
Citation: Bang, J.; Kim, J.N.; Lee, S.

Entropy Sharing in Ransomware:

Bypassing Entropy-Based Detection of

Cryptographic Operations. Sensors

2024, 24, 1446. https://doi.org/

10.3390/s24051446

Academic Editor: Amitabh Mishra

Received: 11 January 2024

Revised: 3 February 2024

Accepted: 22 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Entropy Sharing in Ransomware: Bypassing Entropy-Based
Detection of Cryptographic Operations
Jiseok Bang 1 , Jeong Nyeo Kim 2,* and Seungkwang Lee 1,*

1 Department of Cyber Security, Dankook University, Yongin 16890, Republic of Korea;
jsbang.kevin@gmail.com

2 Cyber Security Research Division, Electronics and Telecommunications Research Institute (ETRI),
Daejeon 34129, Republic of Korea

* Correspondence: jnkim@etri.re.kr (J.N.K.); sk.cryptographic@dankook.ac.kr (S.L.)

Abstract: This study presents a groundbreaking approach to the ever-evolving challenge of ran-
somware detection. A lot of detection methods predominantly rely on pinpointing high-entropy
blocks, which is a hallmark of the encryption techniques commonly employed in ransomware. These
blocks, typically difficult to recover, serve as key indicators of malicious activity. So far, many neu-
tralization techniques have been introduced so that ransomware utilizing standard encryption can
effectively bypass these entropy-based detection systems. However, these have limited capabilities or
require relatively high computational costs. To address these problems, we introduce a new concept
entropy sharing. This method can be seamlessly integrated with every type of cryptographic algorithm
and is also composed of lightweight operations, masking the high-entropy blocks undetectable. In
addition, the proposed method cannot be easily nullified, contrary to simple encoding methods,
without knowing the order of shares. Our findings demonstrate that entropy sharing can effectively
bypass entropy-based detection systems. Ransomware utilizing such attack methods can cause
significant damage, as they are difficult to detect through conventional detection methods.

Keywords: ransomware; cryptographic operation; entropy; detection; neutralization

1. Introduction
1.1. Ransomware Attacks: Economic Impact and Phases

Ransomware is a significant cybersecurity concern, specifically crypto-ransomware,
which infects computers, encrypts files, and demands a ransom for decryption. It has emerged
as a prominent and financially devastating form of cybercrime, with the estimated global cost
projected to reach approximately $265 billion annually by 2031 (https://cybersecurityventures.
com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031 (accessed
on 4 November 2023)). This escalation in financial losses underscores the urgent need to un-
derstand the economic impact of ransomware attacks. High-profile incidents like WannaCry
and Petya have contributed to the growing global damage caused by ransomware attacks.

In general, ransomware attacks typically unfold through a series of distinct phases.
Four fundamental steps capture the essential characteristics of ransomware attacks: Initial
compromise, Establishing foothold, Encryption, and Extortion. (1) The initial compromise
phase marks the point at which a ransomware attack infiltrates the first computer. Attackers
employ various methods to deliver and execute the initial compromise, including phishing,
spear phishing, corrupted web pages, and the exploitation of security vulnerabilities and
system misconfigurations. (2) Following the initial compromise, attackers typically aim
to establish a permanent foothold within the compromised system and move laterally
within the network. This phase often involves connecting to command and control (C&C)
servers, which are internet hosts or entire infrastructures designed to control the behavior
of ransomware. These servers issue commands, generate and distribute encryption keys,

Sensors 2024, 24, 1446. https://doi.org/10.3390/s24051446 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051446
https://doi.org/10.3390/s24051446
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0008-5285-9403
https://orcid.org/0000-0002-7134-0622
https://orcid.org/0000-0001-9534-9624
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031
https://doi.org/10.3390/s24051446
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051446?type=check_update&version=1

Sensors 2024, 24, 1446 2 of 31

collect information about victims, and store critical data related to the ransomware attack.
However, some ransomware attacks do not rely on C&C infrastructure and instead limit
themselves to host detection capabilities. (3) The encryption phase consists of several stages,
including key generation, searching for target files with specific extensions, encryption, and
potential deletion or overwriting of backups. Ransomware employs different encryption
methods, such as symmetric and asymmetric ciphers. Symmetric encryption is favored
for its speed in encrypting large data volumes, while asymmetric encryption protects
the symmetric key. Ransomware employs tactics like overwriting or renaming original
files, saving encrypted files in new locations, or temporarily moving and restoring files
during encryption. (4) Once the files are fully or partially encrypted, ransomware enters
the extortion phase. During this phase, ransomware creates a ransom note, typically in
the form of a text or HTML file, providing instructions to the victim on how to retrieve
their data.

1.2. General Approaches to Ransomware Detection

Detecting ransomware during its encryption phase can be achieved through various
methods, each focusing on different aspects of cryptographic operations. One prevalent
method involves monitoring API and system calls. This technique examines the use of
encryption-related API calls, encompassing processes like encryption, file manipulation,
and key management. The incorporation of machine learning has significantly refined this
approach, allowing for more nuanced detection of encryption activities through pattern
recognition in API and system call usage.

Another key strategy is I/O monitoring. This method analyzes I/O requests related to
memory, file systems, and network operations, aiming to detect ransomware encryption
by identifying anomalous patterns and behaviors. It typically utilizes a combination of
classifiers and analyzes various features from the network and data flow to pinpoint
potential threats.

Monitoring the file system is also a crucial technique in detecting ransomware. This
approach involves examining changes in the file system’s state and file attributes to spot
encryption indicators. Some researchers utilize entropy analysis, searching for files with ab-
normally high entropy as possible encryption evidence. Alternatively, observing file system
events for unusual file operation patterns can also be indicative of ransomware activity.

Entropy is a measure of how unpredictable something is. In cryptography, entropy
serves as an indicator of how unpredictable the ciphertext is relative to the plaintext. In this
context, the randomness of ciphertext reaches its maximum when the ratio of 0 s to 1 s is
equal. In other words, encryption is a procedure that alters information, rendering it more
random or introducing uncertainty, thereby inherently increasing entropy. For this reason,
blocks written by benign applications in the file system, which do not perform encryption
operations, have significantly lower entropy compared to standard encryption with an
overwhelming probability [1]. Consequently, the detection of such high-entropy blocks
has been a common indicator in ransomware detection methods [2]. From the attacker’s
perspective, however, it is possible to bypass these detection systems using neutralization
techniques that lower the entropy of encrypted files. Common methods for this include
base64 encoding, format-preserving encryption (FPE), and intermittent encryption. While
these methods can make encrypted files more recoverable, they also present limitations in
terms of efficiency. For a more detailed discussion on these neutralization techniques, refer
to Section 2.3.

1.3. Contributions

The next generation of ransomware could potentially evade current detection methods
by using encryption techniques that produce moderate-level entropy. However, selecting an
algorithm that reduces the ciphertext’s entropy might not align with ransomware business
objectives, as it could increase the chances of successful decryption of the plaintext. In this
paper, we introduce an efficient and effective method for bypassing ransomware detection.

Sensors 2024, 24, 1446 3 of 31

Our approach presents a new threat model for ransomware, which leverages standard
encryption algorithms. This model is designed to maintain the balance between evading
detection and preserving the robustness of the encryption, thereby adhering to the core
goals of ransomware operations. The main contributions of this paper are as follows:

• We propose an entropy reduction technique, aptly named entropy sharing , that can
be applied to the output of both symmetric and asymmetric encryption algorithms
commonly utilized in ransomware. Before introducing entropy sharing, we also outline
a basic concept of simple bit decomposition aimed at achieving minimal entropy levels.

• Through the frequency test defined in the NIST randomness test suit, we demonstrate that
the proposed method can effectively bypass existing entropy-based detection techniques.

• We present a decoding approach named entropy recomposition, which is designed
to be applied to the output of entropy sharing. This process is followed by decryp-
tion, facilitating the restoration of the victim’s files. Unlike other encoding methods,
a distinctive feature is that decoding is impossible if the order of entropy shares
is unknown.

• We evaluate the overhead of the proposed method when combined with encryption
algorithms and assess their impact on the total computation time. The results show
that there is minimal change in the efficiency of ransomware attacks, allowing for the
rapid corruption of a large number of files.

