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Abstract: Precision agriculture (PA) intends to validate technological tools that capture soil and crop
spatial variability, which constitute the basis for the establishment of differentiated management
zones (MZs). Soil apparent electrical conductivity (ECa) sensors are commonly used to survey soil
spatial variability. It is essential for surveys to have temporal stability to ensure correct medium- and
long-term decisions. The aim of this study was to assess the temporal stability of MZ patterns using
different types of ECa sensors, namely an ECa contact-type sensor (Veris 2000 XA, Veris Technologies,
Salina, KS, USA) and an electromagnetic induction sensor (EM-38, Geonics Ltd., Mississauga, ON,
Canada). These sensors were used in four fields of dryland pastures in the Alentejo region of Portugal.
The first survey was carried out in October 2018, and the second was carried out in September 2020.
Data processing involved synchronizing the geographic coordinates obtained using the two types of
sensors in each location and establishing MZs based on a geostatistical analysis of elevation and ECa

data. Although the basic technologies have different principles (contact versus non-contact sensors), the
surveys were carried out at different soil moisture conditions and were temporarily separated (about
2 years); the ECa measurements showed statistically significant correlations in all experimental fields
(correlation coefficients between 0.449 and 0.618), which were reflected in the spatially stable patterns of
the MZ maps (averaging 52% of the total area across the four experimental fields). These results provide
perspectives for future developments, which will need to occur in the creation of algorithms that allow
the spatial variability and temporal stability of ECa to be validated through smart soil sampling and
analysis to generate recommendations for sustained soil amendment or fertilization.

Keywords: pastures; soil variability; sensors; electrical conductivity; management zones

1. Introduction

Several studies show the high spatial variability of soil properties in agricultural
fields [1,2]. Previous research has shown that the amount of soil variability across a farm
and within a field is of key importance to determine the potential benefits of adopting
effective management strategies [3,4]. Understanding this spatial variability is the first
step for site-specific crop management [5]. On the other hand, spatial variability and
temporal stability are two essential conditions for the adoption of differential manage-
ment strategies and are the bases for variable rate technology (VRT) implementation [6].
However, relatively little is known about the degree of within-field spatial variation in
soils used for livestock production, which leads to the common practice of uniform field
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management [2]. Site-specific crop management aims to increase profitability and reduce
the negative environmental impact of modern farming [7].

Numerous studies use data from sensors to map soil physical and chemical properties
to divide the field into smaller, more homogeneous areas (management zones, MZs) [8,9].
Surveying soil spatial variability is the basis for identifying within-field areas of soil
similarity, defining MZs, and supporting decision making, for example, to decide on the
locations of direct soil sampling (smart soil sampling) [10] or for variable rate application
(VRA) of agricultural inputs [1,2,11–13]. These subfield regions constitute areas that have
similar permanent characteristics, such as topography and nutrient levels [14]. Typically,
soil sampling of a field comprises a grid-sampling approach as well as laboratory work [5].
This is impractical at the farming scale because it requires many soil samples in order to
achieve a good representation of the soil spatial patterns, and it is labor intensive, time
consuming, and expensive [1,3,5]. Therefore, it is desirable to find other more rapid and
low-cost means of obtaining information for detailed soil mapping [3].

During previous decades, great progress has been made in the research and devel-
opment of proximal soil sensing and mapping [9]. The use of geospatial measurements
of apparent soil electrical conductivity (ECa), combined with global navigation satellite
systems (GNSSs) and geographical information systems (GISs), has become instrumental
in characterizing the spatial patterns of soil properties within fields [5,14,15]. There are
two types of electrical conductivity sensors that are currently on the market: (i) contact
sensors, such as the Veris 2000 XA (Veris Technologies, Salina, KS, USA) sensor, which use
electrodes, in the shape of coulters, that make contact with the soil to measure the electrical
resistivity (the inverse of electrical conductivity); and (ii) non-contact sensors, such as the
Dualem 1S (Dualem, Inc., Milton, ON, Canada) or the EM-38 (Geonics Ltd., Mississauga,
ON, Canada) sensors, which are based on the principle of electromagnetic induction [14].
Both have advantages and disadvantages, and the different operating principles of these
two types of sensors should be considered in the selection of ECa sensing systems for each
application [12]. It is generally recognized that both types of sensors represent practical
tools to delineate soil-based MZs [11].

