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Abstract: To understand human behavior, it is essential to study it in the context of natural movement
in immersive, three-dimensional environments. Virtual reality (VR), with head-mounted displays,
offers an unprecedented compromise between ecological validity and experimental control. However,
such technological advancements mean that new data streams will become more widely available,
and therefore, a need arises to standardize methodologies by which these streams are analyzed. One
such data stream is that of head position and rotation tracking, now made easily available from
head-mounted systems. The current study presents five candidate algorithms of varying complexity
for classifying head movements. Each algorithm is compared against human rater classifications and
graded based on the overall agreement as well as biases in metrics such as movement onset/offset
time and movement amplitude. Finally, we conclude this article by offering recommendations for the
best practices and considerations for VR researchers looking to incorporate head movement analysis
in their future studies.

Keywords: virtual reality; head movement; movement classification

1. Introduction

A central goal of human research is to understand behavior as it exists in the real
world. With the advent of head-mounted displays (HMDs) in virtual reality (VR) and other
sensor systems, this goal is more attainable than ever. These systems allow for increased
flexibility to the participant in the allowance of eye, head, and torso movement [1], while
maintaining the experimenter’s control over stimulus presentation and data collection.
Specifically, researchers now have the unprecedented ability to quantify and characterize
head movements, a key component of how humans explore and navigate the natural
environment. However, with the introduction of any new capability, there is also the need
to develop tested methods for characterizing and analyzing the produced data. The present
study explores the head movement field, presenting multiple methods of classifying head
movements and comparing them to one another for the purposes of organizing a collection
of the best practices for future researchers collecting this data type.

This effort is akin to that in the field of eye tracking, where classification algorithms
have been formalized, compared, and made available to the community at large [2]. In
part because of this effort, eye tracking data have been used to understand how the visual
system processes complex information [3,4] as well as provide insight into co-occurring
executive functions [5,6]. The bulk of this study has been conducted using restricted,
desktop displays. However, it is imperative to remember that, in real-world vision, eye
movements often occur in the context of head movements [7]. This is important not only
because eye movements sometimes occur in compensation with head movements (e.g., the
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vestibulo-ocular reflex) [8], but also because head movements in their own right provide
insight into cognitive processes [9,10] as well as individual differences in behavior [11].
For instance, head movements support exploratory search [10] and are affected by the
available visual short-term memory resources [12]. Moreover, head movements show
unique changes from eye movements in tasks such as reading when familiarity of the
text is manipulated [13]. Concurrently, these results demonstrate that characterizing and
analyzing head movements offer an important complement to not only the eye tracking
literature but also more generally contribute to the field of visual cognition.

From an applied standpoint, given the aforementioned results, head movements
have the potential to inform intelligent or adaptive technologies of a human operator’s
current state or task goals. A key benefit of this modality is that the information is easily
attainable with sensors that may be more robust and cause less interference with the
operators than other proposed human-sensing modalities such as an electroencephalogram
(EEG) or even eye tracking. As such, analyzing head movements has the potential to
not only inform our understanding of how vision occurs in the natural environment but
also provide information for spatial computing applications and future augmented reality
display technologies. However, to maximize the utility of this information, it is essential
that the methodologies to analyze such data are properly established.

Prior research has incorporated and investigated head movements in conjunction
with cognitive function [9,13]. However, there is yet to be an standardized methodology
for what constitutes a head movement or how to identify an epoch of data pertaining
to head movement. This is an essential step in being able to compare metrics such as
the velocity, duration, direction, and amplitude of head movements across experimental
conditions or between studies. To that end, the current study uses a data set collected for the
purposes of characterizing variability in eye and head movements in a virtual environment
using an HMD. In this task, participants oriented toward targets, which moved smoothly
or instantaneously to peripheral locations, to elicit head and eye movements of varying
velocity profiles across a range of eccentricities and directions. As such, this paradigm
provides a unique data set by which we can test multiple approaches for head movement
classification, and like algorithm comparisons in the eye movement literature, compare
their performance to human raters (e.g., [14]). The goal is to present researchers with a set
of best practices when analyzing head movement data as well as guidelines on the potential
auxiliary data streams that may help with movement classification.

2. Materials and Methods
2.1. Ethics Statement

This experiment was approved by the Institutional Review Board at the U.S. Air
Force Academy (USAFA) and U.S. Army Combat Capabilities Development Command
(DEVCOM) under Project Number ARL 21-132. All procedures were in accordance with
the Declaration of Helsinki.

2.2. Participants

Twenty people participated in this data collection. To provide a ground truth data set,
two human raters had to manually code when head movements occurred. As this was a
labor-intensive process, data from six participants were randomly selected (one female,
average age of 33 years) to be analyzed in the current study. This down selection of sample
size for manual coding is common in the eye movement labeling literature to build ground
truth data sets (e.g., [15,16]). Participants were United States Air Force Academy cadets
recruited through Sona Systems subject pool. They received course credit for participation,
and volunteers were recruited through flyers and email announcements, receiving no
remuneration. Prior to experimentation, all participants provided written informed consent
and completed Snellen chart (at least 20/40) and Ishihara color plates to confirm they had
normal vision or corrected vision.
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2.3. Apparatus

