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Abstract: Buildings are rapidly becoming more digitized, largely due to developments in the internet
of things (IoT). This provides both opportunities and challenges. One of the central challenges in
the process of digitizing buildings is the ability to monitor these buildings’ status effectively. This
monitoring is essential for services that rely on information about the presence and activities of
individuals within different areas of these buildings. Occupancy information (including people
counting, occupancy detection, location tracking, and activity detection) plays a vital role in the
management of smart buildings. In this article, we primarily focus on the use of passive infrared
(PIR) sensors for gathering occupancy information. PIR sensors are among the most widely used
sensors for this purpose due to their consideration of privacy concerns, cost-effectiveness, and low
processing complexity compared to other sensors. Despite numerous literature reviews in the field of
occupancy information, there is currently no literature review dedicated to occupancy information
derived specifically from PIR sensors. Therefore, this review analyzes articles that specifically explore
the application of PIR sensors for obtaining occupancy information. It provides a comprehensive
literature review of PIR sensor technology from 2015 to 2023, focusing on applications in people
counting, activity detection, and localization (tracking and location). It consolidates findings from
articles that have explored and enhanced the capabilities of PIR sensors in these interconnected
domains. This review thoroughly examines the application of various techniques, machine learning
algorithms, and configurations for PIR sensors in indoor building environments, emphasizing not
only the data processing aspects but also their advantages, limitations, and efficacy in producing
accurate occupancy information. These developments are crucial for improving building management
systems in terms of energy efficiency, security, and user comfort, among other operational aspects.
The article seeks to offer a thorough analysis of the present state and potential future advancements
of PIR sensor technology in efficiently monitoring and understanding occupancy information by
classifying and analyzing improvements in these domains.

Keywords: passive infrared sensors (PIR); smart buildings; IoT (internet of things); occupancy information;
people counting; activity detection; machine learning

1. Introduction

In the context of the internet of things (IoT), smart buildings are defined as structures
utilizing interconnected devices and sensors to collect, share, and analyze data. This data-
centric approach enhances operational efficiency, energy management, and the overall user
experience by optimizing various aspects of building management [1]. Such an approach is
central to the systematic improvement of energy use and operational processes in modern
facilities [2,3], extending beyond architectural design to encompass comprehensive build-
ing management and user comfort [4]. The real-time monitoring [5] and management of
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building systems [6], such as lighting, heating, ventilation, and security, are made possible
by the IoT, which ranges from sophisticated cameras to different types of sensors [7–9].
The capacity to interpret this data using cutting-edge algorithms and artificial intelligence
(AI) techniques enables smart buildings to “learn” and adapt to the preferences and be-
haviors of their occupants. This adaptability ensures that smart buildings’ environment is
constantly ideal, improving user comfort, energy efficiency, and overall experience [10–13].
AI integration also makes predictive maintenance easier, allowing for the early detection
and resolution of possible problems to ensure the longevity and effectiveness of building
systems [14–17]. Essentially, smart buildings offer a sustainable, efficient, and user-centric
environment that combines the capabilities of the IoT and AI [18,19]. In smart buildings,
occupancy information is critical for shaping energy consumption, optimizing HVAC and
lighting systems for energy efficiency, improving occupant comfort through personalized
environments, strengthening security by detecting unexpected occupancy in real time, and
making design adjustments based on space utilization patterns. This information, which
depicts the presence, movement, and activities of humans within specified places like
rooms or buildings, is used for resource efficiency, user comfort, and successful building
management [20]. The applications of occupancy information include smart buildings,
intelligent transportation systems, building management and automation, healthcare and
monitoring, and energy-efficient infrastructure [21,22]. While these areas are vast, this
article particularly emphasizes the role of smart buildings, concentrating on how such data
can revolutionize building operations, comfort, and so on.

The levels of occupancy information mentioned by Melfi et al. [23] include presence,
counting, location, tracking, and identity. These levels are presence (occupancy), counting,
identity, and activity [20], as you can see in Figure 1.

Figure 1. Levels of occupancy information [20].

The authors introduced a three-dimensional concept of presence. These dimensions
include occupant resolution, spatial resolution, and temporal resolution. When it comes
to determining the presence of people, higher resolution is directly related to improved
accuracy and a more comprehensive understanding of both occupancy and the activities of
the occupants. This multi-dimensional approach provides a comprehensive framework to
analyze and interpret occupancy data, allowing for a more nuanced understanding of how
spaces are utilized over time and across different locations. Different applications require
different levels of occupancy information because of their spatial and temporal proper-
ties [23,24]. Based on previous research, we have suggested an updated categorization of
occupancy levels in smart buildings, as shown in Figure 2. This new classification includes
the fundamental aspects of presence, counting, location, tracking, activity, and identity.
The richness of information in the categorization of occupancy levels in smart buildings
typically increases as we move down from presence to identity. However, the relevance and
utilization of each level of occupancy data depend significantly on the specific application,
with certain levels being more critical than others for achieving desired outcomes.
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Figure 2. Updated levels of occupancy information.

Regarding the collection of occupancy information, a wide array of sensor types
can be employed, including WiFi, Bluetooth Low Energy, radio-frequency identification,
ultrasonic sensors, and environmental sensors (such as CO 2 and temperature detectors).
Each type presents its own unique benefits and limitations. For instance, WiFi and Bluetooth
Low Energy leverage existing network infrastructures to detect occupancy through signal
variations or the presence of devices, but they may raise privacy concerns. Radio-frequency
identification excels in precise detection by identifying tagged individuals, yet it necessitates
a comprehensive setup [22,25–28]. Ultrasonic sensors provide a non-intrusive means of
detection, but their performance can be influenced by the acoustics of the environment [29].
Meanwhile, environmental sensors such as CO 2 detectors provide occupancy insights
by measuring human emissions, but their delayed response due to CO 2 accumulation
may not accurately indicate immediate occupancy changes [20,30]. Similarly, temperature
sensors can monitor environmental conditions but may not directly reflect occupancy
without noticeable fluctuations. Despite the advantages offered by these technologies,
our study focuses on passive infrared (PIR) sensors due to their straightforwardness, cost-
efficiency, and non-invasive nature. This choice emphasizes the balance between detection
accuracy and privacy concerns, highlighting PIR sensors as a privacy-preserving option for
occupancy information.

This perspective is particularly relevant in our review of recent literature, which
focuses on publications from the past four years and emphasizes the key role of non-
invasive sensors in providing various levels of occupancy information. Table 1 displays the
reviewed literature reviews on occupancy information. It includes six columns: the first lists
the years covered by the reviews; the second describes the main focus of each review;
the third details the level of occupancy discussed; the fourth indicates whether machine
learning is mentioned; the fifth states whether spatial resolution was considered; and the
last column shows that our article is the only literature review article that specifically focuses
on PIR sensors for occupancy information. The reviewed literature primarily focuses on
sensor functionality, the comparison of sensors, and the applications of occupancy data.
Most existing reviews mention machine learning algorithms for non-invasive sensors,
but only one article specifically focuses on this aspect [31]. In terms of spatial resolution,
all review articles mention it except for literature reviews [26,29,32]. Only two reviews
consider all levels of occupancy information. Figure 3 categorizes the review articles based
on the levels of occupancy information. The majority of the studies, about 13 literature
reviews, look at detection in their work. For counting, location, tracking, and activity,
the number of articles is eight, five, six, and two, respectively. Notably, two reviews
focus exclusively on counting, with none dedicated solely to the other levels of occupancy
information. This indicates that most previous literature reviews concentrate on occupancy
detection rather than counting, activity, tracking, location, or identity. Because of that, in
our review on PIR sensors, we have decided to look at counting, activity, tracking, and
location instead. Furthermore, it becomes clear that for applications such as HVAC control,
occupant comfort, health and safety, energy and space utilization, and security, the primary
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emphasis is on occupancy counting, location, and activity tracking rather than individual
identification. This focus is especially relevant considering the privacy issues associated
with personal identification. Therefore, our review does not focus on detection and identity.
Instead, our attention is directed towards occupancy counting, location tracking, and
activity monitoring.

Table 1. Previous literature reviews on occupancy information.

Ref Year Main Focus Occupancy
Information Level ML

Spatial
Resolution

Consider PIR
Sensors for All
Levels of
Occupancy
Information

[33] 2012–
2022

Focuses on the application area of occupancy
information and sensor fusion based on a
PIR sensor

Detection Yes Yes No

[22] 1981–
2021

Focuses on sensor fusion, especially for
energy application Detection and Prediction Yes Yes No

[20] 2020 Compares different sensors for
occupancy information All Yes Yes No

[30] 2018 Focuses on a privacy-preserved occupancy
monitoring solution for people counting Counting No Yes No

[29] 2018 Compares different sensor types for the
estimation and detection of occupancy Counting and Detection Yes No No

[34] 1998–
2019

Examines the benefits and drawbacks of
several occupancy detection techniques and
provides a framework for comparison to help
researchers choose the best sensors
and algorithms

Detection Yes Yes No

[21] 2009–
2020

Focuses on occupancy detection for HVAC
based on different types of buildings Detection Yes Yes No

[35] 2009–
2021

Provides an overview of environmental
sensors used for occupancy
detection/estimation; proposes a technique
to calculate

Detection, Counting Yes Yes No

[36] 2012–
2021

Focuses on application (which sensor is good
for which application)

Detection, Counting,
Identity, Tracking No Yes No

[24] 2009–
2020

Explores forecasting algorithms for
occupancy information

Counting, Detection,
Location Yes Yes No

[37] 2012–
2022 Conducts human–building interaction research Counting, Detection,

Location, and Tracking No Yes No

[32] 2011–
2021

Provides a selection of occupancy
measurement systems for different ranges of
people and the occupancy counting accuracy
situation of different measurement systems
and algorithms

Counting Yes No No

[26] 2020

Reviews occupancy measurement systems
based on different sensors, especially
image/video-based methods; analyzes and
discusses their applicable scopes
and limitations

Detection, Counting,
Identity, Track, Location Yes No No

[25] 2023 Explores sensing within smart buildings All No Yes No

[31] 2015–
2022

Examines how deep learning and transfer
learning methods are used for
occupancy detection

Detection Yes Yes No

[38] 2020
Presents a thorough analysis of device-free
developments in indoor localization and
tracking in multi-resident environments

Location, Tracking Yes Yes No

Our Re-
search

2015–
2023

Reviews methodologies and machine learning
approaches for occupancy information based
on PIR sensors

Detection, Counting,
Location, Tracking,
and Activity

Yes Yes Yes
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Figure 3. The levels of occupancy information that have been covered in previous literature reviews.

In addition, the previous literature reviews suggest that PIR sensors hold significant
potential for capturing occupancy information compared to other sensors. PIR sensors
are commonly utilized in settings like homes and offices due to their cost-effectiveness
and non-intrusive nature, requiring no pre-existing infrastructure. Although they may
have lower accuracy levels on their own, their appeal lies in their ability to improve
accuracy when combined with machine learning and other techniques. In contrast to more
accurate options like camera-based and wearable sensors, PIR sensors stand out for their
affordability, costing typically less than a dollar, and minimal power consumption (around
50 W) [39], making them highly efficient. Moreover, PIR sensors do not capture visual
images, reducing privacy concerns associated with intrusive camera-based systems. This
combination of affordability, energy efficiency, and privacy protection positions PIR sensors
as an excellent choice for straightforward, cost-effective, and non-invasive occupancy
detection across various applications.

