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Abstract: Wireless sensor networks (WSNs) are essential in many areas, from healthcare to environ-
mental monitoring. However, WSNs are vulnerable to routing attacks that might jeopardize network
performance and data integrity due to their inherent vulnerabilities. This work suggests a unique
method for enhancing WSN security through the detection of routing threats using feed-forward
artificial neural networks (ANNs). The proposed solution makes use of ANNs’ learning capabilities
to model the network’s dynamic behavior and recognize routing attacks like black-hole, gray-hole,
and wormhole attacks. CICIDS2017 is a heterogeneous dataset that was used to train and test the pro-
posed system in order to guarantee its robustness and adaptability. The system’s ability to recognize
both known and novel attack patterns enhances its efficacy in real-world deployment. Experimental
assessments using an NS2 simulator show how well the proposed method works to improve routing
protocol security. The proposed system’s performance was assessed using a confusion matrix. The
simulation and analysis demonstrated how much better the proposed system performs compared
to the existing methods for routing attack detection. With an average detection rate of 99.21% and
a high accuracy of 99.49%, the proposed system minimizes the rate of false positives. The study
advances secure communication in WSNs and provides a reliable means of protecting sensitive data
in resource-constrained settings.
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1. Introduction

Human developments invariably have certain shortcomings [1]. All the progress made
in the realm of communication, encompassing WSN, internet of things (IoT), embedded
systems, ad hoc networking, and similar innovations, can be attributed to human ingenuity.
In this context, human ingenuity is oriented towards enhancing lifestyle comfort through
applications including smart homes, efficient transportation, and remote communication,
among others. Currently, WSNs are widely embraced for sensing and controlling remote
applications. A WSN is a network that consists of several sensor nodes strategically placed
across a large region to monitor and record various physical parameters. Temperature,
wind speed, pressure, humidity, and a variety of other characteristics are all scattered
throughout multiple sites. Importantly, sensor nodes in a WSN are battery-powered and
may operate in remote regions where human access is restricted or impossible [2].

In WSNs, numerous sensor nodes continuously capture data and transmit the data
to a selected sink node. These data are transmitted either directly from node to node or
through intermediaries known as cluster heads. The sensor nodes communicate their data
to the cluster-head nodes, which then forward this information to the base station (BS) for
further communication [3,4].

WSNs are structured with a layered design wherein each layer serves distinct functions
critical for efficient data transmission and network operation. These layers, including the
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physical, data-link, network, transport, and application layers, play pivotal roles in ensuring
the reliable and secure operation of WSNs [5].

At the physical layer, which constitutes the lowest layer of the WSN architecture, the
network faces several security challenges. Eavesdropping attacks, compromised node
attacks, replication node attacks, and basic jamming attacks are primary concerns in this
layer. These threats target the fundamental components of the network, such as nodes and
communication channels, potentially compromising data integrity and confidentiality. At
the data-link layer, attacks such as denial of service (DoS) attacks, collision attacks, unfair-
ness attacks, and intelligent jamming are prominent concerns. This layer is responsible for
managing communication between neighboring nodes and addressing issues related to
data packet collision and channel access. Ensuring the integrity of data-link-layer protocols
is crucial to maintenance of network reliability.

The network layer introduces further security challenges, including sybil attacks,
sinkhole attacks, spoofing attacks, and black-hole, gray-hole, and wormhole attacks. These
attacks exploit vulnerabilities in routing protocols and can disrupt data transmission, hijack
routing paths, or impersonate legitimate nodes, posing significant threats to network func-
tionality. The transport layer is susceptible to attacks like flooding and desynchronization,
which can impact the quality of service and the reliability of data delivery. This layer
manages end-to-end communication and ensures data integrity, making it a crucial aspect
of WSN security.

Lastly, at the application layer, data collected by WSNs are processed and utilized for
various applications. Ensuring the security and privacy of this data is essential. Attackers
may attempt to manipulate or intercept application-layer data, necessitating the use of
robust security measures to safeguard sensitive information.

WSNs have emerged as a vital technology for a wide range of applications, from
environmental monitoring and healthcare to industrial automation and surveillance. These
networks consist of numerous small, self-governing sensor nodes that collaborate to collect
and transmit data wirelessly, facilitating efficient data collection and dissemination. How-
ever, the distinct attributes of WSNs, including their limited resources, dynamic network
topology, and vulnerability to diverse attacks, expose them to risks, particularly at the
network layer.

The network layer within a WSN bears the responsibility of establishing and maintain-
ing communication pathways between sensor nodes, enabling the routing of data from its
source to the intended destination. Despite its essential role, the network layer is vulnerable
to various security threats that imperil the integrity, confidentiality, and accessibility of
data. In hop-to-hop communication in WSNs, a node always prefers the path towards
the destination that includes fewer hops, which is called the optimal path. Due to the
shorter distance, the optimal path provides many benefits like lower transmission overhead,
lower energy consumption and less packet loss. When a node in multi-hop communication
requests the path towards the destination, attacker nodes will present themselves as the
nodes closest to the destination. The requesting node will select the path offered by the
attacker node due to optimal path selection, and a routing attack then occurs in the WSN.
Routing attacks manipulate the routing process to disrupt the accurate transmission of data,
leading to network congestion, data loss, and possible denial of service. These attacks on
the network layer come in several forms, such as flooding attacks, spoofing attacks, sybil
attacks, black-hole attacks, gray-hole attacks, sink-hole attacks, and wormhole attacks [6].
Some of these types of attack are shown in Figure 1.