The experimental paradigm was designed using the Unity gaming engine (Unity
Technologies, Figure 1A). The HTC Vive Pro Eye VR headset (1440 × 1600 pixels per eye,
90-Hz refresh, 110◦ field of view, VIVE SRanipal SDK) with integrated eye tracking from
Tobii Technologies (120-Hz sampling rate, Tobii XR SDK) was used to present stimuli using
a Corsair One PC (Windows 10, Intel Core i9 CPU @ 3.6GHz, 64-bit, Nvidia GeForce RTX
2080Ti, 32 GB RAM), and two external lighthouses were used for tracking head and torso
position. Participants were provided instructions and practiced correctly positioning the
VR headset prior to experimentation while seated in a fixed position chair.
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Figure 1. Paradigm schematic and example of data recorded via headset. (A) An example of the
virtual environment experienced by participants during the search task as well as examples of high
and low spatial frequency targets used. (B) Potential motion trajectories of target disks. Disks
could move smoothly in the Pursuit condition or instantaneously appear at a new location in the
Instantaneous condition. The dotted line circles represent potential locations that the disk could either
appear at or move to and were not visible in the actual experiment. In the bottom of the panel is an
example of the high and low spatial frequency Gabor patches used. (C) A graphic depicting how data
are collected and analyzed. Unity tracks head position and rotation from the center of the headset
using a left-handed coordinate system where the Y-axis is up/down, the X-axis is left/right, and the
Z-axis is backwards/forwards. Head rotation data are plotted for each axis during an example trial.
This trial was a Pursuit trial where the target smoothly moved in the 225◦ direction, to an eccentricity
of 50◦ (see panel B). Snapshots illustrate how these data translate into head rotation at the three time
points throughout the trial. Using the rotation data around each axis, the angular distance over time
can be calculated, providing us with an angular head speed (plotted in purple on the right y-axis of
the line graph).

Torso tracking, using a Vive tracker on the chest, as well as eye tracking and EEG
data were collected but are outside the purview of this paper and so are not discussed
further. The synchronization of all data streams was accomplished using Lab Streaming
Layer (available here: https://github.com/labstreaminglayer/LSL4Unity, accessed on

https://github.com/labstreaminglayer/LSL4Unity
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15 February 2024), a network-based recording software designed to integrate multiple data
streams with sub-millisecond precision [17].

2.4. Calibration

The Tobii SDK calibration system was used at the start of every experimental block.
A three-dimensional virtual volume was fixed to the participant’s head to isolate eye
movements from head movements during calibration. Participants were told to fixate
sequentially on the five-point calibration (center and upper/lower left/right regions)
screen with calibration points placed 1.2 Unity meters from the participants (creating a
calibration point approximately 0.5◦ of visual angle in diameter). After a successful eye
tracking calibration (based on Tobii software feedback), the participants’ current position
(both eye and head position) was used for the subsequent initiations of trials.

2.5. Procedure

Participants first read task instructions and, prior to starting the experiment, achieved
at least 80% accuracy on 10 practice trials. On each trial, participants began by centering
their gaze on a light gray disk (5◦ dva in diameter) with a small back ‘O’ symbol in the
center for 500 ms to begin the trial. Blinks or significant gaze deviations would result in a
reset of the 500 ms clock. After this stationary gaze period, the ‘O’ symbol disappeared, and
the disk moved to a random eccentricity (e.g., 10, 20, 30, 40, or 50◦ dva from the center) in a
random direction (e.g., 0, 45, 90, 135, 180, 225, 270, or 315◦). In the Pursuit condition, the disk
moved smoothly at 20◦/s in a straight trajectory. In the Instantaneous condition, the disk
disappeared from the center and appeared at the outer location. These eccentricities were
chosen in order to keep all stimuli in the Instantaneous condition within the field of view
reported by the VR manufacturer. Pursuit and Instantaneous conditions were included
to elicit a wider range in the types of head movements performed. In both conditions,
once the disk reached this eccentricity, a Gabor patch with either low (0.5 cycles/degree) or
high (4.9 cycles/degree) spatial frequency at 100% contrast, tilted 3◦ either to the left or
right, appeared on the disk for 1000 ms (Figure 1B). Participants were told to respond as
quickly and as accurately as possible, irrespective of the Gabor patch being tilted to the left
or right using the left and right controller buttons, respectively. Pursuit and Instantaneous
conditions were blocked and counterbalanced across participants. Participants complete
three blocks of each condition (128 trials per block, 640 trials in total). Gabor spatial
frequency and tilt, as well as eccentricity and the direction of motion, were intermixed
within each block.

2.6. Head Movement Classification Methods

The HMD used here returns the x, y, and z position coordinates of the head as well
as the rotation of the head around each axis at every time sample (Figure 1C). For head
movement classification, the methods mentioned below used some combination of the
head’s angular speed, calculated by the angular difference over time (degrees/second),
the head acceleration (the derivative of head speed, degrees/second2), and the head angle
magnitude, the difference in angle between the head’s current position and a forward-facing
vector (degrees).