While some of the previous literature reviews mention PIR sensors, most of them
consider these sensors in combination with others, focusing on sensor fusion [22,26]. These
reviews typically restrict the use of PIR sensors to mere detection, ignoring their potential
to capture other levels of occupancy information, such as activity. Moreover, we observe
a notable gap in the existing literature: there is a lack of comprehensive reviews that
consider the integration of occupancy information with machine learning techniques in
conjunction with PIR sensors. Although these reviews often compare PIR sensors with
different sensor types, they do not specifically address the application of machine learning
to different levels of occupancy information based on PIR sensors. Additionally, while they
do not look at and differentiate signal-based and binary PIR sensors for different levels
of occupancy information, key aspects such as the spatial resolution of binary and signal-
based PIR sensors and the influence of sensor placement are neglected. Consequently, this
literature review is specifically dedicated to investigating the application of PIR sensors in
people counting, localization (including tracking and location determination), and activity
detection. Importantly, we focus on the impact of machine learning algorithms and various
data processing techniques applied to PIR sensors, encompassing both binary and signal-
based types. We explore the scope and application of PIR sensors in various settings, such
as buildings and individual rooms. Furthermore, we analyze the reliability of PIR sensors
for accurately capturing occupancy data. This involves evaluating factors such as sensor
placement and determining the appropriate number of both binary and signal-based PIR
sensors required for different levels of occupancy information. This comprehensive review
aims not only to understand the current state of PIR sensor technology but also to provide
insights into optimizing their effectiveness in diverse environments.
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2. Material and Methods

In our literature review, we have organized the articles into three main categories based
on the level of occupancy information: people counting, localization (which encompasses
direction, location, and tracking), and activity detection, as illustrated in Figure 4.

Figure 4. PIR-based occupancy information level.

We further differentiate these articles based on the type of data output they focus on,
whether it be binary or signal-based. This structured approach provides a clear perspective
on the varied uses of PIR sensors for capturing occupancy information. In light of our
research objectives and the found gaps in previous research, the following four research
questions guided our investigation.

2.1. Research Questions

• RQ1: Which type of PIR sensor, binary or signal-based, is predominantly used for cap-
turing different levels of occupancy information (counting, localization, and activity)?

• RQ2: What kinds of machine learning algorithms or other methods are mostly used
for data processing based on PIR sensors?

• RQ3: What is the suitable quantity and location of PIR sensors within buildings
and individual rooms (spatial resolution) to effectively capture different levels of
occupancy information, recognizing that this depends on a variety of factors?

• RQ4: What kind of occupant activity can we detect with the binary and signal-based
PIR sensors?

By addressing these questions, this review aims to comprehensively explore the
applications of PIR sensors at each level of occupancy information sensing, as well as the
challenges and advancements in PIR sensor technology for occupancy sensing.

2.2. Search Process

To conduct this literature review, we looked at articles from 2015 to 2023 and imple-
mented a structured search strategy. We primarily focused on key scientific databases
known for their extensive collections of academic and research papers—namely, Web of
Science, Scopus, IEEE Xplore, and Google Scholar. The initial phase of our search process
was dedicated to designing and developing a list of keywords and search terms that directly
addressed our research questions, as elaborated in Table 2. Each keyword and search term
was carefully selected to align with the specific inquiries outlined in our research questions.
This design approach ensured that our search specifically uncovered articles relevant to
our research objectives. By utilizing the “All fields” filter option within these databases, we
were able to thoroughly search through all available metadata—titles, abstracts, keywords,
and full texts—to ensure comprehensive coverage of all articles.
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Table 2. Search String.

(“passive infrared sensor” OR “PIR sensor” OR “infrared sensor”)AND(“occupaäncy” OR “occupant”
OR “people estimate*” OR “people activity*” OR “human activity*” OR “people monitor*” OR “people
count*” OR “people track*” OR “people movement” OR “people position” OR “people location” OR

“people speed” OR “activity detect*” OR “activity recognition*” OR “Movement detection” OR
“movement recognition” OR “Tracking detection” OR “tracking recognition” OR “Position detection”

OR “Location detection”OR “trajectory detection” OR “Target detection” OR “human count*” OR
“Action recognition” OR “indoor activity” OR “building management*” OR “building monitoring*” OR

“speed detection*” OR “speed recognition*”)

Our extensive search in the mentioned databases led to the discovery of a large number
of articles. Specifically, we found 3571 articles in Scopus, 220 in IEEE Xplore, and 273 in
Web of Science. As depicted in Figure 5, this summed up to approximately 4028 articles,
indicating a rich body of research related to PIR sensors.To refine this large pool of literature,
we applied both inclusion and exclusion criteria as outlined in Table 3.

Figure 5. Search methods.

The first step involved removing duplicates, resulting in the exclusion of 83 articles.
We then screened the titles and abstracts of the remaining papers based on our inclusion
and exclusion criteria, significantly reducing the number of articles to 159. Additionally,
we added 24 articles from Google Scholar based on the same criteria, bringing the total
to 183 articles relevant to our study. The final step entailed an analysis of the main text of
these 183 articles. This in-depth assessment was crucial for evaluating each article’s direct
relevance and contribution to our research focus. Following this thorough evaluation, we
narrowed our selection down to 71 articles that specially focused on counting, localization,
and activity, in line with our inclusion criteria.

Table 3. Inclusion and Exclusion Criteria.

Inclusion Criteria Exclusion Criteria

Articles focusing on only PIR sensors, or where
PIR sensors are the primary sensor for people

counting, location tracking, and
activity monitoring.

Articles are primarily concerned with hardware
development or enhancing the sensitivity of

PIR sensors.

Articles are written in English. Thesis, books, and preprint studies.
Research on occupancy information where PIR

sensors play a main sensors.
Studies involving sensor fusion where PIR

sensors are not the main sensor.
- Duplicate publication.
- Another type of infrared-based sensor.

3. Result

In this section, we present the results of our literature review. Our analysis indicates
that PIR sensors are increasingly utilized for obtaining various levels of occupancy informa-
tion, with a marked preference for localization and activity detection compared to counting,
as shown in Figure 6.
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Figure 6. Binary and signal-based PIR for occupancy information.

Based on our findings, the use of PIR sensors for localization and activity detection is
more prevalent than their use for multi-person counting. The number of articles using PIR
sensors for people counting totaled 14, whereas for localization and activity detection, the
numbers were 32 and 26, respectively. Furthermore, the use of both binary and signal-based
PIR sensors for people counting and localization is approximately the same. However,
for activity detection, binary sensors are twice as popular as signal-based PIR sensors.
Additionally, binary sensors are more commonly used for activity detection and localization,
whereas signal-based sensors are more favored for localization over counting and activity
detection, with about 18 articles focusing on this level. Regarding the use of machine
learning with PIR sensors, it is primarily used for occupancy detection. However, the
application of machine learning varies at each level of occupancy information detection
for both binary and signal-based PIR sensors. Figure 7 shows the use of machine learning
algorithms for people counting, highlighting a greater use of these algorithms with signal-
based rather than binary sensors, with only one article applying machine learning to
binary sensors.

Figure 7. Machine learning with binary and signal-based PIR for people counting.
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In the context of localization, we found that machine learning is more popular with
signal-based PIR sensors, as depicted in Figure 8.

Figure 8. Machine learning with binary and signal-based PIR for localization.

Additionally, we found that PIR sensors are widely used in activity detection, noting
their significant use in both binary and signal-based sensors. As Figure 9 shows, 20 articles
on the use of PIR sensors for activity detection employ machine learning algorithms: all of
the articles on signal-based PIR sensors and two-thirds of the ones on binary PIR sensors.

Figure 9. Machine learning with binary and signal-based PIR for activity detection.

3.1. Comparing Binary and Signal-Based Sensors for Occupancy Information

PIR sensors are extensively employed in a variety of applications, including motion
detection, security systems [40,41], healthcare [42,43], and energy conservation. These
sensors detect infrared light released by objects in their range of vision, which is commonly
generated by people and animals owing to their body heat [44]. A PIR sensor is made up
of a pyroelectric sensor that detects levels of infrared radiation and a Fresnel lens or mirror
that focuses the infrared signals onto the sensor. PIR sensors are divided into two main
types: binary and signal-based. Binary-based PIR sensors produce a clear and direct output,
indicating ‘1’ when motion is detected and ‘0’ when there is no motion [45,46], and they
are often utilized in applications such as turning on/off lights [47] or activating an alarm.
On the other hand, signal-based PIR sensors provide a more complicated output, often
in the form of an analog signal that fluctuates with the intensity of observed infrared
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radiation [43]. This signal may give more precise information [48], such as the size or speed
of the moving item, making these sensors suited for more advanced applications such
as indoor localization or thorough motion analysis. Table 4 compares binary and signal-
based PIR sensors in various aspects based on previous research. Notably, the fourth and
fifth rows of the table highlight differences in cost and power consumption. Binary sensors
tend to be more cost-effective, making them suitable for budget-conscious applications.
In contrast, signal-based sensors are more expensive and consume more power due to
continuous signal processing, but due to this processing, they are better suited for situations
that require precise and detailed motion analysis.

Table 4. Comparison of Binary-Based and Signal-Based PIR Sensors.

Aspect Binary-Based PIR Sensors Signal-Based PIR Sensors

Output Type Binary (On/Off) Analog signal that varies with
infrared intensity

Complexity Simple Complex

Data Provided Presence or absence of motion Detailed information like size,
speed, and direction of the object

Cost Generally lower Higher due to more complex
processing requirements

Power Consumption Lower Higher due to continuous
signal processing

Ease of Implementation Easier to implement and integrate Requires more sophisticated setup
and calibration

Flexibility Less flexible in terms of
information gathering

Highly flexible in terms of the range
of information

Sensitivity Less sensitive to minor variations Highly sensitive to even
slight variations

Reliability

Reliable for basic people counting
and presence detection; may not

differentiate well between complex
activities or provide
precise localization.

Highly reliable for localization and
detailed occupancy analysis,

including people counting, due to
the ability to detect direction and

speed of movement.

Compatibility Compatible with simple
control systems

May require integration with more
advanced systems or data

processing units

3.2. PIR Sensors for People Counting

While PIR sensors are traditionally used to detect whether a space is occupied or not
by indicating the presence of at least one person [49,50], this section of our results focuses
solely on those studies that examine PIR sensors that detect the presence of more than
one person (multi-person counting). We explore advanced methodologies and algorithms
that enhance the capabilities of PIR sensors, enabling them to count multiple persons. This
exploration offers a deeper analysis of room occupancy detection, illustrating the potential
of PIR sensors to provide more comprehensive occupancy data, which is crucial for various
applications in smart building management. In Table 5, we present previous studies that
utilized signal-based and binary PIR sensors for multi-person counting.

Binary PIR sensors for counting: Regarding using a binary PIR sensor for people
counting, Hitiyise et al. presented a method for counting using two PIR sensors. The system
was tested using Proteus software and real hardware. The method is simple and does not
use any machine learning: the count decreases when individuals exit and trigger the inner
PIR sensor first, and it increases when they enter and activate the outer sensor first [51]. In
this research, detection areas are decreased and just focused on the entrance areas in order to
improve the accuracy of the system. In another work, Udrea et al. also developed a people
counting system [52] by using two binary PIR sensors. When one sensor detects motion, it
checks to see whether the other does as well within a limited period of time (for example,
three seconds). If both sensors detect motion within this time period, it is considered an
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entrance or exit. Following the count, the sensors reset and wait for the next individual.
A limitation of this method is its difficulty in differentiating between two individuals
entering a location simultaneously. Similarly, in scenarios where individuals congregate
at the main entrance upon entering or exiting a building, distinguishing between them
becomes challenging. In order to prevent obstructions or false-positive detections, the
study by Khan et al. [53] strategically mounted the sensors beneath office desks.

Table 5. Previous articles on multi-person counting with PIR sensors.