Flooding attacks occur when an excessive number of route requests is generated within
a network. These attacks can be highly damaging, depleting network resources, reducing
availability, and overburdening nodes, preventing them from fulfilling their tasks [7].
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is to establish a shortcut in the network, which could lead to nodes choosing the wrong 
route and possibly interfere with communication. Because of their transparent operation, 
wormhole nodes are invisible to other nodes in the network. As a result, they operate 
seamlessly and do not require cryptographic keys or network IDs [10]. 
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variety of techniques, including authentication, intrusion-detection systems, and secure 
routing protocols. Authentication mechanisms ensure that nodes interact solely with au-
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The primary objective of a spoofing attack is to create a cyclic path between source and
destination nodes within WSNs by introducing false routing information. Such an attack
possesses the ability to manipulate routing data. This type of attack can result in severe
consequences, including node partition, the redirection of nodes along incorrect paths, a
reduction in network lifetime, and the dissemination of erroneous routing information [8].

A sybil attack involves an attacker forwarding multiple messages with different IDs
to various nodes while making them appear as if they are coming from different sources.
The attack thus causes collisions in the network, forcing nodes to find alternate routes. The
attacker manipulates this situation to create confusion among nodes, making it challenging
for them to select the correct path for data transmission. This type of attack can disrupt
data integrity and alter the data flow by changing the routing path [9].

A rogue node in the network fabricates a black-hole attack by drawing all traffic to
itself while claiming to have the shortest path to the target. Meanwhile, the packets are
absorbed or dropped by the malicious node, preventing them from reaching their intended
destination. The intention is to cause a “black hole” in the network that will hinder data
from reaching its intended destination and obstruct communication.

Gray-hole attacks, also known as selective forwarding attacks, are more intricate,
as compromised nodes claim to have superior routes in order to attract data packets,
with the aim of subsequently dropping or modifying the packets before they reach their
destination. This attack subverts the routing process, potentially allowing unauthorized
access to sensitive information.

In wormhole attack, two or more nasty nodes band together through either high-speed
wireless communication or ethernet or fiber-optic cables to form a tunnel that connects
them. By swiftly moving packets from one end of the network to the other, the tunnel
creates the illusion that nodes are closer to one another than they are. The attackers’ goal
is to establish a shortcut in the network, which could lead to nodes choosing the wrong
route and possibly interfere with communication. Because of their transparent operation,
wormhole nodes are invisible to other nodes in the network. As a result, they operate
seamlessly and do not require cryptographic keys or network IDs [10].

To counter these threats, numerous preventive strategies have been proposed to fortify
the security of the network layer within WSNs [10–12]. These strategies encompass a variety
of techniques, including authentication, intrusion-detection systems, and secure routing
protocols. Authentication mechanisms ensure that nodes interact solely with authenticated
and trusted counterparts, thereby preventing unauthorized nodes from connecting to the
network. Intrusion-detection systems monitor network activity, identifying anomalous
behavior patterns to promptly detect attacks and initiate appropriate countermeasures.
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Critical to prevention, secure routing protocols focus on establishing secure and
efficient pathways for data transmission. Protocols like low-energy adaptive clustering
hierarchy (LEACH) and ad hoc on-demand distance vector (AODV) incorporate security
features to safeguard against a multitude of attacks. This safeguarding ensures data
confidentiality, integrity, and authenticity throughout the routing process, enhancing the
overall security of the network layer in WSNs. In contrast to these traditional strategies,
ANN-based techniques provide the best solution for intrusion detection at the network
layer in WSNs.

In contrast to traditional methods, ANN-based solutions offer a superior approach to
detecting intrusions within WSNs at the network layer. Among these solutions, options
like the feed-forward ANN technique and the convolutional neural network (CNN) model
stand out. After evaluating various ANN-based models, we will select the most effective
one for the detection of routing attack in WSNs.

2. Literature Review

A multi-layer architecture for intrusion detection in WSNs proposed in [13] improved
network security. In this architecture, the sensors are positioned within the initial layer,
situated at the periphery of the network. The subsequent layer is positioned at the network’s
core. The researchers employed the I Bayes method, known for its straightforward and
efficient computational approach, as the core classifier. The initial layer’s role involves
categorizing observed data as normal or potentially harmful without delving into specific
attack patterns. The intermediate detection layer resides within the cloud and exclusively
processes anomalous activities. This positioning reduces resource constraints, allowing
for the implementation of more intricate techniques and in-depth analysis. Subsequently,
the identification of harmful traffic is accomplished using the random forest (RF) method
alongside a multi-class classifier. This classification model can ascertain the nature of the
attempted breach and offer recommendations for selecting an appropriate defense strategy.

The results clearly indicate that their proposed multi-layer security approach led to
improved true-positive rate (TPR), true-negative rate (TNR), false-positive rate (FPR), and
false-negative rate (FNR) values. Additionally, a high level of accuracy was achieved. The
obtained values were 100%, 90.4%, 99.5%, 97%, and 99.9% for normal, flooding, scheduling,
gray-hole, and black-hole attacks, respectively. In comparison, previous research yielded
values of 99.8%, 90.4%, 99.5%, 91.1%, and 73% for normal, flooding, scheduling, gray-hole,
and black-hole attacks.

The work done in [14] proposed a novel approach that combines an on-demand link
and an energy-aware dynamic multipath (O-LEADM) routing system for mobile ad hoc
networks (MANETs). This approach aimed to effectively detect black-hole nodes through
the baiting strategy while also distinguishing between packet loss caused by congestion
and packet loss caused by malicious nodes. The suggested technique demonstrates a
notable capability to differentiate between packet drops that occur due to link failures
and those triggered by malicious nodes. In their study, the researchers compared their
O-LEADM–black-hole identification approach with the existing AODV–black-hole routing
system. They then analyzed various metrics to evaluate the performance of both strate-
gies. Specifically, with respect to packet-delivery ratio, the proposed O-LEADM approach
surpasses the current AODV–black hole method.