Soil electrical conductivity has been frequently used in the establishment of soil MZs
and in the inference of several edaphic physicochemical properties and their respective
spatial variations [5,16]. Many studies carried out on agricultural soils have reported the re-
lationship of ECa with other soil attributes, including salinity, texture, depth, pH, moisture,
organic matter, and cation exchange capacity [5,13]. Changes in the spatial distribution
and magnitude of dynamic factors, such as moisture and temperature, can consequently
affect the spatial patterns of proximal soil sensing data and their relationship with static
soil properties, such as texture [9]. According to Farahani and Buchleiter [17], although the
magnitudes of the absolute values of ECa may change in response to modifications in the
soil dynamic properties, it is expected that the pattern of ECa spatial variability will not
change significantly over time [13]. It is therefore essential that ECa measurements portray
the soil’s spatial variability pattern, expressed in terms of delineation of MZ, but to also do
so in a stable way over time [13], guaranteeing the sustainability of management decisions
in the medium and long term [2]. Considering that an MZ is often used for several years,
the variables should be temporally stable [18].

Several previous studies have evaluated and reported the temporal stability of ECa. Some
have reported weak temporal associations [11], and others have shown that ECa has temporal
stability [2,19,20]; however, there are no known studies evaluating the temporal stability of MZ,
especially when obtained from measurements using sensors with different principles.

The aim of this study was to assess the temporal stability of MZ patterns using two
different types of ECa sensors, namely a contact-type (Veris 2000 XA) and an electromagnetic
induction type (EM-38), after approximately 2 years in four fields of dryland pastures in
the Alentejo region of Portugal.
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2. Materials and Methods
2.1. Description of Experimental Fields

The experimental work was carried out at four fields, namely two in the “Mitra”
experimental farm (“ECO” and “MIT”), one in the “Murteiras” farm (“MUR”), and
another in the “Padres” farm (“PAD”), which are all permanent and biodiverse dry-
land pastures of the Montado ecosystem, located in Alentejo, in the district of Évora, in
southern Portugal (Table 1).

Table 1. The main characteristics of the four experimental fields used in this work.

Field
Code Coordinates Area

(ha) Soil Texture Animal Species
(Type of Grazing)

ECO 38◦53.10′ N;
8◦01.10′ W 4.3 Loamy

sand

Sheep
(Rotational

grazing)

MIT 38◦32.17′ N;
7◦59.83′ W 20.2 Loamy

sand

Cattle
(Rotational

grazing)

MUR 38◦23.4′ N;
7◦52.5′ W 29.6 Sandy

loam

Sheep
(Permanent

grazing)

PAD 38◦36.4′ N;
8◦8.7′ W 32.2 Sandy

loam

Cattle
(Permanent

grazing)

In this mixed ecosystem, the predominant trees are Holm oak trees, and the main
animal species are cows and sheep in extensive grazing. The soil type is Cambisol, orig-
inating from granite [21], and is characterized by a coarse texture. These soils are not
highly fertile and are primarily utilized for mixed agro-silvo-pastoral systems [2]. The
location of these fields is representative of the temperate climatic conditions of Portugal
(classified as ‘Csa’: hot summer Mediterranean climate according to the Köppen–Geiger
climate classification). The temperature ranges between 0 ◦C as the minimum in winter and
40 ◦C as the maximum in summer. The mean annual rainfall is 567 mm, with precipitation
mainly concentrated between October and April, and practically non-existent during the
summer (source: Portuguese Institute of Sea and Atmosphere) [22].

2.2. Topographic and Soil Electrical Conductivity Surveys

The experimental approach proposed in this study is shown in Figure 1.
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(Veris Technologies, Salina, KS, USA) in October 2018 (Figure 3a–c). This sensor was 
mounted on a chassis supported by two wheels, and its active components consisted of two 
pairs of coulter-electrodes—adjustable rotating discs. One pair injected a current into the 
soil (outermost discs), while the other pair (innermost discs) measured the voltage drop. 

The adjustment of the discs generates a set of topsoil data (from 0 to 0.30 m in depth). 
The sensor, equipped with a GNSS antenna, was towed by a tractor at an average speed 
of 2.0 m s−1, and successive passes spaced 10 m apart were made across the field. The ECa 
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A topographic survey of the four experimental fields was carried out using a Real-
Time Kinematic (RTK) GNSS instrument (Trimble RTK/PP-4700 GNSS, Trimble Navigation
Limited, Sunnyvale, CA, USA). The elevation data were sampled in the field with the GNSS
antenna assembled on a tractor (Figure 2). For each field, the digital elevation model (DEM)
was generated using the triangulated irregular network (TIN) interpolation tool from
ArcGIS 9.3. The TIN algorithm uses sample points to create a surface formed by triangles
based on nearest neighbor point information. This vector information was converted into a
grid surface with a 1 m resolution using the “Spatial Analyst” tool.
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Figure 2. Trimble RTK/PP-4700 GNSS: (a) differential correction station and tractor-mounted rover;
(b) rover to georeference soil sampling points.

