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Abstract: The widespread use of UAVs in smart cities for tasks like traffic monitoring and environ-
mental data collection creates significant privacy and security concerns due to the transmission of
sensitive data. Traditional UAV-MEC systems with centralized data processing expose this data
to risks like breaches and manipulation, potentially hindering the adoption of these valuable tech-
nologies. To address this critical challenge, we propose UBFL, a novel privacy-preserving federated
learning mechanism that integrates blockchain technology for secure and efficient data sharing.
Unlike traditional methods relying on differential privacy (DP), UBFL employs an adaptive non-
linear encryption function to safeguard the privacy of UAV model updates while maintaining data
integrity and accuracy. This innovative approach enables rapid convergence, allowing the base
station to efficiently identify and filter out severely compromised UAVs attempting to inject malicious
data. Additionally, UBFL incorporates the Random Cut Forest (RCF) anomaly detection algorithm
to actively identify and mitigate poisoning data attacks. Extensive comparative experiments on
benchmark datasets CIFAR10 and Mnist demonstrably showcase UBFL’s effectiveness. Compared to
DP-based methods, UBFL achieves accuracy (99.98%), precision (99.93%), recall (99.92%), and F-Score
(99.92%) in privacy preservation while maintaining superior accuracy. Notably, under data pollution
scenarios with varying attack sample rates (10%, 20%, and 30%), UBFL exhibits exceptional resilience,
highlighting its robust capabilities in securing UAV gradients within MEC environments.

Keywords: unmanned aerial vehicles; data privacy; federated learning; blockchain; poisoning attack

1. Introduction

Unmanned aerial vehicles (UAVs) have emerged as a crucial innovation in wireless
communication networks, offering significant benefits such as easy deployment, improved
mobility, and direct connectivity with a clear line of sight. This technological advancement
has sparked a notable increase in both academia and industry’s focus on UAV wireless
communication networks. In this field, UAV-assisted Mobile Edge Computing network
(UAV-MEC) has gained recognition as a transformative concept. MEC utilizes artificial
intelligence (AI) to process the vast amount of data collected by widespread drone net-
works, enabling the provision of intelligent services [1]. However, deploying these edge
computing networks in potentially hostile environments presents various security and pri-
vacy challenges. Innovative methods are crucial to safeguard data privacy, maintain model
accuracy, and enable robust data processing auditability within the UAV-MEC network [2].

Federated learning (FL) emerges as a novel AI approach that utilizes decentralized
data and training [3,4]. It empowers UAVs to leverage their locally collected data to build
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localized deep learning models. These models are then transmitted to a central node for
aggregation, resulting in a global model. Ntizikira et al. [5] proposed the SP-IoUAV model,
combining FL with CNN-LSTM networks to achieve both operational security and data
privacy in the Internet of Unmanned Aerial Vehicles (IoUAV). This model outperforms
previous approaches with its real-time anomaly detection and multi-factor authentication
capabilities. Ref. [6] explores a group signature-based algorithm for federated learning in
FANETs, highlighting its ability to safeguard node identities, minimize communication
overhead, and improve security and privacy.

However, existing FL approaches in UAV-MEC networks face security and privacy
risks due to the large number of UAVs and need for real-time response [7,8]. The central
curator, which aggregates insights from distributed UAV nodes, is often a primary target
for cyber-attacks, jeopardizing the integrity and confidentiality of the collective learning
process [9]. Moreover, the system’s reliance on accurately recording contributions from
diverse UAVs introduces vulnerabilities, as malicious entities can manipulate or falsify
their contributions, resulting in skewed or compromised learning outcomes [6].

Blockchain technology offers a promising solution by enabling secure and decentral-
ized data sharing, mitigating central server vulnerabilities, and facilitating tamper-proof
record keeping of transactions through its immutability and auditability features [10].
This paves the way for enhanced security and privacy in collaborative learning within
UAV-MEC networks. Ref. [11] proposes FedEx, a novel FL framework that utilizes mo-
bile transporters to establish indirect communication channels between server and clients,
achieving convergence in both synchronous and asynchronous versions.

Nevertheless, deploying blockchain-based FL (BFL) in UAV-MEC networks confronts
various hurdles, including limited computational resources on UAVs, potential scalability
issues with large numbers of participants, and inherent trade-offs between security and
performance [12]. In certain fields, like healthcare, the integration of BFL is further com-
plicated by the limited availability of data from various sources, such as hospitals and
clinics [13]. Furthermore, the Internet of Things (IoT) environment presents its own unique
set of challenges, including concerns regarding security and privacy [14,15]. Another
challenge in federated learning is ensuring the quality of local training data, as there is no
control over the data used for training.

Several studies address BFL challenges, such as secure aggregation or data encryp-
tion [16,17]. For instance, Mrad et al.’s proposed federated learning framework for UAVs
focuses on addressing energy constraints and class imbalance, critical factors for UAV
swarm performance, but it does not delve into the broader security implications of BFL [18].
Similarly, the SFAC framework by Wang et al. utilizes blockchain for secure data ex-
change and local differential privacy for user privacy, while incorporating an incentive
mechanism [19]. SFAC’s effectiveness in fully decentralized settings with highly skewed
or non-IID data distributions remains a potential concern. In [20], the author designs a
privacy-preserving byzantine-robust federated learning (PBFL) scheme based on blockchain
that uses cosine similarity to judge the malicious gradients uploaded by malicious clients
and adopts fully homomorphic encryption to provide secure aggregation. Utilizing fully
homomorphic encryption and cosine similarity for identifying malicious gradients can in-
troduce significant computational overhead, potentially limiting the scheme’s applicability
in real-time or resource-constrained scenarios. Building upon differential privacy suc-
cess [21], Xu et al. [22] propose VerifyNet, a privacy-preserving and verifiable framework
that leverages differential privacy’s noise-adding mechanism to protect individual data
while allowing users to verify the integrity of the aggregated model and detect malicious
updates. Ref. [23] evaluates the practical benefits of applying federated learning with local
differential privacy in a real-world setting.

However, existing differential privacy federated learning methods often focus on
the technical aspects, overlooking the broader context of balancing privacy and accuracy
in real-world applications. For instance, existing empirical methods that rely solely on
differential privacy to protect user data often struggle to find an ideal balance between
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privacy and model accuracy [24]. This makes them unsuitable for practical applications
that require both privacy and performance. Moreover, optimizing differential privacy
parameters remains a challenge in dynamic UAV-MEC environments characterized by
resource constraints and potential data collection attacks [25]. This limited scope results in
incomplete solutions that fail to address real systemic problems or lack versatility.

Therefore, our investigation focuses on the examination of two primary domains:
(1) algorithms for automatic adjustment of parameters, specifically those that rely on
privacy budgets or adversarial training, and (2) approaches to identify and alleviate specific
forms of attacks such as poisoning attacks, data injection, and model manipulation.

1.1. Motivations and Contributions

In summary, implementing blockchain-based federated learning (BFL) in UAV-MEC
networks holds immense potential, but faces several key issue that require thoughtful solu-
tions:

• Privacy Exposure: Uploading local model parameters poses a privacy risk, as compro-
mised edge servers could exploit them to access sensitive user data. Robust encryption
techniques and secure communication protocols are crucial to mitigate this risk.

• Malicious Local Training: Malicious actors may attempt to manipulate the learning
process through poisoned data or poor-quality datasets, compromising the global
model’s integrity. Robust anomaly detection mechanisms and data quality checks are
essential safeguards.

• Privacy-Preserving Trade-offs: Techniques like differential privacy and secure multi-
party computation offer valuable privacy protection, but may introduce trade-offs in
model accuracy or training efficiency. Finding the optimal balance between privacy
and performance requires further research and development.

Motivated by these challenges, we propose a novel blockchain-based privacy pro-
tection method for federated learning (UBFL). Our goal is to provide robust safeguards
for individual data while enabling efficient collaborative learning. This paper makes the
following key contributions:

• We presents a novel, blockchain-based framework (UBFL) for privacy-preserving
federated learning in UAV-MEC networks. Addressing the limited computing power
of individual drones, UBFL leverages secure and decentralized parameter aggrega-
tion via blockchain smart contracts, significantly mitigating risks associated with
centralized services.