The rest of this paper is structured as follows: Section 2 offers a comprehensive
overview of current ransomware detection and neutralization strategies. Section 3 details
our innovative method designed to obscure cryptographic operations in ransomware. This
involves a novel encoding technique that transforms high-entropy blocks into blocks with
lower or medium entropy. In Section 4, we present our experimental findings. These
experiments demonstrate the effectiveness of entropy sharing in ransomware encryption and
evaluate the additional overhead incurred. Our primary approach for assessing entropy
randomness involves the use of NIST frequency tests, which are specifically applied to
the data written on the file system. Section 5 focuses on analyzing the results of entropy
recomposition at different ratios, which are aimed at countering ransomware that employs
entropy sharing. This section also explores the entropy characteristics of write blocks
following simple bit decomposition and evaluates the accuracy in distinguishing between
encrypted and non-encrypted files using Shannon entropy values. The paper concludes
with Section 6, summarizing our findings and contributions.

2. Ransomware Detection and Neutralization Methods

Numerous studies have focused on addressing the growing threat of ransomware,
typically dividing their approaches into two primary categories: prevention and detection.
Prevention strategies aim to either reduce the impact or stop an attack in its early stages.
Among these, regular backups are frequently noted as the most effective way to minimize
ransomware damage. However, even backups can fall prey to encryption, rendering
file recovery extremely challenging without a decryption key. Due to the ineffectiveness
of cryptanalysis against sophisticated encryption techniques, the emphasis increasingly
shifts to detection strategies categorized into two types: process-centric methods and
data-centric methods.

2.1. Process-Centric Methods

Process-centric detection involves monitoring specific activities or behaviors in exe-
cuting programs, such as encryption key generation or the use of cryptography-related
APIs, which are commonly associated with ransomware. These activities form the basis
for building event-based detection systems. Alternatively, machine learning-based classi-
fication models can be developed by observing malicious process behavioral patterns in
run-time data.

Sensors 2024, 24, 1446 4 of 31

2.1.1. Event-Based Detection

Event-based detection revolves around tracking specific indicators of an impending
ransomware attack. For instance, Ahmed et al. [3] recommended monitoring traffic be-
haviors or domain-generating algorithms (DGAs) that provide new domains as needed.
Andronio et al. [4] proposed the Heldroid method for tracing threatening messages re-
trieval from the C&C server, which is typically not included in the ransomware payload.
Palisse et al. [5] suggested tracking Microsoft’s cryptographic APIs, commonly used in
many ransomware types, to prevent victims’ file encryption.

However, this detection method has limitations, including the requirement for prior
knowledge about encryption technologies used by different ransomware families. Ad-
vanced ransomware can function independently without internet connectivity or C&C
server assistance, meaning encryption keys or data retrieval may not occur during the at-
tack. Furthermore, these methods may have a high false alarm rate since benign programs
may also employ the observed events, leading to increased false alerts. As previously
mentioned [6], API hooking as a ransomware detection method can be undermined by
copying a DLL containing the desired code and dynamically loading it into the process with
a different name. Additionally, ransomware can bypass API hooking by using customized
cryptosystems instead of standard APIs to encrypt user files.

2.1.2. Machine Learning Implementation for Detection

Machine learning techniques have become increasingly popular in ransomware detec-
tion research, offering effective means to identify malicious patterns [7–19]. These studies
have employed a range of classification algorithms to pinpoint ransomware attack signa-
tures. Classifiers can be divided into two types: singular and ensemble. Singular classifiers
use a single machine learning algorithm for classification, whereas ensemble classifiers inte-
grate several algorithms to collaboratively perform the task [20–23]. Examples of singular
classifiers are support vector machines, logistic regression, decision trees, and deep neural
networks. In contrast, ensemble classifiers include techniques like bagging, adaboost, and
random forests. Ensemble learning combines the outputs of multiple singular or base
classifiers to arrive at a final decision. The application of machine learning in ransomware
detection is typically segmented into two categories: delayed detection and early detection.

Delayed detection involves analyzing comprehensive runtime data generated during
the execution of a malicious program to train detection models. Various methods, such
as Bayesian networks and statistical approaches, have been used to detect ransomware
based on CPU, I/O, memory usage, network traffic, or data from physical sensors within
computers. However, delayed detection relies on complete data and may fail to detect an
attack before data encryption begins. On the other hand, early detection aims to identify
ransomware threats before the data encryption process starts. Techniques such as using
a fraction of the initial data or a fixed duration threshold during ransomware execution
have been proposed. However, early detection based on limited data can result in lower
accuracy rates.

2.2. Data-Centric Methods

Data-centric ransomware detection involves monitoring the targets of ransomware
rather than the malicious activities initiating the attack [24]. Extensive research has been
conducted on data-centric methods for identifying ransomware [25–30]. The primary objec-
tive is to identify abnormal modifications through continuous analysis of user documents,
with metrics such as entropy and similarity typically used for this purpose.

One straightforward approach involves using decoy files, also known as honey files,
to detect malevolent alterations of user documents, as demonstrated by Moore [31]. These
decoy files, integrated within the user’s system, enable the identification of changes to
user data, as legitimate programs do not need to access them. Similarly, Song et al. [32]
suggested analyzing key user data locations using decoy files. Gomez-Hernandez and
Alvarez-Gonzalez [33] implemented decoy files in the target environment, aiming to stop

Sensors 2024, 24, 1446 5 of 31

the ransomware process upon its interaction with these files. Mehnaz and Mudgerikar [34]
also used the decoy approach for early ransomware detection and prevention. Moreover,
relying solely on decoy-based detection does not ensure that ransomware will target the
decoy files first, thereby placing the victim’s data at considerable risk [35,36].

Entropy has been widely used as a metric in data-centric approaches since it tends to
rise when a file is encrypted. Numerous studies have utilized entropy calculations, such as
Shannon entropy, which quantifies data uncertainty, to identify ransomware threats [35].
For example, Nolen Scaife’s team [37] used Shannon entropy to examine modifications
in files when accessed. The Shannon entropy of a byte array can be computed using
the formula:

e =
255

∑
i=0

Pilog2
1
Pi

Here , Pi is the relative frequency of a byte value i occurring in the array, given by Fi/n,
where n is the total bytes to be analyzed, and Fi is the number of appearance of i such that
n = ∑255

i=0 Fi. The computed result ranges from 0 to 8, with 8 denoting a perfectly balanced
distribution of byte values in the array. Due to the uniform probability distribution in
encrypted files, they often approach the maximum entropy value of 8. The method uses
statistical analysis to identify changes in a user’s file structure before and after access and
also employs a similarity metric based on the concept that successful encryption results in
a distinctly different version of the file.

Kharraz et al. proposed a comparable detection method, called UNVEIL [6], where
they examined the dynamic I/O buffer content and measured the difference in Shannon
entropy between read and write operations. In addition to analyzing the generic I/O
access patterns of ransomware, they identified two indicators of ransomware detection: a
significant increase in entropy between read and write data buffers at a specific file offset
or the creation of new high-entropy files. This observation is crucial because, even when
ransomware overwrites original files with low entropy blocks to securely delete them, it
must generate an encrypted version of the original files. This process inevitably leads to
the generation of high-entropy data during ransomware attacks.

Similarly, REDEMPTION [38], like UNVEIL, calculates the Shannon entropy of the
data buffers associated with each read and write request to a file. By comparing the
entropy values of read and write requests from the same file offset, it becomes a powerful
indicator of ransomware activity. REDEMPTION calculates a malicious score for each
process that requests privileged operations, including factors such as the ratio of modified
blocks in a file and an increase in entropy, as a true positive signal of ransomware detection.
Therefore, an increase in entropy can be considered an important metric for ransomware
detection. However, here we note that just relying on the calculated Shannon entropy
value to distinguish between encrypted and non-encrypted files would be a difficult task
generating a lot of false positives and negatives [39]. In Section 5, we show our experimental
result on this issue.

The NIST randomness test suite can also be used for a similar purpose to identify
suspicious cryptographic operations that result in the writing of high-entropy blocks in the
file system, as in the case of Rcryptect [1]. This test suite includes various tests developed
to assess the randomness of binary sequences. The entropy of binary sequences is tested
based on the assumptions of uniformity and scalability. The test suite compares the test
statistic value computed on the target binary sequence to a critical value determined from
a reference distribution of the statistic under the assumption of randomness. If the test
statistic value surpasses the critical value, the null hypothesis (H0) that the sequence is
random is rejected. Otherwise, H0 is accepted. For instance, the frequency test provides
the most basic evidence of non-randomness and is used to assess entropy levels in this
case. Algorithm 1 explains the frequency test taking a byte sequence buf with size bytes;
Table 1 summarizes the notation used in the algorithm. Contrary to Shannon entropy,
the frequency test can distinguish between non-encrypted and encrypted blocks with an
overwhelming probability [1].