For instance, with 84% of nodes moving at a velocity of 20 m/s, the AODV–black
hole strategy experiences a reduction to 83% as mobility velocity increases. In contrast,
the O-LEADM–black-hole strategy maintains a delivery ratio of 87% even at 20 m/s.
Furthermore, O-LEADM–black hole adjusts its delivery ratio as mobility speed increases,
accounting for connectivity faults and channel accessibility in order to mitigate congestion
and enhance route reliability. Examining average delay, the study revealed that the AODV–
black hole approach exhibits an average delay of 0.083 M.Sec at higher mobility speeds.
In comparison, the O-LEADM–black hole approach achieves a lower average delay of
0.050 M.Sec. The energy-consumption analysis (ECA) showrf that in the presence of an



Sensors 2024, 24, 1641 5 of 22

adversary, the OLEADM–black hole approach consumes an average of 6.0 Joul of energy
when operating at higher speeds. On the other hand, the AODV–black hole approach
expends 11.2 J of energy under similar conditions. The overhead of the O-LEADM–black
hole strategy ranges between 4.1 and 11.1, whereas the AODV–black hole approach exhibits
an overhead ranging between 5.9 J and 16.6 J.

Notably, the O-LEADM–black-hole approach displays significant improvement in
identifying other channels when a black-hole node is detected. This effectiveness is achieved
with substantial movement and minimal expense. In contrast, the route-identification pro-
cess in the AODV–black-hole strategy incurs higher costs in terms of detecting alternative
routes to the destination.

A machine-learning classification algorithm proposed in [15] for the detection of
distributed denial of service attacks, including flooding, gray-hole, and black-hole attacks,
within wireless WSNs. The investigation was carried out utilizing a dataset specific to
WSNs, denoted as WSN-DS. In this evaluation, both accuracy and speed were taken into
consideration as performance metrics. The outcomes of the analysis revealed that the J48
algorithm proved to be the most accurate and expeditious means of identifying gray-hole
and black-hole attacks. Simultaneously, the random tree method emerged as the most
accurate and swift approach for detecting flooding attacks. Specifically, in terms of speed,
the J48 algorithm demonstrates efficiency, demanding an average processing time of 0.54 s
per sample.

In [16], an approach was proposed that consisted of four distinct components: network
data collection (NDC), gray-hole detection (GD), gray-hole prevention (GP), and gray-hole
reduction (GR). The GD and GR procedures are conducted separately during the execution
of the proposed system. In contrast, execution of the remaining functionalities is dependent
on the analysis of dependencies. Furthermore, the initiation of network data collection
occurs exclusively when a network controller retrieves packets from nearby nodes. On the
other hand, the prevention process is activated when a flow exceeds a specified threshold.

The work done in [17] introduced an innovative lightweight encryption-based tech-
nique designed to counter sinkhole attacks in mobile wireless sensor networks (MWSNs).
The primary focus of this proposed approach was to concurrently minimize energy con-
sumption and enhance the precision of sinkhole-attack prevention. To accomplish this, a
hybrid encryption algorithm was employed that integrated the robust blowfish algorithm
for message encryption. This inclusion ensured both data integrity and the security of
MWSNs against sinkhole attacks. Notably, the blowfish algorithm was chosen due to its
resource-efficient nature and rapid processing, which render it highly suitable for MWSNs.
To ensure the secure exchange of the blowfish key between the sender and the receiver,
a strategic protocol was devised. At the initiation of the process, the sender employs the
RSA algorithm to encrypt the blowfish key. This cryptographic approach guarantees the
confidentiality and reliability of the key-sharing process. Subsequently, the recipient can
effortlessly decrypt the message by employing its proprietary private key, ensuring the
secure exchange of sensitive information.

A hybrid spectrum management optimization (HSMO) technique was proposed in [18]
for identifying and resolving jammed nodes within a network. This method involves the
utilization of edge nodes, sub-edge nodes, and cluster heads to detect and address jammed
nodes. These specific node types play a key role in identifying instances of node jamming.

The process begins with the edge nodes, sub-edge nodes, and cluster heads being
selected to participate in the jammed-node-detection procedure. As a result of this step,
these nodes collectively contribute to the identification of jammed nodes. The edge node’s
role involves evaluating objective function 1 across packets received from the sub-edge
node. This assessment occurs on distinct channels but with identical frequencies. The
sub-edge node evaluates the second objective function based on signals received from the
cluster head. In particular, it focuses on two consecutive packets it receives. If neither
of these packets satisfies the stipulated objective function, the sub-edge node severs its
connection with the cluster head, resulting in a loss of connectivity. The cluster head
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engages in the hybrid spectrum management optimization (HSMO) procedure to both
detect and eliminate the identified jammed node. Through this method, the network aims
to effectively manage instances of jamming and enhance the overall performance and
reliability of the communication environment.

The work presented in [19] proposed that a cluster-head node should select some
surveillance nodes to calculate reputation and trust routes. A monitoring mechanism
and anomaly-detection mechanism based on energy thresholds are used to detect errors
generated by the attacked node or invalid data. This study ignored the trust rating of CH,
which is an obvious disadvantage of this plan.

The authors [20] proposed a trust-based low-power routing protocol (TEESR) that
uses an authorization mechanism to reduce the probability of multiple malicious nodes
occurring in adjacent areas. The node trust value determines the coverage radius and
multi-path security route, and then the cluster head and the base station node make a
comprehensive judgment to select the route with the higher security value. Although the
proposed protocol performs well in dealing with external attacks, such as convergence
holes and wormholes, it is powerless to deal with internal attacks.