Ref Output Location (Number of Sensors) Method Results People
Number

Spatial
Resolution

[54] Binary Entrance (1), wall (1 in each room) Own algorithm Accuracy (86.78%) 6 Building
[51] Binary Entrance (1 inside and 1 outside) Own algorithm NA Any Building
[53] Binary Under the desk (1 for each table) Own algorithm Accuracy (PIRATES 87.5%) 3 Building

[55] Binary Wall, ceiling, door (25-TM004 data set) Machine learning
Accuracy (Unsupervised
learning (sMRT 80%, NN-sg 80%,
GNN-sg 83%))

4 Building

[52] Binary Entrance (1 inside and 1 outside) Own methods No error Any Room

[56] Signal On bar (3) Own algorithm Accuracy (90%) Any Specific area

[39] Signal Room corner (4) Machine learning Accuracy (CNN + BiLSTM
99.5%) 3 Room

[57] Signal Entrance (1), wall (1 in each room) Machine learning Accuracy (SVM 77.3%) 80 Room

[58] Signal Entrance (8 inside and 8 outside) Machine learning
Accuracy (CNN 92.75%),
(DT and RBMLR 60%), (LR 78%),
(NB 82%)

any Room

[59] Signal Wall room corner (4) Own algorithm Accuracy (80%) 3 Room

[60] Signal Wall (1) Machine learning Accuracy (hidden Markov
models linear regression 99%) 7 Room

[61] Signal Robotic actuator (1) Machine learning Accuracy (ANN 91%) 3 Room

The primary aim of this research was to assess the effectiveness of using PIR sensors
installed beneath the desks of users for gathering extended occupancy information in both
open-plan and individual office areas. This technique was implemented in two office
buildings over a seven-month period. The system successfully identified the presence
and number of occupants with 87.5% accuracy compared to manual counting. Another
binary-based people counting method was proposed by Masciadri et al. [54]. It involved a
real-world experiment in which an apartment was equipped with eight PIR sensors, one in
each room, and a contact sensor on the main door. Each PIR sensor has a 2 s blocking time,
requires two movements to activate, and has a 12-s time window for motion detection. The
contact sensor, used for monitoring the door and windows, is less complex than the PIR
sensors and activates when the main door is opened. This setup provides a comprehensive
monitoring system for tracking and estimating the number of occupants in the smart home.
It divides sensor data into ‘fragments’ based on movement, such as a person moving from
one room to another. The system’s layout is represented as a directed acyclic graph (DAG),
which helps in understanding room adjacencies and detecting special events like entries
(‘Go in’) and exits (‘Go out’) from the house. An important aspect is the delayed room
status representation (DRSRt), where each person in a room is assigned a dynamically
changing value based on sensor data, reflecting the likelihood of their presence. The
system also employs an inference engine with a confidence score to resolve ambiguities and
accurately infer the status of each room. It uses a multi-branch inference approach to handle
situations where the number of people cannot be precisely determined, allowing for more
accurate occupancy estimations over time. This advanced system is designed to provide
a continuously updated and accurate understanding of the occupancy and movement
patterns within a smart home environment. The accuracy of this algorithm is 86.78% for
a maximum of six people. Giaretta et al. [62] introduced a novel graph-based technique
for estimating the minimum number of people in a small building. The method involves
mapping the smart home’s sensor network onto an undirected graph, where each sensor is
a vertex. The study elaborates on essential concepts such as independent sets, maximal
independent sets, and maximum independent sets within this framework. An independent
set, where no two adjacent vertices (sensors) are found, signifies a group of sensors that
could not have detected the same individual, thereby indicating a minimum count of



Sensors 2024, 24, 1533 12 of 36

people based on sensor activation. The maximal independent set expands on this idea,
and the maximum independent set denotes the arrangement with the highest number of
vertices, providing a theoretical lower bound for the countable number of individuals. This
approach enhances sensor deployment optimization and lays a foundation for accurately
estimating the minimum number of occupants in a smart home setting.

Regarding using machine learning for binary base sensors for people counting, Wang et al.
introduced a novel method for calculation based on a linear Gaussian dynamic model [55].
This approach is notable for its ability to convert raw motion sensor data into structured
vectors, capturing both spatial and temporal dynamics inside the home environment. The
independence of this technique from ground-truth annotated sensor data or in-depth un-
derstanding of sensor layouts is a key benefit. The linear Gaussian dynamic model is used
to calculate the probability hypothesis density of the people living there, improving the
accuracy of predictions based on sensor data. Notably, the sMRT (multi-resident tracking
in smart homes with sensor vectorization) system has been successfully used to monitor
residents successfully in an unsupervised way, demonstrating a degree of accuracy equiv-
alent to other systems that need more information. In the particular case of the TM004
dataset, the system obtained an accuracy rate of about 80%.

Signal-based PIR counting: Regarding signal-based PIR sensor for people counting,
in a study by Liu et al. [59], PIRATES is proposed as a device-free localization system
utilizing signals from PIR sensors. The key feature of PIRATES is the extraction of a novel
location metric termed “azimuth change”, which relies on the physical properties of PIR
sensors. The system achieves 80% accuracy in counting people, and is particularly effective
in counting three individuals. Another approach based on signal processing for counting
individuals in a specific area is proposed in [56]. Three sensors cover a 3 m wide path.
They are mounted 5 m up on a pole and positioned to avoid overlapping fields of view,
minimizing double counts. The algorithm developed uses PIR sensors to count pedestrians
by measuring the time it takes for a person to move across the sensor’s field of vision (TC)
and compares it to the time the sensor signal stays active (TH). If a sensor remains at HIGH
for the duration of TH, it implies a person has passed. This count is adjusted to ensure
individuals walking closely are not counted as one entity, reducing errors during busy
times. The counts from each sensor (PIR1, PIR2, PIR3) are added to get the total number of
people over a 15 min period. The accuracy of this method is about 90%.

With regard to using machine learning for people counting, Leech et al. demonstrated
the efficacy of a Baysian machine learning algorithm [63]; their methods could predict
the number of occupants with a margin of error of ±1 to ±2. Their method, tested in
meeting environments with known occupancy, achieved an accuracy of over 80%, efficiently
estimating occupancy within a one-person error range. In another work [60], Raykov et al.
applied a specific type of machine learning called infinite hidden Markov models (iHMM)
that allows effectively using data from a basic PIR sensor to determine the number of people
in office. This study also compared three different ways of implementing the iHMM, named
beam sampler, Gibbs sampler, and iterative MAP, to see which was best for predicting
occupancy from the PIR sensor data. They looked at how these methods performed over
various time lengths, from 30 s to 20 min. The results showed that the iterative MAP was
not only the most efficient in terms of computation but also required far fewer steps to reach
a reliable prediction compared to the other two methods. Another signal-based approach
for counting people that uses machine learning is proposed by Tsou et al. [58]. In this work,
a system was developed to count individuals, featuring a PIR sensor array that detects
people passing by. This system utilizes captured signals to determine the number of people
entering or exiting. Eight sensors are installed outside, and another eight are inside the
entrance. They record data in roughly 6 s. The PIR array is employed for immediate sensing
upon detection of passersby. Various methods, such as convolutional neural networks
(CNNs), a combination of restricted Boltzmann machine (RBM) and logistic regression,
decision trees, and naïve-Bayes, are used for effective classification with the PIR sensor
array. An experimental study tested various classification algorithms on a dataset created
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using the PIR sensor array to categorize different passing situations. These included CNN,
a pipeline of RBM and logistic regression (RBMLR), decision trees (DT), and naïve Bayes
(NB). The CNN proved to be the most accurate, achieving up to 92.75% accuracy with all
16 PIR sensors. The accuracy rates for RBMLR and DT were 60%, logistic regression 77%,
and naïve Bayes 82%. Another machine learning-based signal approach was introduced
in [39]. The approach involves processing signals from multiple PIR sensors through a
complex neural network. The input signals are divided into segments, each representing
a specific time interval. The network structure is inspired by audio signal separation
techniques, utilizing a combination of a 1D CNN layer, two BiLSTM layers with layer
normalization, and a fully connected layer. These components effectively separate the
signals into individual components, which may represent people or noise sources. A
subsequent single-person detection module refines these components to determine if they
correspond to individuals. To optimize the model, a permutation-invariant loss function is
employed during training. With carefully chosen hyperparameters, this module accurately
counts the number of people in a monitored area. In addition, the article demonstrates the
effectiveness of preprocessing and data augmentation strategies. The results indicate that
various combinations of PP/DA strategies contribute to enhancing PIRNet’s performance,
achieving an accuracy of 99.6 for detecting three persons.

A new signal-based method system was developed by Andrews et al. [61]. Central
to this innovation is a single Panasonic AMN 24412 PIR sensor, strategically placed in
an academic building’s room to optimally scan the area. This sensor is enhanced by a
robotic actuator and microcontroller integration for expanded detection and data processing
capabilities.The primary role of the MI-PIR system is to reliably determine the number of
people in a space, achieving an impressive 91% accuracy. This is accomplished through
the employment of an artificial neural network (ANN) which analyzes the sensor’s analog
data to accurately assess the occupancy. This feature is particularly valuable given that
traditional PIR sensors frequently fail to recognize stationary individuals, causing errors
in occupancy counts. As a result, the advanced technique adopted by the MI-PIR system
presents a more trustworthy alternative for scenarios like indoor tracking, where precise
detection of occupants is essential. The MI-PIR system’s novel approach, therefore, offers a
more reliable solution for applications like monitoring indoor environments where accurate
people counting is crucial. Regarding determining intervals for people counting instead
of counting the exact number of people, in a study by Zhang et al. [57], a single PIR
sensor was installed at the entrance of a studio, capable of discerning the direction of both
entry and exit. In this research, instead of pinpointing the exact number of people, they
used number intervals to classify how many occupants were present. This approach was
chosen because, in a large space with many people, a small difference in the exact count of
occupants usually does not significantly affect control strategies. However, it is essential
to set these number intervals correctly to ensure that deviations stay within acceptable
limits. They reviewed many studies on how to count people in different places, noting
the types of spaces, their sizes, and how these studies measured results. They used this
information to create a system for classifying the number of occupants in their own study,
as follows: [0], [1–2], [3–4], [5–6], [7–9], [10–12], [13–15], [16–18], [19–22],. . . [87–96]. In this
research, the midnight reset PIR method has been used. The midnight reset PIR method
aims to enhance the accuracy of PIR sensors by addressing error accumulation issues. The
strategic reset at midnight ensures a clean slate for the sensors, minimizing inaccuracies
and optimizing their performance in detecting human presence during the day. In this
research, different machine learning algorithms have been used, and SVM is considered
the best algorithm. The combination of PIR + CO 2 achieves an overall accuracy of around
42.9%, which improves significantly to 85% when recognizing adjacent intervals, and its
RMSE value of 1.21 number intervals confirms its reliability. Conversely, the midnight
reset PIR method, although simpler, falls short in all three metrics with an accuracy of
36.4% even considering adjacent intervals at 77.3, and an RMSE (root-mean-square error)
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value of 1.39. In summary, the PIR + CO 2 method proves to be more effective for accurate
occupant counting.

Based on these studies, we have categorized people counting methods, as illustrated
in Figure 10.

• Direct Detection-Based People Counting In direct detection-based people counting,
both signal-based and binary-based methods can be employed to count individuals
within a specific area. Advanced signal processing and machine learning are applied
to signal-based PIR data for a more accurate count, providing detailed insights with
fewer sensors. Conversely, while the binary-based approach can utilize machine
learning and other techniques, it generally requires a larger number of sensors to
achieve similar accuracy. Overall, the signal-based method is typically preferred for
specific areas due to its efficiency and the depth of information it provides, making it
a more effective solution for accurately counting people.

• Contextual Inference-Based People Counting Contextual inference-based people
counting is a method that relies on the context of an environment to deduce the
presence and number of people within a specific area. This approach is particularly
effective in areas where behaviors and patterns can be predicted and analyzed. It
typically includes door monitoring and stationary monitoring, each utilizing both
binary and signal-based detection methods.

• Door Monitoring: This technique involves placing sensors at doorways to count indi-
viduals as they enter or exit. Binary-based detection has been prevalently employed in
previous work, especially for rooms, due to its simplicity and effectiveness in scenarios
where the presence of more than one person is unlikely at the same time when they
pass the door. However, for the main entrances of buildings where multiple people
might enter or exit simultaneously, signal-based detection might be a better option.
Signal-based methods can provide more detailed information, allowing the system to
differentiate between multiple individuals at the same time.