2.6.1. Human Raters

Five human raters were used to manually code head movement data to test algorithm
accuracy. Data files were randomly assigned to the rater such that every subject’s data were
coded by two different raters. Human raters had an average of three years’ experience
collecting and analyzing eye/head tracking data. To perform this, a graphical user interface
(GUI) was developed (see Supplemental Materials) that displayed both head angular
speed as well as head angular magnitude across time. Human raters were instructed to
click on time points when they believed head movements began and ended. While raters
identified head movements throughout the entire block of experimental trials, to make the
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scope of study more manageable, they were only tasked with classifying head movements
between the start of a trial (the onset of a center fixation point) and the end of the trial
(the time at which a participant made a response to target) for two blocks of trials (one
block of Instant trials, one block of Pursuit trials). Within the GUI display, the time at
which the trial began, the time at which the Gabor patch appeared, and the time at which
the participant responded to the target Gabor were indicated by green, yellow, and red
diamonds, respectively (Figure 2).
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Figure 2. The GUI developed to enable human raters to code head movements. Raters were presented
with head angular speed and magnitude over time. Trial information was conveyed through the
colored diamond shapes displayed at the bottom of the graph (green diamonds for the onset of
fixation, purple triangles for target presentation and response, and red diamonds for the end of the
trial). Raters clicked the times at which they judge a head movement as having started and finished.
The GUI highlights these windows with green rectangles. The red crosses indicate the positions
where the rater clicked to indicate head movement onsets and offsets.

2.6.2. Baseline Movement Adaptive Threshold (BMAT)

This algorithm was inspired by Engbert and Kliegl’s [18] saccade classification al-
gorithm for eye movement data. For each participant, a three-dimensional ellipse is
constructed by setting a threshold of n standard deviations from the mean angular head
speed in the x, y, and z directions, independently. This ellipse then serves as a threshold to
classify motion. Specifically, for this algorithm, the data used to construct the threshold
are taken from the 500 ms window before the start of the trial. In this way, we build a
threshold for when the head is “moving” based on a window of data where the participant
is instructed to keep their head stationary and maintain gaze on a centered disk for 500 ms
to begin each trial. This model was fitted iteratively, varying n (the number of standard
deviations from the mean that the threshold is set) over a range of 0.2 to 4.0 to find the
best fit.

2.6.3. Smoothed Velocity Threshold (SVT)

This classification algorithm was adapted from a saccade detection algorithm [19].
First, head angular speed is calculated, and noise is removed with a Savitzsky–Golay finite
impulse response filter. A speed threshold is then applied to define movement events. To
obtain the onset and offset times of a head movement, the algorithm walks forward and
backward in time from each speed peak over threshold and marks movement onset and
offset times where the head’s angular acceleration was zero.
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2.6.4. Chen and Walton

This classification algorithm was adapted from Chen and Walton’s [20] classification
of macaque head movements. A sliding 100 ms window is applied to the head’s angular
speed data. Motion onset is identified as when at least 72% of data points in that window
are above threshold (6◦/s), and there are fewer than three consecutive time points, where
the head speed is below threshold. The exact time of motion onset is recorded as the first
time point within a qualifying window that is above threshold. Once motion onset is
established, motion offset is defined similarly using a 22 ms window where 72% of data
points are below threshold. The exact time point of offset is defined as the first time point
within a qualifying window under threshold.

2.6.5. Differential IMU-like Zero Crossing Observation (DIZCO)

This algorithm first calculated head angular acceleration in both the x and y directions
(the left–right and up–down directions, respectively, see Figure 1). This acceleration data
were then filtered below 10 Hz. Zero crossings in either axis’ data correspond then to
changes in directions for the head rotation in that respective axis. To reduce the effect of
noise, a threshold is set to disregard changes below a certain magnitude. This threshold is
set initially through a process of trial and error, by comparing the algorithm classifications
with event markers in the data set for trial starts and Gabor pattern presentation, to
set the threshold for results that were consistent with the segments of time where head
movements and resting periods were likely. The ideal threshold ignores minute fluctuations
in head angular acceleration data but is sensitive enough to recognize a larger change
in instantaneous velocity. Each segment of time in the data stream is then assigned a
movement direction based on the combination of calculated slopes for each axis, which
classifies each portion of data as a movement of the head in either one of four cardinal
directions, one of four orthogonal directions, or in the case of no movement being detected,
a baseline resting state. In this way, the DIZCO method differs from the other methods as it
accounts for and classifies a direction for each head movement rather than just labeling time
windows where movement occurs. The threshold is validated by plotting the fraction of
variance explained (FVE) in the EEG stream by head movements over the scalp electrodes,
showing low FVE for times labeled as rest periods.

2.6.6. Decision Tree

A supervised machine learning algorithm was used to label each data point based on
the raters’ original labels. Although the algorithms presented previously generate onset
and offset times for head movement intervals, machine learning approaches generate a
label for each time step in the recorded head movement data. After training the model, the
generated predictions were processed to create similar onset and offset times to compare
with previous methods. We discarded any intervals that were less than half the length of
the average interval length coded by the raters. The model was implemented in Python,
using the Scikit-learn [21] library and was a decision tree, which aimed to learn simple
decision rules to classify the data [22]. For each label in the training set, the input features
were the smoothed head speed and head angle at the current time step. The model used the
Gini impurity criterion to evaluate potential decision rules and was limited to a maximum
depth of 10. We evaluated the model using five-fold cross validation, which achieved an
average accuracy of 57.5%. While more sophisticated methods (i.e., neural networks [23])
may be used to identify head movements, we chose to use the decision tree as it provides
interpretable results and is similar to the velocity threshold algorithms discussed previously.

2.7. Metrics of Algorithm Comparison

The current paradigm was designed specifically to elicit a wide range of head move-
ments by moving the tracked stimulus (the disk) in two different ways (smoothly and
instantaneously) as well as in a variety of directions for varying eccentricities. Instant trials
are likely to elicit faster, more ballistic-like head movements compared to Pursuit trials,
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which are more likely to produce sustained movements. Algorithms may exhibit varying
performance across different motion profiles, as demonstrated in the case of saccades and
smooth pursuits (e.g., [24]). Furthermore, they may display differential sensitivity to minor
and major head movements in distinct directions. To evaluate the agreement between
algorithms and human raters, assessments were conducted considering different motion
types, directions, and eccentricities.