Sensors 2024, 24, 1446 6 of 31

Algorithm 1: Frequency test defined in NIST randomness test suit
Input : buf, size
Output : γ

1 α← 0.01

2 for i← 0 to size− 1 do
3 mask← 0x80 80
4 for j← 0 to 7 do
5 if (∗(buf + i) & mask) then
6 num_1 s← num_1 s + 1
7 else
8 num_0 s← num_0 s + 1
9 end if

10 mask← mask≫ 1
11 end for
12 end for

13 Sobs ← |num_0 s− num_1 s|/
√

size× 8
14 p-value← erfc(Sobs/

√
2)

15 if (p-value < α) then
16 γ← 0 // low entropy
17 else
18 γ← 1 // high entropy
19 end if

20 return γ

In summary, data-centric methods for ransomware detection focus on monitoring
the targets of ransomware, using metrics like entropy to identify abnormal modification.
However, ransomware continues to evolve in ways that can bypass these detection methods.
This will be examined in more depth in the following section.

Table 1. Notations used in Algorithm 1.

Notation Description

α Significance level set to 0.01, indicating a 1% probability threshold for the test
buf Input buffer containing the binary sequence to test
size The number of elements in buf

mask Binary mask initialized to 0x80 to isolate bits in a byte
num_0 s Counter for the number of 0 s in the sequence
num_1 s Counter for the number of 1 s in the sequence

Sobs Computed statistic for the observed discrepancy between the number of 0 s and 1 s
p− values The probability that the observed balance of 0 s and 1 s could occur by chance

γ Frequency test result; 0 for imbalance, 1 for balance.

2.3. Neutralization Methods

Known ransomware variants apply various methods to conceal the high entropy of
encrypted files to circumvent entropy-based detection techniques. The most notable meth-
ods include encoding techniques such as Base64 and ASCII85 encoding. These encoding
methods can reduce the entropy of a ciphertext to a level similar to plaintext. Most of
these encodings consist of lightweight operations, thereby not significantly impacting the
speed of the ransomware attack. However, if the defense system identifies that the file is
encoded, it can effectively detect the file infected with ransomware because decoding can
be performed without the key [40].

Sensors 2024, 24, 1446 7 of 31

As an alternative, FPE can be utilized. FPE is an encryption method that maintains the
same format for plaintext and ciphertext, thus keeping the entropy after encryption similar
to that of plaintext. In [40], the FF1 algorithm was used to circumvent entropy-based ran-
somware detection using the characteristics of FPE. However, this can reduce the speed of
ransomware’s encryption attack due to its high computational complexity. More specifically,
either FF1 or FPEs based on prefix cipher, cycle-walking cipher, and generalized-Feistel
cipher involve repeated execution of block ciphers like AES in their internal operations to
preserve the format of the plaintext. Therefore, compared to the encoding-based neutraliza-
tion methods, it significantly reduces the efficiency of ransomware attacks.

Another neutralization method is the use of intermittent encryption. This method
encrypts only parts of a file, reducing the increase in entropy of the file after encryption.
However, to enhance the efficiency of ransomware attacks using intermittent encryption,
the more the encryption area is reduced, the greater the possibility of file restoration
becomes. In other words, leaving a large portion of the files unencrypted means that for
some file formats, we can extract data from the non-encrypted parts of the files and recover
some of the data from there [41]. On the other hand, as the proportion of the encrypted area
within a file increases, the overall entropy also rises, thereby heightening the likelihood
of detection.

3. Hiding Cryptographic Operations

To address the limitations of previous neutralization techniques, we introduce a novel
ransomware model incorporated by our encoding method that converts blocks with high
entropy, generated by standard cryptographic operations, into larger blocks with lower
entropy. By doing so, ransomware can effectively bypass existing entropy-based detection
techniques. To achieve this, the proposed encoding technique transforms encrypted blocks
into blocks with an average entropy level according to the type of the original file.

3.1. Simple Bit Decomposition for Lowest Entropy

Before going into depth, we show a simple encoding method, providing the lowest
entropy level. For a given standard block cipher E , let P be the plaintext and C be the
ciphertext. Then, we have C = E (P), where P and C are n bytes in length. Let C =
C1∥C2∥ . . . ∥Cn−1∥Cn, where the symbol ∥means byte concatenation.

Due to the essential property of standard block ciphers, C presents high entropy with
overwhelming probability. For each subbyte Ci, we can encode it as the lowest entropy
blocks of n × 8 bytes in length. If we denote

Ci 7→ b0 b1 b2 b3 b4 b5 b6 b7,

this gives us:
Ci[0] 7→ b0 0 0 0 0 0 0 0
Ci[1] 7→ 0 b1 0 0 0 0 0 0

...
Ci[7] 7→ 0 0 0 0 0 0 0 b7

This can be simply generalized as follows:

Ci[j] = {bj ≪ (7− j)}, where j ∈ [0, 7].

Here, the crucial observation is that, as shown in Section 4, this simple encoding
can be easily defeated by detecting frequent appearances of lowest-entropy blocks in
the file systems. In the following, our proposed encoding method solves this problem
by converting high-entropy blocks of cryptographic outcomes into mid-level blocks of
benign files.

Sensors 2024, 24, 1446 8 of 31

3.2. Proposed Scheme

The ransomware under consideration in our study exhibits several key characteristics:
Firstly, it employs standard cryptographic functions for encrypting files. Secondly, the
entropy level of the blocks written to files during an attack is neither excessively high nor
low, closely mirroring that of a benign file. Thirdly, the process employed to reduce entropy
does not substantially affect the speed of the encryption attack. Last but not least, the
decoding process must be dependent on secret information. To satisfy these characteristics,
we propose an advanced encoding technique, named entropy sharing. This method will be
elaborated on in the following.

3.2.1. Entropy Sharing

Figure 1 illustrates the overall ransomware attack and restoration procedures, incor-
porating the proposed encoding and decoding techniques. Table 2 provides a summary
of descriptions for each notation, which will be used throughout this paper. In particu-
lar, Figure 1a demonstrates how entropy sharing converts a high-entropy ciphertext into a
byte sequence with benign-level entropy. For a secret key denoted by K and a plaintext
denoted by P , respectively, E represents a standard block cipher such as the AES algorithm
used by ransomware to encrypt victim’s files. While ransomware typically writes the
resulting C to the file system, the new ransomware threat model utilizes entropy sharing, a
post-processing step that transforms high-entropy blocks into benign-level ones, to bypass
detection methods based on entropy.

⊕

𝒢 (∙ , ℬ𝑓)

⋯ 𝐶𝑖 ⋯

Encryption

Entropy

Sharing

ℰ(𝒦,𝒫)

𝒞

𝑆𝑖 1 𝑆𝑖[2] ⋯ 𝑆𝑖[𝑚] 𝑎𝑖

(a)

⋯ 𝐶𝑖 ⋯

⊕

𝒞

𝒟(𝒦, 𝒞)

𝒫

Entropy

Recomposition

Decryption

𝑆𝑖 1 𝑆𝑖[2] ⋯ 𝑆𝑖[𝑚] 𝑎𝑖

(b)

Figure 1. Overview of ransomware attack (a) and restore (b) using entropy sharing and recompo-
sition, respectively. (a) Entropy sharing following encryption; (b) entropy recomposition followed
by decryption.

Sensors 2024, 24, 1446 9 of 31

Table 2. Notations used in entropy sharing.

Notation Description

P Plaintext
C Ciphertext
K Secret key

E(K,P) Encryption taking K and P
D(K, C) Decryption taking K and C
B f Benign file, where f ∈ F
G Byte-sequence generator of benign-level entropy

taking a subbyte of C and B f
m Order of entropy shares
V Victim’s original file
V Victim’s encrypted file

For an n-byte ciphertext C computed by E(K,P), entropy sharing takes each subbyte
Ci∈{1,n} and divides it into m + 1 shares. Then, we have an n×m byte stream consisting of
n sequences of Si[1]||Si[2]|| . . . ||Si[m], which exhibits a non-random distribution, thereby
providing a benign-level of entropy. To achieve this purpose, let us assume that there exists
a generator G(Ci,B f), which splits Ci into m + 1 shares (Si[1], Si[2], . . . , Si[m], ai) such that

Ci =
m⊕

j=1

Si[j]⊕ ai,

where B f is a reference file packaged within the ransomware. In other words, G extracts
a byte stream with a benign level of entropy from B f and splits Ci into the m + 1 shares.
Finally, entropy sharing replaces Ci with the G’s output and writes it to the victim’s file.
Figure 2 describes this overall process of entropy sharing.

