of the input
feature xi connected to the neuron, b denotes the internal bias of the neuron, y denotes
the output value of the neuron, and f (. . . . . .) denotes the activation function. The more
common activation functions include the rectified linear unit (ReLU) [18], Sigmoid, Tanh(x),
and radial basis functions [19]. According to the findings of Acciani [11], the ReLU function
is directly selected as the activation function for this study.

A CNN is a typical deep learning method developed in recent years, with wide ap-
plications in fields such as pattern recognition and medical engineering [20]. The basic
structure of a CNN consists of input, convolutional, pooling, fully connected, and output
layers [21]. Because each neuron of the output feature surface in the convolutional layer
is locally connected to its input, and the input value of the neuron is obtained based on
the weighted sum of the corresponding connection weight and the local input plus the
bias value, this process is equivalent to the convolution process, from which its name is de-
rived [22]. CNNs are primarily used for the feature recognition of two-dimensional images,
whereas 1D-CNNs have only one dimension; therefore, they are widely used for feature
recognition and time-series extraction. Although a 1D-CNN only has a single dimension, it
demonstrates the same advantages as a CNN [14]. Specifically, CNNs not only present the
advantages of traditional neural networks, such as a strong self-learning ability and good
adaptability, but also the advantages of weight sharing and easy model training [23]. This
study employs a CNN model, illustrated in Figure 1, which comprises an input layer, two
convolutional and pooling layers, and two fully connected and output layers.
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Figure 1. Schematic diagram of a CNN.

In order to compare the prediction performance of different types of neural networks,
this study architects a multilayer perceptron (MLP) neural network model, as shown in
Figure 2. It consists of an input layer of 1000 sets of guided wave signals, a first hidden
layer of 128 neurons, a second hidden layer of 64 neurons, and an output layer.

The neural networks were trained using computers equipped with R9-5900HS proces-
sors and RTX-3050ti graphics cards to prevent external factors from affecting the detection
results. The neural networks were trained using several program libraries, including Py-
torch, NumPy, Pandas, and Scikit-learn. Additionally, the Adaptive Moment Estimation
optimization algorithm was utilized.
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The convolution layer performs a valid convolution operation using a 3 × 1 kernel,
and the convolution operation is like a mathematical operation on two functions, which
produces the mapping relationship of the third function, and its mathematical expression is
Equation (2). f and g represent two different mapping functions. The data pass through two
convolutional layers and two fully connected layers before outputting the final prediction.

( f · g)[n] = ∑∞
m=−∞ f [n − m]g[m] (2)

The time-domain signals of ultrasonic guided waves were used as direct inputs in our
quantitative characterizations of pipeline crack defects. The input signal range included
the excitation wave, defect echo, and first-end face echo. In the numerical simulation
stage, the displacement signal within this period was directly specified in the analysis step,
and 1000 groups of amplitude signals were collected as data. During the acquisition of
experimental data, the oscilloscope was set to a sampling rate of 5 M/S, resulting in a total
of 10 K sampled points. To decrease the calculation time of the neural network model,
each experimental signal was divided into seven data groups, each with a length of 1000.
The division started from the 800th point, which was where the excitation of ultrasonic
guided wave signals appeared, and ended at the 8000th point, which was the end of the
first end-face echo, as shown in Figure 3. This method can increase the diversity of the data
as much as possible on the basis of extracting real guided wave information.

The construction of the 1D-CNN in this paper required the following hyperparameters
to be determined: the number of nodes in the hidden layer, the batch size for testing, the
random seeds, the learning rate, and the number of training generations. For the selection
of the number of hidden nodes, empirical Formulas (3)–(5) were used to calculate and set
the number of hidden nodes with the best results. n is the number of nodes in the input
layer; l is the number of nodes in the output layer; m is the number of hidden nodes; and a
is a constant between 1 and 10. The remaining hyperparameters were determined through
empirical formulas, which was carried out near the empirical values, and the optimal
training results were selected as the parameters.

m =
√

n + l + a (3)

m = log2n (4)

m =
√

nl (5)
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Determining the hyperparameters is crucial for evaluating network performance.
Excellent hyperparameters correspond to excellent performance indicators and determine
the success of the network model.