• Furthermore, an innovative adaptive nonlinear function encryption algorithm is
proposed to ensure robust gradient protection. This algorithm dynamically learns
hierarchical constraints through fine-grained parameters, effectively addressing the
challenges of manually selecting differential privacy parameters.

• To further enhance data security, a novel anomaly detection protocol utilizes the
Random Cut Forest algorithm to identify and filter out potentially malicious gradients,
ensuring the integrity of the model update process.

• Extensive experiments on the CIFAR10 and MNIST datasets demonstrate the effec-
tiveness of the proposed encryption algorithm, particularly its outstanding resilience
against data poisoning attacks up to 30%. This showcases its potential as a transfor-
mative solution for securing UAV-MEC networks.

1.2. Paper Organization

The remainder of this paper is organized as follows. Section 2 reviews related work,
drawing comparisons with existing privacy and security solutions in UAV-MEC networks
to underscore the need for our proposed methodology. The UBFL model design and scheme
formulation, demonstrating the foundational elements of our approach, are outlined in
Section 3. Section 4 details the methodology, elaborating on the design and implementa-
tion. An adaptive nonlinear function-based algorithm and the use of Random Cut Forest
(RCF) for anomaly detection algorithm are proposed. The outcomes of the simulation
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are presented in Section 5. In Section 6, the study’s limitations are discussed. Finally, we
summarize the key findings and their implications for the development of more secure and
efficient UAV-MEC networks in Section 7.

2. Related Works
2.1. UAV-Enabled Mobile Edge Computing

Mobile Edge Computing (MEC) signifies a transformative shift in cloud computing,
strategically situating computing and storage resources within the radio access network.
This paradigm is instrumental in propelling applications, data, and services proximally
to mobile users, thereby offering substantial reductions in latency, enhanced location
awareness, and alleviated network congestion. This approach marks a significant departure
from the traditional centralized cloud services, introducing a new dimension of efficiency
and responsiveness in mobile computing. The integration of MEC nodes at the edge of UAV
networks, as comprehensively analyzed in [26], proposes a UAV-assisted MEC offloading
scheme, specifically designed to minimize task completion time for computation-intensive
IoT tasks. Furthermore, Refs. [27,28] have developed a mobility-aware caching scheme
within UAV networks enabled by MEC. This scheme is meticulously tailored to optimize
content placement, trajectory planning, and bandwidth allocation, thereby minimizing
latency and enhancing overall network performance.

2.2. Privacy Preserving of Federated Learning for Wireless Nework

Federated Learning emerges as a cutting-edge distributed machine learning approach,
wherein participants engage in training local data and subsequently upload updated pa-
rameters to a centralized server for aggregation [29,30]. This innovative approach not only
enhances learning efficiency but also effectively resolves the challenges of data silos and
fortifies local data privacy, thereby representing a significant advancement over traditional
machine learning paradigms. In contemporary neural network models, gradient descent
is employed for parameter updates. However, this process poses a risk, as the exposure
of participant gradients can inadvertently lead to the leakage of sensitive network param-
eters [31,32]. In [33], the paper proposes a channel-aware distribution and aggregation
scheme to enforce equal contribution from all devices in the FL training as a means to
resolve the global bias problem of aerial FL in large-scale UAV networks.

Differential privacy emerges as a pivotal concept designed to quantify and mitigate
the risks associated with personal information exposure. It provides a robust privacy frame-
work, employing sophisticated randomization techniques. The integration of differential
privacy mechanisms within federated learning perturbs model parameters, thus safeguard-
ing users’ private training data while still enabling the collaborative training of an accurate
shared model [34,35]. This strategic approach effectively addresses the privacy concerns
that have been a significant impediment to the real-world deployment of federated learning
systems. Ref. [36] proposes DPFed, a differential private federated learning algorithm
using the moments accountant technique. This achieves tighter privacy guarantees while
preserving high model utility. Ref. [37] develops a Laplace mechanism-based differential
private algorithm for federated learning. This leverages the exponential mechanism to
preserve user privacy in model training.

In summary, while existing studies demonstrate that differential privacy can facilitate
privacy-preserving federated learning, there is a pressing need for more comprehensive
evaluations that consider factors such as single points of failure. Moreover, the differential
privacy algorithm faces significant challenges due to its over-reliance on empirical methods
for the selection of differential parameters.

2.3. Blockchain-Enabled UAV Federated Learning

Blockchain technology, characterized by its decentralization, immutability, and dis-
tributed ledger features, functions as a digital transaction ledger that is replicated and
shared across network nodes, thereby eliminating the necessity for a central authority.
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Its applicability in UAV scenarios is particularly highlighted by these inherent fea-
tures. Ref. [38] proposes a blockchain-based incentive mechanism for UAV networks using
a privacy-aware auction and consensus algorithm. This approach introduces a privacy-
respecting reward mechanism to stimulate participation. Ref. [39] develops a distributed
path planning and target tracking algorithm for UAVs using smart contracts on blockchain.
This preserves participants’ privacy while enabling real-time path optimization in a collab-
orative manner.

Overall, these studies underscore the advantages of blockchain in enhancing UAV
privacy, security, and reliability. However, to validate their applicability in real-world
scenarios, larger-scale experiments that consider practical constraints, such as energy
consumption and flight dynamics, are essential. Additionally, there is a need for an in-
depth analysis of the optimized trade-offs between privacy/security and energy efficiency
to further solidify these findings, as will be discussed in the subsequent section.

2.4. Anomaly Detection Using Random Cut Forest

Random Cut Forest (RCF) is an advanced unsupervised algorithm designed for
anomaly detection within datasets, identifying data points that significantly deviate from
established patterns or structures [40,41]. Anomalies, such as unexpected spikes in time
series data or atypical data points, can drastically increase the complexity of machine
learning tasks [42].

RCF assigns an anomaly score to each data point, where low scores denote normality
and high scores indicate the presence of anomalies. The determination of these scores is
application-specific, but typically, scores exceeding three standard deviations from the
mean are considered anomalous. RCF’s adaptability extends to handling multi-dimensional
input, setting it apart from many algorithms that are confined to one-dimensional time
series data. Amazon SageMaker’s implementation of RCF demonstrates effective scalability
with respect to the number of features, dataset size, and the number of instances.

The fundamental principle of RCF involves constructing a forest of trees, each origi-
nating from a partition of a sample of the training data. For instance, a random sample is
divided according to the number of trees in the forest, with each tree organizing its subset
of points into a k-d tree. The anomaly score for a data point is determined by the expected
change in the tree’s complexity upon incorporating that point, inversely proportional to
the point’s depth in the tree. RCF calculates an anomaly score by averaging the scores from
each constituent tree and scaling the result in relation to the sample size.

3. System Model and Threat Analysis
3.1. Federated Optimization Model

We consider federated optimization problems as follows.

min
x∈Rd

[
F(x) :=

1
m

m

∑
i=1

Fi(x)

]
, (1)

where m is the number of local models (clients) and Fi(x) = Eξi∼Di [Fi(x, ξi)] is the local
objective function associated with local data distribution Di.

Typically, traditional federated learning comprises multiple participants and a server
component, as illustrated in Figure 1. In this framework, participants train shared models,
after which the server aggregates these local models and distributes tasks to the participants.
The federated learning training process can be delineated into three steps:

• Step 1 : Task initialization and model Broadcast
Prior to training, the server initially defines the tasks and objectives of the training
session. It then selects devices for participation in federated learning and dispatches
the shared model to these chosen devices.

• Step 2: Local training and updates
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At each communication round t, each client k trains a local model Mk on its dataset
Dk. The local update is represented as:

w(t+1)
k = w(t)

k − η∇Fk(w
(t)
k ) (2)

where w(t)
k represents the model weights at iteration t, η is the learning rate, and

∇Fk(w
(t)
k ) is the gradient of the loss function Fk computed on Dk. The loss function

Fk(w) for each UAV client could be the cross-entropy loss for classification tasks,
defined as:

Fk(w) = − ∑
(x,y)∈Dk

y log( fw(x)) + (1− y) log(1− fw(x)) (3)

where (x, y) are the data samples and their labels, and fw(x) is the model’s predic-
tion. Here, the local loss function can be different for different FL algorithms [28].
For example, with a set of input–output pairs {xi, yi}K

i=1, the loss function F of a linear
regression FL model can be defined as F (wk) =

1
2
(
xT

i wk− yi)
2. Then, each client k

uploads its computed update wk to the server for aggregation.
• Step 3: Global model aggregation

After local training, clients send their model updates w(t+1)
k to the central server.