⋯ ⋯ ⋯

ℬ𝑓

⋯ ⋯ 𝑃1 ⋯ 𝑃𝑛

⋮

⋮

𝑆𝑖 1 𝑆𝑖[2] ⋯ 𝑆𝑖[𝑚] 𝑎𝑖

𝑖

⊕

⊕

𝑚

𝑆𝑖 1 𝑆𝑖[2] ⋯ 𝑆𝑖[𝑚]

𝑆1 1 𝑆1[2] ⋯ 𝑆1[𝑚] 𝑆1 1 𝑆1[2] ⋯ 𝑆1[𝑚] 𝑎1

𝒱

𝑚+ 1

ℰ(𝒦,𝒫)

𝐶1 ⋯ 𝐶𝑖 ⋯

𝑺𝟏 𝟏 𝑺𝟏[𝟐] ⋯ 𝑺𝟏[𝒎] 𝒂𝟏𝒱 𝑺𝒊 𝟏 𝑺𝒊[𝟐] ⋯ 𝑺𝒊[𝒎] 𝒂𝒊

Figure 2. G’s operation generating benign-level entropy using Ci and B f as inputs.

Ransomware today often encrypts only a specific set of file types that are commonly
used and vital in both personal and business settings. Attackers use encryption to take
crucial data hostage, demanding ransom from victims for decryption keys. By focusing on
these particular file formats, ransomware aims to impact many users, thereby increasing the
probability of receiving ransom payments. Let F represent this set of file types, including
{.jpg, .pdf, .pptx, .docx, .mp3, .mp4, .txt, .zip, etc.}. When a file of type f ∈ F is targeted, G

Sensors 2024, 24, 1446 10 of 31

uses a reference file B f to produce an entropy level similar to what is typically seen in files
of type f .

In simpler terms, G sequentially reads m bytes from B f for each Ci. Considering that
the size of ransomware-targeted files might be larger than that of the benign files B f , these
are handled as if they were in a circular queue-like structure. Since ai is not predominant
in terms of entropy within the entire m + 1 bytes, the resulting encoded output exhibits
the entropy levels of benign files. This similarity poses a significant challenge for current
detection methods to distinguish between files held hostage by ransomware and original
files (detailed discussion in Section 4).

3.2.2. Entropy Recomposition

Suppose that the victim pays the ransom for restoring the encrypted files. In this
case, a restoration process may be expected to recover the encrypted files (in reality, only
54% of victims reportedly paid the ransom and got data back. “The state of ransomware
2023”, A SOPHOS whitepaper, May 2023). This can be achieved through the proposed
entropy recomposition. Figure 1b demonstrates how entropy recomposition restores C from
G’s output followed by decryption P = D(K, C).

For a corrupted file V which is attacked by entropy sharing, this can be grouped into
m + 1 byte units. Then, restoring V from V , shown in Figure 3, can be performed as follows.
First, m + 1 bytes, say (S1[1], S1[2], . . . , S1[m], a1), are read from the victim’s encrypted file
V . Second, obtaining C1 can be performed by recomposition as follows:

C1 =
m⊕

j=1

S1[j]⊕ a1.

𝑺𝟏 𝟏 𝑺𝟏[𝟐] ⋯ 𝑺𝟏[𝒎] 𝒂𝟏 𝑺𝒊 𝟏 𝑺𝒊[𝟐] ⋯ 𝑺𝒊[𝒎] 𝒂𝒊

⋯ ⋯ 𝑃1 ⋯ 𝑃𝑛

𝑆𝑖 1 𝑆𝑖[2] ⋯ 𝑆𝑖[𝑚] 𝑎𝑖

⊕

⊕𝑆1 1 𝑆1[2] ⋯ 𝑆1[𝑚] 𝑎1

𝒱

𝑚+ 1

𝒟(𝒦, 𝒞)

𝐶1 ⋯ 𝐶𝑖 ⋯

⋯ ⋯ ⋯𝒱

Figure 3. Restoring a victim’s file using entropy recomposition and decryption.

Next, the n-byte ciphertext C can be obtained by repeating n times. Lastly, D(K, C)
gives us P .

The proposed scheme involves simple XOR operations to the existing standard cryp-
tographic functions and thus has little impact on the computational cost of ransomware
operation. In the following section, we will provide a more detailed explanation based on
various experiments.

Sensors 2024, 24, 1446 11 of 31

4. Evaluation

In this section, we investigate the impact of entropy sharing on encrypted samples
by using the AES-128 algorithm. We omit experiments involving other cryptographic
algorithms for entropy sharing and recomposition, as various standard ciphers, including
asymmetric key algorithms, used in ransomware, are known to produce similar entropy
patterns in their blocks [1]. Our analysis focuses on assessing the pass rate and p-values
of the frequency test for the original files, the resulting ciphertexts, and their encoded
outputs obtained through entropy sharing. Furthermore, we provide an evaluation of the
computational costs involved. Please take note of the analysis of the impact of simple
bit decomposition in Section 5.2. In a concise summary, it is observed that simple bit
decomposition yields negligible p-values due to the encoding of each byte in 8-byte values,
which possess the HW of only 8.

4.1. Experimental Environment and Methods

Based on a Windows 11 host machine featuring an AMD 8-Core Processor with a
clock speed of 3.4 GHz and 32 GB of RAM, the following experiments were conducted
on an Ubuntu 22.04 guest operating system. This was achieved through the utilization of
VMware Workstation 17 Player, which assigned 4 cores and 16 GB of RAM.

Consider the setF = {mp3, jpg, pdf, zip}, for which we collected 100 sample files for each
type f ∈ F with each sample ranging in size from 1 to 20 MB. The frequency test conducted
in our experiments follows the outlined procedure. Each sample file was read in binary
mode and divided into 100 binary sequences. For each binary sequence, the frequency test
was carried out with a significance level of α = 0.01. Under NIST SP 800-22 [42], if 96 or
more out of the 100 binary sequences are determined to be random, the sample file can
be classified as random. To visualize the results of the frequency test, we calculated the
pass rate and the average p-values on the 100 binary sequences of each file. To provide
a complete view of the results for the pass rates and average p-values of individual files
across the 100 samples for each type, we present a graphical representation using box plots,
displaying the five-number summary: the minimum, the maximum, the sample median,
and the first and third quartiles.

Based on this, B f files were prepared for each type f to demonstrate the outcomes of
the proposed entropy sharing. The detailed experimental procedure performed on 100 sam-
ples for each type is as follows:

1. Conduct a frequency test on an original (non-encrypted) sample file.
2. Encrypt the original file using the AES-128 algorithm in ECB mode. Perform a

frequency test on the resulting ciphertext.
3. Apply entropy sharing to encode the mentioned ciphertext. For each type, B f is

employed, and the order of entropy shares is defined as m ∈ {0, 1, 3, 5, 7, 9}. Notably,
when m = 0, it signifies the encrypted file without entropy sharing. Once the outcomes
for each order are acquired, proceed to conduct the frequency test.

4. To assess the impact of the secret keys input into AES, the same experiment is repli-
cated using eight distinct secret keys, as shown in Table 3.

Table 3. Secret keys used in the AES-128 algorithm.

K
1 0x67C6697351FF4AEC29CDBAABF2FBE346
2 0x7CC254F81BE8E78D765A2E63339FC99A
3 0x66320DB73158A35A255D051758E95ED4
4 0xABB2CDC69BB454110E827441213DDC87
5 0x70E93EA141E1FC673E017E97EADC6B96
6 0x8F385C2AECB03BFB32AF3C54EC18DB5C
7 0x021AFE43FBFAAA3AFB29D1E6053C7C94
8 0x75D8BE6189F95CBBA8990F95B1EBF1B3

Sensors 2024, 24, 1446 12 of 31

4.2. Experimental Results on Entropy Sharing

Moving forward, we present a range of experimental findings concerning entropy
sharing and the frequency test. As previously explained, four samples were prepared as
B f , where f ∈ F , and they show the pass rate and the average p-values on the frequency
test as shown in Table 4. In light of these outcomes, these benign files can be utilized to
contribute a benign level of entropy, serving as non-random samples for each type f .

Table 4. The frequency test results on B f .

f Pass Rate Average p-Values

mp3 5 0.005085
jpg 2 0.006348
pdf 1 0.001249
zip 10 0.026651

The original files within set F are determined to exhibit non-random results in the
frequency test. However, when subjected to encryption using the AES-128 algorithm, they
transform into random binary sequences regardless of the file type. Nevertheless, entropy
sharing on the encrypted samples reveals a significant reduction in entropy. Figures 4 and 5
depicts the pass rates and average p-values of the frequency test for each type of original
sample files, encrypted files under K#1, and the encoded outputs across different orders,
respectively. Note that a comprehensive collection of pass rates, obtained by applying
eight distinct secret keys, can be located in Appendix A. Notably, as the order m of entropy
shares increases, the entropy diminishes visibly. This observation underscores that en-
tropy sharing can effectively circumvent existing entropy-based detection of cryptographic
operations in ransomware. Figure 6 presents the average pass rates on the outcomes of
applying entropy sharing to encrypted files when different secret keys, as shown in Table 3,
are injected into AES. Figure 6a illustrates this in a three-dimensional representation, while
Figure 6b projects the results onto a two-dimensional plane by overlaying the eight graphs.
An intriguing observation here is that despite changing the secret key, there is a slight
variation in the pass rates.