• Stationary Monitoring: This method places sensors in areas where people are expected
to be stationary, such as under a table or at a desk. Movement detected in these zones
is interpreted as an indication of the presence of a person. Both binary and signal-
based detection can be used here. Binary-based might suffice in less complex scenarios
where any movement is a strong indicator of presence.

Figure 10. Binary and signal PIR for people counting.

3.3. PIR Sensors for Localization

In recent years, there has been a tremendous increase in research into human localiza-
tion with passive infrared (PIR) sensors. PIR sensors are widely used in this field because
of their inexpensive cost, low power consumption, and non-intrusive nature. Researchers
have largely investigated two major ways to leverage the potential of PIR sensors for
localization: binary-based methods and signal-based methods. We categorize previous
research based on binary and signal-based methods, as you can see in Table 6.

Binary PIR for localization: Some PIR-based localization systems rely on binary data
obtained from PIR sensors’ raw output, which essentially informs whether a person is
present or not within the sensor’s detection zone. The accuracy of localization using this
approach is contingent on finely dividing the detection zones. Put simply, the smaller and
more precisely defined these individual zones are, the more precise the localization becomes.
However, achieving this high level of precision necessitates deploying a substantial number
of PIR sensors and implementing a meticulous deployment strategy. Yang et al. developed a
cost-effective and compact system for tracking humans using a network of PIR sensors [64].
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When a sensor detects a person, it activates a detection line along the angular bisector of
its field of view (FOV). The system is designed for easy calibration, requiring only one
sensor node to be calibrated instead of the entire setup, enhancing flexibility with a bearing-
crossing location technique. After that, Yang et al. combined this method with region
partitioning to pinpoint multiple human locations [65,66], initially using a probabilistic
neural network or naive Bayes classifier for rough positioning, followed by the bearing-
crossing method for greater accuracy.

Table 6. PIR sensor for localization.

Ref Output Location Spatial
Resolution Number of Sensors Algorithms Number

of People
Machine
Learning

[67] Binary Floor
Room
(specific
area)

9 nodes (Anti-logic) distance error 0.49 m for target 1 and 0.50 m for target 2. 2 No

[68] Binary Floor
Room
(specific
area)

9 nodes (Own methods), average distance errors target 1 (0.62 m) and target
2 (0.53 m) 2 No

[69] Binary Wall Room 16 (Own methods (graph based)), average tracking error is 0.4706 m 2 No

[70] Binary Corner Room 4 (Own methods (ULT)), RMSE values of 0.33 m for ULT and 1.09 m
for RDLT 1 No

[71] Binary Ceiling Buildings 10 (Own methods–Maps and A-Star Algorithm), average error (m) 0.21 1 No
[72] Binary Ceiling Building 9 (Own methods–map based), position error 0.6 m 1 No

[66] Binary Floor
Room
(specific
area)

9 (NBCL-Naive Bayes classifier), distance error (m) target 1 (0.67)
target 2 0.56 2 Yes

[73] Binary Ceiling,
Wall Buildings 7 (Own methods–Transferable Belief Model), scenario01 Error

rate 3.3% 1 No

[74] Binary Robot Room 4 (Decision Tree classifier), accuracy 83.3%. 1 Yes

[65] Binary Floor
Room
(specific
area)

9 nodes (Probabilistic neural network CLBNNRP) RMSE (m) X (33.5) Y
(0.33) Distance (0.33) 2 Yes

[75] Binary Floor
Room
(specific
area)

9 nodes (Own methods), Credit-Based Method average distance errors
(0.47 m) target 1 target 2 (0.42 m) 2 No

[76] Signal Ceiling Room 4 (ANN + LSTM) Mean Error (m) 0.68 2 Yes
[77] Signal Corner Room 4 (CNN, BiLSTM) accuracy 96.1%, average localization errors 0.82 m 3 Yes
[78] Signal Wall Room 4 (CNN, BiLSTM) average localization errors 0.88 m 3 Yes
[59] Signal Wall Room 4 (PIRATES) average localization error 0.87 m 2 No
[39] Signal Wall Room 8 (CNN, BiLSTM), f1 Score 0.94, average localization errors 1.34 m 5 Yes

[79] Signal Ceiling Room 5 Mean distance error (CNN-LSTM 0.2359), (CNN-BiLSTM 0.3131),
(CNN-GRU 0.5198) Particle filter (0.5482 m) 1 Yes

[80] Signal Ceiling Room 5 Mean distance error CNN-LSTM (0.2379) CNN-BiLSTM (0.3222)
CNN-GRN (0.5172) SVR (0.69) 1 Yes

[81] Signal Ceiling Room 4 (Own methods (signal-based)), Mean error (m) 0.7, accuracy 80% or
higher in all scenarios 1 No

[82] Signal Ceiling Room 2 module (4 PIR
in module)

(Own methods), RMSE (meter) (Localization Algorithm)
0.3118 (Kalman Filter) 0.285 1 No

[83] Signal Ceiling Room 5 module (9 PIR
in module) (own methods–Kalman Filter), RMSE 0.68 1 No

[84] Signal Ceiling Room 4 (own methods–Kalman Filter), 0.254, TBM-based Hybrid
Method 0.219 1 No

[85] Signal Wall Room 2 Sensing Tower 16 PIR
for each accuracy of 0.113 m 1 No

Then, Yang et al. introduced a credit-based clustering and location (CBCL) method for
locating multiple humans [75]. This method innovatively assigns credits to measurement
points based on their probability of being within the sensor’s field of view, prioritizing the
most likely human locations. The credit-based system improves location tracking accuracy
by 40%, reducing errors to 0.24 m compared to the previous 0.40 m. Furthermore, in mul-
tiple target simulations, the CBCL method not only reduced execution time by 21.4% but
also increased location accuracy by 29.9% and 14% for two separate targets, respectively.
These results demonstrate the CBCL method’s superiority in both accuracy and efficiency
over previous methods, representing a significant advancement in PIR sensor-based human
tracking technology. This method assigns credits based on the frequency of a crossing
point appearing within the sensors’ activated regions, selecting only those with the highest
credits for positioning. This approach speeds up the process and allows more flexible node
placement, but it does not account for targets outside a sensor’s range. Additional logic
was needed to retain some lower-credit measurement points near a target. To address
this, Yang et al. proposed an anti-logic bearing-crossing algorithm [67] that first identifies
points falling outside active regions, then inverts this to maintain all high-credit points,
enhancing effectiveness for various targets and sensor placements. They introduced a
refined credit-based algorithm for accurately determining effective measurement points
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for indoor multi-person tracking, alongside a dynamic pruning algorithm to allocate these
points to respective targets. This innovative system, validated through simulations and
experiments, offers a significant advancement in accurately tracking and locating multiple
individuals, making it particularly valuable in surveillance and security applications. Mean
distance error for this method is about 0.45 m. To enhance the credit location algorithm for
accurately obtaining measurement points essential for tracking multiple humans indoors,
Yang et al. devised a dynamic pruning algorithm that allocates all effective measurement
points across various targets [68]. This novel approach simplifies and enhances the accuracy
of tracking multiple human targets. The improved credit method efficiently retains all effec-
tive measurement points without needing extra logical judgment, making it more intuitive
and less complex than previous methods. The dynamic pruning algorithm further refines
this process by reducing the number of measurement points and accurately assigning them
to targets based on predicted positions, effectively transforming the challenge of multiple
human location tracking into a simpler task of single human tracking. This method incor-
porates advanced algorithms such as the Kalman filter and IMM tracking, representing a
significant leap in the precision and reliability of human indoor location systems. In another
binary-based method for tracking multiple people, Lu et al. conducted research for tracking
several humans by using distributed (PIR) sensor networks [69]. Their main emphasis
was on enhancing sensor selection and calibration. The study presents a sensor selection
method based on information gain that aims to pick sensors that optimize the mutual
information between sensors and targets. This technique efficiently balances the accuracy
of tracking and the efficient use of resources. Furthermore, a sensing probability model is
used to calibrate the sensors, which is essential for precise monitoring of many targets. This
approach performs sensor calibration by analyzing the probability of detecting a target
in segmented spatial grids, then adjusting the placements and orientations of the sensors
accordingly. In addition, the research employs a factor graph-based message-forwarding
mechanism to improve the accuracy and efficiency of the tracking process. This technique,
which has been validated by simulations and tests, represents a notable progression in the
area of distributed sensor networks for human monitoring. The main idea of this research
is based on space encoding for three binary PIR sensors as shown in Figure 11.

Figure 11. Space encoding in [69].
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Lu et al. proposed another method based on encoding, which introduces a framework
for tracking multiple targets using distributed binary sensors [86]. The aim is to minimize
data throughput while maintaining accurate tracking. The framework involves space
encoding using a low-density parity-check matrix and measurement decoding through
linear programming and Bayesian estimation. Key challenges addressed include efficient
measurement representation, reducing localization errors, and optimizing binary sampling
geometries. The paper validates its approach through simulations and experiments, demon-
strating effective multitarget tracking with minimal data requirements. Zade et al. suggest
another binary-based localization method that compares a unique methodology for target
tracking in PIR sensor networks with the traditional particle filters (PF) technique [70]. This
new method is applied across several motion models, including uniform linear trajectory
(ULT), random direction linear trajectory (RDLT), random direction backward turn linear
trajectory (RDBLT), and horizontal motion linear trajectory (HMLT), each representing dif-
ferent target movement patterns. The study demonstrates that the new method yields better
tracking accuracy and convergence, especially in dynamic scenarios, as evidenced by lower
RMSE values such as 0.33 m for ULT and 1.09 m for RDLT. This improved performance,
particularly in complex motion models like RDBLT and HMLT, highlights the method’s
efficiency and reduced computational complexity compared to PF. In recent research, which
concentrates on binary output and machine learning applications, Ciuffreda et al. have inte-
grated a robot to improve localization techniques [74]. This research focuses on the indoor
localization of elderly individuals using a mobile social robot equipped with multiple PIR
sensors. Despite the challenges posed by overlapping detection fields in the multi-sensor
setup, the system is designed to accurately detect human presence. A pivotal element
of their methodology is the application of a decision tree classifier algorithm trained to
differentiate between various scenarios and improve localization accuracy. The outcomes
of their study indicate high accuracy levels, reaching 96% in controlled environments with
constrained movements. Nonetheless, the accuracy slightly diminishes to 83.3% in less
controlled conditions. This demonstrates the system’s effectiveness across a spectrum of
indoor scenarios, suggesting a promising avenue for elderly care via non-invasive and
cost-effective technology.

Regarding location tracking based on binary PIR sensors in entire buildings, Fanti et al.
present a framework for the strategic placement of binary sensors in indoor environments
to improve the tracking of inhabitants, particularly in the context of ambient assisted living
(AAL) [87]. This framework aims to optimize sensor placement for effective monitoring
while considering the physical layout of the environment and obstacles like furniture and
walls. It utilizes an integer linear programming model to balance coverage precision and
environmental constraints. In another study on building scale, Yang et al. presented an
advanced building-based method for indoor human localization combining PIR sensors
with an accessibility map, which was proposed and tested through simulations [72]. This
hybrid approach involves tracking an individual’s routine movements within a home, such
as arriving from work, visiting different rooms, and engaging in various activities. The
accuracy of this method was assessed using the cumulative distribution of absolute position
errors. The results indicated a significant improvement over the PIR-only method; the
hybrid method achieved a 95 percent accuracy probability of position errors within 0.6 m,
compared to 0.8 m for the PIR-only approach. Furthermore, the minimum localization
error was reduced to 0.1 m with the hybrid method from 0.2 m with the PIR-only method.
This demonstrates the effectiveness of integrating PIR sensors with an accessibility map
in enhancing localization accuracy within indoor environments. Yang et al. integrate
their methods with a grid-based accessibility map and the A-star algorithm [71]. The
grid-based accessibility map represents the environment as a grid, where each cell indicates
the probability of a person’s presence, considering furniture locations and human visiting
habits. The A-star algorithm, a best-first search method, uses this map along with PIR
sensor data to optimize tracking. It calculates the best path using a cost function based
on distance and heuristic estimates. The results from their experiments, which involved
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predefined trajectories in a mock apartment, demonstrated the effectiveness of this method.
The maximum distance error recorded was 0.747 m, and the minimum was 0.021 m, with
an average mean distance error of 0.227 m for one route. Another route showed a mean
distance error of 0.188 m. These results were compared with recent human tracking projects,
indicating competitive average error rates and overall accuracy. This study illustrates the
potential of combining a grid-based accessibility map with the A-star algorithm for efficient
and accurate indoor human tracking using PIR sensors. Henni et al. successfully enhanced
their previous multiplex binary localization approach in the scope of building [73]. This
enhancement was aimed at resolving the ambiguity in detecting transitions between zones,
achieved through the implementation of a filtering technique based on the transferable
belief model (TBM) instead of the traditional Bayesian framework. A significant aspect of
this work was the development of a new method for choosing an appropriate discounting
factor. This factor is crucial for weighting information sources relative to each other, based
on the Dempster–Shafer normalization function. The study efficiently covered the desired
zones of interest with a reduced number of sensors, utilizing an overlapping multiplex
structure. This novel method demonstrated robustness against fleeting sensor faults, thanks
to its filtering capabilities, and effectively managed reasonable uncertainties in the sensors’
field of view, which are critical during transitions between zones. The methodology’s
efficacy was validated through experiments using commercial single PIR sensors with
modified fields of view, showcasing the advantages of the TBM method compared to the
previous Bayesian approach.