The ECa in the four fields was measured using a Veris 2000 XA contact-type sensor
(Veris Technologies, Salina, KS, USA) in October 2018 (Figure 3a–c). This sensor was
mounted on a chassis supported by two wheels, and its active components consisted of two
pairs of coulter-electrodes—adjustable rotating discs. One pair injected a current into the
soil (outermost discs), while the other pair (innermost discs) measured the voltage drop.
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The adjustment of the discs generates a set of topsoil data (from 0 to 0.30 m in depth).
The sensor, equipped with a GNSS antenna, was towed by a tractor at an average speed
of 2.0 m s−1, and successive passes spaced 10 m apart were made across the field. The
ECa measurements were recorded every second, resulting in a spatial resolution of a
2 m by 10 m grid.

The ECa was also measured using an EM38 non-contact sensor (Geonics Ltd.,
Mississauga, ON, Canada). It was employed in the horizontal dipole orientation to perform
ECa surveys in each pasture field in September 2020 (Figure 3d–f). The two receiver coils
were positioned 0.5 m away from the transmitter. Although this sensor provided data from
depth ranges of 0.75 m and 0.375 m, only the topsoil data in the range of 0–0.375 m were
utilized in this study. The device was towed by an all-terrain vehicle equipped with a GNSS
antenna. The vehicle maintained an average speed of 2.5 m s−1, making successive passes
across the fields and recording the ECa measurements every second. From these ECa data,
Kriged ECa maps were generated for each pasture field using the collected ECa data. The
ECa values at each sample location were then extracted from these ECa maps.

The estimation of ECa at unsampled locations was performed using the ordinary
point kriging algorithm, which integrates the spatial correlation structure described with
the variograms. The resulting kriged maps show the spatial distribution of ECa in the
experimental field. Finally, the kriged ECa maps were generated using the ArcMap module
of ArcGIS.

On both dates and in each experimental field, following the ECa measurements, eight
georeferenced composite soil samples (Figure 4) were collected at depths ranging from 0
to 0.30 m using a gouge auger and a hammer. Each composite sample resulted from the
combination of five sub-samples collected within an approximately 10 m × 10 m area: one
from the center of the sampling area and the other four from the respective quadrant. Soil
samples were transported to the laboratory in metallic boxes, weighed, and then dried at
105 ◦C until a constant weight was achieved. Once cooled, they were weighed to establish
the mean soil moisture content (SMC). Subsequently, the fine components of the soil
(fraction with a diameter < 2 mm) underwent chemical analyses using standard reference
laboratory methods [23]. The pH (in a 1:2.5 soil-to-water suspension) was determined
using the potentiometric method. Organic matter (OM) was measured by combustion
and CO2 measurement, employing an infrared detection cell. Phosphorous (P2O5) and
potassium (K2O) were extracted using the Egner–Riehm method, with P2O5 measured
using the colorimetric method and K2O measured with a flame photometer.

2.3. Soil Sampling and Analysis

On date 2 (September 2020), soil samples were also processed for particle size dis-
tribution using a sedimentographer (Sedigraph 5100, manufactured by Micromeritics).
Additionally, samples were processed for determination of cation exchange capacity (CEC),
extracted with ammonium acetate.

2.4. Statistical Analysis and Data Processing

With the aim of assessing the soil spatial variability, an initial descriptive statistical analysis
(mean, standard deviation, and range) was carried out for the measured parameters.

The data of ECa obtained by a Veris sensor in October 2018 and by EM-38 in
September 2020 were synchronized using the geographic coordinates of each point to evaluate
the temporal stability of the ECa measurements. Figures 5 and 6 show the paths taken by the
two sensors in each experimental field, Veris 2000 XA and EM-38, respectively.



Sensors 2024, 24, 1623 6 of 18

Sensors 2024, 24, x FOR PEER REVIEW 6 of 18 
 

 

(K2O) were extracted using the Egner–Riehm method, with P2O5 measured using the col-
orimetric method and K2O measured with a flame photometer. 