The aggregation of local model updates to the global model on the blockchain is
represented as:

w(t+1)
G =

1
∑k∈K |Dk|

K

∑
k=1
|Dk|w

(t+1)
k (4)

where k is the total number of clients, nk is the number of samples on client k,
and w(t+1)

k represents the parameters of the model updated by client k. We solve
the following optimization problem:

min
wi∈K

1
K

K

∑
i=1
F (wi) (5)

subject to (C1): w1 = w2 = · · ·wi = wG.
In this context, the loss function F serves as an indicator of the federated learning (FL)
algorithm’s accuracy, such as in an FL-based object classification task. The constraint
(C1) ensures uniformity in the learning model among all clients and the server for
each FL task after every training round.
The optimization problem in Equation (5) is typically solved using a gradient descent
approach. For federated learning, an iterative process is applied as follows:

w(t+1)
G = w(t)

G − ηG∇FG(w
(t)
G ) (6)

where ηG is the global learning rate and∇FG(w
(t)
G ) is the average gradient of the global

loss function. The convergence of the global model can be shown by demonstrating
that the loss function decreases over iterations:

FG(w
(t+1)
G ) ≤ FG(w

(t)
G ) (7)

Following the model’s derivation, the server disseminates the updated global model
parameters wG to all clients. This dissemination is crucial for refining the local models in
the subsequent learning round. The FL process is repeated iteratively until the global loss
function stabilizes or a predetermined level of accuracy is attained.
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Figure 1. An example scenario of federated learning framework for UAV-assisted MEC.

3.2. Threat Models and Design Goals

In federated learning, significant advancements have been made in enhancing learning
efficiency, resolving data silos, and protecting local data privacy. However, this progress
is accompanied by inherent vulnerabilities. Local UAV nodes are particularly prone to
privacy breaches, while base station edge nodes face substantial challenges in effectively
identifying trustworthy local UAV nodes and mitigating sophisticated malicious attacks.

Within the federated learning framework, where multiple edge nodes collaborate to
develop a global model, there are heightened risks posed by malicious users or edge nodes
exploiting system vulnerabilities for personal gain, as shown in Figure 2. These risks include
unauthorized access to model parameters and the uploading of inaccurate or substandard
local model parameters, potentially undermining the integrity and effectiveness of the
global model. This study focuses on mitigating specific threats, including:

• Privacy Leakage: Despite federated learning’s design, which involves transmitting
only model parameters and not raw data, recent advancements in privacy attack
methodologies have shown that adversaries can deduce sensitive information about
local device data by analyzing these parameters.

• Poisoning Attack: The federated learning process is vulnerable to disruptions caused
by malicious devices. These devices can compromise the process by tampering with
raw data or submitting intentionally falsified local gradients, thereby threatening the
accuracy and reliability of the global model.

• Single Point of Failure Attack: A critical vulnerability in federated learning is its
reliance on a central server. If this server is compromised, the entire training process
could be disrupted, leading to significant operational challenges.

In response to these identified threats, the study proposes a comprehensive algorithm
that adheres to design objectives, focusing on privacy, accuracy, and resilience to attacks:

• Privacy Preservation: The algorithm is designed to protect user data privacy through-
out the federated learning process. It specifically safeguards sensitive information
within the model parameters uploaded by UAVs, preventing unauthorized access
by malicious edge nodes. By integrating advanced privacy-enhancing techniques,
the algorithm ensures secure transmission and storage of UAV model parameters,
upholding user privacy.

• Model Accuracy Preservation: The algorithm anticipates and counters potential threats
from malicious drones submitting corrupted or manipulated model parameters. It
aims to prevent poisoning attacks that could degrade the global model’s accuracy.
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Incorporating robust validation mechanisms and data integrity checks, the algorithm
ensures that privacy preservation does not compromise model accuracy.

• Resilience to Single-Point Attacks: Recognizing the susceptibility of federated learning
systems to single-point failures, the algorithm employs blockchain technology’s collec-
tive maintenance features. Utilizing smart contracts and distributed ledger systems, it
decentralizes the parameter aggregation process, enhancing the system’s resilience
and providing a transparent and auditable training process.

UAV swarm

Mobile Edge
computing
server

Base station

Local model
update

Wg
Drone

Adversary

Global model
broadcast

……

…… Wg WgW1 Wn Wn+1

Local training

Global
aggregation

……

2

1

3

Figure 2. An FL training model with hidden adversaries who can eavesdrop trained parameters from
both the clients and the server in UAV-MEC network.

3.3. UBFL Training Process

Recent advancements have led to the success of blockchain and federated learning al-
gorithms within the drone sector, tackling the privacy protection challenges in collaborative
training and data exchange among drone clusters. In this context, this paper introduces an
approach known as Blockchain-enabled Federated Learning UAV Mobile Edge Computing
(UBFL) network. This network integrates the foundational principles of blockchain and
federated learning to ensure comprehensive data privacy protection for drones.

The UBFL architecture represents a seamless fusion of blockchain and federated
learning principles, engineered to facilitate secure and privacy-preserving collaboration.
Subsequent sections will offer an in-depth analysis of the UBFL architecture and a de-
tailed delineation of the UBFL training workflow. Figure 1 visually depicts the proposed
architectural construct.

3.3.1. Network Model

The UBFL system architecture is illustrated in Figure 3. The architecture comprises a
multi-UAV-assisted air–ground Mobile Edge Computing (MEC) network, consisting of K
UAVs and M Base Stations (BSs). The UAV set is denoted as K ≜ 1, 2, . . . , K, and the BS set
asM ≜ 1, 2, . . . , M. Given the UAVs’ inherent limitations in battery life and computing
capabilities, they are not inherently suited for efficiently undertaking resource-intensive
tasks. It is thus assumed that BSs are equipped with MEC servers, which are tasked with
providing computing services to UAVs. The network utilizes blockchain technology to
create a decentralized federated training platform, ensuring the secure storage of private
data. The global server, enhanced by MEC, is designed to address the computational
constraints of UAVs. The UBFL network is structured into two layers: the user layer,
consisting of UAV mobile terminals, and the edge service layer, encompassing base stations
with MEC servers that provide storage and computing capabilities. The MEC server is
responsible for the calculation and updating of global model parameters. Ultimately,
the UBFL network integrates the capabilities of blockchain and federated learning (FL) with
the support of MEC servers. In this setup, blockchain provides a decentralized training
platform, while MEC servers address the computational limitations of UAVs and aid in the
computation of the global model.
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UBFL encompasses three primary entities: UAVs, base station edge nodes, and the
blockchain network.

• Local Drone. These are drone devices situated at the network’s edge, equipped with
limited local datasets and computing capabilities. Their objective is to construct a
more accurate machine learning model through federated learning in collaboration
with other drone-based devices. This approach aims to provide smarter services while
simultaneously safeguarding data privacy.

• MEC edge node. Miners, integral to the blockchain network, are typically equipped
with substantial computing and communication resources. These resources enable
them to provide essential services such as validation, consensus building, and other
critical functions within the blockchain infrastructure.

• Blockchain network. The blockchain network plays a pivotal role in managing the
registration of users and base station edge nodes, as well as in the aggregation of
global models, thereby serving as a fundamental component in the orchestration of
the system’s overall functionality.

Local 
Devices

Training

Training Node

Global Model

Blockchain

Local 
Devices

Mining Node

Blockchain

Training

Global Model

Blockchain

Training

Global Model

Blockchain
Training

Global Model

Blockchain Blockchain

Training and Mining Node

Training and Mining Node Training Node Mining Node

MEC
Servers

Blockchain Blockchain

Consensus

UAV Mining

UAV Mining

UAV 

Mining

UAV 

Mining

Model download

Model Upload

MEC
Mining

MEC
Mining

Figure 3. The conceptual design of the UBFL network.