A new trust-aware secure routing protocol (TSRP) was suggested in [21] to prevent
wormhole, selective-forwarding, and black-hole attacks. The protocol has good perfor-
mance in terms of average packet loss rate and throughput, but its high energy consumption
is a disadvantage.

The authors of [22] investigated the impact of black-hole denial-of-service attacks on
the general-purpose ad hoc on-demand distance vector (AODV) protocol. The evaluation
encompassed normal AODV, BH_AODV, and D_BH_AODV variations. These attacks were
found to considerably impede network operations. Countermeasures such as intrusion-
detection systems (IDS) and digital signatures were employed to thwart black-hole attacks.
Quality of service (QoS) metrics, including packet delivery ratio (PDR), delay, and over-
head, were adopted to conduct a comparative analysis among the conventional AODV,
BH_AODV, and D_BH_AODV protocols. The assessment took into account varying factors
such as nodes, packet sizes, and simulation durations. The experimentation employed NS2
to emulate malicious protocols and featured a customized D_BH_AODV routing protocol.
The results revealed that the D_BH_AODV approach substantially enhances PDR by 40% to
50% across different nodes and packets. Moreover, as the number of nodes and the number
of packets increased, the delay was notably reduced, from 300 to 100 ms and from 150 to
50 ms, respectively. Node and packet configurations influenced overhead levels, which
ranged from 1 to 3. The findings underscore the detrimental impact of black-hole attacks
on network performance. However, the introduced D_BH_AODV strategy demonstrated
efficacy in enhancing QoS. This improvement was achieved through the identification and
circumvention of black-hole nodes, which effectively ensures more secure and reliable
communication pathways.

An effective approach proposed in [6] was used to identify black-hole attacks with
notable efficiency. The occurrence of a black-hole attack leads to notable enhancements
in crucial network parameters such as TH, TND, NRL, PDR, and PLR. To achieve this
enhancement, the method presented employs a combination of techniques, including the
K-nearest neighbors (KNN) algorithm for clustering, the beta distribution, Josang’s mental
logic, and fuzzy inference to compute trust levels. These calculated trust levels contribute
to the establishment of node reputation, which is subsequently evaluated by a trust server.
Ultimately, guided by the reputation table, the cluster master undertakes periodic actions.

A detailed analysis presented in [23] focused on performing a forensic examination of
ad hoc IoT networks that employ the AODV routing protocol. This analysis was conducted
within the context of black-hole attacks, a form of denial-of-service attack that poses a
substantial threat to IoT networks. The investigation also evaluated patterns in network
traffic and node behavior, aiming to quantify the impact of these attacks. To support digital
forensic (DF) inquiries, the vulnerabilities inherent in the protocol were systematically
scrutinized. The research involved the reconstruction of networks across various opera-
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tional modes and parameters. This reconstruction served to validate the analysis conducted
and to propose recommendations for the development of robust routing protocols. The
overarching goal was to enhance understanding of IoT network performance in the face
of black-hole attacks and to thereby contribute to the enhancement of more secure and
resilient routing protocols.

A study discussed in [24] introduced a robust path-selection mechanism tailored
to enhance the security and reliability of WSNs. The core purpose was to proactively
identify and counter black-hole attacks, thus averting the compromise of routing nodes. By
optimizing the routing of data packets through more efficient paths, the primary aim was
to extend the operational lifespan of sensor nodes within WSNs. To fulfill this objective,
the research proposed a trust-based route-selection mechanism that ensures the integrity of
data transmission by identifying dependable routes between source and destination nodes.
The process involves generating a source node and facilitating secure data transmission to
the intended recipient. A trust-based assessment detects malicious nodes by evaluating
their trust values. Once a malicious node is detected and surpasses a predefined threshold,
a different, secure routing path is established for data transmission.

Throughout the data-transmission process, the trust-based path-selection technique is
used, guiding the selection of secure routing paths. This strategy effectively safeguards
the network against threats like black-hole attacks and selective forwarding, bolstering
overall security and data integrity. The mechanism effectively integrates the trust system
across various dimensions, ensuring the security of routing paths and the identification of
optimal threshold values grounded in trust considerations. These aspects have a twofold
impact: they influence the trust system’s performance and shape the threshold-based
trust parameters. To realize these objectives, the mechanism computes a distinct threshold
value for each potential path. This computation aims to pinpoint the path with the lowest
threshold value, denoting the most secure route for data transmission. Consequently, at
each step of detection and data-packet transmission, sensor nodes can gauge their level of
trust, mitigating potential threats like black-hole attacks and selective forwarding.

In [25], an approach to enhance network security against potential attacks from internet
traffic intruders was presented. The proposed solution aimed to strike a balance between
the imperative for protection and the constraints posed by available resources and trust
factors. To achieve this, the research introduced a ranking-based route mutation mechanism
that leverages the bafflement technique for selecting optimal routes for flows within the
network. These routes are chosen based on diverse considerations, ensuring robust security
at the base station level by incorporating factors such as route overlap, energy consumption,
and link cost. Moreover, this strategy supports multiple altered pathways that can confuse
potential attackers, along with scrutiny algorithms tailored for fully centered WSNs. The
technique involves strategically selecting multiple intruder sink nodes, which are designed to
mislead attackers attempting to locate the true sink node. A suitable parameter is employed
to account for the residual energy of neighboring nodes associated with the chosen intruder
sink nodes. This parameter takes into consideration the expected additional communication
cost within the corresponding region. Notably, this solution remains cost-effective and
suitable for deployment in extensive sensor networks without imposing excessive expenses.