On date 2 (September 2020), soil samples were also processed for particle size distri-
bution using a sedimentographer (Sedigraph 5100, manufactured by Micromeritics). Ad-
ditionally, samples were processed for determination of cation exchange capacity (CEC), 
extracted with ammonium acetate. 

 
Figure 4. Eight georeferenced soil samples in each experimental field: “ECO” (a), “MIT” (b), “MUR” 
(c), and “PAD” (d). 

2.4. Statistical Analysis and Data Processing 
With the aim of assessing the soil spatial variability, an initial descriptive statistical anal-

ysis (mean, standard deviation, and range) was carried out for the measured parameters. 
The data of ECa obtained by a Veris sensor in October 2018 and by EM-38 in Septem-

ber 2020 were synchronized using the geographic coordinates of each point to evaluate 
the temporal stability of the ECa measurements. Figures 5 and 6 show the paths taken by 
the two sensors in each experimental field, Veris 2000 XA and EM-38, respectively. 

Figure 4. Eight georeferenced soil samples in each experimental field: “ECO” (a), “MIT” (b), “MUR” (c),
and “PAD” (d).Sensors 2024, 24, x FOR PEER REVIEW 7 of 18 

 

 

 
Figure 5. Paths taken by Veris 2000 XA sensor in each experimental field: “ECO” (a), “MIT” (b), 
“MUR” (c) and “PAD” (d). 

 
Figure 6. Paths taken by EM-38 sensor in each experimental field: “ECO” (a), “MIT” (b), “MUR” (c), 
and “PAD” (d). 

Figure 5. Paths taken by Veris 2000 XA sensor in each experimental field: “ECO” (a), “MIT” (b),
“MUR” (c) and “PAD” (d).



Sensors 2024, 24, 1623 7 of 18

Sensors 2024, 24, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 5. Paths taken by Veris 2000 XA sensor in each experimental field: “ECO” (a), “MIT” (b), 
“MUR” (c) and “PAD” (d). 

 
Figure 6. Paths taken by EM-38 sensor in each experimental field: “ECO” (a), “MIT” (b), “MUR” (c), 
and “PAD” (d). 

Figure 6. Paths taken by EM-38 sensor in each experimental field: “ECO” (a), “MIT” (b), “MUR” (c),
and “PAD” (d).

A combined dataset was created for each date: each Veris data point obtained was
paired with the nearest data point obtained by EM-38 based on GNSS coordinates. If a
match in spatial coordinates was not found within a 5 m radius, that point was removed
from the dataset—a procedure similar to that used by Sudduth et al. [15]. The sets of data,
that is, points with common geographic coordinates in both surveys (date 1 and date 2) in
each experimental field underwent linear correlation analysis, which was conducted using
the IBM SPSS statistical package (version 25, IBM Corp, Armonk, NY, USA), to obtain the
Pearson correlation coefficients (r) using the method of least squares (p < 0.05).

The ECa results obtained on each date, combined with elevation data (survey con-
ducted on the first date), served as the input for the geostatistical analyses, enabling the
delineation of management zones (MZ) for each date and experimental field. These ho-
mogeneous subfields were determined using a fuzzy cluster algorithm [24], and the MZ
Analyst (MZA) software (Microsoft Corp., Redmond, WA, USA) was employed in this
study. The procedures for delineating and evaluating the number of MZs used in this
software were described by Fridgen et al. [25]. From a practical standpoint, three MZs with
different productive potential (less, intermediate, and more potential) were considered in
each experimental field.

In order to analyze the temporal stability of the MZ defined in each field, a comparison
was carried out between each pixel of the MZ maps based on the ECa measurements made
with both sensors. Thus, for each field, a reclassification process was performed on the two
MZ maps, assigning the value 0 to the pixels of the MZ with higher potential, 1 to those
with intermediate potential, and 2 to those with low potential. Subsequently, using map
algebra, both MZ maps were overlaid, producing a new map distinguishing three possible
zones: one where pixels have a value of 0, meaning that the MZ coincides on both maps;
another where pixels have a value of 1, meaning that there is a difference of 1 between
the values of the pixel on the two maps; and a third zone with pixels whose value is 2,
meaning that the pixel of the two maps have a difference of 2 between them. In this new
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map, the zone containing pixels with a value of 0 is denominated “stable”, the zone with
pixels having a value of 1 is called “unstable”, and the zone containing pixels with a value
of 2 is called “very unstable”.