P
a

ss
 R

a
te

(a)

P
a

ss
 R

a
te

(b)

Figure 4. Cont.

Sensors 2024, 24, 1446 13 of 31

P
a

ss
 R

a
te

(c)

P
a

ss
 R

a
te

(d)

Figure 4. Pass rates of the frequency test on 100 binary sequences across four sample types using K#1.
ORG: original sample files. Here, m = 0 represents encrypted files. (a) mp3; (b) jpg; (c) pdf; (d) zip.

A
v
e

ra
g

e
 P

-v
a

lu
e

(a)

A
v
e

ra
g

e
 P

-v
a

lu
e

(b)

Figure 5. Cont.

Sensors 2024, 24, 1446 14 of 31

A
v
e

ra
g

e
 P

-v
a

lu
e

(c)

A
v
e

ra
g

e
 P

-v
a

lu
e

(d)

Figure 5. Average P-values for the frequency test on 100 binary sequences across four sample types
using K#1. (a) mp3; (b) jpg; (c) pdf; (d) zip.

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(a)

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(c)

0

0.2

0.4

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(d)

Figure 6. Average pass rates and p-values for frequency test on 100 binary sequences for each JPG
sample file using each of 8 different keys. (a) Overlapping average pass rates; (b) average pass rates;
(c) overlapping average p-values; (d) average p-values.

Sensors 2024, 24, 1446 15 of 31

4.3. Computational Costs

We validate the impact of entropy sharing on encryption speed, thereby examining
its effect on the speed of ransomware attacks. To achieve this, the following experiments
were conducted:

1. Measure the latency when operating the AES-128 algorithm in ECB mode for each file.
In this case, m = 0.

2. Measure the time taken for encryption and encoding to complete for mi ∈ {1, 3, 5, 7, 9}.
3. Divide the size of the encrypted or the encrypted and encoded result file into 16-byte

blocks to measure the increase in attack time for a single block.
4. Calculate the ratio for each order as the elapsed time for mi divided by the elpased

time for m = 0.

Upon decrypting either the encrypted file or the file corrupted using both encryption
and entropy sharing, we also experimentally verify the time required for restoration via
decryption and subsequent entropy recomposition. The results will contribute to a compre-
hensive understanding of the practical implications of using entropy recomposition for data
recovery.

As indicated in Table 5, entropy sharing results in a mere 1% overhead, while entropy
recomposition introduces an additional time of less than 1%, in comparison to encryption
and decryption, respectively. Notably, the computational expenses of entropy recomposition
exhibit a tendency to diminish as the order of shares m increases. This can be attributed to
the reduction in the number of XOR operation loops during the decoding process, wherein,
in each loop iteration, m + 1 bytes are consolidated into a single byte, which is a process
that becomes more noticeable as the value of m increases.

Table 5. The elapsed time for encryption and decryption for a single block with entropy sharing and
entropy recomposition, respectively.

m Entropy Sharing Entropy Recomposition

Elapsed Time (µs) Ratio Elapsed Time (µs) Ratio

0 0.37007 1 0.36518 1
1 0.37396 1.0105 0.36698 1.0049
3 0.37410 1.0108 0.36612 1.0025
5 0.37416 1.0110 0.36563 1.0016
7 0.37431 1.0114 0.36563 1.0012
9 0.37460 1.0122 0.36554 1.0009

5. Discussion

In this section, we explore the effectiveness and limitations of entropy recomposition as
a countermeasure against entropy sharing in ransomware. We note the pitfalls of simple
bit decomposition in reducing file entropy. Additionally, we discuss the difficulty in
distinguishing encrypted from non-encrypted files using Shannon entropy. Finally, we
consider the memory requirements and detection issues related to ransomware attacks that
utilize entropy sharing.

5.1. Entropy Recomposition at Arbitrary Ratios for Counteracting Entropy Sharing

Up to this point, we have demonstrated the effectiveness of entropy sharing as a
means to effectively evade entropy-based ransomware detection techniques. In light of the
emergence of such novel threats, let us delve into the discussion of entropy-based detection
methods aimed at preemptively countering these challenges.

As seen in the decoding process facilitated by entropy recomposition, if the order of
entropy shares m can be accurately inferred, it would be feasible to detect the cryptographic
operations of ransomware protected by entropy sharing. This detection could be achieved
through compression by XORing m + 1 bytes into a single byte for every writing block in
the file system, as illustrated in Figure 7.

Sensors 2024, 24, 1446 16 of 31

⋯ ⋯ 𝑺𝟏 𝟏 𝑺𝟏[𝟐] ⋯ 𝑺𝟏[𝒎] 𝒂𝟏

𝑆𝑖 1 𝑆𝑖[2] ⋯ 𝑆𝑖[𝑚] 𝑎𝑖
⊕

𝑆1 1 𝑆1[2] ⋯ 𝑆1[𝑚] 𝑎1

𝑺𝒊 𝟏 𝑺𝒊[𝟐] ⋯ 𝑺𝒊[𝒎] 𝒂𝒊𝒱

𝐶1 ⋯ 𝐶𝑖 ⋯⋯

Entropy-based Detection

⊕

𝐶1 ⋯ 𝐶𝑖 ⋯

Figure 7. Illustration of potential detection scenario for ransomware cryptographic operations with
entropy sharing.

However, there are two key considerations to address in this approach. First, due to the
unknown order of entropy shares selected by ransomware, accurately deducing it proves
challenging, requiring the use of an arbitrary compression ratio r:1 for recomposition. While
a ratio of r = m + 1 has a high likelihood of detecting cryptographic operations by decoding
input blocks back to their original ciphertext, different scenarios where r ̸= m + 1 require
empirical investigation to understand their implications. Second, although encoded blocks
from entropy sharing tend to exhibit higher entropy when compressed correctly, the impact
of entropy on non-encrypted files also becomes crucial under arbitrary compression ratios
of r:1. If this leads to the generation of blocks with increased entropy, it can lead to a rise in
false positives, subsequently thereby affecting the overall accuracy of the detection system.

To address these concerns, a series of experiments were conducted. For each original
file among the set of 100 sample jpg files, we performed the following procedures for
various r ∈ {2, 4, 6, 8, 10}:

• XOR compression was applied with a r:1 ratio.
• AES encryption using K#1 was performed, followed by r:1 XOR compression.
• Entropy sharing was applied with m = 3 after the AES encryption using K#1, followed

by r:1 XOR compression.

The average of the pass rates for the frequency test was computed for each case.
The experimental results, depicted in Figure 8, yield several key insights: Encrypted

files (where m = 0) display randomness independent of the compression ratio r. For
encoded outcomes (where m = 3), randomness is observed when r ≥ m + 1. Non-encrypted
original files (ORG) start exhibiting a significantly higher level of randomness beginning
at a compression ratio r = 4. Notably, even at r = 2, some blocks are already identified
as random. This suggests that during recomposition at a given ratio r, if r = m + 1, the
encoded blocks are accurately decoded back to blocks of the original ciphertext. However,
as r increases, the non-encrypted blocks exhibit increasingly higher entropy, leading to
a significant false positive rate. For this reason, the inability to ascertain the exact order
of entropy sharing renders precise decoding unfeasible and results in a high rate of false
positives, thereby hindering the effective operation of ransomware detection systems.

Sensors 2024, 24, 1446 17 of 31

(a)

(b)

(c)

Figure 8. Average pass rates of frequency test vs. compression ratios r on original, encrypted, and
encoded files. (a) ORG; (b) m = 0; (c) m = 3.

Sensors 2024, 24, 1446 18 of 31

5.2. Simple Bit Decomposition: Implications and Experiments

In Section 3.1, we proposed simple bit decomposition as the most straightforward
approach to significantly decrease the entropy of encrypted files. However, as mentioned
earlier, this encoding method excessively diminishes the entropy of the output, potentially
rendering it susceptible to detection through entropy-based cryptographic operation anal-
ysis aimed at identifying low-entropy blocks. We aim to present experimental results to
illustrate this effect.