Another mechanism presented in [26] involves the implementation of a black-hole
attack and introduces a corresponding prevention method for the AODV routing protocol
within WSNs. The proposed prevention technique is centered on identifying the shortest
paths between a non-compromised source and destination, as depicted in the diagram.
It is important to note that both the source and destination nodes are presumed to be
trustworthy and not compromised. Our approach involves incorporating the detection of
malicious paths within the route-discovery phase of the AODV routing protocol.

A fuzzy-logic-based technique was proposed in [27] to tackle the issue of gray-hole
attacks targeting WSNs nodes integrated into IoT systems. The IoT system incorporates
WSN by establishing connectivity through a router to amass data. By leveraging the
deployed sensors, the nodes can detect attacks within the IoT framework. Each node within
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the IoT network is systematically organized, serving various functions. This organization
is underpinned by connecting users and clients to a central controller, the base station,
facilitating IoT connectivity. The intricate architecture intrinsic to IoT renders it susceptible
to gray-hole attacks. The sensor nodes situated within the WSN play a pivotal role in
detecting attacks occurring within the IoT domain.

Routing protocols are pivotal in both WSN and IoT, effectively guiding the decision-
making process for packet forwarding among nodes. Within the realms of IoT and WSN,
two primary categories of routing protocols exist: proactive and reactive. Proactive routing
protocols process network information, while reactive routing protocols manipulate the
network’s structure to facilitate efficient packet routing.

In [28], a system for detecting intruders in WSNs and responding with an intelligent
mobile robot was described. This system employs an unsupervised neural network for
intrusion detection, focusing on identifying changes over time using a Markov model. Once
an intrusion is detected, a robot is dispatched to the affected area for further investigation.
The reported results indicate an approximate detection rate of 85%.

Given that WSN nodes are often deployed in harsh and unattended environments,
where attackers may compromise a subset of nodes, compromised sensor nodes can po-
tentially transmit incorrect data to the central sink. To address this concern, a malicious-
node-detection mechanism is proposed in [29] for hierarchical WSNs, where nodes gather
and share data with neighboring nodes. This mechanism utilizes a feed-forward ANN
technique. The authors assert that their proposed approach effectively identifies malicious
nodes, even when up to 25% of sensor nodes have been compromised.

In [30], the author placed a significant emphasis on addressing the challenge of detect-
ing data anomalies in WSN. To tackle this issue, a convolutional neural network (CNN)
model was meticulously crafted, leveraging the distinctive features of the marked mode
and the deep neural network architecture to effectively identify anomalous data patterns.
Throughout the study, the author introduced three innovative network models and con-
ducts a comparative evaluation against a previously utilized CART (classification and
regression trees) model. The assessment of these models was based on performance met-
rics such as detection accuracy (DA), true-positive rate (TPR), and precision (PRE). The
experimental findings unequivocally demonstrate that the three models introduced in
this research consistently outperform the CART model, with the M2 model exhibiting the
highest level of performance.

The author of [31] introduced a novel approach by utilizing a hybrid ANN method
to identify uncommon elements within the framework of a “smart home” system. This
research marked the first instance of employing a hybrid ANN technique in the domain
of detecting irregularities within “smart home” or building-automation systems. The
outcomes of the experiment demonstrated that the ANN outperforms conventional machine
learning methods, achieving an impressive area under the ROC curve of 0.9689.

A hybrid approach proposed in [32] combined the definition of fuzzy logic with the
learning ability of neural networks to detect routing attacks in WSNs. The success of this
solution depends on the quality and quantity of training data, the creation of fuzzy rules,
the neural network architecture and the starting point. To ensure that the system effectively
detects and mitigates attacks in a dynamic network environment, regular maintenance and
development are required.

A comprehensive overview of the proposed mechanisms discussed in this section is
given in Table 1.
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Table 1. Overview of literature.

Year Author Name Attack Type Prevention Benefits

2021 [13] Alruhaily and Ibrahim Multi-layer intrusion
detection in WSNs

Naive Bayes classifier,
cloud-based detection,
random forest classifier

Improved network security,
enhanced true-positive rate

(TPR), true-negative rate (TNR),
false-positive rate (FPR), and

false-negative rate (FNR),
increased accuracy.

2022 [14] Suma and Harsoor Black-hole detection
using O-LEADM

On-demand link and
energy-aware dynamic

multipath routing
system for MANETs

Enhanced black-hole node
detection, differentiation

between packet loss due to
congestion and packet loss due

to malicious nodes.

2022 [15] Wazirali, R., &
Ahmad, R. DDoS detection

Machine
learning-classification

algorithms

Detection of flooding, gray-hole,
and black-hole attacks,

improved accuracy and speed.

2022 [16] Gowdham Chinnaraju
and S. Nithyanandam

Grey-hole detection
and prevention

Network data
collection, grey-hole
detection, grey-hole

prevention gray-hole
reduction

Efficient gray-hole detection,
prevention, and reduction

mechanism.

Prevention, gray-hole
reduction

2023 [17] Alomirah, Y. A. Sinkhole attack in
MWSNs

Lightweight
encryption-based
technique, hybrid

encryption algorithm,
secure key exchange

Counteraction of sinkhole
attacks, minimized energy

consumption, enhanced security.

2023 [18] Murugaveni, S., &
Priyalakshmi, B.

Jammed-node
detection

Hybrid spectrum
management

optimization (HSMO)
technique

Effective identification and
resolution of jammed nodes,
improved performance and

reliability.