To set the hyperparameters of the neural network model, certain tricks for modulating
these hyperparameters were obtained from the literature [24]. The neural network model
architecture adopted a structure of 2–3 hidden layers, and ReLU was used as the activation
function. For the simulation and experimental data, a multi-layer perceptron (MLP) and
CNN were used for training and comparison, respectively. The root mean square error
(RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R-
square) were used to comprehensively evaluate the regression performance of the neural
networks. Note that the RMSE and MAPE reflect the error between the predicted and
actual values of the network. The RMSE increases with larger errors, while the MAPE
decreases. The R-square value indicates the quality of the model fit; the closer it is to
one, the better the fit. Based on these parameters, the advantages and disadvantages of
the two different neural networks in the quantitative prediction of pipeline defects were
comprehensively compared. The expressions for the above parameters are shown in (6), (7),
and (8). Here, ŷ represents the true value, y represents the predicted value, and n represents
the number of test samples.

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (6)

MAPE =
100%

n ∑n
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (7)

R2 = 1 − ∑ i(ŷi − yi)
2

∑ i(yi − yi)
2 (8)

3. Numerical Simulation
3.1. Pipeline Modeling

The JMatPro (Version 7.0) and Abaqus (Version 6.16-1) software were used for the
numerical simulations. The pipe used in the experiment was a 304 seamless steel pipe with
a length of l = 3 m, an outer diameter of d = 60 mm, and a pipe wall thickness of t = 2 mm.
To ensure consistency between the simulation and experiment, the JMatPro software was
used to predict the performance parameters of the pipeline material to be selected. The
density of the material used in the experiment was obtained as ρ = 7.855 g/cm3, Young’s
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modulus was obtained as E = 211.3 GPa, Poisson’s ratio was obtained as ν = 0.2969, and
the data corresponding to the material performance parameters were input into the Abaqus
software. Simultaneously, a pipe model with a length of 3 m, an outer diameter of 60 mm,
and a wall thickness of 2 mm was established using the Abaqus software, and the dynamic
display analysis method was used to perform the calculation.

To conveniently select the central frequency of the excitation signal, the dispersion
curve of the simulated pipeline was drawn using the Disperse (Version 2.0.16c) software,
as depicted in Figure 4. According to the dispersion curve, the group velocity and phase
velocity of the guided wave signal tended to be stable in the L (0, 2) mode near the
central frequency of 70 kHz, and the wave velocity was approximately 5.5 km/s; hence, an
excitation signal with a central frequency of 70 kHz was used to generate a single-mode
guided wave.
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In this study, a hexahedral structured mesh was used for the non-defective part of
the pipeline, and a hexahedral swept mesh was used for the defective part. Generally, to
control the propagation error of a waveform, the presence of multiple elements in one
wavelength is essential, and the grid size of the axial elements should satisfy the conditions
in Equation (9).

le <
min

(
Cp

)
10 × f

(9)

where:
le: the axial grid cell length;
Cp: the phase velocity of the guided wave;
f : the frequency of the guided wave.
Based on the calculations, the size of the largest grid axial element was found to be

approximately 7 mm. To ensure that the number of grids in the global mesh generation
was an integer, the global mesh size was finally determined to be 5 mm. Considering that
the gradient of the lateral section damage angle growth in the numerical simulation was
one, and the increment of its reaction in the mesh size was approximately 0.5 mm, the mesh
size was locally encrypted to 0.5 mm in the defective part (Figure 5).
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To facilitate grid division when setting defects, the lateral section damage angle was
adopted as the defect measurement index (Figure 6). For this, a pipeline model with a
lateral section damage angle of 0–180◦ was established with a gradient of one. In total,
we had 181 models. Notably, this type of model only considers penetrating cracks in
the pipeline. Considering the pipeline loss along the crack-depth direction, the number
of models can be increased in multiple ways. Meanwhile, considering the fact that the
crack depth of non-penetrating cracks cannot be accurately measured and controlled in
the experimental stage, the quantification of non-penetrating cracks was not considered in
this study.
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To ensure that the complete waveform image, including the excitation wave, defect
echo, and first-end face echo, could be observed in the analysis time, the analysis step time
was required to meet the conditions in Equation (10).

Ts >
2L

min
(
Cg

) (10)

where:
Ts—the analysis step time;
L—the length of the pipe;
Cg—the group velocity of the guided wave.
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3.2. Excitation Signal

The excitation signal was a 10-cycle sinusoidal signal modulated by a cosine function
with a central frequency of 70 kHz, as depicted in Figure 7. This signal energy appeared to
be more concentrated near the central frequency, which is conducive to signal identification.
The signal function expression is given in Equation (11) [25].

f (t) = 0.5
[

1 − cos
(

2π fct
n

)]
sin(2π fct) (11)

where:
fc—the center frequency of the excitation signal;
n—the number of cycles.
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3.3. Defect Quantification with ANN

The numerical simulation results indicated the presence of 181 groups of guided wave
signals. The data were divided into training, testing, and validation sets in a ratio of
6:2:2. As stated, a 1D-CNN was used to learn these data and compare the performance
with the traditional MLP network. To reduce the training time of the network, the entire
guided wave signal was arranged in 1000 groups of characteristic values to be input into
the network according to the time sequence, and the damage angle of the crack section
corresponding to the guided wave signal was considered as an output value. The RMSE,
MAPE, and R-square values were used to evaluate the regression performance of the
neural networks.