3.3.2. UBFL Training Process

In the UBFL, each drone executes computations and exchanges training updates via
a blockchain ledger on the edge network. This approach facilitates direct global model
aggregation on local devices, thus obviating the need for a central server. The blockchain
service, operational on the MEC server, is responsible for receiving, storing, and authenti-
cating UAV-uploaded model parameters through consensus protocols. Furthermore, UBFL
effectively mitigates the network latency issues commonly associated with central server
communications [43]. The UBFL system’s training process is illustrated in Figure 4.

1. Registration: MEC server Miners and UAV devices apply for registration with the
task publisher, providing details including the size of their local datasets, client ID,
hash code, and reward.

2. Local Training and Encryption: UAVs train the machine learning model on their
local datasets, performing ni iterations on the obtained gradient, then they compute
the shared parameter gradient per several batches trained and encrypt the obtained
gradient with adaptive nonlinear function to deal with threat 1.
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3. Transmission of Encrypted Data: The drone sends the encrypted gradient and digital
signature to the associated miner base station edge node in a blockchain transaction
format. Privacy of the model is guaranteed by incorporating a non-linear function
into the gradients, as specified in Algorithm 1.

4. Data Verification: Upon receiving the data, miners undertake the task of authenti-
cating the signature in order to safeguard against any potential alteration or tamper-
ing. Specifically, gradients recognized as normal through the utilization of the RCF
Algorithm 2 are subject to multiplication by the present cumulative reward in order
to ascertain the cumulative probability prior to the selection of the drone.

5. Legitimacy Verification and Global Weight Aggregation: The verification committee
selects an edge node through mining voting to create a new block, and uses the
hash of the edge node to calculate the data digest. Due to attempting to tamper
with the content of the block, all blocks before it need to be rewritten, otherwise
the blockchain will be broken The operation of rewriting blocks requires enormous
computing resources, ensuring the immutability of local ledgers at each node.

6. Model Update and Training Continuation: The UAVs download the new block from
their associated miner, extract the global gradient for local model updates, and initiate
the subsequent training round, beginning again from Step 2. This cycle continues
until the model converges or reaches the maximum number of training rounds.

Algorithm 1: Adaptive Nonlinear Privacy Protection Algorithm.
Input: number of UAVs NU , number of base stations NB, number of global rounds

R0, minimum number of participating UAVs Pr
Output: Final global model after R0 rounds of training

1 Task publisher initializes blockchain;
2 UAVs apply for registration with the blockchain;
3 foreach UAV i in {1, . . . , NU} do
4 Add UAV i to registered ID list on blockchain if valid;
5 end
6 for round r = 1 . . . R0 do
7 foreach UAV i in {1, . . . , NU} do
8 UAV i performs local training for ni iterations;
9 Calculate local gradient ∇Li using Equation (14);

10 ∇ fk+1 =
∂(σ(F( fk |θk+1,λk+1)))

∂(θk+1,λk+1)
+ 1

1+e−αk+1
;

11 Encrypt ∇Li using Equation (8);
12 ∇k = ∇k + f (k | s);
13 Calculate digital signature σi using Equation (11);
14 Qk,j = Qk,j × Rk,j;
15 UAV i sends encrypted gradient and digital signature to associated base station;
16 end
17 foreach base station j in {1, . . . , NB} do
18 Verify digital signature and gradient noise for each received gradient;
19 If checks pass, select miner node through voting and create new block;
20 Broadcast new block to all UAVs;
21 end
22 foreach UAV i in {1, . . . , NU} do
23 UAV i downloads new block;
24 Extract global gradient and update local model;
25 If model has not converged or r < R0, go to next training round;
26 end
27 end

This procedure provides a thorough depiction of the UBFL system, highlighting the
integration of blockchain technology to enhance security and effectiveness in federated
learning environments. Further elaboration is provided in the subsequent section.
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Algorithm 2: Identity Authentication and Real-Time Gradient Detecting algo-
rithm.

Input: number of UAVs NU , number of base stations NB, minimum number of
participating UAVs Pr

Output: Enhanced system efficiency and security
1 Perform hash verification of drones at the base station;
2 foreach drone in Pr do
3 if drone is registered then
4 Upload gradient to base station;
5 Base station applies RCF algorithm for anomaly detection;
6 Anomalies are detected using Equation (11);

7 Qk,j = sig
(

Ek,j | x, std
)

;

8 Obtain historical rewards from blockchain;
9 Calculate rewards using Equation (12);

10 Rk = Rk × yk;
11 Update quality of gradients using Equation (13);
12 Qk,j = Qk,j × Rk,j;
13 Select and upload top gradients to blockchain;
14 Blockchain aggregates and updates global model;
15 else

// Handle unregistered drone
16 end
17 end
18 Broadcast updated parameters to drones;

Blockchain NetworkTraining worker BlockMiner

1.Registration.
BlockMiners and UAV submit registration to the task publisher. 
Credentials include dataset size, client ID, hash code, and reward 
expectation.

Task publisher2. Request model and Local Training 
UAVs train models locally with local data

3. Model parameters  Encryption and Transmission:
UAVs compute encrypt gradient and digital signature, then send

to the BlockMiners.

4. Data Verification Process and Create new block :
BlockMiners verify UAVs signature and select gradient via Random
Cut Forest(RCF) algorithm.

5. Model aggregating and  broadcast:
Verification committee selects edge node to create new aggregating 
block ;
Broadcast new Model to UAVs

+ =

Figure 4. UBFL training process.

4. Algorithm Design and Solution

To enhance the trustworthiness and resilience against poisoning attacks within the
UBFL network, our proposed algorithm is designed to meet critical objectives: preservation
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of privacy, maintenance of model accuracy, and protection against single-point attacks. This
algorithm integrates privacy-enhancing techniques and leverages the robust capabilities of
blockchain technology, thereby ensuring the protection of user privacy, the maintenance
of model accuracy, and the enhancement of the federated learning system’s robustness
against a diverse array of threats.

4.1. Adaptive Nonlinear Privacy Protection Algorithm for UAV Local Training

Recent research has highlighted the challenge of selecting differential parameters
in differential privacy algorithms. To tackle this, researchers have developed various
innovative methods, including automated tuning, robust estimation techniques, theoretical
bounds, and adaptive mechanisms.

Advancing these methodologies, our study introduces an adaptive function-based
algorithm specifically designed to protect the privacy of uploaded UAV gradients, as shown
in Algorithm 1. This algorithm utilizes a sigmoid function for the nonlinear transformation
of adaptive parameters across various layers. Such an approach ensures that the adaptive
parameters from different layers cumulatively contribute to the current layer, thereby
circumventing the training oscillation problem commonly encountered when optimizing
parameters for each layer independently. The local nonlinear function employed in the
UBFL algorithm is explicated in Equation (8).{

∇k = ∇k + f (k | s)

S← (α1, · · · αN), N is the shared layers
(8)

In the equation, S represents the set of adaptive parameters corresponding to each
layer of the shared network, where parameter k denotes the k layer of the shared network.
The term αk signifies that the initial value of the adaptive parameter for the k shared net-
work layer is set to one. The parameter N indicates the total number of shared layers
within the network. The function f (k | s) is defined as an adaptive nonlinear encryption
function. For an exhaustive exposition of detailed equations, calculations, and theoreti-
cal analysis supporting the efficacy of the adaptive nonlinear encryption function, refer
to Appendix A. This appendix substantiates the claims made regarding the function’s
advantages. The complete expression of the noliner activation function is presented below. f (k | s) =

1
1 + e−αk

∥αk∥ = 1, αk ≤ 1
(9)

Equation (9) provides a detailed mathematical representation of the adaptive nonlinear
encryption function utilized in the UBFL system. This function, f (k | s), is defined as a
sigmoid function, where it represents the adaptive parameter corresponding to the k layer
of the shared network. The equation stipulates that the initial value of αk for each layer is
set to one, and it is constrained to remain at or below this value throughout the training
process. This constraint ensures that the adaptive parameters do not exceed a predefined
threshold, thereby maintaining stability and consistency in the training process.

The parameters of the shared layers are not static but dynamically adjust in response
to the progression of the local neural network training. This dynamic adjustment is crucial
for aligning the shared layer parameters with the evolving training process, ensuring that
they effectively contribute to the overall learning objective. This integration is a key aspect
of the training methodology, as it allows the shared layer parameters to directly influence
and refine the classification accuracy of the local neural network.