To this end, we conducted frequency tests on a total of 400 samples across the four
previously mentioned types, following AES encryption and the subsequent application
of simple bit decomposition. The experimental results revealed that for all files, the pass
rate was consistently 0, and p-values, being so small that it could not even be represented
as a floating-point number, consistently resulted in a value of 0. This signifies that the
application of simple bit decomposition to the encrypted results leads to an effectively
negligible level of entropy.

5.3. False Positives and Negatives Related to Shannon Entropy

As detailed in Section 2, the attempt to distinguish encrypted and non-encrypted
files through Shannon entropy calculation for a designated block encounters challenges
of false positives and false negatives. To directly validate this assertion, we subjected the
previously utilized samples to encryption and entropy sharing, subsequently computing the
Shannon entropy.

The obtained experimental results are presented in Table 6. Taking into account the
standard deviation for each scenario, it becomes evident that calculating the Shannon
entropy value does not yield a distinct demarcation between non-encrypted original files
and encrypted (and encoded) files.

Table 6. Average and standard deviation (S.D.) of Shannon entropy values for original, encrypted,
and encoded files.

ORG
m

0 1 3 5 7 9

Shannon entropy avg. 7.935655 7.998874 7.995119 7.98972 7.987368 7.985997 7.985153
S.D. 0.127836 0.005177 0.000277 0.00038 0.000335 0.000238 0.000202

5.4. Issue on Additional Memory Requirement

There are two main types of ransomware attack methods. The first involves overwrit-
ing the original with the encrypted result, while the second involves creating new files and
storing the encrypted data there. In the latter case, the original files are either deleted or
overwritten with meaningless values, making recovery impossible.

One consideration when ransomware conducts an attack through entropy sharing is
the increase in memory space occupied by the attacked files. The most significant increase
occurs when encrypting the entire file; if the attack is conducted with the given order of
shares m, the size of the ciphertext can increase by up to m + 1 times. To reduce such an
increase in file size, intermittent (or partial) encryption can be applied. When overwriting
the ciphertext with increased size onto the original, there is a risk of losing yet-to-be-
encrypted original blocks. To address this issue, it is possible to read the plaintext blocks in
advance before encryption or append the latter part of ciphertext blocks exceeding the size
of plaintext blocks to the end of the file.

To prepare for the scenario where ransomware is detected through the pattern of
increasing the original file’s size, it is also possible to write the latter parts of ciphertext
blocks exceeding the size of plaintext blocks in a separate file. In this case, additional
metadata need to be provided during the entropy recomposition process to indicate how each
ciphertext block should be combined with a specific original file. Since this I/O pattern is

Sensors 2024, 24, 1446 19 of 31

not easy to be distinguishable from legitimate file operations (due to the benign level of
entropy), checking I/O access patterns and entropy leads to a decrease in the true positive
rate for detecting ransomware.

6. Conclusions and Future Work

Existing ransomware may perform standard encryption operations, not lightweight
encryption, to reduce the possibility of decryption. As a result, high entropy inevitably
occurs when ransomware operates. Accordingly, entropy-based detection techniques have
intensively used the high entropy occurring during the operation of ransomware. The
existing methods of neutralization techniques for bypassing entropy-based detection have
limited efficiency and destructive effects of ransomware. In this study, we demonstrated
that even ransomware applying standard encryption can effectively neutralize the nu-
merous entropy-based detection techniques proposed so far. Specifically, we proposed an
encoding technique called entropy sharing, which strongly reduces the encryption operation
result to the benign level of entropy that a non-encrypted regular file has, and proved that
the computational cost it imposes is very low and does not significantly affect the cost of
ransomware attacks. We also proposed a decoding method called entropy recomposition as
an inverse operation of entropy sharing. Here, entropy recomposition requires knowledge of
the order of entropy sharing to enable successful decoding. Through a series of experiments
employing the frequency test as defined in NIST SP 800-22, we have demonstrated that
entropy sharing can effectively circumvent current entropy-based ransomware detection
methods. This is achieved by presenting non-randomness in cryptographic operations
across various sample files. These findings highlight the necessity for a new, reliable run-
time detection system capable of countering potential ransomware threats. Our future
research will focus on developing innovative detection techniques that are robust against
both existing ransomware variants and the novel threat model introduced in this paper.

Author Contributions: Conceptualization, S.L.; methodology, S.L. and J.B.; software, J.B.; valida-
tion, S.L. and J.B.; formal analysis, S.L.; investigation, J.B.; resources, J.B.; writing—original draft
preparation, J.B.; writing—review and editing, J.N.K.; visualization, J.B.; supervision, J.N.K.; project
administration, J.N.K.; funding acquisition, J.N.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Korea Research Institute for defense Technology planning and
advancement(KRIT) grant funded by the Korea government(DAPA(Defense Acquisition Program
Administration)) (No. 20-107-A00-005-001, Cyber threat context awareness-based active response
technology for defense against the spread of cyber battlefield attacks, 2023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Full Experimental Results for 8 Different Keys

To empirically demonstrate the effects of entropy sharing, a series of experiments were
conducted involving a collection of 100 files for each of the following types: mp3, jpg, pdf,
and zip. For each file type, the original file, encrypted file, and result files for different
orders of entropy shares (m = 1, 3, 5, 7, 9) were subjected to frequency tests, yielding pass
rates and p-values. To analyze the influence of encryption keys on encryption, the process
was repeated by encrypting with eight distinct random secret keys before analyzing the
results of entropy sharing. Due to space constraints within the paper, the corresponding box
plots illustrating the aforementioned experiments will be included in this appendix.

Figures A1–A4 show the pass rates, and Figures A5–A8 illustrate the p-values averages
of the frequency test for K#1–K#8. As shown in these figures, the experiment results are

Sensors 2024, 24, 1446 20 of 31

consistent with the analysis provided in Section 4. Lastly, Figures A9 and A10 tell us that
the key has nearly no effect on the pass rates and p-values of the frequency test.

P
a

ss
 R

a
te

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A1. Pass rates of frequency test with 8 different keys on MP3 samples. (a) K#1; (b) K#2;
(c) K#3; (d) K#4; (e) K#5; (f) K#6; (g) K#7; (h) K#8.

P
a

ss
 R

a
te

(a) (b)

Figure A2. Cont.

Sensors 2024, 24, 1446 21 of 31

(c) (d)

(e) (f)

(g) (h)

Figure A2. Pass rates of frequency test with 8 different keys on JPG samples. (a) K#1; (b) K#2; (c) K#3;
(d) K#4; (e) K#5; (f) K#6; (g) K#7; (h) K#8.

P
a

ss
 R

a
te

(a) (b)

(c) (d)

Figure A3. Cont.

Sensors 2024, 24, 1446 22 of 31

(e) (f)

(g) (h)

Figure A3. Pass rates of frequency test with 8 different keys on PDF samples. (a) K#1; (b) K#2;
(c) K#3; (d) K#4; (e) K#5; (f) K#6; (g) K#7; (h) K#8.

P
a

ss
 R

a
te

(a) (b)

(c) (d)

(e) (f)

Figure A4. Cont.

Sensors 2024, 24, 1446 23 of 31

(g) (h)

Figure A4. Pass rates of frequency test with 8 different keys on ZIP samples. (a) K#1; (b) K#2; (c) K#3;
(d) K#4; (e) K#5; (f) K#6; (g) K#7; (h) K#8.

A
v
e

ra
g

e
 P

-v
a

lu
e

(a) (b)

(c) (d)

(e) (f)

Figure A5. Cont.

Sensors 2024, 24, 1446 24 of 31

(g) (h)

Figure A5. p-values averages of frequency test with 8 different keys on MP3 samples. (a)K#1; (b)K#2;
(c) K#3; (d) K#4; (e) K#5; (f) K#6; (g) K#7; (h) K#8.

A
v
e

ra
g

e
 P

-v
a

lu
e

(a) (b)

(c) (d)

(e) (f)

Figure A6. Cont.

Sensors 2024, 24, 1446 25 of 31

(g) (h)

Figure A6. p-values averages of frequency test with 8 different keys on JPG samples. (a) K#1; (b) K#2;
(c) K#3; (d) K#4; (e) K#5; (f) K#6; (g) K#7; (h) K#8.

A
v
e

ra
g

e
 P

-v
a

lu
e

(a) (b)

(c) (d)

(e) (f)

Figure A7. Cont.

Sensors 2024, 24, 1446 26 of 31

(g) (h)

Figure A7. p-values averages of frequency test with 8 different keys on PDF samples. (a)K#1; (b)K#2;
(c) K#3; (d) K#4; (e) K#5; (f) K#6; (g) K#7; (h) K#8.