3. Results and Discussion
3.1. Soil Characteristics: Spatial and Temporal Variability

The soil moisture (Table 2) was low in both surveys carried out at the ECO and MIT
fields (between 5.5 and 8.1%) with a coefficient of variation (CV) below 30%. In the case
of the MUR and PAD fields, the first surveys (date 1) were carried out with much higher
soil moisture values (17% in MUR and 19% in PAD) than those in the second surveys
(10% in MUR and 7% in PAD).

Table 2. Descriptive statistics (mean ± standard deviation and range) of the soil apparent electrical
conductivity (ECa) and soil moisture content (SMC) in each of the four experimental fields used in
this work on both dates.

Field ECO ECO MIT MIT MUR MUR PAD PAD

Date 1 2 1 2 1 2 1 2

ECa (mS m−1)
Mean ± SD 2.1 ± 1.2 12.2 ± 4.6 1.4 ± 1.0 9.1 ± 4.6 3.9 ± 2.4 13.8 ± 5.4 8.5 ± 4.1 18.6 ± 2.9

Range 0.2–12.1 4.7–36.5 0.1–9.6 1.3–130.0 0.2–21.2 0.9–33.9 0.7–54.0 0.1–32.5

SMC (%)
Mean ± SD 6.9 ± 2.0 5.5 ± 0.7 8.1 ± 1.0 7.6 ± 1.6 16.8 ± 5.1 10.0 ± 2.3 18.8 ± 2.4 6.6 ± 1.4

Range 4.4–10.2 4.7–6.8 6.4–9.8 4.9–9.4 9.7–25.6 6.5–12.9 14.8–22.9 4.3–8.6

The ECa values were significantly higher in the measurements carried out in all plots
on date 2 (Table 2) with the EM-38 sensor when compared to the measurements carried out
on date 1 with the Veris 2000 XA sensor. The measurements taken with Veris depend on
the adequate penetration of the discs (and their respective electrodes), presenting greater
difficulty in soils with reduced soil moisture, relatively compacted soils (subject to animal
trampling), and soils with stones (as is the case). Measurements with non-contact induction
sensors overcome these difficulties and therefore seem better adapted to measurements in
dryland pastures. The measurements with Veris showed a CV of approximately 50–70%,
while the measurements with EM-38 showed a systematically lower CV, which ranged
between 15 and 50%.

The results obtained in this study (Table 3) confirm this variability, reflected in the CV
and intra and inter experimental fields, and highlight some of the main limitations of these
soils; in general, these include a low pH (slightly acidic with low CV, <10%), usually with
a coarse texture, a relatively low OM content (between 1.3 and 2.7%, with a CV between
7 and 35%), low amounts of phosphorous (P2O5 < 30 mg kg−1), and medium or high
levels of potassium (generally greater than 45 mg kg−1 and, in some cases, greater than
100 mg kg−1, with a relatively high CV, generally >30%), which are aspects that were
already mentioned in another study [22].
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Table 3. Descriptive statistics (mean ± standard deviation and range) of the soil parameters in each
of the four experimental fields used in this work on both dates.

Field ECO ECO MIT MIT MUR MUR PAD PAD

Date 1 2 1 2 1 2 1 2

pH
Mean ± SD 5.6 ± 0.2 5.6 ± 0.3 5.5 ± 0.2 5.6 ± 0.3 5.8 ± 0.5 6.0 ± 0.5 5.8 ± 0.5 6.4 ± 0.5

Range 5.2–5.8 5.2–6.0 5.0–5.8 5.3–6.0 5.0–6.4 5.3–6.6 5.0–6.4 5.7–7.0

OM (%)
Mean ± SD 1.3 ± 0.2 2.2 ± 0.8 1.5 ± 0.3 1.9 ± 0.4 1.8 ± 0.6 2.7 ± 0.5 1.8 ± 0.6 2.7 ± 0.2

Range 1.0–1.8 1.4–3.1 0.9–2.1 1.3–2.5 1.0–3.2 2.1–3.3 1.0–3.2 2.3–2.8

P2O5 (mg kg−1)
Mean ± SD 51.9 ± 19.7 61.0 ± 23.1 32.6 ± 21.5 26.5 ± 13.0 19.8 ± 17.9 29.2 ± 21.7 19.8 ± 17.9 23.7 ± 6.7

Range 17.0–88.0 41.0–105.0 7.8–81.0 15.0–45.0 4.0–55.0 10.0–67.0 4.0–55.0 18.0–33.0

K2O (mg kg−1)
Mean ± SD 121.3 ± 28.5 158.0 ± 66.7 94.0 ± 72.1 66.3 ± 41.9 66.8 ± 26.1 95.7 ± 27.2 66.8 ± 26.1 45.3 ± 4.1

Range 78.0–184.0 72.0–268.0 18.0–380.0 26.0–142.0 30.0–110.0 58.0–130.0 30.0–110.0 40.0–52.0

OM—organic matter; P2O5—phosphorus; K2O—potassium.