Consequently, the local loss function of the UAV is bifurcated into two primary
components. The first component encompasses the traditional aspects of neural network
training loss, while the second component is uniquely characterized by the inclusion of the
adaptive parameters from the shared layers. This dual-component structure of the local
loss function is a novel approach in federated learning, particularly in the context of UAV
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applications, where it addresses the specific challenges and requirements of UAV-based
neural network training.

1. In the context of an image classification dataset, this study categorizes private datasets
into two distinct types: local datasets and block datasets. When creating a new block,
the dataset of the old block is replicated to the new block. The overarching goal of the
entire training process is to minimize the classification loss associated with training
the image classification dataset. For this purpose, the classification loss is calculated
using the cross-entropy loss method, which is widely recognized for its effectiveness
in such tasks.

2. The nonlinear disturbance loss attributed to adaptive parameters at each layer of
the network is conceptualized as a nonlinear regularization term. This approach to
loss calculation introduces an additional layer of complexity and refinement to the
training process. This loss function is integral to the training process, as it ensures
that the adaptive parameters contribute effectively to the overall learning objective
while maintaining the stability and robustness of the model.{

Lossk = G−∑B
m=0 ∑C

n=0 pj × log
(

pj
)

G = ∑N
m=0 e∑s

k=0 abs(αk)
(10)

In Equation (10), Lossk represents the loss function for the k drone client in the UBFL
system. The equation delineates two primary components: the cross-entropy loss and
the nonlinear regularization term G. Here, B denotes the batch size, and C represents the
number of categories in the image classification task. The cross-entropy loss, calculated
as the sum of the product of the probability Pj of each category j and its logarithm, is
a standard approach in classification tasks for quantifying the difference between the
predicted and actual distributions.

The term G, as defined in the equation, represents the nonlinear regularization term
associated with the adaptive parameters of each layer. This term is computed as the sum
of the exponential functions of the cumulative adaptive parameters aa up to the m layer,
where N is the total number of layers. The inclusion of G in the loss function introduces a
nonlinear aspect to the regularization process, enhancing the model’s ability to generalize
and preventing overfitting. This nonlinear regularization is particularly crucial in the
context of federated learning, where the model needs to be robust and adaptable to diverse
and decentralized datasets.

In the UBFL system, the adaptive function encryption method offers several key
advantages over traditional differential privacy:

• Fine-Grained Layered Adaptive Parameters: The UBFL system’s internal network
for each UAV consists of a complex convolutional neural network, characterized by
varying convergence speeds across its layers. To address this, the study establishes
unique adaptive parameters for each shared network layer, allowing for tailored
adaptation to their respective convergence speeds. This method ensures efficient
convergence by taking into account the distinct characteristics of each layer.

• Hierarchical Constraint in Adaptive Parameter Learning: In contrast to adaptive dif-
ferential privacy, which generally sets adaptive parameters based on a broad gradient
convergence logic, the UBFL system integrates these parameters directly into the local
neural network training process. They form a part of the loss function for each UAV
neural network. Consequently, the ongoing training of the local neural network influ-
ences the adaptive parameters of each layer, guiding them to converge with the local
loss and ultimately reach an equilibrium. Furthermore, the optimization of parameters
at each layer is intricately linked to and constrained by the local loss experienced at
that specific layer. This hierarchical constraint ensures a more nuanced and effective
optimization process, tailored to the specific requirements and dynamics of each layer
within the neural network.
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These advancements in the UBFL system’s adaptive function encryption method signify a
substantial progression in the approach to privacy preservation and model optimization in
federated learning, especially for UAV applications.

4.2. Identity Authentication and Gradient Selection Mechanism Using Blockchain in UBFL

In the UBFL system, the base station initiates the process with a hash verification
to ascertain the registration status of each drone. This crucial step effectively filters out
unregistered drones, thereby ensuring that subsequent gradient anomaly detection is
conducted exclusively on registered drones. Once verified, registered drones within a
specific region upload their gradients to the base station (edge node). These uploaded
gradients are then subjected to anomaly detection using the Random Cut Forest (RCF)
algorithm. The procedural details of RCF-based anomaly detection are illustrated in
Figure 5.

MEC server

Base station3.Local model
training

Drone

2.Global model
broadcast

……

Wg

W_1 W_n

Local Model

……

W_k

Wg
MEC server (Miner2)MEC server (Miner1)

Sensor Layer:
UAV Edge Device 

MEC Layer:
Blockchain Network

Wg

MEC server (Miner3)

P2P communication

Perform Global aggregation
among MEC server(miner)

Global Model

Local Dataset

6.Compute the global model 
and 
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4.Nonlinear Function 
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5.Check noise gradient: Applies 
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1.System Basic setting:
UAV registered ID list
UAV reward list
……

Figure 5. Identity authentication and gradient selection mechanism.
Qk,j = sig

(
Ek,j | x, std

)
x = 1

W ∑W
j=0 Ek,j, std = sqrt

(
∑W

j=0

(
Ek,j − x

)2
)

sig
(

Ek,j | x, std
)
=

{
1, x− 2× std ≤ Ek,j ≤ x + 2× std
0, otherwhise

(11)

Equation (11) defines the RCF algorithm’s parameters. Here, θ represents the gra-
dient of the j drone collected by the K base station, x is the average gradient, std is the
standard deviation, and W is the number of gradients collected by the current base station.
The function sig determines the anomaly status of the current gradient, marking anomalous
gradients as zero and normal gradients as one. The gradients are then sorted in reverse
order using the inverse ranking method to obtain the final sorting result. Subsequently,
the base station requests gradient information from the blockchain, which responds with
the cumulative historical rewards for the registered drones. The reward function is defined
as shown in Equation (12).  Rk = Rk × yk

yk =
Qk,j×W

∑W
j=0 Qk,j

(12)

In Equation (12), Rk denotes the cumulative historical rewards of the k registered drone,
and R normalized represents the normalized instant reward. Based on Equation (11) and
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Equation (12), the base station recalculates the quality of each drone’s uploaded gradient,
as delineated in Equation (13). {

Qk,j = Qk,j × Rk,j
sorted(Qk)

(13)

In Equation (13), gradients identified as normal based on the RCF algorithm are
multiplied by the current cumulative reward to determine the cumulative probability
before drone selection. The gradients are then sorted in reverse order, with the top two and
three gradients selected and uploaded to the blockchain. The blockchain performs secure
aggregation based on these gradients, trains the global network, and periodically broadcasts
the global shared parameters to all drones, thereby enhancing the overall efficiency and
security of the UBFL system. We designed the algorithm as Algorithm 2.

5. Experiment
5.1. UBFL DNN Structures

The fundamental architecture of the local training neural network, a critical component
of the UBFL system, is illustrated in Figure 6. The diagram in Figure 6 illustrates a neural
network architecture designed for sequence processing tasks that benefit from both spatial
and temporal feature recognition in the UAV-MEC network. The architecture includes
three convolutional blocks, each possibly consisting of a convolutional layer followed
by batch normalization (BN) and an activation function (denoted by α with subscripts
indicating different functions or parameters for each block). The first convolutional block
employs a filter size of 2 × 2 with a stride of one for the convolution operation. The batch
normalization is applied post-convolution followed by an activation function α1. The output
from the convolutional blocks is fed into a bidirectional LSTM layer. The Bi-LSTM allows
the network to process sequences in both forward and reverse directions, capturing context
from both past and future data points within a sequence. The notation “Cell Hidden = 256”
specifies that each LSTM cell in the layer has a hidden state vector of size 256, indicating
the capacity of the cell to capture and retain information over time. The processed sequence
data are output through the top of the diagram, where each element of the sequence is
assigned a label. This is indicative of sequence labeling tasks where each timestep of the
input data is classified or regressed to a corresponding label, common in applications like
time-series anomaly detection.

The architecture leverages the strengths of both CNNs for feature extraction from the
input data and LSTM for capturing the temporal dependencies within the sequence. This
combined approach is particularly advantageous in scenarios where the input data are
a sequence with rich, spatially and temporally relevant features. The feature output of
a given layer, denoted as fk, influences the gradient output of the subsequent layer fk+1,
which is mathematically expressed as:

∇ fk+1 =
∂(σ(F( fk | θk+1, λk+1)))

∂(θk+1, λk+1)
+

1
1 + e−αk+1

(14)

In this equation, F represents the formal structure of each neural network layer,
while θk+1 and λk+1 are the shared and private parameters, respectively, at layer k + 1.
As indicated in Equation (14), the adaptive factor αk functions as the noise component for
the gradient of each layer.