2021 [19] Ahmad F, Kurugollu F Cluster-based DoS
detection

Surveillance nodes,
monitoring and

anomaly detection
mechanism, energy

threshold

Utilizing cluster-head nodes for
reputation and trust route

calculation.

2020 [20] Ilyas M, Ullah Z, Khan
F A

Trust-based routing
protocol

Trust-based low-power
routing protocol

(TEESR)

Enhanced security, authorization
mechanism, focus on external

attacks.

2021 [21] Hu H, Han Y, Wang H Trust-aware secure
routing protocol

Trust-aware secure
routing protocol (TSRP)

Prevention of wormhole,
selective forwarding, and
black-hole attacks. High

performance in packet loss rate.

2021 [22] Md Ibrahim Talukdar,
Rosilah Hassan Black-hole attack Intrusion detection,

digital signatures

Mitigation of black-hole attacks
in AODV protocol, improved

QoS metrics.

2021 [6] Gholamreza Farahani
Black-hole attack

detection and
mitigation

K-nearest neighbors
(KNN) algorithm, beta

distribution, mental
logic, fuzzy inference,

trust server

Efficient black hole attack
identification, enhanced network

parameters.
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Table 1. Cont.

Year Author Name Attack Type Prevention Benefits

2021 [23] Hasan, A.; Khan, M.A.;
Shabir, A.

Forensic examination
using AODV Protocol

Examination of IoT
networks with AODV
protocol, vulnerability
analysis, reconstruction

of networks

Quantifying impact of black hole
attacks, enhancing

understanding of network
performance.

2023 [24] Mohammad Sirajuddin
et al. Secure-path selection

Trust-based route
selection mechanism,

optimized routing

Enhanced security, reliability,
and operational lifespan of

WSNs.

2023 [25] E. Kavitha and S
Sowndeswari

Network security
against attacks

Ranking-based route
mutation mechanism,
bafflement technique,
intruder sink nodes

Enhanced security against
internet traffic intruders, robust
security at the base-station level.

20223 [32]
M. Ezhilarasi, L.

Gnanaprasanambikai,
et al.

Routing-attack
detection in WSNs

Fuzzy and
feed-forward neural

networks

Enhanced detection and
accuracy rates

3. Artificial Neural Networks

ANNs are based on the concept of the biological neural network. An ANN is composed
of a large number of highly interconnected neurons arranged into different layers, i.e.,
the input layer (IL), the hidden layer (HL) and the output layer (OL), to provide the
desired solution to a problem, as shown in Figure 2. These layers are connected through
weighted connections. The network gains the ability to modify the weights attached
to each connection between nodes to enhance its performance on a particular job. An
ANN’s performance may be impacted by the quantity of the HL and neurons within them.
Although having many neurons in the HL or HLs may increase network complexity, it
may also guarantee accurate learning. There are two types of ANN: recurrent neural
networks (RNNs) and feed-forward ANNs (FNNs). In FNNs, information travels in only
one direction, that is, from the IL through the HL to the OL. By contrast, in RNNs, the
information travels in both directions by introducing loops into the network [33]. To
train these networks, we employ two important supervised learning algorithms and/or
unsupervised learning algorithms. In supervised learning, set of inputs and the expected
outputs are supplied to the network during the training process. The error between the
produced and required outputs is used to modify the weights of the connections. The
quality of the training dataset determines how well the ANNs perform. ANNs using more
accurate training datasets produce more accurate outcomes.
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For supervised-learning-based ANNs, data collection for training presents a significant
challenge. When the intended outputs are unknown during training, unsupervised learning
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can be used because it does not require input for connection-weight adjustments. As there
are no established categories for the classification of the output patterns, the system must
create its own representations for the inputs that are provided. The most-often-used
learning algorithm for classification in feed-forward ANNs is backpropagation (BP). In a BP
algorithm, to reduce the discrepancy between the desired output and the projected output
obtained during the forward pass, a gradient-based optimization approach is used to reduce
the error in the outputs. This approach involves modifying the weights of the connections
between the neurons in the hidden and output layers during the backward pass.

4. Proposed Methodology

Our proposed ANN-based mechanism is composed of three layers. Because obtaining
real datasets for WSNs is difficult, we used the CICIDS2017 dataset [34], provided by
Canadian Institute of Cybersecurity, to train and test the proposed model. This dataset
contains most of the currently relevant attack scenarios, which were enough to evaluate
the effectiveness of our proposed system. The proposed model was trained with the four
features extracted from CICIDS2017. These parameters are as follows: number of packets
received and forwarded by the node, energy-consumption details of the node [14], and
the trust value of the node [19]. We had four nodes in the input layer. During training,
various numbers of nodes in the hidden layer and various number of hidden layers were
evaluated; however, the false-detection rate was determined to be low when there was
one hidden layer that contained four nodes. As we are interested in the detection of three
specific routing attacks due to their high-severity impacts, four nodes were used to make
up the output layer. This layer detects whether the node is normal or malicious; a malicious
node is involved in launching black-hole, gray-hole, wormhole attacks using the following
outputs: [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1], respectively. The NS2 simulator was
used to obtain the results, which consist of the detection of the intended routing attacks.

Our ANN-based proposed technique operates in two parts. The first part involves
training the system using the dataset that was obtained; the second part involves testing
the trained system using actual traffic that was obtained via a network interface. When
effectively trained with both normal and attack traffic, ANN-based algorithms yield optimal
outcomes [35]. The dataset employed in our suggested mechanism has 20,000 input vectors,
of which 15,000 are used for training, 3000 input vectors are used for testing, and the
remaining 2000 input vectors are used to validate the proposed detection system.