A comparison between soil sampling dates (Figure 7) highlights the trend for higher
OM contents on date 2 relative to date 1 in all four fields. In regard to the soil parameters
(Table 4), the low clay contents are evident (between 4 and 8.5% in the four fields together),
revealing a coarse texture (between loamy sand and sandy loam) with a relatively high CV
(between 17 and 55%). The CEC is relatively low (on average, between 7 and 9 cmol kg−1),
except in the field of PAD, where the average value is approximately double, with the CV
being very variable (approximately between 10 and 60%).

Sensors 2024, 24, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 7. Temporal evolution of soil parameters in each experimental field between sampling dates 
(date 1 versus date 2): pH (a); organic matter, OM (b); phosphorous, P2O5 (c); and potassium, K2O (d). 

Table 4. Descriptive statistics (mean ± standard deviation and range) of the soil texture and cation 
exchange capacity (CEC) in each experimental field used in this work in date 2. 

Parameter Clay  
(%) 

Silt  
(%) 

Sand  
(%) 

CEC  
(cmol kg−1) 

ECO     
Mean ± SD 4.0 ± 0.7 8.0 ± 2.2 88.0 ± 2.8 7.4 ± 1.5 

Range 2.7–4.7 3.8–9.8 85.8–93.5 5.7–9.2 
MIT     

Mean ± SD 6.8 ± 2.4 9.5 ± 2.5 83.7 ± 3.7 9.4 ± 5.8 
Range 3.2–9.2 6.2–13.2 77.6–88.4 5.8–21.2 
MUR     

Mean ± SD 8.5 ± 4.7 15.9 ± 10.6 75.6 ± 14.6 8.7 ± 2.8 
Range 3.2–17.0 5.1–34.5 48.5–88.3 5.2–12.4 
PAD     

Mean ± SD 6.6 ± 2.0 15.4 ± 2.2 78.0 ± 2.6 15.5 ± 1.3 
Range 4.6–10.4 13.2–19.2 73.9–80.3 14.3–17.6 

3.2. Correlation between Soil Apparent Electrical Conductivity (ECa) Measurements 
Figure 8 shows the maps of spatial variability of elevation in each experimental field. 

The wavy relief characteristic of this region [27], with higher areas of reduced amplitude 
alternating with small valleys, is presented. 

Figures 9 and 10 show, respectively, the spatial variability of ECa obtained from the 
survey carried out with the Veris sensor and with the EM-38 sensor in each experimental 

Figure 7. Temporal evolution of soil parameters in each experimental field between sampling dates
(date 1 versus date 2): pH (a); organic matter, OM (b); phosphorous, P2O5 (c); and potassium, K2O (d).

The spatial and temporal variability normally associated with soil parameters is in
line with what has been reported in other research studies and is particularly accentuated
in the Montado by the presence of trees and grazing animals [6,26]. The combined effects
of an undulated landscape, with sparse trees and animals that selectively graze the plant
species and make a heterogeneous deposition of dung, cause notable spatial and temporal
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variability in the soil nutrient concentration [26]. A high CV of soil properties normally
indicates high spatial variability and consequently suggests the convenience of site-specific
management [14].

Table 4. Descriptive statistics (mean ± standard deviation and range) of the soil texture and cation
exchange capacity (CEC) in each experimental field used in this work in date 2.

Parameter Clay
(%)

Silt
(%)

Sand
(%)

CEC
(cmol kg−1)

ECO

Mean ± SD 4.0 ± 0.7 8.0 ± 2.2 88.0 ± 2.8 7.4 ± 1.5
Range 2.7–4.7 3.8–9.8 85.8–93.5 5.7–9.2

MIT

Mean ± SD 6.8 ± 2.4 9.5 ± 2.5 83.7 ± 3.7 9.4 ± 5.8
Range 3.2–9.2 6.2–13.2 77.6–88.4 5.8–21.2

MUR

Mean ± SD 8.5 ± 4.7 15.9 ± 10.6 75.6 ± 14.6 8.7 ± 2.8
Range 3.2–17.0 5.1–34.5 48.5–88.3 5.2–12.4

PAD

Mean ± SD 6.6 ± 2.0 15.4 ± 2.2 78.0 ± 2.6 15.5 ± 1.3
Range 4.6–10.4 13.2–19.2 73.9–80.3 14.3–17.6

On the other hand, soil spatial variability and temporal stability are two essential
conditions for the definition of an MZ [9] and for adopting precision agriculture (PA)
strategies [1,2,11–13].