Sensors 2024, 24, 1364 16 of 27

Conv Block

Label

Conv Block

N…   

 
Conv2:2x2，f
 S=1x1,BN,!2

ConvN:2x2，f
 S=1x1,BN, !

Conv1:2x2，f
 S=1x1,BN,!1

Figure 6. UAV local training neural network.

5.2. Allocation of Local UAV Training Dataset

In the context of an image classification dataset, this study categorizes private datasets
into two distinct types: local datasets and block datasets. When creating a new block,
the dataset of the old block is replicated to the new block. The overarching goal of the
entire training process is to minimize the classification loss associated with training the
image classification dataset. For this purpose, the classification loss is calculated using the
cross-entropy loss method, which is widely recognized for its effectiveness in such tasks.

The algorithm is evaluated using datasets with MNIST and CIFAR10 in this study.
These datasets, representative of medium-complexity data typically gathered by local
devices, are also extensively used in various edge computing scenarios. The allocation of
the UAV client datasets is detailed in Table 1.

UAV1 ∪UAV2 ∪ · · · ∪UAV5 = D
5

∑
k=0
×pk = 1

C1 ∪ C2 ∪ · · · ∪ C5 = C

∀Ck ≤ C, k ≤ 5

(15)

In this configuration, the global trainer (blockchain) does not directly allocate the
dataset. Instead, it updates the shared parameters using the gradient uploaded by the base
station (edge node) and subsequently performs secure aggregation. The dataset assigned
to each UAV adheres to the constraints specified in Equation (15).

As show in Equation (15), the dataset allocation process involves random sampling by
local trainers, with the number of sample categories in each dataset being determined by the
specific sampling procedure. This strategy ensures that no single trainer possesses samples
of all categories, thereby promoting diversity and robustness in the training process.
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Table 1. Allocation of experimental datasets.

Trainer Dataset Size Category Train Test

Global (blockchain) — — — —
UAV1 ∥ D ∥xP1 C1
UAV2 ∥ D ∥xP2 C2
UAV3 ∥ D ∥xP3 C3 0.7 0.3
UAV4 ∥ D ∥xP4 C4
UAV5 ∥ D ∥xP5 C5

5.3. Implementation Details

In the development of our UBFL system, we uniquely configure a network with a
single Base Station/Edge Computing (BS/EC) server overseeing NU = 50 UAVs, a setting
that reflects practical UAV operational scenarios. Distinctively, the UAVs’ computing
frequencies, γi, for all i = 1, . . . , NU , are determined through a sampling process from
the range [106, 108] Hz, tailored to emulate real-world UAV computational capabilities.
The application of κ = 7× 104 CPU cycles and Pi = 0.28 Watt for all UAVs optimizes the
balance between computational demand and energy efficiency. Our network configuration
is specifically designed to test the model weight transmission delays (20 ms to 200 ms) over
a 10 MHz bandwidth, addressing a critical challenge in UAV communications.

To validate our defense approach against data poisoning in federated learning tasks,
we deliberately chose the MNIST and CIFAR-10 datasets for their diversity in image
complexity, directly correlating to varied UAV image processing tasks. MNIST, with its
60,000 28 × 28 pixel grayscale images, and CIFAR-10’s 60,000 32 × 32 pixel color images
offer a comprehensive test bed, reflecting a wide range of potential UAV visual processing
scenarios. This selection is underpinned by a methodical evaluation to ensure the datasets’
applicability in simulating UAV-specific challenges, particularly in image classification tasks
pertinent to UAV surveillance and reconnaissance missions. Each UAV’s data handling
capability is capped at |Mr| = 1300 samples, a constraint that further simulates real-world
operational limitations.

This bespoke setup, alongside a critical comparative analysis with existing federated
learning frameworks, distinctly positions our research within the UAV domain. It not only
underscores our methodological and experimental rigor but also the adaptability of our
proposed solution to the nuances of UAV operations. By elucidating these unique aspects,
we aim to distinguish our work from prior studies, ensuring that our contributions to the
UAV-MEC network domain are both clear and original.

The experimental hyperparameters are outlined in Table 2. The batch size was set to 64,
the learning rate was established at 0.001, and the truncation loss was fixed at 100. The op-
timization function utilized was the AdamOptimizer, with nonlinear adaptive parameters
designated as α1, α2, and α3. This setup facilitates a comprehensive evaluation of the algo-
rithm’s performance across different datasets and under various parameter configurations.

To evaluate its performance, a series of comparative experiments were conducted on a
GPU, providing valuable insights into its comparative advantages over existing algorithms.
The hardware configuration used for these comparative experiments is detailed in Table 3.

The evaluation indicators—Accuracy, F1-Score, Precision, and Recall-Score—are standard
metrics for assessing the performance of classification algorithms.



Precision(p) =
TP

TP + FP

Recall(r) =
TP

TP + FN

F1 =
2× P× R

P + R

Accuracy =
TP + TN

TP + FP + TN + FN

(16)
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where TP is true positive, FP is false positive, FN is false negative, TN is true negative;
P and R are precision and recall, respectively. A true positive is predicted to be positive
and is actually positive. The positive sample is successfully predicted to be positive. A
false positive is predicted to be positive but is actually negative. The negative sample
is incorrectly predicted to be positive. A true negative is predicted to be negative and
is actually negative. The negative sample is successfully predicted to be negative. A
false negative is predicted to be negative but is actually positive. The positive sample is
incorrectly preducted to be negative.

Table 2. Simulation parameter setting.

Batch Size 64

Learning rate 0.001
Truncation loss 100
Truncation loss AdamOptimizer + Nonlinear adaptive parameters
UAV number 5
Shared network The adaptive parameters of last three layers: α1, α2, α3

Table 3. Experiment hardware.

Parameter Values

Computing power RTX 2080Ti
operating system Ubuntu18.04
Hard drive capacity 1000 GB
Number of CPU core 4
Number of GPU core 1∼6

5.4. Effect of Adaptive Parameter Setting for Training Accuracy

Based on Cifar10 and Mnist datasets, the convergence of the global loss and adaptive
parameter training process of the UAV-BFL algorithm is shown in Figure 7, and the test
result curves are shown in Figures 8 and 9.

Table 4 presents the results of experiments conducted on two datasets, CIFAR10 and
MNIST. It details the initial and convergence values of the UAV-BFL training loss and three
adaptive parameters, namely α1, α2, and α3. From the data, it is evident that α3 exerts
the most substantial influence on loss reduction, as indicated by its lowest convergence
values across both datasets. This observation implies a correlation between the depth
of the adaptive parameter layers and their efficacy in diminishing the loss following the
algorithm’s convergence.
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Figure 7. Optimization results of key parameters of UAV-BFL algorithm.
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Figure 8. Impact of adaptive parameter on the learning performance in CIFAR10 dataset.
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Figure 9. Impact of adaptive parameter on the learning performance in MNIST dataset.

More specifically, the result reveals that as the adaptive parameter layers approach
closer to the output layer of the neural network, their convergence values tend to decrease.
This trend suggests that the closer the layer is to the output, the greater its impact on
reducing the overall training loss. Such insights are instrumental in understanding the
dynamics of adaptive parameters within the UAV-BFL training process and their role in
optimizing neural network performance.

Table 4. Experimental results of UAV-BFL loss and adaptive parameters.

Dataset Parameter Initial Convergence

UAV-BFL-Loss 2.11 0.080
UAV-BFL-α1 1.0 0.043

Cifar10 UAV-BFL-α2 1.0 0.016
UAV-BFL-α3 1.0 0.006

UAV-BFL-Loss 0.77 0.004
UAV-BFL-α1 1.0 0.047

Mnist UAV-BFL-α2 1.0 0.019
UAV-BFL-α3 1.0 0.007

Effect of Adaptive Nonlinear Function on Utility–Privacy Trade-Off

In this paper, we compare the performance of our solution with its various modi-
fications where one or more components (α1, α2, α3) are omitted. By comparing these
different versions, it can demonstrate the impact and importance of each component on
the overall performance of the algorithm, as shown in Table 5. We conducted six compara-
tive experiments:

• UAV-BFL-Without-αi: These variants of the UAV-BFL algorithm lack an adaptive
parameter layer i, where i corresponds to each a highlighted in the table (e.g., α1, α2,
α3). This suggests that the algorithm uses multiple adaptive parameter layers, and the
experiments are testing the impact of each layer’s removal on the overall performance.