Signal-based PIR sensors for localization: Signal-based methods are more popular
for localization because they can receive more information from the signal. In the study
by Narayana et al. [88], the researchers explore the previously overlooked potential by
examining the analog signals from an array of PIR sensors. This novel method enables the
enhanced functions of PIR sensors, traditionally limited to binary detection tasks, to be fully
utilized. By retaining and analyzing the richness of the analog signals, the research achieves
accurate object classification and localization, demonstrating significant precision up to 5 m.
Complementing this advancement, another study proposes a novel analog-based system for
room localization [85]. This system employs rotating and modified PIR sensors with analog
outputs. Such an advancement significantly improves the accuracy of distance estimation
between the device and human targets. The implemented prototypes demonstrate that the
system can achieve an accuracy of 0.113 m in a 12 m × 6 m area, highlighting its potential
for accurate and real-time tracking in various applications. Luo et al. propose another
signal-based localization system [83]. The system consists of five sensor nodes, creating a
wireless network, each equipped with a unique reference structure for field of view (FOV)
modulation. This configuration facilitates effective spatial segmentation by decoding spatial
data through a coding scheme that segments the monitored area into various sampling
cells. The localization algorithm employed incorporates a Kalman filter and smoother
to refine the accuracy of human target location estimates by processing data streams
from different sensor nodes. Furthermore, the system emphasizes the extraction of signal
features, with a particular focus on the short-time energy metric, to capture the variation
in energy of the PIR sensor signals. When tested in a real office environment, the system
achieved an impressive average root-mean-square error (RMSE) of approximately 0.6 m
while tracking a single human target moving at various speeds. This innovative approach
represents a significant advancement in the field of human indoor localization, especially
in attaining high spatial resolution and tracking accuracy with PIR sensors. Lai et al.
proposed another method based on the Kalman filter, developing a novel indoor localization
system using two passive infrared (PIR) sensor modules [82]. This approach involved the
analysis of analog signals produced by human movement within a coverage area segmented
into nine discrete cells. The system utilized a Kalman filter for localization, a technique
celebrated for its proficiency in accurately estimating dynamic systems from incomplete
and noisy data. The effectiveness of this system was measured using the (RMSE) metric.
The RMSE for the localization algorithm was found to range from 0.3118 to 0.846 m, and the



Sensors 2024, 24, 1533 19 of 36

Kalman filter achieved an RMSE between 0.285 and 0.6804 m. These results demonstrate
that the system not only simplifies the design of indoor localization systems but also
enhances accuracy. To enhance the localization system based on the Kalman filter, a new
method was introduced by Wu et al. [84]. This method refines the system’s performance
by integrating the Kalman filter, a model-based approach, with a transferable belief model
(TBM), a belief-driven strategy, into a novel hybrid approach. This innovative strategy
enhances tracking accuracy and stability by leveraging TBM outputs in the Kalman filter’s
estimation processes. The researchers conducted a series of three experiments: validating
the parameters, conducting a qualitative analysis of TBM tracking, and performing a
quantitative study involving both TBM and Kalman filter tracking. The results indicated
significant improvements in system stability and positioning accuracy, especially with the
hybrid approach. This research significantly contributes to the field of indoor localization
by providing a framework that utilizes PIR sensors in a networked setup for efficient
and privacy-respectful human localization and tracking. In the most recent research on
Kalman filter-based localization presented by Yunus et al. [89], the study introduces an
innovative method for tracking humans across various indoor environments. By employing
PIR motion sensors coupled with Kalman filter-based estimation, the approach notably
enhances accuracy. The findings indicate a decrease in the maximum error for tracking
trajectory from 0.28 m to 0.19 m and a reduction in the average error from 0.10 m to 0.07 m.

Another signal-based localization system, which focuses on PIR sensors, introduces a
new technique for real-time tracking utilizing these sensors [81]. The primary aim of this
approach is to detect changes in azimuth by mainly utilizing raw data from PIR sensors
to derive position information based on these alterations. The configuration consisted
of four PIR sensors arranged within a 7 m × 7 m area. The collected data was wirelessly
transmitted to a computer for analysis, employing a particle filter technique. Through
experiments in six different movement scenarios, the system demonstrated an average
localization error of around 0.63 m, underscoring its capability to accurately track objects in
real-time across a range of situations. Following this research, Liu et al. employ a combina-
tion of signal processing techniques (PIRATES), including the use of differential heat flux
(DHF) and inverse filtering, to enhance accuracy and robustness against environmental
noise [59]. It also incorporates a particle filter algorithm for real-time localization, adaptable
to both single-person and multi-person scenarios. This novel approach reduces the need
for extensive sensor deployment, making PIRATES more efficient and versatile in various
environmental conditions. In a study examining the effect of PIR sensor deployment on
localization accuracy, it was found that both the number and placement of sensors signif-
icantly impact the system’s precision. The experiment involved various configurations,
including single and multiple sensors placed in different geometric layouts. Results showed
a clear trend: an increased number of PIR sensors led to improved localization accuracy.
Additionally, uniformity in sensor distribution played a crucial role. Configurations with
evenly spaced sensors, especially those covering all area angles (as in a scenario with
four sensors at each corner), resulted in lower localization errors compared to non-uniform
arrangements, such as sensors aligned in a single line. This data is critical for optimizing
sensor deployment in practical applications like security systems or smart environments,
where precise localization is paramount.

In the context of using machine learning for localization based on signal-based PIR
sensors, Yang et al. introduce device-free localization (DFL) utilizing PIR sensors as a
cost-effective, low-power, and privacy-preserving method to locate people using a deep
learning approach called PIRNet [77]. The newly developed neural network effectively
manages multi-person scenarios using two modules: one for counting people and another
for locating them. Through these methods, the deployment density of traditional PIR-based
approaches has substantially decreased by about 76% while maintaining high localiza-
tion accuracy. However, there is still considerable potential for improvement in PIRNet,
especially regarding the cost of training. PIRNet is based on the assumption that the de-
ployment of PIR sensors in the test environment replicates that of the training environment.
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If this is not the case, PIRNet requires retraining with additional data gathered from the
environments of its new deployments. A new deep-learning-based approach called DeepPI-
RATES is introduced by Yang et al. [78]. Unlike PIRNet, DeepPIRATES needs only a single
training session and then effectively operates in any deployment strategy environment.
Additionally, DeepPIRATES retains the benefits of PIRNet, such as low deployment density
and high localization accuracy. This method uses a two-step process: deep learning to
estimate relative locations from a single sensor, and a particle filter for inferring absolute
locations. This method achieves low localization errors (0.55 m, 0.73 m, 0.88 m for one, two,
and three-person scenarios) with a low sensor density. Future improvements may include
enhancing the particle filter with neural network-based motion models to further increase
localization accuracy. This deep learning method, which was also used in [39], shows a PIR
sensor-based multi-person localization module that focuses on combining deep learning
techniques with domain knowledge. Using a network with layers like 1D convolution and
BiLSTM, it processes sensor data to predict positions. The accuracy is measured using a loss
function based on the Euclidean distance between the predicted and actual positions. Tests
showed that with four sensors, the F1 scores in scenarios with up to five people exceeded
85%. Increasing the number of sensors to six and eight improved F1 scores to over 90% and
93%, respectively, demonstrating the method’s potential for practical multi-person local-
ization applications. Chen et al. present a novel approach known as PIRILS (pyroelectric
infrared indoor localization system) [76]. It utilizes a cutting-edge algorithmic structure,
primarily based on an artificial neural network (ANN), for indoor multi-target localization.
This system integrates a long short-term memory (LSTM) model, enhancing the ANN’s
ability to process sequential data from PIR sensors. Additionally, a permutation-invariant
strategy is employed to maintain consistency in localization outcomes despite variations in
sensor signal order. To further refine its accuracy, the system adopts a data augmentation
strategy, enriching the training dataset to better handle diverse motion patterns. This
comprehensive algorithmic approach, combining ANN, LSTM, permutation invariance,
and data augmentation, enables PIRILS to accurately track and localize multiple targets
in indoor environments, showcasing a significant advancement in the application of PIR
sensors augmented by deep learning techniques. Ngamakeur et al. introduced a different
deep learning-based method for people localization in their study [80], employing CNN
and LSTM networks. The process begins with preprocessing the PIR sensor data. The CNN
extracts spatial features from this data, identifying patterns and characteristics in the signals.
The LSTM analyzes temporal patterns, crucial for understanding time-dependent features
in the sensor data. By integrating CNN for spatial feature extraction and LSTM for temporal
analysis, the model learns to accurately correlate sensor signals with indoor locations. Their
findings demonstrate that the proposed method can adeptly navigate complex situations,
achieving an average distance error of 0.23 m, with 80% of the distance errors falling under
0.4 m. Ngamakeur et al. also looked at different deep learning models, like CNN, RNN,
and their hybrids, to classify locations and figure out their 2D coordinates [79]. The key
architectures evaluated were 1D-CNN, TCNs, LSTM, Bi-LSTM, GRU, and particle filtering.
These were assessed using metrics like accuracy, recall, precision, F1 score, and Kappa
score for classification, along with mean distance error for coordinate estimation. The study
achieved an average accuracy of 77%, with Bi-LSTM-based models demonstrating superior
performance. In 2D coordinate estimation, the CNN-LSTM combination emerged as the top
performer, with a mean distance error of 0.2359 m. Even though there were some problems,
like signal ambiguity and strange signal patterns, the study showed that deep learning
could be used for indoor PIR-based localization and tracking. It was very accurate, and it
set the stage for future improvements in system scalability and dataset diversity.