As stated, a 1D-CNN was used to learn the simulation data, and the ReLU function
was used as the activation function. The loss curves and training results are indicated
in Figure 8. The results for the regression performance indicators of the model are as
follows: RMSE = 0.948, MAPE = 0.015, and R-square = 0.999. The regression performance
indexes of the model revealed that the regression performance of the 1D-CNN model
was better, the error between the prediction results and the real section damage angle
was approximately 0.9◦, and the error was less than 0.5%. The loss curve and prediction
results indicate the presence of some overfitting in the model. The results for the regression
performance indicators of the MLP model are as follows: RMSE = 1.17, MAPE = 0.014,
and R-square = 0.999. The regression performance indexes of the model indicated that the
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regression performance of the MLP model was excellent, the error between the prediction
results and real section damage angle was approximately 1.2◦, and the error was less than
0.8%, and its parameter characterization shows that its model prediction performance is
not as good as that of the 1D-CNN model.
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To clarify whether the model could effectively predict the section damage angle
corresponding to the defect echo signal when the guided wave signal at the defect echo
was input into the neural network as a feature in the simulation stage, 120 groups of data at
the defect echo were extracted from the original simulation data as feature inputs (Figure 9)
to the neural network. Following this, the regression effect was compared with that of the
entire guided wave signal as a feature input to the neural network.
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Table 1 summarizes the final evaluation results for each parameter of the neural
network models. In this table, MLP denotes the performance index of the MLP when the
full-section guided wave signal is used as the feature input, while 120-MLP represents the
performance index of the MLP when the guided wave signal at the defect echo is used as
the feature input. Next, 1D-CNN denotes the performance index of the 1D-CNN when
the entire guided wave signal is used as the feature input, while 120-1D-CNN denotes
the performance index of the 1D-CNN when the guided wave signal at the defect echo is
used as the feature input. The numerical results indicate that the prediction performance
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of the neural networks appears better when the entire guided wave signal is used as the
feature input, and the size of the defect is more closely related to the entire guided wave
signal. Based on this result, it can be inferred that when only the signal at the echo of the
defect is used as the feature input to the network, abundant useful information may be lost,
resulting in the inability of the neural network to effectively analyze defects. The 1D-CNN
model was more effective in identifying the pipeline damage value from the analog signal.

Table 1. Performance index evaluation.

Name RMSE MAPE R-Square

MLP 1.17 0.014 0.999
120-MLP 2.45 0.026 0.997
1D-CNN 0.95 0.015 0.999

120-1D-CNN 2.26 0.027 0.998

4. Experimental Verification

To verify the effectiveness of the proposed defect quantification method using ultra-
sonic guided waves in pipes based on neural networks, experimental studies on different
crack defect sizes in pipes were conducted. In other words, the neural network method
was used to directly predict the sizes of the corresponding pipeline crack defects in the
guided wave signal from the entire guided wave signal.

4.1. Experimental Design

The instruments and materials used in this study are listed in Table 2 below. Before the
experiment, 32 piezoelectric ceramic slices were welded. To ensure that the piezoelectric
ceramic slices would remain undamaged under the high welding temperature, the welding
temperature was kept below 260 ◦C during welding. After welding, each piezoelectric
ceramic slice was tested using an impedance analyzer to ensure that the frequency interval
of the impedance mutation of each piezoelectric ceramic slice remained the same. Generally,
after preparing a piezoelectric ceramic slice, treating the pipe to be pasted with this slice is
essential. Thus, the cuts at both ends of the pipe were polished using an electric grinder,
and the interior and exterior of pipe were cleaned. To place the piezoelectric ceramic slice
in close contact with the pipe, it was carefully wiped with a disinfectant alcohol tablet
approximately 10 cm from one end of the pipeline to be pasted with the piezoelectric
ceramic slice, after which the ceramic piezoelectric slice was pasted evenly and tightly with
epoxy resin adhesive. To ensure a clear signal, the excitation and receiving piezoelectric
ceramic slices had to be placed at the same axial position as the pipeline and evenly
distributed. Sixteen excitation and sixteen receiving piezoelectric ceramic slices were
arranged at axial intervals of 5 mm, as depicted in Figure 10. A waveform generator was
used to generate a signal modulated by a Hanning window at the excitation end of the
pipeline, which was strengthened by a power amplifier and acted on the piezoelectric
ceramic slice at the excitation end of the pipeline, to allow the ultrasonic guided wave
to traverse all positions along the pipeline. Finally, a time curve of propagation of the
ultrasonic guided wave in the pipeline was recorded using an oscilloscope. The actual
experiment, instruments, and piping are illustrated in Figure 11.