2.7.1. Cohen’s Kappa

Borrowing from the eye tracking literature, Cohen’s kappa (K) was used to score
a sample-by-sample agreement between the various algorithms tested and the human
raters [2,25]. This metric compares the relative observed agreement (Po) with the agreement
expected to be observed by chance (Pe) between two raters [14,15].

K = (Po − Pe)/(1 − Pe)

K then can range between 1 (perfect agreement) and 0 (chance agreement). Each of the
three thresholding models was run on each participant’s data with a range of threshold
values. For every threshold value tested, the kappa values generated by comparing the
model output to the human ratings were averaged within participant (to obtain one kappa
value from the two human raters of each participant). Finally, these kappa values were
averaged across a subset of five participants. The threshold that yielded the highest
mean kappa was then used to classify the head movements of the remaining participant.
This leave-one-out process was repeated for each participant, and the mean kappa and
standard error were reported. Additionally, the average of the best fitting threshold for
each subsample as well as the standard error were also reported.

2.7.2. Other Agreement Metrics

The bias in onset time, offset time, duration, and amplitude of head movement were
also reported. This method was adapted from a previous algorithm classification study [26]
to provide a fuller picture in how these algorithms classify the windows of movement. To
achieve this, a ground truth data set was created by combining the classifications of both
human raters. For instance, if a given time point in the series had been classified as the head
moving by either human rater, that time point was classified as movement. Consecutive
time points classified as movement were then considered a single head movement. This
aggregation was considered as the ground truth. The next step was then to match a
certain algorithm’s classification to a movement in the ground truth. If the midpoint of
a ground truth head movement was contained within a movement time window of the
given algorithm, those two movements were judged as the same movement. Only one-to-
one pairs of movements were kept for analysis. In other words, if multiple ground truth
movements’ midpoints were contained in a single algorithm classified movement, that
movement was removed from analysis as it had no one-to-one pairing with the ground
truth data.

3. Results

For Instant trials, human-to-human agreement had an average kappa of 0.62
(SE = 0.05) compared to a mean kappa of 0.74 (SE = 0.04) in Pursuit trials. Generally,
kappa ranges of 0.01–0.20 indicate no agreement to slight agreement, 0.21–0.40 is fair
agreement, 0.41–0.60 is moderate agreement, 0.61–0.80 is substantial agreement, and a
kappa value above 0.81 indicates near perfect agreement [27]. As the BMAT, SVT, and Chen
and Walton algorithms were all variations of thresholding algorithms, a wide range of
thresholds were tested for the optimal performance. For every possible subset of five out of
the six subjects classified, the threshold that produced the best average agreement between
human and algorithm classifier was selected and used to classify head movements in the
sixth subject’s data. This kappa, generated by the sixth subject’s data and the threshold
selected were then stored. In this way, a leave-one-out method was used to calculate
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an average and standard error for both the kappa and thresholds used. As the decision
tree and DIZCO algorithms have more parameters, the fitting methods are described in
their respective sections of the methods. These models were then fitted to each individual
subject, and an average performance was calculated. Kappa values and threshold values
(for the thresholding algorithms) are listed in Table 1. An example trial along with the head
movements classified by each algorithm is shown in Figure 3.

Table 1. Average kappa values for each algorithm. Standard errors are in parentheses. Note that
threshold values are only included for the thresholding algorithms (BMAT, SVT, and Chen and
Walton). The highest agreement in each trial type has been bolded. As the DIZCO and Decision Tree
model have more parameters to fit, a single threshold parameter is not reported.

BMAT SVT Chen and
Walton DIZCO Decision Tree

Instant Trials
Kappa 0.63

(8.2 × 10−3)
0.64

(6.8 × 10−3)
0.65

(6.8 × 10−3)
0.34

(6.2 × 10−3)
0.48

(0.11)

Threshold 1.64
(0.03)

18.41
(1.56)

5.62
(0.07) N/A N/A

Pursuit Trials
Kappa 0.61

(3.6 × 10−3)
0.71

(4.0 × 10−3)
0.62

(3.3 × 10−3)
0.39

(0.02)
0.59

(0.06)

Threshold 1.05
(6.6 × 10−3)

9.57
(0.21)

3.49
(0.07) N/A N/A
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Figure 3. Examples of head angle magnitude over time in Instant (left) and Pursuit (right) trials. 
The head angle plotted is the angular difference between the head’s forward vector and world’s 
forward vector. Time windows where head movements were classified by each method are high-
lighted in red with onset and offset marked by vertical dotted lines for comparison. 

The correlation between the peak velocity and the amplitude of head movements was 
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Figure 3. Examples of head angle magnitude over time in Instant (left) and Pursuit (right) trials. The
head angle plotted is the angular difference between the head’s forward vector and world’s forward
vector. Time windows where head movements were classified by each method are highlighted in red
with onset and offset marked by vertical dotted lines for comparison.