Regarding the detection of the direction of people, A novel solution using regularized
K-SVD dictionary learning for PIR sensor-based ambient assisted living systems, focusing
on detecting human movement, is introduced by De et al. [90]. The proposed modified
algorithms, MRK-SVD and MRAK-SVD, show significant improvements in performance
compared to existing methods. Another paper by De et al. introduces an innovative
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approach for detecting human movement direction. They employ a label consistency-based
modified sequential dictionary learning method integrated with PIR sensor technology [91].
Their research enhances detection algorithms to handle larger databases more effectively.
Their LC-MCAS-DL method is shown to be better than previous MMCP- and MRAK-
SVD-based methods, especially in difficult everyday situations like finding intruders. This
comprehensive study, supported by detailed experimental data from an advanced PIR
sensor system, establishes a new benchmark in the field of human movement direction
detection. In a study by Yun et al. [92], classical machine learning and a simple deep
learning model for human movement detection using analog PIR are evaluated. Classical
machine learning excels in real-time detection, while deep learning achieves approximately
90% accuracy in direction detection with minimal data and scaling benefits. Another
method using a PIR sensor is presented by Yun et al. [93]. In this work, a system for
counting and direction detection of moving people is employed, employing convolutional
neural networks (CNNs) and generative adversarial networks (GANs). Data collected
from scenarios involving one to four subjects is utilized. A unique time sequence sensor
data augmentation algorithm, the auxiliary-classifier conditional GAN, is developed to
improve performance in multi-person movements. It enhances the model’s ability to handle
complex scenarios of multiple individuals moving simultaneously. The results indicate
significant improvements in counting accuracy, with increases of 7.9%, 9.7%, 26%, and
37.5% for groups of one to four subjects, respectively, compared to the original model
without augmentation. In the most recent work by Umutoni et al. [94], a new approach is
used to find moving objects with limited real-time resources. This approach uses analog
PIR signals as data input and the growing TinyML technology. It achieves a performance
accuracy of 80.8%, with the potential for enhancement over time through the application of
reinforcement learning.

Based on these studies on localization, both signal-based and binary-based systems
play crucial roles in determining the direction, location, and tracking of objects or indi-
viduals. Signal-based PIR sensors provide a continuous range of values, offering detailed
information for localization. This data is instrumental in accurately determining the di-
rection of movement and precise localization by analyzing the intensity and patterns of
the signals over time. On the other hand, binary-based PIR sensors, which only indicate
the presence or absence of motion, are simpler but can be effectively used for tracking
when multiple sensors are networked together, separating the space based on the field
of view. By strategically placing these sensors and interpreting the sequential triggering,
one can deduce the direction of movement and approximate location. For tracking peo-
ple using both binary and signal-based sensors, understanding location and direction is
essential. This means that effective tracking requires precise knowledge of both where
a person is (location) and where they are heading (direction). As depicted in Figure 12,
these two elements are fundamental in accurately monitoring movements, allowing the
system to provide real-time updates and predict future positions. This synergy between
location and direction forms the core of a robust tracking system, whether it is utilizing
the detailed data from signal-based sensors or the simpler presence/absence detection of
binary sensors.

Figure 12. Localization system.
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Additionally, based on previous research, we can categorize PIR-based localization
systems into two main types: building-scale localization and room-scale localization, as
illustrated in Figure 13.

Figure 13. Localization based on PIR sensor.

• Building Scale Localization: This level focuses on identifying the specific room a
person occupies within a building. Binary-based PIR sensors are the preferred choice
for this task due to their efficiency in detecting whether individuals are present or
absent as they move between rooms. Positioned at critical points like doorways, these
sensors give a broad yet effective overview of where people are located throughout
the building.

• Room Scale Localization: For pinpointing an individual’s exact position within a
particular room or area, signal-based PIR sensors are primarily employed based
on extensive research. These sensors provide a continuous stream of data vital for
accurately identifying a person’s precise location in a confined space. They analyze
the intensity and fluctuations of signals over time, allowing the system to detect subtle
movements and specific positions within the room. This detailed approach offers a
greater depth of understanding about an individual’s location and movement on a
smaller scale compared to more general building-scale localization.

3.4. PIR Sensors for Activity Detection

PIR sensors are critical components in the field of activity detection, particularly in
smart homes. Binary and signal-based techniques are both used in this area of research,
showing the variety of methods that are used. Researchers have developed sophisticated
systems utilizing innovative methods to accurately interpret human activities. Machine
learning algorithms, deep neural networks, and collaborative reasoning have all been added
to activity recognition systems to make them much more useful. These advancements not
only enable discreet monitoring but also meet the growing demand for intelligent and
context-aware home automation. We summarize binary PIR sensor approaches for activity
detection in Table 7.

Table 7. Binary PIR Sensors for activity Detection.

Ref Output Location Spatial
Resolution Type of Activity Algorithms

[95] Binary 11 PIR (wall), 8 (Door) Buildings Eat, Bathroom activity, Sleep, Cook, Clean-up, Living room
activity, Work and Study with PC, Go out Accuracy, Random Forest (62.8%)

[96] Binary (2 modules each 5)
Ceiling Buildings Going to bed, Going to the coffee table, Eating, Going to the

bathroom, Entering the room, Exiting the Room,

Random Forest, Extremely Randomized Trees,
Support Vector Machines (SVM), Naive Bayes,
Ada Boost, Logistic regression, and kNN

[97] Binary 27 (different parts)
(4 door sensors) Buildings Bed to Toilet, Eating, Meal Preparation, Relax Average accuracy, DCNN classifier (99.36%)

[98] Binary 31 (different places)
(4 door) Buildings

Bed to Toilet, Eating, Enter Home, Housekeeping, Leave
Home, Meal Preparation, Relax, Sleeping, Work,
Wash Dishes

Accuracy, DCNN (99.23%)

[99] Binary 25 (different places)
(4 door) Buildings

Bed to Toilet, Eating, Enter Home, Housekeeping, Leave
Home, Meal Preparation, Relax, Sleeping, Work,
Wash Dishes

F1-score, Scanpath Trend Analysis (STA) (86%)
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Table 7. Cont.

Ref Output Location Spatial
Resolution Type of Activity Algorithms

[100] Binary 27 (different parts)
(4 door sensors) Buildings Travel Patterns (Direct, Lapping, Pacing, Random)

Accuracy (Naive Bayes (82.51%), one vs. rest
(90.46%), KNN (93.25%), Decision Tree (93.58%),
SVC (93.81%), Gradient Boost (94.06%),
Random Forest (94.48%), DCNN (97.84%))

[101] Binary 27 (different parts)
(4 door sensors) Buildings

Bed to Toilet, Eating, Enter Home, Housekeeping, Leave
Home, Meal Preparation, Relax, Sleeping, Work,
Wash Dishes

Accuracy, RNN (98.148%)

[102] Binary 27 (different parts)
(4 door sensors) Buildings

Get House, Leave House, Take Food, Bed to Washroom,
Rest, Food Preparation, Sleep, Work, House Cleaning,
Washing Utensils, Simple Exercise, Pick Objects

Accuracy, DCNN (98.68%)

[103] Binary 31 (different places)
(4 door) Buildings Meal Preparation, Relax, Eating, Work, Sleeping, Wash Dishes,

Bed to Toilet, Enter Home, Leave Home, Housekeeping Accuracy, AdaBoost (98%)

[104] Binary 16 (wall) Room Heavy, medium, light, and resting activities Accuracy, SVM (99.7%)

[105] Binary 31 (different places)
(4 door) Buildings Bed to Toilet, Eating, Enter Home, Housekeeping, Leave

Home, Meal Preparation, Relax, Sleeping, Work, Wash Dishes
F1 scores, DeepLSTM (90.3%), Deep 2D-CNN
(90.8%), Deep 2D-CNNLSTM (91.9%)

[106] Binary 31 (different places)
(4 door) Building Sleeping, Bed to Toilet, Meal Preparation, Relax, Eating,

Wash Dishes, Work
Average Precision, Online Event-Based Activity
Discovery (87%)

[107] Binary 31 (different place)
(4 door) Buildings 10 Activities Accuracy, DCR-OL 82.23%

[108] Binary 31 (different place) Building OverSleeping, LessSleeping, NotBackHome, Dead Accuracy, Rule-based Anomaly
Classification (72.93%)

[109] Binary 31 (different place)
(4 door) Buildings Repetition, Disturbance in sleep, and Confusion Accuracy, ConvLSTM AE (90.3%), LSTM AE

(89%), LSTM (81%), OCSVM (70%)

[110] Binary 31 (different place)
(4 door) Buildings Meal Preparation, Relax, Eating, Work, Sleeping, Wash Dishes,

Bed to Toilet, Enter Home, Leave Home, Housekeeping
Accuracy, marker-based stigmergy and a
Directed-weighted Network (DwN) (96.69%)

[111] Binary 4 Wall Buildings Washing Dish, Resting, Eating, Resting while Eating, Cooking Accuracy, PCA-KNN (94%)

Binary-based PIR sensor activity detection: Based on studies, the utilization of binary
PIR sensors for activity recognition has become prominent in smart home applications.
Kashimoto et al. [95] present a low-cost, device-free activity recognition system using
energy-harvesting PIR and door sensors for smart homes. These sensors, powered by solar
panels, eliminate the need for battery replacements. The system recognizes various home
activities, such as eating, cooking, and sleeping, by analyzing sensor data. It employs
random forest machine learning algorithms for accurate activity classification. The system’s
effectiveness was validated in a smart home setting with an average F-measure accuracy of
62.8%. This approach offers a practical solution for monitoring daily activities in homes
without intruding on privacy or incurring high costs. Lameski et al. navigated challenges
in designing a non-invasive ambient assisted living (AAL) system with PIR for activity
recognition in nursing homes [96]. They addressed issues like limited data collection from
PIR sensors, the need for easy deployment, and the importance of user-friendly AAL
systems for vulnerable populations. In another study, Zhang et al. utilized PIR sensors and
machine learning for residential occupant monitoring [104]. They implemented a PIR sensor
array to collect data over 71 days, classifying occupant activities into heavy, medium, light,
and resting categories, plus differentiating between human and pet movements. Utilizing
an optimized support vector machine model, they achieved high accuracy rates (99.7%
for training, 90.9% for testing) in identifying activity intensities and locations. The study
underscores the potential of PIR sensors in smart homes for precise, privacy-conscious
occupant behavior monitoring.