• UAV-BFL-DP: This variant represents the use of the traditional differential privacy
algorithm in the comparison. Differential privacy is a system for publicly sharing infor-
mation about a dataset by describing the patterns of groups within the dataset while
withholding information about individuals in the dataset. By comparing UAV-BFL
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with UAV-BFL-DP, the paper likely aims to show how their novel approach compares
to the traditional differential privacy methods in terms of the evaluation indicators.

• UAV-BFL-None-RCF: Indicates that this particular model variant does not include
the RCF algorithm component. Since RCF is often used for anomaly detection, its
absence in this variant would show how much the RCF algorithm contributes to the
performance of the UAV-BFL model.

Table 5. Comparison algorithms and evaluation indicators.

Experiment Algorithm Evaluation Indicators

Comparative experiment UAV-BFL Accuracy, F1-Score,
UAV-BFL-Without-α1 Precision, Recall-Score
UAV-BFL-Without-α2

Comparative UAV-BFL-Without-α3
UAV-BFL-DP
UAV-BFL-None-RCF

The analysis indicates that contribution factors from different neural network layers
exert varying degrees of influence on inter-layer interactions. Factors located closer to
the output layer are more effective in enhancing the algorithm’s accuracy, while those
positioned further away tend to diminish it.

As outlined in Equation (10), these inter-layer contribution factors undergo a nonlinear
transformation through a sigmoid function and are subsequently treated as regularization
terms within the global loss function.

The study’s primary focus is to explore the influence of these adaptive nonlinear
parameters, originating from distinct network layers, on the overall accuracy of the model.
The findings are detailed in Table 6. The data provide clear evidence of the benefits of
adaptive parameters, demonstrating their role in enhancing model prediction accuracy on
Cifar10 and Mnist datasets.

Table 6. Global training accuracy on the Cifar10 and Mnist datasets.

Dataset Algorithm Accuracy F1 Precision Recall

UAV-BFL 98.34 99.61 98.33 99.60
Cifar10 UAV-BFL-Without-α1 96.89 96.36 96.11 96.23

UAV-BFL-Without-α2 97.30 96.22 96.67 97.11
UAV-BFL-Without-α3 97.79 97.10 97.33 97.47

UAV-BFL 99.60 99.89 99.88 99.91
Mnist UAV-BFL-Without-α1 98.99 98.87 98.89 98.99

UAV-BFL-Without-α2 99.19 98.99 98.99 98.99
UAV-BFL-Without-α3 99.16 99.16 99.10 99.13

5.5. Comparison with Differential Privacy Algorithms

This accuracy analysis demonstrates that our algorithm, which utilizes an adaptive
layered contribution factor, achieves superior accuracy in privacy protection compared to
methods based on differential privacy (DP). The DP algorithm, particularly when based
on the Laplacian mechanism, tends to induce oscillations in the noise value during the
randomness calculation. In contrast, our algorithm activates the layered contribution
factor using a sigmoid function as gradient noise. This approach ensures that all factors
rapidly converge to small values during the training process, resulting in greater stability.
Consequently, the parameter updates in our algorithm’s model are more consistent, leading
to enhanced robustness and accuracy.

Table 7 reveals that, in comparison to other algorithms, our proposed algorithm
exhibits a notable improvement in accuracy on the CIFAR10 dataset, with a maximum
increase of 4.336% (F1 Score) and a minimum increase of 2.076% (Accuracy). On the MNIST
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dataset, the maximum accuracy enhancement is 1.124% (Precision), while the minimum
is 0.810% (Accuracy). Note that DP is a method based on Laplace perturbation with
parameters set as follows: σ2 = 0.25, b = 1.0. Through the above accuracy analysis, it can
be seen that the proposed algorithm achieves higher accuracy in privacy protection using
adaptive layered contribution factor compared with the privacy protection method based
on difference privacy (DP). The differential privacy algorithm based on the Laplacian will
cause the noise value to oscillate when calculating the randomness of the noise. Relatively
speaking, the layered contribution factor of the algorithm in this paper is activated by
a sigmoid function as gradient noise, and all factors converge quickly to a small value
in the training process and can be more stable. Therefore, the parameter update of the
algorithm model in this paper tends to be more stable and can achieve higher robustness
and accuracy.

Table 7. Training accuracy compared on the Cifar10 and Mnist datasets.

Dataset Algorithm Accuracy F1 Precision Recall

Cifar10 UAV-BFL 98.34 99.61 98.33 99.60
UAV-BFL-DP 96.34 95.47 96.00 96.10

Minist UBFL 99.60 99.89 99.88 99.91
UAV-BFL-DP 98.80 98.81 98.77 98.99

Performance Improvement ratio

Dataset Algorithm Accuracy F1 Precision Recall

Cifar10 UAV-BFL N/A N/A N/A N/A
UAV-BFL-DP ↑ 2.076 ↑ 4.336 ↑ 2.33 ↑ 3.462

Mnist UAV-BFL N/A N/A N/A N/A
UAV-BFL-DP ↑ 0.810 ↑ 0.903 ↑ 1.124 ↑ 0.929

N/A denotes the baseline. ↑ denotes the Improvement ratio for each baseline.

Effect of RCF-Based Anomaly Detection on Model Poisoning Attack

In this study, noise samples were generated by randomly altering the labels of samples,
with the proportions of these noise samples set at 10%, 20%, and 30%, respectively. Utilizing
these noise samples, a series of poisoning attack experiments were conducted. These
experiments were performed on the CIFAR10 and MNIST datasets, and the results are
depicted in Figures 10 and 11. This approach allowed for a comprehensive assessment of
the impact of noise levels on the robustness of the models against poisoning attacks.

From Table 8, the F1 metric of the algorithm proposed in this paper exhibits significant
improvements over the comparison algorithm. Under a 10% poisoning attack on the Cifar10
dataset, the algorithm achieved the highest increase in F1 value, with a boost of 26.18%.
Similarly, under a 20% poisoning attack, the F1 value increased by a maximum of 29.33%,
and under a 30% poisoning attack, the F1 value increased by a maximum of 22.49%. On the
Mnist dataset, the algorithm demonstrated a maximum F1 value increase of 9.41% under
a 10% poisoning attack, 11.94% under a 20% poisoning attack, and 23.36% under a 30%
poisoning attack.
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Figure 10. Impact of poison sample on the learning performance on the CIFAR10 dataset.
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Figure 11. Impact of poison sample on the learning performance on the MNIST dataset.

Table 8. RCF anomaly detection algorithm performance using F1 metric.

DataSet Algorithm 10% 20% 30%

Cifar10 UAV-BFL 91.00 82.05 73.21
UAV-BFL-None-DP 87.34 77.76 65.20
UAV-BFL-None-RCF 72.12 63.44 59.77

Mnist UAV-BFL 92.01 83.47 74.56
UAV-BFL-None-DP 88.67 78.91 67.97
UAV-BFL-None-RCF 84.10 74.57 60.44

Performance Improvement Ratio

DataSet Algorithm 10% 20% 30%

Cifar10 UAV-BFL N/A N/A N/A
UAV-BFL-None-DP ↑ 4.09% ↑ 5.57% ↑ 12.28%
UAV-BFL-None-RCF ↑ 26.18% ↑ 4.29% ↑ 8.01%

Mnist UAV-BFL N/A N/A N/A
UAV-BFL-None-DP ↑ 3.77% ↑ 5.77% ↑ 9.695%
UAV-BFL-None-RCF ↑ 9.41% ↑ 11.94% ↑ 23.36%

N/A denotes the baseline. ↑ denotes the Improvement ratio for each baseline.