A
v
e

ra
g

e
 P

-v
a

lu
e

(a) (b)

(c) (d)

(e) (f)

Figure A8. Cont.

Sensors 2024, 24, 1446 27 of 31

(g) (h)

Figure A8. p-values averages of frequency test with 8 different keys on ZIP samples. (a) K#1; (b) K#2;
(c) K#3; (d) K#4; (e) K#5; (f) K#6; (g) K#7; (h) K#8.

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(a)

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(b)

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(c)

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(d)

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(e)

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(f)

Figure A9. Cont.

Sensors 2024, 24, 1446 28 of 31

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(g)

0

20

40

60

80

100

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(h)

Figure A9. Two-dimensional (2D) and 3D visualization of pass rate averages across 8 different keys
for frequency test on each sample type. (a) Overlapping average MP3 pass rates; (b) average MP3
pass rates; (c) overlapping average JPG pass rates; (d) average JPG pass rates; (e) overlapping average
PDF pass rates; (f) average PDF pass rates; (g) overlapping average ZIP pass rates; (h) average ZIP
pass rates.

0

0.1

0.2

0.3

0.4

0.5

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(a)

0

0.2

0.4

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(c)

0

0.2

0.4

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(e)

0

0.2

0.4

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(f)

Figure A10. Cont.

Sensors 2024, 24, 1446 29 of 31

0

0.1

0.2

0.3

0.4

0.5

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(g)

0

0.2

0.4

0.6

key 1 key 2 key 3 key 4 key 5 key 6 key 7 key 8

(h)

Figure A10. Two-dimensional (2D) and 3D visualization of p-values averages across 8 different keys
for frequency test on each sample type. (a) Overlapping average MP3 p-values; (b) average MP3
p-values; (c) overlapping average JPG p-values; (d) average JPG p-values; (e) overlapping average
PDF p-values; (f) average PDF p-values; (g) overlapping average ZIP p-values; (h) average ZIP
p-values.

References
1. Lee, S.;Jho, N.-s.; Chung, D.; Kang, Y.; Kim, M. Rcryptect: Real-time detection of cryptographic function in the user-space

filesystem. Comput. Secur. 2022, 112, 102512. [CrossRef]
2. Oz, H.; Aris, A.; Levi, A.; Uluagac, A.S. A Survey on Ransomware: Evolution, Taxonomy, and Defense Solutions. ACM Comput.

Surv. 2022, 54, 238. [CrossRef]
3. Ahmed, J.; Gharakheili, H.H.; Russell, C.; Sivaraman, V. Automatic detection of DGA-enabled malware using SDN and traffic

behavioral modeling. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2922–2939. [CrossRef]
4. Andronio, N.; Zanero, S.; Maggi, F. HelDroid: Dissecting and Detecting Mobile Ransomware. In Proceedings of the 18th

International Symposium, RAID 2015, Kyoto, Japan, 2–4 November 2015; Bos, H., Monrose, F., Blanc, G., Eds.; Springer: Cham,
Switzerland, 2015; pp. 382–404. [CrossRef]

5. Palisse, A.; Le Bouder, H.; Lanet, J.L.; Le Guernic, C.; Legay, A. Ransomware and the Legacy Crypto API. In Proceedings of the
11th International Conference, CRiSIS 2016, Roscoff, France, 5–7 September 2016; Cuppens, F., Cuppens, N., Lanet, J.L., Legay, A.,
Eds.; Springer: Cham, Switzerland, 2017; pp. 11–28. [CrossRef]

6. Kharaz, A.; Arshad, S.; Mulliner, C.; Robertson, W.; Kirda, E. UNVEIL: A Large-Scale, Automated Approach to Detecting
Ransomware. In Proceedings of the 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016;
pp. 757–772. Available online: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
(accessed on 11 November 2023).

7. Ahmadian, M.M.; Shahriari, H.R. 2entFOX: A framework for high survivable ransomwares detection. In Proceedings of the 2016
13th International Iranian Society of Cryptology Conference on Information Security and Cryptology (ISCISC), Tehran, Iran, 7–8
September 2016; pp. 79–84. [CrossRef]

8. Alhawi, O.; Baldwin, J.; Dehghantanha, A. Leveraging Machine Learning Techniques for Windows Ransomware Network Traffic
Detection. In Cyber Threat Intelligence; Springer: Berlin/Heidelberg, Germany, 2018; pp. 93–106. [CrossRef]

9. Cohen, A.; Nissim, N. Trusted detection of ransomware in a private cloud using machine learning methods leveraging meta-
features from volatile memory. Expert Syst. Appl. 2018, 102, 158–178. [CrossRef]

10. Maniath, S.; Ashok, A.; Poornachandran, P.; Sujadevi, V.; Sankar A.U., P.; Jan, S. Deep learning LSTM based ransomware detection.
In Proceedings of the 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 26–27
October 2017; pp. 442–446. [CrossRef]

11. Cusack, G.; Michel, O.; Keller, E. Machine Learning-Based Detection of Ransomware Using SDN. In Proceedings of the
CODASPY’18: Eighth ACM Conference on Data and Application Security and Privacy, Tempe, AZ, USA, 21 March 2018;
SDN-NFV Sec’18. pp. 1–6. [CrossRef]

12. Homayoun, S.; Dehghantanha, A.; Ahmadzadeh, M.; Hashemi, S.; Khayami, R.; Choo, K.K.R.; Newton, D.E. DRTHIS: Deep
ransomware threat hunting and intelligence system at the fog layer. Future Gener. Comput. Syst. 2019, 90, 94–104. [CrossRef]

13. Homayoun, S.; Dehghantanha, A.; Ahmadzadeh, M.; Hashemi, S.; Khayami, R. Know Abnormal, Find Evil: Frequent Pattern
Mining for Ransomware Threat Hunting and Intelligence. IEEE Trans. Emerg. Top. Comput. 2020, 8, 341–351. [CrossRef]

14. Nissim, N.; Lapidot, Y.; Cohen, A.; Elovici, Y. Trusted system-calls analysis methodology aimed at detection of compromised
virtual machines using sequential mining. Knowl.-Based Syst. 2018, 153, 147–175. [CrossRef]

15. Rhode, M.; Burnap, P.; Jones, K. Early-stage malware prediction using recurrent neural networks. Comput. Secur. 2018, 77, 578–594.
[CrossRef]

16. Vinayakumar, R.; Soman, K.; Senthil Velan, K.; Ganorkar, S. Evaluating shallow and deep networks for ransomware detection and
classification. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics
(ICACCI), Udupi, India, 13–16 September 2017; pp. 259–265. [CrossRef]

http://doi.org/10.1016/j.cose.2021.102512
http://dx.doi.org/10.1145/3514229
http://dx.doi.org/10.1109/TNSE.2022.3173591
http://dx.doi.org/10.1007/978-3-319-26362-5_18
http://dx.doi.org/10.1007/978-3-319-54876-0_2
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
http://dx.doi.org/10.1109/ISCISC.2016.7736455
http://dx.doi.org/10.1007/978-3-319-73951-9_5
http://dx.doi.org/10.1016/j.eswa.2018.02.039
http://dx.doi.org/10.1109/RDCAPE.2017.8358312
http://dx.doi.org/10.1145/3180465.3180467
http://dx.doi.org/10.1016/j.future.2018.07.045
http://dx.doi.org/10.1109/TETC.2017.2756908
http://dx.doi.org/10.1016/j.knosys.2018.04.033
http://dx.doi.org/10.1016/j.cose.2018.05.010
http://dx.doi.org/10.1109/ICACCI.2017.8125850

Sensors 2024, 24, 1446 30 of 31

17. Wan, Y.L.; Chang, J.C.; Chen, R.J.; Wang, S.J. Feature-Selection-Based Ransomware Detection with Machine Learning of Data
Analysis. In Proceedings of the 2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya,
Japan, 27–30 April 2018; pp. 85–88. [CrossRef]

18. Zhang, H.; Xiao, X.; Mercaldo, F.; Ni, S.; Martinelli, F.; Sangaiah, A.K. Classification of ransomware families with machine
learning based onN-gram of opcodes. Future Gener. Comput. Syst. 2019, 90, 211–221. [CrossRef]

19. Daku, H.; Zavarsky, P.; Malik, Y. Behavioral-Based Classification and Identification of Ransomware Variants Using Machine
Learning. In Proceedings of the 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing and
Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York,
NY, USA, 1–3 August 2018; pp. 1560–1564. [CrossRef]

20. Bai, J.; Wang, J. Improving malware detection using multi-view ensemble learning. Secur. Commun. Netw. 2016, 9, 4227–4241.
[CrossRef]