Table 2. Experimental equipment.

Name Quantity Type Notes

Seamless steel pipe 1 Stainless steel Length of 3 m, outer diameter of
60 mm, wall thickness of 2 mm

Piezoelectric ceramic slice 32 YF3-239-01 Size: 15.5 mm × 3.5 mm × 1 mm

Arbitrary wave function generator 1 AFG31102 Bandwidth: 100 Mhz
Sampling rate: 1 GSa/S

Ultrasonic power amplifier 1 AG1020 Frequency: 10 KHz–20 MHz
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Table 2. Cont.

Name Quantity Type Notes

MDO, mixed domain oscilloscope 1 MDO4054B-3 Bandwidth: 500 Mhz
Sampling rate: 2.5 GSa/S

Precision impedance analyzer 1 6632 Error: ±0.08%
Constant temperature welding station 1 SS-257 -

High-precision vernier caliper 1 DYX-DM90150 Precision: 0.01 mm
Error: ±0.02 mm

Speed-regulating electric motorcycle 1 DYX-DM7765 Speed: 6000–34,000 RPM/min
Epoxy resin adhesive Noggin 9911 -
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In the experiment, cutting was carried out first and then measurements were con-
ducted to determine the angle of the section damage. In the absence of damage to the
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pipeline, the echo signal of the complete pipeline was first obtained, following which the
pipeline was cut using an electric friction machine equipped with a special pipeline-cutting
blade. After each cut, the crack size was measured and recorded using Vernier calipers
(Figure 12). To prevent the cutting-induced temperature rise from affecting guided wave
detection, the pipeline was allowed to stand for 20 min after each cutting. After the tem-
perature of the cutting surface was lowered until it was close to the indoor temperature,
guided wave detection was performed, and the relevant guided wave data were recorded
using an oscilloscope.
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Figure 12. Defect measurement.

To ensure that the excitation wave, defect echo, and the first-end echo could be clearly
observed on the oscilloscope, and the guided wave signal could be completely collected,
the horizontal scanning time base of the oscilloscope was selected to be 200 µs, and the
number of sampling points was 10,000. We selected 31 excitation signals with a central
frequency within the range of 50–200 kHz and considered 5 kHz as the optimal step to
conduct the frequency sweep operation on the pipeline. During the frequency sweep,
we observed that when the central frequency was 80 kHz, the guided wave signal was
clear, and no interference was observed from the other modal waveforms, as indicated in
Figure 13. Therefore, 80 kHz was selected as the optimal central frequency for the guided
wave experiment on this pipe. A total of 21 groups of guided wave data were collected
using excitation signals with central frequencies ranging from 70 to 90 kHz, with steps
of 1 kHz above and below 80 kHz. To match the numerical simulation, the experiment
was terminated when the section damage angle reached 180◦. The section damage angles
recorded in the experiment are listed in Table 3.
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Table 3. Experimental data.

Serial
Number

The Length of the
Damage Tangent (mm)

The Lateral Section
Damage Angle (◦)

Serial
Number

The Length of the
Damage Tangent (mm)

The Lateral Section
Damage Angle (◦)

1 0 0 19 42.62 91
2 8.04 15 20 44.77 97
3 10.31 20 21 45.83 100
4 12.81 25 22 46.82 103
5 14.92 29 23 47.78 106
6 18.08 35 24 48.39 108
7 20.24 40 25 49.25 111
8 22.32 44 26 50.1 114
9 24.1 48 27 51.35 119

10 26.78 53 28 52.21 122
11 28.55 57 29 53.18 126
12 30.2 61 30 54.33 131
13 32.39 66 31 55.09 135
14 34.42 70 32 56.93 145
15 36.42 75 33 58.18 154
16 38.14 79 34 59.23 165
17 40.65 86 35 59.72 180
18 41.53 88

4.2. Analysis of Experimental Results

Through the above experimental operation, 10,920 groups of data were collected for
neural network training, and 210 groups of guided wave data were collected under optimal
frequency conditions. Based on the consistency between the experiment and simulation,
the guided wave data at the optimal frequency were analyzed, and the data were divided
into training, testing, and verification sets at a ratio of 6:2:2. The MLP and 1D-CNN were
used to learn these data, and the regression performance of the two different networks on
these data was compared. The final results obtained through network learning and training
are as follows.