3.2. Correlation between Soil Apparent Electrical Conductivity (ECa) Measurements

Figure 8 shows the maps of spatial variability of elevation in each experimental field.
The wavy relief characteristic of this region [27], with higher areas of reduced amplitude
alternating with small valleys, is presented.
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Figures 9 and 10 show, respectively, the spatial variability of ECa obtained from
the survey carried out with the Veris sensor and with the EM-38 sensor in each experi-
mental field. The maps of ECa of date 1 show a small amplitude in the ECO and MIT
fields, reflecting the low SMC and its implication on the operation of the contact sensor
(Veris 2000 XA), unlike what occurred in the MUR and PAD fields, where the SMC was
relatively high. The maps of ECa of date 2 show, in general, greater amplitude and
variability, despite the more homogeneous SMC across the four experimental fields. In
general, visual assessments of the ECa spatiotemporal variability maps revealed a similar
pattern of spatial variability on different dates in all fields, which was also evidenced by
Medeiros et al. [13].

The correlation between the ECa measurements in each date, after coordinate synchro-
nization, for each experimental field is shown in Figure 11: ECO (a), MIT (b), MUR (c),
and PAD (d). All correlations were statistically significant (p < 0.01), with very interesting
correlation coefficients, between 0.449 (MIT field) and 0.618 (MUR field).
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** Statistically significant at 99% confidence level (p < 0.01).

The spatial regressions and paired t-tests applied by McCutcheon et al. [11] to inves-
tigate differences between the ECa values from different measurement dates (temporal
persistence) with a contact sensor (Veris) provided correlation coefficients with a white
range of variation (between 0.10 and 0.76). Martini et al. [20] compared repeated EMI mea-
surements with high-resolution soil moisture and temperature data and reported that the
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spatial patterns of ECa differed from those of the soil water content and that the relation be-
tween both variables was changing over time. Various correction or standardization methods
have been proposed, and it has been recommended that measurements be made under similar
conditions; however, this is often not feasible in practice in fields where conditions change
on small spatial scales [9]. By using an EMI device four times (Dualem 1S), Serrano et al. [2]
found temporally stable spatial ECa patterns in a Mediterranean pasture over a period
of 7 years despite changing environmental and management conditions. Various studies
have demonstrated the possibilities for significant changes in the measured ECa over time,
nevertheless, with relatively stable spatial structure representations [7].

In this study, the smallest number of points obtained by coordinate synchronization
was found in the ECO field, which is a small field compared to the others (only 4 ha, while
the rest have areas of 20 to 30 ha). The MUR field also has a smaller number of points, since
in the southwestern area, the Veris sensor faced some measurement problems (Figure 5c),
which can be associated with the presence of stones on the surface, which interrupt the
contact between the electrodes and the ground and reinforces the aforementioned difficulty
of contact sensors in stony soils [12]. It is important to note that the surveys were carried
out by independent service providers. The results would have certainly improved if the
sensor transects in the second survey had followed the paths of the first survey in each field,
which would have allowed a much greater number of points as a result of synchronization
and thus would have strengthened the correlation.

3.3. Temporal Stability of Management Zones

The application of geostatistical algorithms based on elevation and ECa data allowed
for the MZs and the correspondent maps in each date to de defined (Figures 12 and 13,
respectively) and in each experimental field: ECO (a), MIT (b), MUR (c), and PAD (d).
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In general, the spatial patterns of MZ maps reflect the gradients of ECa in each field and
are similar across measurement dates. Table 5 shows the area of each MZ (low, intermediate,
and high potential) in each date, in percentage of the total area of each field.

Table 5. Area of each management zone (MZ) in each date, shown in percentage of the total area of
each field.