21. Krawczyk, B.; Minku, L.L.; Gama, J.; Stefanowski, J.; Woźniak, M. Ensemble learning for data stream analysis: A survey. Inf.
Fusion 2017, 37, 132–156. [CrossRef]

22. Jabbar, M.A.; Aluvalu, R.; Reddy, S.S.S. Cluster Based Ensemble Classification for Intrusion Detection System. In Proceedings
of the 9th International Conference on Machine Learning and Computing, Singapore, 24–26 February 2017; ICMLC 2017.
pp. 253–257. [CrossRef]

23. Parikh, D.; Polikar, R. An Ensemble-Based Incremental Learning Approach to Data Fusion. Trans. Sys. Man Cyber. Part B 2007,
37, 437–450. [CrossRef]

24. Rhee, J.; Riley, R.; Lin, Z.; Jiang, X.; Xu, D. Data-Centric OS Kernel Malware Characterization. IEEE Trans. Inf. Forensics Secur.
2014, 9, 72–87. [CrossRef]

25. Alqahtani, A.; Sheldon, F.T. A Survey of Crypto Ransomware Attack Detection Methodologies: An Evolving Outlook. Sensors
2022, 22, 1837. [CrossRef] [PubMed]

26. Al-Rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Redundancy Coefficient Gradual Up-weighting-based Mutual Information Feature
Selection Technique for Crypto-ransomware Early Detection. Future Gener. Comput. Syst. 2021, 115, 641–658. [CrossRef]

27. Abukar, Y.; Koçer, B.; Huda, S.; Al-Rimy, B.; Hassan, M. A system call refinement-based enhanced Minimum Redundancy
Maximum Relevance method for ransomware early detection. J. Netw. Comput. Appl. 2020, 167, 102753. [CrossRef]

28. Al-Rimy, B.A.S.; Maarof, M.A.; Alazab, M.; Alsolami, F.; Shaid, S.Z.M.; Ghaleb, F.A.; Al-Hadhrami, T.; Ali, A.M. A Pseudo
Feedback-Based Annotated TF-IDF Technique for Dynamic Crypto-Ransomware Pre-Encryption Boundary Delineation and
Features Extraction. IEEE Access 2020, 8, 140586–140598. [CrossRef]

29. Urooj, U.; Maarof, M.; Al-rimy, B. A proposed Adaptive Pre-Encryption Crypto-Ransomware Early Detection Model. In
Proceedings of the 2021 3rd International Cyber Resilience Conference (CRC), Langkawi Island, Malaysia, 29–31 January 2021;
pp. 1–6. [CrossRef]

30. Olaimat, M.N.; Aizaini Maarof, M.; Al-rimy, B.A.S. Ransomware Anti-Analysis and Evasion Techniques: A Survey and Research
Directions. In Proceedings of the 2021 3rd International Cyber Resilience Conference (CRC), Langkawi Island, Malaysia, 29–31
January 2021; pp. 1–6. [CrossRef]

31. Moore, C. Detecting ransomware with honeypot techniques. In Proceedings of the 2016 Cybersecurity and Cyberforensics
Conference (CCC), Amman, Jordan, 2–4 August 2016; pp. 77–81. [CrossRef]

32. Song, S.; Kim, B.; Lee, S. The Effective Ransomware Prevention Technique Using Process Monitoring on Android Platform. Mob.
Inf. Syst. 2016, 2016, 1–9. [CrossRef]

33. Gomez-Hernandez, J.; Álvarez González, L.; García-Teodoro, P. R-Locker: Thwarting ransomware action through a honeyfile-
based approach. Comput. Secur. 2017, 73, 389–398. [CrossRef]

34. Mehnaz, S.; Mudgerikar, A.; Bertino, E. RWGuard: A Real-Time Detection System Against Cryptographic Ransomware. In
Lecture Notes in Computer Science; Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S., Eds.; Springer: Berlin/Heidelberg,
Germany, 2018; Volume 11050, pp. 114–136. [CrossRef]

35. Morato, D.; Berrueta, E.; Magaña, E.; Izal, M. Ransomware early detection by the analysis of file sharing traffic. J. Netw. Comput.
Appl. 2018, 124, 14–32. [CrossRef]

36. Monge, M.A.S.; Vidal, J.M.; Villalba, L.J.G. A Novel Self-Organizing Network Solution towards Crypto-Ransomware Mitigation.
In Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg, Germany, 27–30 August
2018; ARES 2018. [CrossRef]

37. Scaife, N.; Carter, H.; Traynor, P.; Butler, K.R.B. CryptoLock (and Drop It): Stopping Ransomware Attacks on User Data. In
Proceedings of the 36th IEEE International Conference on Distributed Computing Systems, ICDCS 2016, Nara, Japan, 27–30 June
2016; pp. 303–312. [CrossRef]

38. Kharraz, A.; Kirda, E. Redemption: Real-Time Protection Against Ransomware at End-Hosts. In Research in Attacks, Intrusions,
and Defenses; Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 98–119.
[CrossRef]

39. Davies, S.R.; Macfarlane, R.; Buchanan, W.J. Comparison of Entropy Calculation Methods for Ransomware Encrypted File
Identification. Entropy 2022, 24, 1503. [CrossRef] [PubMed]

40. Lee, J.; Lee, S.Y.; Yim, K.; Lee, K. Neutralization Method of Ransomware Detection Technology Using Format Preserving
Encryption. Sensors 2023, 23, 4728. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/CCOMS.2018.8463300
http://dx.doi.org/10.1016/j.future.2018.07.052
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00224
http://dx.doi.org/10.1002/sec.1600
http://dx.doi.org/10.1016/j.inffus.2017.02.004
http://dx.doi.org/10.1145/3055635.3056595
http://dx.doi.org/10.1109/TSMCB.2006.883873
http://dx.doi.org/10.1109/TIFS.2013.2291964
http://dx.doi.org/10.3390/s22051837
http://www.ncbi.nlm.nih.gov/pubmed/35270983
http://dx.doi.org/10.1016/j.future.2020.10.002
http://dx.doi.org/10.1016/j.jnca.2020.102753
http://dx.doi.org/10.1109/ACCESS.2020.3012674
http://dx.doi.org/10.1109/CRC50527.2021.9392548
http://dx.doi.org/10.1109/CRC50527.2021.9392529
http://dx.doi.org/10.1109/CCC.2016.14
http://dx.doi.org/10.1155/2016/2946735
http://dx.doi.org/10.1016/j.cose.2017.11.019
http://dx.doi.org/10.1007/978-3-030-00470-5_6
http://dx.doi.org/10.1016/j.jnca.2018.09.013
http://dx.doi.org/10.1145/3230833.3233249
http://dx.doi.org/10.1109/ICDCS.2016.46
http://dx.doi.org/10.1007/978-3-319-66332-6_5
http://dx.doi.org/10.3390/e24101503
http://www.ncbi.nlm.nih.gov/pubmed/37420524
http://dx.doi.org/10.3390/s23104728
http://www.ncbi.nlm.nih.gov/pubmed/37430642

Sensors 2024, 24, 1446 31 of 31

41. Novick, A. White Phoenix: Beating Intermittent Encryption. CYBERARK. Available online: https://www.cyberark.com/
resources/threat-research-blog/white-phoenix-beating-intermittent-encryption (accessed on 9 December 2023).

42. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications; Special Publication (NIST SP); National Institute of Standards and Technology: Gaithersburg, MD,
USA, 2001; Volume 800, p. 163. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762 (accessed on
9 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.cyberark.com/resources/threat-research-blog/white-phoenix-beating-intermittent-encryption
https://www.cyberark.com/resources/threat-research-blog/white-phoenix-beating-intermittent-encryption
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762

	Introduction
	Ransomware Attacks: Economic Impact and Phases
	General Approaches to Ransomware Detection
	Contributions

	Ransomware Detection and Neutralization Methods
	Process-Centric Methods
	Event-Based Detection
	Machine Learning Implementation for Detection

	Data-Centric Methods
	Neutralization Methods

	Hiding Cryptographic Operations
	Simple Bit Decomposition for Lowest Entropy
	Proposed Scheme
	Entropy Sharing
	Entropy Recomposition

	Evaluation
	Experimental Environment and Methods
	Experimental Results on Entropy Sharing
	Computational Costs

	Discussion
	Entropy Recomposition at Arbitrary Ratios for Counteracting Entropy Sharing
	Simple Bit Decomposition: Implications and Experiments
	False Positives and Negatives Related to Shannon Entropy
	Issue on Additional Memory Requirement

	Conclusions and Future Work
	Appendix A
	References