The training results of the 1D-CNN on the experimental data are shown in Figure 14,
and the results of the regression performance indicators of the obtained model are as
follows: RMSE = 3.25, MAPE = 0.039, and R-square = 0.993. The regression performance
indexes of the model indicate that the regression performance of the 1D-CNN model was
not as good as that of the simulated data when the experimental data were used. The error
between the predicted results and actual section damage angle was approximately 3.3◦,
and the error reached 1.8%, which was approximately 1.7 mm when converted into arc
length. The results of the regression performance indicators of the MLP are as follows:
RMSE = 3.99, MAPE = 0.043, and R-square = 0.990. In general, a neural network can
accomplish the quantitative characterization of pipeline damage both from simulation and
experimental data, and the regression performance of the 1D-CNN is better than that of the
MLP in this task.

Owing to the characteristics of multimodal and frequency dispersions of ultrasonic
guided waves, an evident defect echo cannot be observed in the guided wave echo signal
under a nonoptimal excitation frequency, as presented in Figure 15. To evaluate whether
the neural network could identify ultrasonic guided-wave signal data at other frequencies,
10,920 data groups were input into the network for learning. The corresponding results are
presented in Table 4 and Figure 16.
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Table 4. Performance index evaluation.

Name RMSE MAPE R-Square

MLP 7.13 0.106 0.974
1D-CNN 3.70 0.071 0.993
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The regression performance indexes of the model indicate that the error between the
prediction result of the MLP model and the real section damage angle was approximately
7.13◦, and the error reached 3.9%, which was approximately 3.7 mm when converted
into arc length. The error between the prediction result of the 1D-CNN model and the
real section damage angle was approximately 3.7◦, and the error reached 2%, which was
approximately 1.9 mm when converted into arc length. These calculation results indicate
that a neural network has the ability to identify guided wave echo signal data under
nonoptimal excitation frequencies, and it can extract the defect quantity from the data. The
1D-CNN is better in this respect, and its regression performance is basically the same as
that of the guided wave signal under the optimal excitation frequency.

Finally, the CNN model was generated, encapsulated, and used to recognize a new
dataset formed by integrating and disrupting simulated and experimental data. The
recognition results are shown in Figure 17, with performance index scores of RMSE = 12.46,
MAPE = 0.241, and R-Square = 0.922. As shown in the figure, the validation data are
distributed on both sides of the accurate prediction value. When compared to the validation
using only the experimental dataset, the prediction error increases, resulting in an error
of 12.46◦, up from 7.13◦. Additionally, the direction of the arc length also increases by 3.
The data have been transformed from the original 2000 groups of validation sets to the
current 11,001 groups of validation sets. As a result, the margin of error has increased from
3.7 mm to 6.4 mm. However, this error is still relatively small considering the large amount
of accumulated data. These results correspond to an arc length error of 6 mm, further
demonstrating the effectiveness of the CNN.
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5. Conclusions

In this study, the quantitative characterization of pipeline crack defects was realized by
combining a 1D-CNN and ultrasonic guided wave technology. Through a numerical simu-
lation and experimental study, a 1D-CNN was used to quantitatively verify the dimension
of a pipeline crack defect by constructing an ultrasonic guided wave experimental platform.
Ultrasonic guided wave signals with different crack defects in the pipeline were collected
and quantitatively analyzed. The primary conclusions of this analysis are as follows:

(1) A quantitative analysis of pipeline crack defects can be realized from end to end by
combining a 1D-CNN with ultrasonic guided wave technology.

(2) Using the entire guided wave signal, including the incident wave, defect echo, and
first-end face echo signal, the feature input can improve the accuracy of the 1D-CNN
in identifying the size of the pipeline crack defect.
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(3) The 1D-CNN is more suitable for identification training of the defect size of the
pipeline than the MLP.

(4) The 1D-CNN can effectively identify the defect size from the echo signal under an
excitation signal with different central frequencies, and it can predict the defect size
with an error of less than 2%.

In summary, the combination of a 1D-CNN and ultrasonic guided waves can effectively
identify pipeline crack damage. Further studies are needed to quantify other types of pipe
damage. When the training data samples are insufficient, the CNN tends to produce
significant deviations. It is necessary to make breakthroughs in this aspect in the future
since the unexplainability of the network makes it impossible to analyze the training
data. CNNs can identify various degrees of damage from the response signals of different
dispersion states when the data samples are sufficient, which is a unique advantage of
CNNs. However, the principle requires in-depth study.
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