Field ECO ECO MIT MIT MUR MUR PAD PAD

Date 1 2 1 2 1 2 1 2

MZ (%)

Low Potential 45.7 76.9 28.7 28.5 49.9 27.4 14.3 0.9
Intermediate

Potential 41.5 17.2 31.6 37.2 34.9 32.3 60.1 42.3

High Potential 12.8 5.9 39.7 34.3 15.2 40.3 25.6 56.8

A number of methods have been used by different research teams to define the spatial
and temporal trends found within a field [28–30]. In this study, the temporal stability
of an MZ (Table 6) was evaluated by an overlap reclassification process of MZ maps,
allowing for the definition of three new zones, namely stable, unstable, and very unstable,
expressed as percentages of the total area of each field. In average, 52% of the area presented
temporal stability (in the same MZ category in both ECa surveys, with a minimum value
of 37.6% in the MIT field and a maximum of 71.2% in the MUR field), 42% of the area
presented temporal instability (in the next or previous category in both ECa surveys), and
only 6% presented very temporal instability (two categories above or below in both ECa
surveys). This information, presented spatially through temporal stability maps (Figure 14),
provides good prospects for the use of ECa in the medium- and long-term definition of
MZ. If a spatial pattern is temporally stable within a field, then it is reasonable to suppose
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that it should be a reasonably good predictor of the spatial patterns in the following
years. This assumes that the prevailing conditions and limiting factors are consistent
over the years [28].

Table 6. Temporal stability of management zones (MZ) between dates of evaluation, in percentage of
total area of each field.

Field ECO MIT MUR PAD

Temporal stability of MZ (% of area)

Stable 52.5 37.6 71.2 48.1
Unstable 41.8 48.8 27.5 49.5

Very unstable 5.7 13.6 1.3 2.4

The results of this study, especially those relating to the temporal stability of the MZ
patterns obtained by different sensors, are very encouraging. However, various authors
have shown inconsistent relationships between the ECa and soil characteristics, probably
due to the fact that the ECa is influenced by various complex interactions between site-
dependent soil properties [1,14,16,31].
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indicated as percentages of total area.

Despite the temporal stability of the ECa patterns, in relative terms, reflected in the
temporal stability of the patterns of the MZ maps, it will be interesting, in future works, to
extend the findings to other types of soils (in particular, with finer textures) and conditions



Sensors 2024, 24, 1623 16 of 18

(namely different SMCs) to identify the source of the discrepancy in absolute terms in
the measurement of the ECa using different sensors (contact versus non-contact), with
systematically higher values obtained using the EMI sensor (EM-38 in this case) compared
to the contact sensor (Veris 2000 XA in this case).

These results also suggest a next step in the logic of validating the MZ obtained by each
of the sensors, either through soil smart sampling carried out in each MZ [14] or through
the evaluation of vegetation indices, or VIs (namely the NDVI), which is an approach
that has been followed in several research works [32]. Through a soil analysis, it will be
possible to find the relationship between ECa measurements and soil parameters with
potential for site-specific management in dryland pastures, for example, in terms of the
differentiated application of lime or phosphorus amendments. To transpose these MZ maps
to amendment or fertilization prescription maps, it is fundamental to develop algorithms to
evaluate the agronomic significance of this classification (MZ) and establish more general
methods of mapping and quantifying variable input prescriptions, for example, lime
amendment and nitrogen or phosphorous fertilizer application [33]. On the other hand,
there is a growing interest in rapid MZ validation methodologies, such as those based on
VIs obtained from remote sensing, by recovering the time-series of the NDVI (for example)
throughout the vegetative cycle, which is related with pasture productivity and quality,
and complementing and improving the rigor of the validation obtained from smart soil
sampling [32].

Given that this is an exploratory study that was carried out in a relatively restricted
soil type under specific coarse-textured soils, further studies using different soil types
should be conducted.

4. Conclusions

The results obtained in this study show an important spatial variability in the soil
parameters in all experimental fields. In temporal terms, the tendency for there to be an
increase in the organic matter levels between sampling dates is noteworthy. In regard to the
soil apparent electrical conductivity parameter, the significant correlation between measure-
ments (different dates and sensors) after coordinate synchronization in all experimental
fields (with correlation coefficients between 0.449 and 0.618) is of great importance.

Based on a geostatistical analysis of the soil electrical conductivity and topographic
surveys, three management zones were defined (with high, intermediate, and low potential).
The soil electrical conductivity measurements with different sensors (contact and non-
contact), carried out almost two years apart, revealed spatial patterns in management zones
with remarkable temporal stability (averaging 52% of the total area across four fields),
which is a good indicator of potential for the use of soil electrical conductivity in medium-
and long-term management decisions.

These results suggest that future developments should focus on creating algorithms
to validate the spatial variability and temporal stability of soil electrical conductivity
through smart soil sampling, extending the database and thereby enhancing the process of
recommendations for sustained soil amendment or fertilization.
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