Utsumi et al. present a revolutionary method for early pre-frailty detection, which uses
binary PIR sensors to assess walking speed [112]. The system measures the time of passage
between two PIR sensor points, enabling continuous monitoring of walking speed in daily
living. This real-time assessment allows for the quantitative calculation of the subject’s
physical activity. The system’s capability to detect changes in walking speed provides a
means to estimate pre-frailty at an early stage. Furthermore, the order and frequency of PIR
sensor detections contribute to generating movement routes, offering insights into subject
behavior patterns and functioning as a monitoring system.
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Most research utilizing binary-based PIR sensors employs the Aruba dataset, which
is associated with activity recognition and smart homes. This dataset consists of sensor
readings collected from a smart home environment where a variety of sensors, includ-
ing motion sensors, temperature sensors, and contact sensors, are installed throughout a
residential space. These sensors gather data over time, documenting the daily activities
and movements of the inhabitants. In this literature review article, our attention is specifi-
cally on those studies that exclusively use motion sensors, disregarding any other type of
sensor. Fahad et al. developed an activity Recognition by clustering-based classification
(AR-CbC) model using PCA for feature selection and Lloyd’s algorithm for clustering
activity instances in smart homes [113]. The model applies ET-KNN for classification
within clusters, enhancing accuracy, especially for overlapping activities. Tested on Aruba
and Kasteren datasets, AR-CbC showed superior performance in precision, recall, and
F1 score compared to other classifiers. In Aruba, it achieved 79.65% precision, 76.46%
recall, and 91.40% accuracy. In Kasteren, precision and recall were as high as 96.26% and
95.07%, demonstrating the model’s effective activity recognition. Gochoo et al. devel-
oped a novel deep convolutional neural network (DCNN) based on the Aruba dataset
for four activities [97]. The study converted the annotated binary sensor data into binary
activity images corresponding to the activities. Subsequently, these activity images were
utilized for training and testing the DCNN classifier. Finally, the classifiers were evaluated
using a 10-fold cross-validation method. Experimental results showcased that the best
DCNN classifier achieved an impressive accuracy of 99.36%, demonstrating its proficiency
in identifying basic activities such as bed to toilet, eating, meal preparation, and relaxing.
In another work, Gochoo et al. [98] focused on using DCNN to detect a wider range of
activities. The study demonstrates the effectiveness of the DCNN model, achieving high F1
scores of 0.79 for ten activities and 0.951 for eight. The model exhibits exceptional capability
in recognizing and differentiating between various activities. This research is pivotal as it
offers a non-invasive, privacy-respecting tool for monitoring elderly individuals and sets
a path for future enhancements, such as integrating LSTM with DCNN for more compre-
hensive real-life applications. In their exploration of elderly travel patterns, Gochoo et al.
employed diverse machine learning algorithms [98]. The study aimed to discern various
movement patterns—direct, pacing, lapping, or random—as indicative of the resident’s
cognitive state and potential early signs of dementia. The results, expressed in accuracy
percentages for different algorithms, are as follows: naïve Bayes (82.51%), one vs. rest
(90.46%), KNN (93.25%), decision tree (93.58%), SVC (93.81%), gradient boost (94.06%), ran-
dom forest (94.48%), and DCNN (97.84%). The DCNN model demonstrated high accuracy,
significantly outperforming classical machine-learning classifiers in accurately detecting
and interpreting elderly travel patterns. In a study by Rajesh et al. [102], DCNN algo-
rithms were also employed to detect a broader range of activities, specifically 12 activities.
The system underwent evaluation using the Aruba dataset, and the results for detecting
these 12 activities showcased a high F1 score of 0.82. The proposed DCNN achieved an
impressive accuracy of 98.68%. The study by Xu et al. proposes a novel two-layer multi-
granularity activity recognition model [103]. This framework includes a coarse-grained
subsystem for recognizing easily-confused activities and a fine-grained subsystem employ-
ing machine learning or deep learning classifiers for detailed activity identification. The
model, validated using the Aruba dataset, demonstrates superior performance with the
two-layer framework and marker-based stigmergy. The accuracy for AdaBoost is 98%, and
for DCNN, it is 95%. Despite limitations in DCNN performance due to sample size, the
combination of DCNN, the two-layer framework, and stigmergy effectively characterizes
spatio-temporal properties. Additionally, the study explores the impact of standard devia-
tion parameters on classification performance, revealing minimal influence from changes
in the adjustment coefficient of diffusivity. It notes that accuracy initially increases and
then decreases with rising adjustment coefficients of volatility for both machine learn-
ing and deep learning classifiers. Continuing this line of work, Xu et al. introduced an
innovative technique for event-driven daily activity recognition (DAR) in elderly health
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monitoring in their study [110]. Their approach utilizes marker-based stigmergy and a
directed-weighted network (DwN) to construct a stigmergic activity pheromone trail (APT).
DwN outperforms APM, showcasing its superiority in recognizing activities of daily living
(ADLs) and reducing activity confusion. Evaluation with the Aruba dataset highlights
DwN’s effectiveness, further enhanced by incorporating location information for improved
DAR performance, especially in scenarios with clear directionality. The system, featuring
AdaBoost or DCNN classifiers, demonstrates robust performance validated through ab-
lation experiments. While diffusion parameters minimally impact DAR, careful selection
of volatilization parameters is crucial. Overall, this approach outperforms state-of-the-art
methods, emphasizing its efficacy in real-world scenarios. Tan et al. created another deep
learning-based technique that makes use of recurrent neural networks (RNNs) [101]. The
study employs bidirectional long short-term memory (Bi-LSTM) neural networks and fully
connected neural networks (FCNNs) for feature extraction and activity classification. By
incorporating external features such as previous activity and begin time-stamp, the model
enhances accuracy in recognizing daily activities, demonstrating an F1 score of 0.917, which
is a notable improvement over state-of-the-art models. In study by Hwang et al. [105], a
new model using deep learning was developed, emphasizing causality feature extraction
and fuzzy temporal windows (FTWs) for better precision. The model, tested on Aruba,
Cairo, and Milan datasets, effectively distinguishes between easily-confused activities and
manages unlabeled data challenges. It employs deep long short-term memory (LSTM),
2D convolutional neural networks (CNNs), and hybrid models for learning spatiotem-
poral dependencies. The study reported significant improvements in macro-F1 scores,
demonstrating the model’s effectiveness in recognizing complex human activities.

Regarding the use of another technique, the study by Jarraya et al. presents a novel
approach named distributed collaborative reasoning (DCR) [107]. This approach leverages
a multi-agent system where agents with different classifiers observe sensor data, make
local predictions, and collaborate for activity identification. This paper introduces an
enhanced version, DCR-OL, incorporating online learning where agents learn from their
interactions to improve performance. Tests on the Aruba dataset show that both DCR
and DCR-OL are more accurate, have better F measures, and have better G means than
existing centralized and distributed methods. In [99] by Yatbaz et al., an innovative
method for monitoring elderly individuals living alone is proposed through scanpath trend
analysis (STA), adapted from eye movement trend analysis. This approach, utilizing binary
sensor data from the Aruba dataset in a smart home environment, showcases significant
advancements in activity recognition with an F1 score of 0.758 using STA alone and an
improved 0.863 when combined with an activity transition matrix. The study highlights
STA’s efficiency and accuracy, with its minimal need for complex data preprocessing or
extensive training, positioning it as a promising solution for unobtrusive elderly monitoring
and anomaly detection in smart home buildings.Ghosh et al. [106] employed an online
event-based activity discovery (OEAD) algorithm. Their method uses location and time
features for clustering activity instances. The model achieved precision rates ranging from
0.40 to 1.00 and recall rates from 0.50 to 1.00 for various activities, demonstrating effective
activity recognition. The algorithm particularly excelled in identifying infrequent activities
critical for geriatric care, showcasing its potential for real-world applications in elderly
monitoring systems.

With regard to detecting anomaly activity based on PIR sensors, Moshtaghi et al. pro-
pose statistical models for unobtrusively detecting abnormal periods of inactivity in older
adults [114]. Eisa et al. introduced a system in their study to monitor the behavior of elderly
individuals in their homes using PIR motion sensors [108]. This non-intrusive system aims
to detect abnormal behaviors indicative of health or safety concerns. It processes sensor
data to build a behavioral model, identifying deviations from normal patterns. In testing
with synthetic datasets, the system showed high accuracy in recognizing various abnormal
behaviors, such as oversleeping (96.26%) and less sleeping (97.71%) in the Profile A dataset,
with slightly varying results in the Aruba dataset. Despite some challenges, such as lower
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accuracy in detecting ’NotBackHome’ behavior in the Aruba dataset (34.71%), the overall
results demonstrate the system’s potential in supporting the independent living of elderly
individuals by alerting caregivers to unusual activities that might signal health or safety
issues. In the most recent effort to detect anomalous activities, Nazerfard et al. introduced
a novel method that presents a ConvLSTM autoencoder (ConvLSTMAE) designed for
identifying abnormal activities in elderly individuals [109]. This approach leverages Con-
vLSTM layers for encoding and decoding, effectively handling spatiotemporal data from
smart home environments. The model’s performance was evaluated using the Aruba and
Kyoto datasets, simulating behaviors such as sleep disturbances and confusion, common
in dementia. ConvLSTMAE demonstrated superior performance in anomaly detection
compared to traditional methods, showcasing its effectiveness in identifying abnormal
behaviors without the need for specific labels during training. This marks a significant
advancement in monitoring the health and safety of the elderly.

Signal-based PIR sensors for activity detection: In the context of signal-based activity
detection using PIR sensors, we summarize signal-based approaches for activity detection
with PIR sensors in Table 8. Luo et al. introduced an innovative indoor human activity
recognition system in their work [115]. This system, designed for ambient assisted living
(AAL) applications, effectively captures discriminative spatio-temporal features of human
motion. The approach involves dividing the observed space into discrete sampling cells
and employing Gaussian mixture model and hidden Markov model (GMM-HMM) for
activity classification. The research specifically focuses on five activities: fall, sit down,
stand up, walk, and run, achieving an average accuracy of 86.2%. In another innovative
signal-based method utilizing PIR sensors for activity detection, Guan et al. introduce a
system that effectively classifies six typical physical activities [116]. The system employs
classification techniques such as the hidden Markov model and support vector machine,
along with various machine learning techniques, including k-nearest neighbor, Gaussian
mixture hidden Markov model (GM-HMM), naive Bayes, and SVM with different kernels.
These methods are evaluated based on the time series and frequency spectrum of sensor
signals, which serve as discriminative features for distinguishing activities. The approach
leverages sparsity in IRC signals through compressive sensing, directly classifying sparse
or compressible signals in the measurement domain. The system achieves high accuracy
with a minimal number of sensors, showcasing its potential for smart home applications.
The effectiveness in classifying human activities with over 97% accuracy using SVM with a
linear kernel is particularly noteworthy, outperforming other machine learning methods.

Table 8. Signal-based activity detection.

Ref Output Location Spatial
Resolution Type of Activity Algorithms

[117] Signal 9 Ceiling (near
together) Room Walking, Sitting, Lying, Standing, Transitional Accuracy, First layer RF (0.82), Second layer RF

(0.93), SVM (0.79), Naive Bayes (0.66)

[48] Signal 2 (Ceiling, Corner) Room Eat, Working with PC, Reading, Smartphone Precision, Random Forest (64.7%)

[118] Signal 4 (Wall), 1 (Ceiling)
in each room Buildings

Bath Room (absence, Stationary, toothbrushing, using
laundry, washing hands), Bed Room (absence, changing
clothes, sleeping, stationary), Living room (absence,
eating, reading, stationary, writing), Kitchen (absence,
cutting, frying, stationary, using fridge)

Average accuracy, Random Forest (over 90%)

[115] Signal 1 (Ceiling) One room Fall, Sit down, Stand up, Walk, Run Average accuracy, GMM-HMM (86.2%)

[116] Signal
(3 modules each 4),
1 Ceiling, 2 Sides
of person

Room Walk, Run, walk with payload, Walk while waving right
hand, Walk with a squat-standing, Fall

Accuracy, KNN (74.38%), GM-HMM (96.67%),
Naive Bayes (85.42%), SVM (Linear kernel)
(97.71%), SVM (multinomial kernel) (96%), SVM
(RBF) (85.63%)

[119] Signal
(4 modules each 4)
one ceiling, 3 sides
of person

Room Normal walk, fast walk, sit down, squat-standing, fall Accuracy, GM-HMMs (91.6%)

[120] Signal 5 (bar near wall) Room
Walking (93%), Jogging (97%), Crouching down (97%),
Squatting up (100%), Sitting (65%), Standing Up (95%),
Falling action (100%)

Accuracy, LSTM (92.42%)

[40] Signal 4 Ceiling Room Anomaly activity Accuracy, LC-MCAS-DL (93.55%)



Sensors 2024, 24, 1533 27 of 36

In another study by Guan et al. [119], a state-of-the-art daily activity recognition
system was developed. Central to the system’s effectiveness was the integration of a
Gaussian mixture hidden Markov model (GM-HMM), a sophisticated machine learning
technique adept at handling time-series data from PIR sensors. The GM-HMM, crucial for
modeling sequences of activities, significantly enhanced the system’s accuracy by capturing
the temporal dynamics and transitions between different states of activity. This machine
learning core, skilled at interpreting complex sensor data, allowed for a detailed recognition
of human activities, considering both spatial and temporal dimensions. Five types of
activities were evaluated: normal walk, fast walk, siting down, squat-standing, and fall,
with an average accuracy based on GM-HMM of about 91.6%. In another signal-based
method for activity detection, Luo et al. developed a system that utilizes PIR sensors
for indoor tracking and activity recognition [117]. It employs a network of sensor nodes
with modulated fields of view (FOVs) and processes the PIR sensor signals for activity
classification. Signal feature extraction utilizes short time energy (STE) due to the non-linear
response of PIR sensors. A data fusion strategy is implemented to enhance localization
accuracy. For activity recognition, a two-layer random forest classifier is employed, utilizing
features like location, speed, and duration of activities. The system was tested in a mock
apartment, achieving a mean localization error of about 0.85 m and over 92% accuracy in
recognizing five types of daily activities (walking, sitting, lying, standing, and transitional).
This innovative approach effectively combines spatial and temporal data for simultaneous
tracking and activity analysis. In another analog-based activity detection research by
Fujiwara et al. [48], an innovative activity recognition technique using an analog-output
PIR sensor is developed, capable of identifying various activities at the same location. This
technique leverages random forest machine learning, utilizing the frequency components of
the sensor’s output as features. To optimize the feature set, a specific range of frequencies,
defined by a starting frequency (SF) and an ending frequency (EF), was selected using a
grid search method. The method’s efficacy was tested with five participants performing
four different activities (eating, working with a PC, reading, and using a smartphone)
while seated on a sofa. The results showed significant accuracy, with an F measure of
63.9% at an EF of 1.4 Hz, decreasing to 50% or lower when the SF exceeded 9.9 Hz. In this
research, two PIR sensors were used—one on the ceiling and another in the corner—to
cover people’s activities. Misaki et al. [118] proposed another system based on the random
forest classifier, utilizing four PIR sensors to detect activity in different parts of the home.
The average accuracy of the random forest classifier is over 90%. In their recent work [120],
Liu et al. present an innovative approach to detecting human motion features using a PIR
sensor array. The study employs a bidirectional long short-term memory (LSTM) neural
network for recognizing various activities. The accuracy results for different actions are
noteworthy: walking achieved 93%, jogging reached 97%, crouching down and squatting
up both achieved high accuracies of 97% and 100%, respectively. Sitting demonstrated
65% accuracy, while standing up achieved 95%, and falling action reached a remarkable
accuracy of 100%. This study showcases the effectiveness of their proposed method in
accurately recognizing a diverse range of human activities based on PIR sensor data.