4.1. Training

The aim of training is to enable the system to learn how to classify nodes into the
target category. The two stages of training for the proposed system are called feed-forward
and back-propagation, as shown in Figure 3.
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4.1.1. Feed-Forward

A vector of input values and the intended output value are sent to the system in a
feed-forward configuration. The input vector of our proposed technique has the format
{5, 5, 4, 1, 1, 0, 0, 0}, where {5, 5, 4, 1} indicates the number of packets the node has
received and sent, the node’s energy consumption information, and the node’s trust value
respectively mentioned in Table 2. The leftover values of the input vector, i.e., {1, 0, 0, 0}
correspond to the desired output, which is “normal node” for the provided vector. The
process of choosing initial weights and bias values is a significant problem, as these values
aid in producing the intended results. This input vector is then forwarded to the hidden
layer through connected weights. All implementation of the back-propagation algorithm
can be found in [36].

IHk = ∑4
l=1 ∑p

m=n XlWm + bk (1)

Table 2. Input vector parameters.

Attack Type Input Vector Parameter for ANN

Black-hole attack,
gray-hole attack and wormhole attack

Number of packets received by the node
Number of packets sent by the node
Energy-consumption details
Trust value of the node in the network

In the above Equation (1), “IHk” stands for the scalar product of each input value times
its linked weight and the total bias associated with each hidden layer neuron. The initial
values of each variable in Equation (8) are as follows: k = [1–3]: n = 1, 5, 9, 13: p = 4, 8, 12, 16.
The output of every node in the hidden layer is determined using the following sigmoid
activation function:

OHk = 1/
(

1 + e−IHk
)

(2)

In Equation (2), the output of each neuron in the hidden layer is denoted by “OHk”,
and “IHk” is calculated in Equation (1). The result of Equation (2) for each hidden layer
node will be used as input to each output layer node. The same process will be repeated to
obtain the results from output layer nodes using Equations (3) and (4), as follows:

IOk = ∑3
l=1 ∑p

m=n OHlWm + bk (3)

Outk = 1/
(

1 + e−(IOk)
)

(4)

where “Outk” is the output of each output layer node for the input supplied by the hidden
layer nodes “OH” and “IOk” is the sum of the bias associated with each output layer neuron
and the scalar product of each input value received from the hidden layer times its linked
weight. The variables in Equations (3) and (4) could have the values k = [1–4], n = 1, 4, 7, 10,
and p = 3, 6, 9, 12.

The final stage in the suggested mechanism’s feed-forward training is to use the
following equation to determine the error between the calculated output (AO) and the
desired output (DO):

E =
1
2∑4

i=1(DOi − AOi)
2 (5)

During the various experiments performed for the identification of optimal error
values, it was found that the system produced accurate results when the weights of con-
nection and bias values were updated with the error value of 0.20. The first feed-forward
mechanism for input vector {5, 5, 3, 1} is described in Figure 4.
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4.1.2. Backpropagation

If the error determined in the feed-forward stage is greater than 0.20, then the cal-
culated error will be backpropagated to update the connected weights of each neuron
in the hidden and input layers and the bias value associated with hidden-layer neurons
until it satisfies the given error rate. Equation (6) is used in back-propagation to apply the
difference in error generated by feed-forward to determine the gradient values for each
node in the output layer.

OGradi = AOi(1 − AOi) ∗ Error (6)

Finding the rate of change in the hidden-to-output-layer-connection weights and the
bias value associated with each output layer node is the next step in the back-propagation
process. These rates of change can be calculated as follows:

∆wij = LR ∗ OGradj ∗ Hloi (7)

∆bj = LR ∗ OGradj (8)

The learning rate (LR), which controls how quickly the back-propagation algorithm
learns, is used in Equations (7) and (8). Greater values of ‘LR’ will cause ∆w to fluctuate
more, increasing the possibility of overshooting a correct response. Thus, “0.02” is the value
assigned to “LR” in our suggested process. Trial and error are used to determine this value
of “LR”. Next, utilizing the obtained “∆wij” and “∆bj”, the weights and biases related to the
hidden to output layer are improved. After that, we used Equations (9)–(11) to calculate
the gradient value, the rate of change in the input-weights-to-hidden-layer connections,
and bias values for each node in the hidden layer, as follows:

HGradi = Hloi(1 − Hloi) ∗
(
∑3

j=1 OutGradj ∗ Wj

)
(9)

∆wki = LR ∗ HGradi ∗ Xk (10)

∆bi = LR ∗ HGradi (11)

The feed-forward will now begin anew. For the given vector, {5, 5, 3, 6}, feed-forward
and back-propagation procedures will be performed until the generated gradient descent
error reaches the desired error.
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After the updated weights and biases are generated, the training of the proposed
system will be completed, shown in Figure 5. Following that, testing will be conducted
using the remaining datasets of 3000 input vectors.
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4.2. Testing

After the system has been trained, the new updated weights and bias values are used
by the system to classify the remaining 3000 input vectors of the dataset into their required
category. During system testing, the values of learning rate, momentum, error rate and
number of epochs are the same. Moreover, the same feed-forward steps used in training
the system are followed in testing to generate the outputs from the output-layer nodes
Figure 6. Unlike in training, in the testing phase, desired outputs are not provided with
input vectors to the system.
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During the simulation, different scenarios were considered. Initially, no malicious 
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Figure 6. Testing of proposed mechanism.