The correlation between the peak velocity and the amplitude of head movements was
calculated, classically referred to as the main sequence in the eye movement literature [28].
As in the eye movement literature, there was a significant correlation in Pursuit trials
as rated by human rater (r = 0.67, p < 0.001), BMAT (r = 0.85, p < 0.001), SVT (r = 0.48,
p < 0.001), Chen and Walton (r = 0.83, p < 0.001), DIZCO (r = 0.72, p < 0.001), and the
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decision tree algorithm (r = 0.83, p < 0.001) (Figure 4). This correlation between amplitude
and peak velocity was also seen in Instant trials as rated by human rater (r = 0.76, p < 0.001),
BMAT (r = 0.91, p < 0.001), SVT (r = 0.63, p < 0.001), Chen and Walton (r = 0.90, p < 0.001),
DIZCO (r = 0.82, p < 0.001), and the decision tree algorithm (r = 0.89, p < 0.001).

Sensors 2024, 24, x FOR PEER REVIEW 10 of 14 
 

 

As in the eye movement literature, there was a significant correlation in Pursuit trials as 
rated by human rater (r = 0.67, p < 0.001), BMAT (r = 0.85, p < 0.001), SVT (r = 0.48, p < 0.001), 
Chen and Walton (r = 0.83, p < 0.001), DIZCO (r = 0.72, p < 0.001), and the decision tree 
algorithm (r = 0.83, p < 0.001) (Figure 4). This correlation between amplitude and peak 
velocity was also seen in Instant trials as rated by human rater (r = 0.76, p < 0.001), BMAT 
(r = 0.91, p < 0.001), SVT (r = 0.63, p < 0.001), Chen and Walton (r = 0.90, p < 0.001), DIZCO 
(r = 0.82, p < 0.001), and the decision tree algorithm (r = 0.89, p < 0.001). 

 
Figure 4. Peak amplitude by peak velocity (also referred to as main sequence plots) of head move-
ments classified by various algorithms for Instant and Pursuit trials. 

Onset, offset, duration, and amplitude bias were calculated between each algorithm 
and ground truth data for Instant and Pursuit trials (Table 2). Bias was calculated as the 
human-rated value minus the algorithm-rated value. For example, human raters, on av-
erage, placed head movements 2.89 ms after the BMAT algorithm judged them as begin-
ning and rated them ending 21.01 ms earlier. 

Table 2. Average onset, offset, duration, and amplitude biases for each algorithm. Standard errors 
are included for each metric in parentheses. The algorithm with the smallest bias for each metric, 
for each trial type, is bolded. 

  Onset Bias Offset Bias Duration Bias Amplitude Bias 

Instant Trials BMAT −2.89 
(9.97) 

21.01 
(18.27) 

23.90 
(23.91) 

−2.41 
(1.88) 

Figure 4. Peak amplitude by peak velocity (also referred to as main sequence plots) of head move-
ments classified by various algorithms for Instant and Pursuit trials.

Onset, offset, duration, and amplitude bias were calculated between each algorithm
and ground truth data for Instant and Pursuit trials (Table 2). Bias was calculated as
the human-rated value minus the algorithm-rated value. For example, human raters,
on average, placed head movements 2.89 ms after the BMAT algorithm judged them as
beginning and rated them ending 21.01 ms earlier.
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Table 2. Average onset, offset, duration, and amplitude biases for each algorithm. Standard errors are
included for each metric in parentheses. The algorithm with the smallest bias for each metric, for
each trial type, is bolded.

Onset Bias Offset Bias Duration Bias Amplitude Bias

Instant Trials

BMAT −2.89
(9.97)

21.01
(18.27)

23.90
(23.91)

−2.41
(1.88)

SVT 11.04
(23.26)

22.95
(39.92)

11.90
(62.76)

7.65
(5.93)

Chen and Walton −2.72
(9.46)

16.78
(14.26)

19.50
(19.07)

−3.16
(1.62)

DIZCO 20.40
(8.48)

23.43
(15.02)

3.03
(20.12)

8.57
(3.53)

Decision Tree −11.80
(16.53)

27.07
(50.10)

38.88
(65.58)

0.13
(3.87)

Pursuit Trials

BMAT −1.75
(11.25)

27.41
(17.43)

29.17
(22.66)

−2.53
(1.29)

SVT 76.49
(12.10)

−2.62
(20.53)

−79.11
(23.18)

−0.77
(1.87)

Chen and Walton 7.73
(13.23)

17.49
(17.30)

9.76
(23.43)

−3.47
(1.22)

DIZCO 17.02
(9.61)

47.89
(13.27)

30.87
(18.17)

7.87
(2.09)

Decision Tree −39.78
(13.62)

61.92
(44.06)

101.70
(54.81)

4.85
(3.01)

4. Discussion

To understand human behavior, whether for foundational research or a specific appli-
cation space, it is essential to study that behavior as it arises in the natural environment. For
the purposes of experimental control and to isolate specific mechanisms, researchers often
use the abstractions of the real world in laboratory experiments. However, the ultimate goal
is to relate these findings to real-world scenarios where stimulus input and behavior likely
differ. In the field of visual cognition, abstraction often involves restricting the eyes or head
to study how the brain processes visual information in isolation of these movement systems.
While these experiments have yielded key insights into cognition, to truly understand how
visual information is processed in the real world, experimentation must move toward less
constrained, more immersive paradigms. Advances in VR technology not only make such
immersive paradigms increasingly possible, but also facilitate the collection of additional
data streams such as head position and rotation.

The ability to track head position has existed for years. However, now that such
capabilities are being integrated into VR HMD technologies, synced with eye tracking, the
bar of entry for incorporating head movement into one’s experimental pipeline has never
been lower. This is an important addition to the already vast amount of literature on eye
movements (e.g., [29,30]) as much of real-world vision occurs as a complex combination
of eye and head movements. Moreover, head movements have already been linked to a
number of cognitive processes ([10,13]). It is therefore imperative to test and develop tools
for the classification of these head movements in order to properly analyze this data stream
as well as compare results across paradigms.