Based on previous research, exploring activity detection through PIR sensors reveals
two main approaches: direct movement-based activities and context-dependent activities.
As you can see in Figure 14.

Figure 14. Activity detection based on PIR sensor.
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• Direct Movement-Based Activities:
These activities are characterized by the direct physical movement they involve, which
can be detected by a PIR sensor. Signal-based detection is considered superior to
binary-based detection because it allows the reception of continuous signals. This con-
tinuous signal reception enhances the sensor’s ability to capture nuanced movements
and variations in activity.

• Context-Dependent Activities:
These activities are deduced based on the PIR sensor’s location and the assumption
that movement in a specific area is associated with a particular activity. Previous
research has shown that binary-based detection is widely used and effective for this
context. The binary-based approach simplifies the analysis by focusing on the presence
or absence of movement, making it popular and well-suited for inferring context-
dependent activities.

4. Discussion

RQ1 concerned the predominant use of PIR sensor types, binary or signal-based, for
capturing occupancy information. Based on the results, PIR sensors are widely used for
capturing different levels of occupancy information (counting, localization, and activity
detection) rather than mere detection. The popularity of PIR sensors primarily lies in
localization, followed by activity detection, and lastly multi-person counting. With regard to
the type of PIR sensors, the findings show that binary PIR sensors are more commonly used
for activity detection, especially on a building scale. However, for localization purposes,
signal-based PIR sensors are more popular. In terms of people counting, both signal-based
and binary PIR sensors are equally utilized.

To answer RQ2, which pertained to the predominant machine learning algorithms or
methods used for data processing based on PIR sensors, we considered the level of occu-
pancy information and the type of PIR sensor data. For people counting, machine learning
methods are not very popular with binary PIR sensors; however, they are more widely
used for signal-based PIR sensors. Deep learning techniques, such as deep neural networks
and convolutional neural networks, are more popular compared to algorithms that do not
use deep learning. Among the non-deep learning algorithms, support vector machines
are more prevalent. In localization tasks, the use of machine learning for binary-based
data is not common. It is typically limited to tracking applications, where specific machine
learning models are used, such as probabilistic neural networks and NBCL-naive Bayes
classifiers. In contrast, for signal-based data, machine learning, especially deep learning
algorithms, is quite popular. Deep learning-based methods surpass traditional machine
learning algorithms in terms of popularity. The most commonly employed approaches
involve a combination of convolutional neural networks, artificial neural networks, and
long short-term memory networks. For methods that do not utilize machine learning
in localization, the Kalman filter stands out as the most popular choice. Activity detec-
tion using PIR sensors significantly benefits from machine learning, making it a popular
choice in this field. Most research in this area employs machine learning algorithms. In
binary-based activity detection, both traditional machine learning and deep learning meth-
ods are popular. Random forest and support vector machines are commonly used for
traditional approaches, while deep convolutional neural networks are more prevalent in
deep learning-based methods, although algorithms like AdaBoost and recurrent neural
networks also achieve good accuracy. Regarding signal-based activity detection, Gaussian
mixture model hidden Markov models are more commonly used, but algorithms such as
long short-term memory networks and random forest machine learning also yield good
results. Additionally, based on the results, there is a direct link between the number of PIR
sensors used and improved accuracy, but machine learning enhances accuracy with the
same number of PIR sensors. For instance, in signal-based localization, greater accuracy is
achieved when machine learning is utilized. Attaining the same level of accuracy without
machine learning requires an increase in the number of sensors.
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Regarding RQ3, the results indicate that the quantity and location of PIR sensors
vary based on the designated level of occupancy information and sensor type. For people
counting using binary sensors, placing sensors at the entrance is a more common practice.
This typically involves placing one sensor outside and another inside, which facilitates
counting the number of people. This setup is particularly effective for monitoring entrances,
but it may not work accurately when multiple people enter simultaneously. This binary-
based method is mostly used on a building scale, whereas signal-based methods for people
counting are primarily used on a room scale. For the latter, placing four sensors, one in
each corner of the room, is considered an effective approach. Overall, better accuracy is
achieved when integrating both door-based and non-door-based methods. For localiza-
tion, most studies consider the ceiling or the corners of walls as the best placement for
sensors, regardless of sensor type. However, some studies have also explored using the
floor for testing. In terms of the number of sensors required, binary sensors generally need
a larger quantity to achieve the same accuracy as signal-based PIR sensors. For instance,
most binary-based systems use more than 10 sensors, whereas for signal-based systems, a
maximum of 4 sensors is typically sufficient in most studies. Additionally, the implementa-
tion of machine learning algorithms is often found to be more feasible with signal-based
sensors. Therefore, signal-based PIR sensors are considered better for localization. Re-
garding the scale of use, binary sensors are predominantly utilized on a building scale,
whereas signal-based sensors are more commonly used on a room scale. Regarding activity
detection, binary PIR sensors are more common on a building scale. Most sensors used
for this purpose are placed in doorways or near locations where a probable activity might
occur, especially on walls. The number of sensors depends on the number of activities
being monitored and the number of rooms. For signal-based systems, which are primarily
used on a room scale, the ceiling and walls are the most common placement locations,
particularly in areas directly in front of the person performing the activity.

In terms of RQ4, most binary PIR sensors used for detecting activities are implemented
on a building scale, focusing on context-dependent activities. For instance, the movement of
a person from one room to another is considered an activity. Binary sensors can be used to
detect activities such as eating, sleeping, cooking, cleaning up, working or studying, going
out, going to bed, and washing. Additionally, these sensors are employed for identifying
travel patterns (direct, lapping, pacing, and random) and for detecting anomalies, including
oversleeping, sleeping less, not being back home, being dead, or repeating actions. For
signal-based sensors, most activity detection applications are on a small scale, concentrating
on direct movement activities. The most significant activities detected by signal-based
sensors include walking, sitting, lying down, standing, eating, working, falling, and doing
anomalous activities. These detailed detections are due to the capability of signal-based
sensors to capture more nuanced movements and variations in activity, as opposed to the
binary PIR sensors, which mainly detect the presence or absence of motion. In the context
of linking various levels of occupancy information using PIR sensors, the connections
between these levels are illustrated in Figure 15. Detection is the foundational step, critical
for subsequent processes like counting, activity recognition, and localization. Counting
and localization are directly linked since understanding the number of people present can
significantly enhance localization efforts. In addition, localization is closely connected
to activity detection; namely, knowing an individual’s precise location within a space
aids in identifying their specific activities. On the other hand, the relationship between
counting and activity recognition is somewhat indirect, mediated through localization.
The combination of knowing both the number of occupants and their locations provides a
richer context for accurately interpreting activities. In terms of localization, particularly
for tracing movements, it is crucial to have information about both the direction and the
location of individuals. This dual knowledge enables a more precise tracking of movement
patterns and paths within the monitored environment.
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Figure 15. Occupancy information level connection based on PIR sensor.

To summarize our findings on the design choices for occupancy sensing systems, with
a special focus on the decision-making framework for employing PIR sensors in smart
buildings, the process is divided into two phases: before and after sensor selection, as
you can see in Figure 16. In the pre-selection phase, attention is paid to the application’s
domain, the level of occupancy information required, sensor quality characteristics, and
the necessary spatial and temporal resolution. This comprehensive evaluation ensures the
selection of the most suitable sensor type and its optimal placement to fulfill the established
requirements. Following the selection of the sensor, attention shifts to data processing.
Subsequently, the process involves choosing appropriate methods, which may encompass
machine learning algorithms or non-machine learning approaches. In terms of machine
learning, the performance of models is evaluated using metrics such as accuracy and RMSE.
This leads to their deployment and continuous monitoring to guarantee effectiveness and
adaptability to changing conditions. All this data-related processing can be executed using
edge, fog, or cloud computing, offering flexibility in managing the collected information.
In this study, we specifically focus on the level of occupancy information, sensor quality
characteristics, spatial resolution, sensor location, and the methods employed, which
include machine learning and other approaches. Future work could explore other aspects,
such as application and further advancements in sensor technology.

Figure 16. Decision-making framework for occupancy information in smart building based on
PIR sensor.
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5. Conclusions

The paper thoroughly examines the roles of binary and signal-based PIR sensors for
occupancy information in smart buildings between 2015 and 2023. It highlights an increase
in the number of articles across various levels of occupancy information, underscoring
their unique and complementary functions. The findings show that signal-based PIR
sensors are better at localization tasks, such as tracking movements and determining
where humans are in a building or room, while binary PIR sensors are mostly used for
activity detection across larger buildings, demonstrating their effectiveness in monitoring
extensive areas. Moreover, these sensors can detect a range of activities, from simple
movements like walking to more complex and anomalous behaviors, thereby providing
valuable insights for security and behavioral analysis in smart buildings. Regarding
people counting, both types of sensors are equally effective, underscoring their versatility
in various environmental contexts. A significant aspect of the review is its focus on
exploring the role of machine learning—particularly deep learning techniques such as
deep neural networks and convolutional neural networks—in enhancing the functionality
of PIR sensors. According to the findings, these advanced algorithms are particularly
effective in processing signal-based PIR sensor data for people counting and localization,
indicating a shift towards AI-driven approaches for improved accuracy and efficiency
in occupancy sensing. The findings also emphasize the importance of strategic sensor
placement and quantity. In particular, signal-based sensors achieve higher accuracy with
fewer sensors, providing a more efficient approach to sensor deployment for precise
occupancy detection. Moreover, this review highlights the link between different levels of
occupancy information captured through PIR sensors. Overall, the review maps out the
evolving role of PIR sensor technology in smart building management and underscores
its crucial contribution to enhancing energy efficiency, security, and occupant comfort. It
aims to further refine the capabilities of PIR sensors in smart building applications, thereby
contributing to the development of more sophisticated and accurate building management
systems. Accordingly, it sets the stage for future advancements in sensor technology and
machine learning algorithms. We suggest conducting further research to explore the optimal
non-invasive sensors, beyond PIR sensors, for capturing various levels of occupancy
information, along with investigating methods to integrate these sensors with PIR sensors
to develop a unified, integrated, or hybrid system. The investigation should leverage sensor
fusion techniques, combining PIR sensors with various non-invasive sensor types, such
as ultrasonic and environmental sensors. This strategy is expected to improve detection
accuracy and broaden the range of activities. Additionally, exploring advancements in the
sensitivity of PIR sensors, alongside comparisons with other types of infrared radiation-
based sensors, is necessary. A critical examination of quality characteristics, including
reliability, scalability and so on, in relation to the sensor type and the level of occupancy
information is also vital. Furthermore, the role of edge computing and Edge AI should be
examined for their potential to enhance real-time data processing and privacy.
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