From Table 9, it is evident that the Recall metric of the UAV-BFL algorithm proposed in
this paper outperforms the comparison algorithm, as shown by the results. When subjected
to a 10% poisoning attack on the Cifar10 dataset, the UAV-BFL algorithm achieved the
highest increase in Recall value, with a boost of 28.32%. Under a 20% poisoning attack,
the Recall value increased by a maximum of 27.46%, and under a 30% poisoning attack,
the Recall value increased by a maximum of 22.97%. On the Mnist dataset, the algorithm
demonstrated a maximum Recall value increase of 10.72% under a 10% poisoning attack,
14.58% under a 20% poisoning attack, and 22.05% under a 30% poisoning attack.

From the perspective of privacy protection, the adaptive nonlinear function privacy
protection method proposed in this study exhibits that its adaptive parameters rapidly
converge to a very narrow range during model training. This convergence pattern is distinct
from traditional differential privacy (DP) methods. In the proposed method, the minimal
variation in adaptive parameters allows the aggregated gradient to more closely align with
the actual gradient.

In terms of detecting abnormal gradients, the incorporation of the Random Cut For-
est (RCF) algorithm in this research proves to be highly effective. This enhancement
significantly boosts the efficiency of the proposed algorithm in the gradient aggregation
phase. Additionally, the robustness of the proposed algorithm is set to be further validated
across a wider array of datasets, underscoring its applicability and reliability in various
data environments.
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Table 9. RCF anomaly detection algorithm performance using Recall metric.

DataSet Algorithm 10% 20% 30%

Cifar10
UAV-BFL 91.97 79.98 72.91
UAV-BFL-None-DP 84.11 76.01 64.99
UAV-BFL-None-RCF 71.67 62.75 59.29

Mnist
UAV-BFL 92.75 83.37 73.46
UAV-BFL-None-DP 87.73 77.99 66.96
UAV-UBFL-None-RCF 83.77 72.76 60.19

Performance Improvement

DataSet Algorithm 10% 20% 30%

Cifar10
UAV-BFL N/A N/A N/A
UAV-BFL-None-DP ↑ 9.34% ↑ 5.22% ↑ 12.19%
UAV-BFL-None-RCF ↑ 28.32% ↑ 27.46% ↑ 22.97%

Mnist
UAV-BFL N/A N/A N/A
UAV-BFL-None-DP ↑ 5.72% ↑ 6.90% ↑ 9.71%
UAV-BFL-None-RCF ↑ 10.72% ↑ 14.58% ↑ 22.05%

N/A denotes the baseline. ↑ denotes the Improvement ratio for each baseline.

6. Discussion

This study innovatively enhances privacy and security in UAV-MEC networks by
employing an adaptive nonlinear function-based algorithm with Random Cut Forest (RCF)
for anomaly detection. Our empirical investigation, utilizing CIFAR10 and MNIST datasets,
validates the efficacy of these methodologies, showcasing not only improved accuracy but
also a robust defense against data poisoning attacks. Such advancements underscore the
potential of our proposed solutions in setting a new benchmark for privacy protection in
UAV-MEC ecosystems.

However, the research does not come without its limitations. The exploration into the
computational complexity and scalability of our blockchain-based strategy, particularly
within expansive UAV networks, remains partially unexplored. This oversight marks
a critical area for future inquiry, essential for understanding the practicality of deploy-
ment in larger, real-world scenarios. Furthermore, while our findings indicate a superior
performance compared to traditional methods, a comprehensive comparison across a
broader spectrum of existing solutions is necessary for a more conclusive validation of
our approach’s effectiveness. Lastly, the practical implementation of our system within
the dynamic and constraint-laden UAV operating environments warrants more detailed
investigation to fully ascertain its real-world applicability and operational feasibility.

Addressing these limitations will not only enhance the robustness of our proposed
model but also broaden the scope of its applicability, paving the way for more secure and
efficient UAV-MEC networks.

7. Conclusions

This study has introduced a UBFL method to enhance privacy protection within UAV
(Unmanned Aerial Vehicle)-MEC (Mobile Edge Computing) networks. Our innovative
approach overcomes the inherent limitations of traditional UAV-MEC networks by leverag-
ing blockchain technology, thus establishing a decentralized framework that secures the
integrity of model updates and ensures data validation without the need for central servers.
The main achievements of our research include the development of an adaptive algorithm
that utilizes a non-linear function for robust privacy preservation of UAV model updates
and the application of Random Cut Forest (RCF) algorithms for effective anomaly detection
to mitigate the risks of malicious data attacks. These contributions mark a significant
advancement in privacy and security measures beyond the capabilities of existing methods.

Acknowledging areas for future exploration, we have identified opportunities to
enhance the algorithmic efficiency for gradient verification and to develop consensus
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protocols specifically designed for UAV edge computing contexts. Moving forward, our
focus will be on refining these aspects to address the highlighted limitations. Moreover, we
aim to extend our research to assess the scalability and resilience of our proposed UBFL
method in more complex network scenarios. The empirical results demonstrated within
this study highlight the robustness of our algorithm against data pollution attacks across
diverse pollution ratios, showcasing its applicability in a wide array of settings.
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Appendix A. Adaptive Non-Linear Function Privacy Protection Algorithm Proof

Given the standard sigmoid function defined as:

σ(x) =
1

1 + e−x (A1)

we assume that αk is an adaptive parameter, where K represents the Kth layer neural
network. The privacy of the adaptive nonlinear function proposed in this article is expressed
as σ̃, and the gradient of the Kth layer can be expressed as ∇ fk = fk + σ̃; more generally, σ̃
can be expressed in Equation (A2).

σ̃(αk) = e|αk |σ

(
1

1 + e|αk |

)
(A2)

The gradient set is D, and D′ is the historical gradient set, and there is only one
gradient sample different from D. The mapping function of the random variable X satisfies
Equation (A2).

The mapping result on the gradient set D is represented as F (αk) = (x1, . . . , xd).
The output after adding noise is L = (x1 + ∆x1, . . . , xd + ∆xd), and the mapping result on
the gradient set D′ can also be expressed as L′ = (x1 + ∆x′1, . . . , xd + ∆x′d).

For all xi ∈ D, ∀xj ∈ D, i ̸= j, the probability ratio of the outputs satisfies:

Pxi (y)
Pxj(y)

≤
d

∏
k=0

e|αk | (A3)

where Pxi (y) and Pxj(y) are the probability density functions of variables X on gradient
datasets D and D′ with random variables X and X′, and y is the target output.
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Pxi (y)
Pxj (y)

= ∏d
k=0

e|αk,y|
e∥αk,y∥−∥∆xk∥

×
1

1+e|αk,y|
1

1+e∥αk,y∥∥∥∆xk∥|

= ∏d
k=0 e|αk,y|−∥αk,y∥∥∥∆xk∥ × 1+e∥αk,y,y |∥−∥∆xk∥

1+e|αk,y|

≤ ∏d
k=0 e|αk,y| × 1+e∥αk,y |−∥∆xk∥ |

1+e|αk,y|
≤ ∏d

k=0 e|αk,y|

(A4)

Note that in Equation (A4), we provide the key points arising from the given equation:

• Central Inequality: The inequality

P{xi}(y)
P{xj}(y)

≤ e∏d
k=0|αk,y|

holds when the independent variable of function αk is the absolute value of the
adaptation parameter.

• Adaptation Parameter Size:

– Small
∣∣∣αk,y

∣∣∣: It is difficult to distinguish between actual sampling probability and
differential post-sampling probability, leading to robust gradient availability.

– Large
∣∣∣αk,y

∣∣∣: A significant discrepancy arises between the actual gradient and the
differential result, reducing gradient utility.

When e|αk,y| is sufficiently small, this ensures that the condition of equal output
probability is satisfied for two independent and identically distributed random variables
across any two similar datasets D and D′. Under this condition, the final gradient is
expressed as ∇k− = ∇k + x. The computation of X is further delineated in Equation (A5).

P(|αk|) = e|αk | × 1
1+e|αk |

= 1
1+e−|αk |

|αk| = ln
(

P(|αk |)
1−P(|αk |)

)
s.t 0 < P(|αk|) < 1

(A5)

where the specific range of αk is further obtained as shown in Equation (A6).{
|αk| = ln(P(|αk|))− ln(1− P(|αk|)), P(|αk|) ≥ 0.5
|αk| = ln(1− P(|αk|))− ln(P(|αk|)), P(|αk|) < 0.5

(A6)
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