In the current work, we ran a control study to elicit the various types of head move-
ments. Participants were required to move their head quickly or in a smooth pursuit to
targets at a variety of eccentricities and directions from a forward-pointed position. We
then compared five different head movement classification algorithms to human raters.
The SVT algorithm showed the overall highest agreement to human raters in terms of
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kappa values. This is a benefit to researchers as it does not require them to incorporate a
baseline stationary portion of their task (as with the BMAT) nor does it require an extensive
training set of human coded data (as with the Decision Tree). However, the SVT algorithm
did have larger onset and offset biases compared to some of the others, potentially due
to the temporal smearing of the Savitzsky–Golay filter. Plotting the start and end rota-
tion of the head for each coded movement, the SVT algorithm also shows similarity to
human-rated movements with the bulk of the movements beginning at origin with a few
corrective moments, seen in the majority of starting positions, being classified in the center
or forward-facing position (Figure 5).

Sensors 2024, 24, x FOR PEER REVIEW 11 of 13 
 

 

similarity to human-rated movements with the bulk of the movements beginning at origin 
with a few corrective moments, seen in the majority of starting positions, being classified 
in the center or forward-facing position (Figure 5). 

 
Figure 5. Starting (top row) and ending (bottom row) head unit vector rotations for every head 
movement in a trial. Head movements are color coded based on the direction in which the disk 
moved in that trial. 

With any threshold classification method, its success will be influenced by where the 
threshold is set. The current data set showed that, while the standard error of the thresh-
olds that produced the best fit was small within conditions, the thresholds were quite dif-
ferent between the Instant and Pursuit conditions. In a more complex paradigm (e.g., 
where participants are searching for a dynamic environment), it is likely that faster and 
slower head movements would be intermixed. As such, it is possible that the performance 
of these algorithms would be different compared to how they are performed here with a 
more tightly controlled paradigm. This should be taken into consideration when setting 
the threshold. It may be beneficial to manually review a portion of data to find a threshold 
with sufficient accuracy, but it is important to be thoughtful about how that portion is 
selected. This issue is analogous to the challenge in setting appropriate thresholds for eye 
tracking data to classify smooth pursuit accurately [31]. While a priori knowledge of the 
velocities of objects in the environment can aid in this when classifying data from tightly 
controlled (e.g., VR) experiments, this becomes more difficult when data collection moves 
into more real-world paradigms. Similarly, the head motions elicited in this task were 
tightly controlled in terms of eccentricity and direction. This was a deliberate choice as it 
provided a ground truth data set for comparing algorithm classifications. However, in 
natural vision and navigation, head movements will have such constraints, and research-
ers will need to be thoughtful in their definition of what constitutes a head movement. For 
instance, a head movement could be defined as a period of time where the head’s angular 
speed is above some threshold, as would be classified by the BMAT, SVT, and Chen and 
Walton. Alternatively, a head movement could be defined by angular speed and direction 

Commented [M4]: Please confirm if the italics is 
unnecessary and can be removed. The following 
highlights are the same 

Commented [C5R4]: Confirmed 

Figure 5. Starting (top row) and ending (bottom row) head unit vector rotations for every head
movement in a trial. Head movements are color coded based on the direction in which the disk
moved in that trial.

With any threshold classification method, its success will be influenced by where the
threshold is set. The current data set showed that, while the standard error of the thresholds
that produced the best fit was small within conditions, the thresholds were quite different
between the Instant and Pursuit conditions. In a more complex paradigm (e.g., where
participants are searching for a dynamic environment), it is likely that faster and slower
head movements would be intermixed. As such, it is possible that the performance of
these algorithms would be different compared to how they are performed here with a more
tightly controlled paradigm. This should be taken into consideration when setting the
threshold. It may be beneficial to manually review a portion of data to find a threshold
with sufficient accuracy, but it is important to be thoughtful about how that portion is
selected. This issue is analogous to the challenge in setting appropriate thresholds for eye
tracking data to classify smooth pursuit accurately [31]. While a priori knowledge of the
velocities of objects in the environment can aid in this when classifying data from tightly
controlled (e.g., VR) experiments, this becomes more difficult when data collection moves
into more real-world paradigms. Similarly, the head motions elicited in this task were
tightly controlled in terms of eccentricity and direction. This was a deliberate choice as
it provided a ground truth data set for comparing algorithm classifications. However, in
natural vision and navigation, head movements will have such constraints, and researchers
will need to be thoughtful in their definition of what constitutes a head movement. For
instance, a head movement could be defined as a period of time where the head’s angular
speed is above some threshold, as would be classified by the BMAT, SVT, and Chen and
Walton. Alternatively, a head movement could be defined by angular speed and direction
(e.g., is a person shaking their head ‘no’, one movement or two, repeated?), as would be
classified by the DIZCO method.

Another consideration when collecting and analyzing head movement data is that only
head rotation was used in the classification algorithms explored here. However, there are
potentially other sources that may help refine head movement analysis. Collecting muscle
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activity in the neck could potentially increase an algorithm’s sensitivity to movement,
especially slower velocity movement that may be missed through thresholding. Adding
additional features may also improve machine learning approach such as the decision tree
shown here.

Finally, depending on the application, it may make more sense to leave head movement
data as a continuous variable rather than discretizing it into time windows of movement.
Head movements do not have the same ballistic trajectory as saccades. While the head can
move at a high velocity from one point to another, the head is also likely to make small,
slow compensatory movements as the eye searches the environment. As such, depending
on the experimental design, it may make more sense for researchers to compare metrics
such as the average rotational velocity or the rate of direction change in a given trial. These
metrics would not require the classification of discrete head movement windows but would
still provide a characterization of how head movements were employed in a given task.

Supplementary Materials: The GUI for manually classifying head movements as well as scripts for
the BMT, SVT, and Chen and Walton method can be found at https://osf.io/db8fa/.

Author Contributions: Conceptualization, C.C.-F., E.J., A.M.M., and A.J.R.; algorithm writing, C.C.-F.,
E.J., J.N. and M.W.N.; data collection, A.M.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the ARL.

Institutional Review Board Statement: This experiment was approved by the Institutional Review
Board at USAFA and ARL under Project Number ARL 21-132. All procedures were in accordance
with the Declaration of Helsinki.

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: Data are available upon request to the corresponding author.

Conflicts of Interest: Authors Jasim Naeem and Michael W. Nonte were employed by the company
DCS Corporation. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Sidenmark, L.; Gellersen, H. Eye, Head and Torso Coordination during Gaze Shifts in Virtual Reality. ACM Trans. Comput.-Hum.

Interact. 2019, 27, 1–40. [CrossRef]
2. Andersson, R.; Larsson, L.; Holmqvist, K.; Stridh, M.; Nyström, M. One algorithm to rule them all? An evaluation and discussion

of ten eye movement event-detection algorithms. Behav. Res. Methods 2017, 49, 616–637. [CrossRef]
3. Hwang, A.D.; Wang, H.-C.; Pomplun, M. Semantic guidance of eye movements in real-world scenes. Vis. Res. 2011, 51, 1192–1205.

[CrossRef] [PubMed]
4. Unema, P.J.A.; Pannasch, S.; Joos, M.; Velichkovsky, B.M. Time course of information processing during scene perception: The

relationship between saccade amplitude and fixation duration. Vis. Cogn. 2005, 12, 473–494. [CrossRef]
5. Stuyven, E.; Van der Goten, K.; Vandierendonck, A.; Claeys, K.; Crevits, L. The effect of cognitive load on saccadic eye movements.

Acta Psychol. 2000, 104, 69–85. [CrossRef]
6. Ito, A.; Pickering, M.J.; Corley, M. Investigating the time-course of phonological prediction in native and non-native speakers of

English: A visual world eye-tracking study. J. Mem. Lang. 2018, 98, 1–11. [CrossRef]
7. Cecala, A.L.; Freedman, E.G. Amplitude changes in response to target displacements during human eye–head movements. Vis.

Res. 2008, 48, 149–166. [CrossRef] [PubMed]
8. Fetter, M. Vestibulo-Ocular Reflex. In Developments in Ophthalmology; Karger: Basel, Switzerland, 2007. [CrossRef]
9. Solman, G.J.F.; Foulsham, T.; Kingstone, A. Eye and head movements are complementary in visual selection. R. Soc. Open Sci.

2017, 4, 160569. [CrossRef]
10. David, E.; Beitner, J.; Võ, M.L.-H. Effects of Transient Loss of Vision on Head and Eye Movements during Visual Search in a

Virtual Environment. Brain Sci. 2020, 10, 841. [CrossRef]
11. Stahl, J.S. Adaptive plasticity of head movement propensity. Exp. Brain Res. 2001, 139, 201–208. [CrossRef]
12. Hardiess, G.; Gillner, S.; Mallot, H.A. Head and eye movements and the role of memory limitations in a visual search paradigm. J.

Vis. 2008, 8, 7. [CrossRef] [PubMed]

https://osf.io/db8fa/
https://doi.org/10.1145/3361218
https://doi.org/10.3758/s13428-016-0738-9
https://doi.org/10.1016/j.visres.2011.03.010
https://www.ncbi.nlm.nih.gov/pubmed/21426914
https://doi.org/10.1080/13506280444000409
https://doi.org/10.1016/S0001-6918(99)00054-2
https://doi.org/10.1016/j.jml.2017.09.002
https://doi.org/10.1016/j.visres.2007.10.029
https://www.ncbi.nlm.nih.gov/pubmed/18155265
https://doi.org/10.1159/000100348
https://doi.org/10.1098/rsos.160569
https://doi.org/10.3390/brainsci10110841
https://doi.org/10.1007/s002210100749
https://doi.org/10.1167/8.1.7
https://www.ncbi.nlm.nih.gov/pubmed/18318610


Sensors 2024, 24, 1260 13 of 13

13. Lee, C. Eye and head coordination in reading: Roles of head movement and cognitive control. Vis. Res. 1999, 39, 3761–3768.
[CrossRef] [PubMed]

14. Dar, A.H.; Wagner, A.S.; Hanke, M. REMoDNaV: Robust eye-movement classification for dynamic stimulation. Behav. Res.
Methods 2021, 53, 399–414. [CrossRef]

15. Swan, G.; Goldstein, R.B.; Savage, S.W.; Zhang, L.; Ahmadi, A.; Bowers, A.R. Automatic processing of gaze movements to
quantify gaze scanning behaviors in a driving simulator. Behav. Res. Methods 2021, 53, 487–506. [CrossRef] [PubMed]

16. Munn, S.M.; Stefano, L.; Pelz, J.B. Fixation-identification in dynamic scenes: Comparing an automated algorithm to manual
coding. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, in APGV ’08, Los Angeles,
CA, USA, 9–10 August 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 33–42.

17. Kothe, C.; Medine, D.; Boulay, C.; Grivich, M.; Stenner, T. Lab Streaming Layer. 2014. Available online: https://github.com/sccn/
labstreaminglayer (accessed on 15 February 2024).

18. Engbert, R.; Kliegl, R. Microsaccades uncover the orientation of covert attention. Vis. Res. 2003, 43, 1035–1045. [CrossRef]
19. Nyström, M.; Holmqvist, K. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behav. Res.

Methods 2010, 42, 188–204. [CrossRef]
20. Chen, L.L.; Walton, M.M.G. Head Movement Evoked By Electrical Stimulation in the Supplementary Eye Field of the Rhesus

Monkey. J. Neurophysiol. 2005, 94, 4502–4519. [CrossRef]
21. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
22. Breiman, L. Classification and Regression Trees; Routledge: New York, NY, USA, 2017. [CrossRef]
23. Panetta, K.; Wan, Q.; Rajeev, S.; Kaszowska, A.; Gardony, A.L.; Naranjo, K.; Taylor, H.A.; Agaian, S. ISeeColor: Method for

Advanced Visual Analytics of Eye Tracking Data. IEEE Access 2020, 8, 52278–52287. [CrossRef]
24. Agtzidis, I.; Startsev, M.; Dorr, M. Two hours in Hollywood: A manually annotated ground truth data set of eye move-ments

during movie clip watching. J. Eye Mov. Res. 2020, 13, 1–12. [CrossRef]
25. A Coefficient of Agreement for Nominal Scales—Jacob Cohen. 1960. Available online: https://journals.sagepub.com/doi/abs/

10.1177/001316446002000104?casa_token=ArFWd2AxzLMAAAAA:Q6E8SawHG7lJirq98fVxTSc40wxLRxJpyP8UuZzbGg3
TDmgxmU0T5jXOKjdpWXoi3n409PC9AyFE (accessed on 21 December 2023).

26. Minnen, D.; Westeyn, T.; Starner, T.; Ward, J.A.; Lukowicz, P. Performance metrics and evaluation issues for continuous activity
recognition. Perform. Metr. Intell. Syst. 2006, 4, 141–148.

27. McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [CrossRef]
28. Bahill, A.; Clark, M.R.; Stark, L. The main sequence, a tool for studying human eye movements. Math. Biosci. 1975, 24, 191–204.

[CrossRef]
29. Hayhoe, M.; Ballard, D. Eye movements in natural behavior. Trends Cogn. Sci. 2005, 9, 188–194. [CrossRef] [PubMed]
30. Kowler, E. Eye movements: The past 25 years. Vis. Res. 2011, 51, 1457–1483. [CrossRef]
31. Startsev, M.; Agtzidis, I.; Dorr, M. Characterizing and automatically detecting smooth pursuit in a large-scale ground-truth data

set of dynamic natural scenes. J. Vis. 2019, 19, 10. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0042-6989(99)00111-X
https://www.ncbi.nlm.nih.gov/pubmed/10746147
https://doi.org/10.3758/s13428-020-01428-x
https://doi.org/10.3758/s13428-020-01427-y
https://www.ncbi.nlm.nih.gov/pubmed/32748237
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
https://doi.org/10.1016/S0042-6989(03)00084-1
https://doi.org/10.3758/BRM.42.1.188
https://doi.org/10.1152/jn.00510.2005
https://doi.org/10.1201/9781315139470
https://doi.org/10.1109/ACCESS.2020.2980901
https://doi.org/10.16910/jemr.13.4.5
https://journals.sagepub.com/doi/abs/10.1177/001316446002000104?casa_token=ArFWd2AxzLMAAAAA:Q6E8SawHG7lJirq98fVxTSc40wxLRxJpyP8UuZzbGg3TDmgxmU0T5jXOKjdpWXoi3n409PC9AyFE
https://journals.sagepub.com/doi/abs/10.1177/001316446002000104?casa_token=ArFWd2AxzLMAAAAA:Q6E8SawHG7lJirq98fVxTSc40wxLRxJpyP8UuZzbGg3TDmgxmU0T5jXOKjdpWXoi3n409PC9AyFE
https://journals.sagepub.com/doi/abs/10.1177/001316446002000104?casa_token=ArFWd2AxzLMAAAAA:Q6E8SawHG7lJirq98fVxTSc40wxLRxJpyP8UuZzbGg3TDmgxmU0T5jXOKjdpWXoi3n409PC9AyFE
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.1016/0025-5564(75)90075-9
https://doi.org/10.1016/j.tics.2005.02.009
https://www.ncbi.nlm.nih.gov/pubmed/15808501
https://doi.org/10.1016/j.visres.2010.12.014
https://doi.org/10.1167/19.14.10

	Introduction 
	Materials and Methods 
	Ethics Statement 
	Participants 
	Apparatus 
	Calibration 
	Procedure 
	Head Movement Classification Methods 
	Human Raters 
	Baseline Movement Adaptive Threshold (BMAT) 
	Smoothed Velocity Threshold (SVT) 
	Chen and Walton 
	Differential IMU-like Zero Crossing Observation (DIZCO) 
	Decision Tree 

	Metrics of Algorithm Comparison 
	Cohen’s Kappa 
	Other Agreement Metrics 


	Results 
	Discussion 
	References