Following system training, the system uses the newly updated weights and bias values
to categorize the dataset’s remaining 3000 input vectors into the appropriate categories.
The same parameters for learning rate, momentum, error rate, and number of epochs are
used for testing the system. Additionally, the same feed-forward procedures that were used
to train the system are also used during testing to produce outputs from the output layer
nodes. Unlike in training, the system does not receive input vectors for desired outputs
during the testing phase.
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5. Results and Discussion

This section outlines and discusses the main finding of the proposed work. The
number of packets sent and received (the packet delivery ratio), energy consumption
and the trustworthiness of the node in the other network were the main criteria used for
detection of malicious nodes in WSN in our proposed work. Network simulation (NS-
2) was used to simulate and analyze the performance of the proposed detection system.
Table 3 contains a list of the simulation parameters that were used in the experiments.
The AODV routing protocol was employed in the experiment, and a 60-s simulation time
is chosen.

Table 3. Simulation Parameters.

S.No Parameters Range/Value

1 Area 1000 × 1000 m
2 Nodes 500
3 BS location 1300–1400 m
4 Initial energy 1.5 J
5 Trust 1 or 0
6 Routing Protocol AODV
7 Simulation Time 120 s
8 Bandwidth 25 Kbps
9 Transmission range 50 m
10 Packet size 512 Bytes

During the simulation, different scenarios were considered. Initially, no malicious
node was used, and the number of packets received at the base station, the packet drop
rate and the energy consumed by the network were recorded for 60 s. In the rest of the
scenarios, the same parameters were noted during a black-hole attack, a gray-hole attack
and a wormhole attack. The combined simulation results of packets received during each
scenario are shown in Figure 7.
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Figure 7. Packets received at the base station.

In the last scenario, the proposed system was implemented, and all types of malicious
nodes used in the previous scenarios, along with normal nodes, were used. Almost the
same number of packets were received at the base station during all attacks as were received
during the normal scenario (without attacks), as shown in Figure 8.

Figures 9 and 10 show that among all the scenarios, during the black-hole attack, the
packet drop rate and the energy consumption of the network were especially high.
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Figure 9. Packet drop rates without the proposed system.
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Figure 10. Energy consumption of the network without the proposed system.

Figure 10 shows that energy consumption of the network was 85 J when there was
no attack but that it gradually increased during routing attacks. The network consumed
a very large amount of energy during the black-hole attack. When the proposed system
was deployed and all the routing attacks were launched, the energy consumption of the
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network was almost like that of the network in the absence of the attacks, as shown in
Figure 11.
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Figure 11. Energy consumption during routing attacks in the presence of the proposed system.

Moreover, when the proposed system was deployed and all the routing attacks were
launched during the simulation, the rate of packet drop was very low due to early detection
of malicious nodes, as shown in the Figure 12.
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Figure 12. Packet drops rate comparison.

The proposed model’s performance indicators are contrasted with those of other
machine learning algorithms like random forest (RF), decision trees (DT), and support
vector machines (SVM). The analysis takes into account the following parameters: recall,
accuracy, precision, F1-Score, and specificity. There are total 2000 input vectors in the
dataset, which is composed of normal and abnormal data, with the abnormal data including
three routing attacks. The complete dataset was split in a ratio of 75:15:10 in order to verify
the proposed model’s detection rate and accuracy rate. Whereas for training we used 75%
input vectors, in testing, we used 15% data, with 10% input vectors from the dataset used
for validation. Table 4 lists the distribution of datasets for all attacks and normal scenarios.
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Table 4. Distribution of input vectors in the dataset.

Detail Training Validation Testing Total

Normal 4250 550 810 5610
Black-hole 3580 485 760 4825
Gray-hole 3550 475 720 4745
Wormhole 3620 490 710 4820
Total 15,000 2000 3000 20,000

The performance of the proposed system during the testing phase was evaluated
using a confusion matrix, shown in Table 5. Results are classified as true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) in our confusion matrix.
The examples are labeled “Normal” for a normal scenario, “B.H.” for a black-hole attack,
“G.H.” for a gray-hole attack, and “W.H.” for a wormhole attack in order to make the
analysis simpler.

Table 5. Confusion Matrix.

Actual Class

Predicted Class
S.No Classes Normal B.H G.H W.H

1 Normal 806 1 2 1
2 B.H 1 755 3 1
3 G.H 1 2 716 1
4 W.H 1 1 3 705

Precision 99.63 99.47 98.90 99.58

Performance measures such as detection rate (DR), false-positive rate (FPR), accu-
racy, and precision given in Table 6 are derived from the confusion-matrix values and
examined for various attack scenarios. These matrices have the following mathematical
formulation [32]:

DR or TPR =
TP

TP + FN
(12)

Table 6. Performance evaluation of the proposed system.

S.No Class DR FPR Precision F1Score Accuracy

1 Normal 99.34 0.43 99.62 99.48

99.49
2 B.H 99.08 0.50 98.82 98.95
3 G.H 99.13 0.50 98.89 99.01
4 W.H 99.29 0.50 99.71 99.50
5 Average 99.21 0.48 99.26 99.23

The number of correctly identified attacks divided by the total number of attacks
yields the detection rate (DR). It is extremely rare for a classifier to obtain a TPR of 1, which
indicates that every intrusion is successfully recognized.

FPR =
FP

FP + TN
(13)

The number of normal instances that are classified as attacks (FP) is divided by the
total number of normal instances to obtain the FPR.

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Accuracy, also known as classification rate (CR), measures how well the classifier can
distinguish between normal and anomalous traffic behavior. It is calculated as a percentage
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by dividing the total number of occurrences properly classified using baseline behavior
features by all instances.

Precision =
TP

TP + FP
(15)

Precision measures how well a classifier makes positive predictions. For a given class,
it is computed as the ratio of true positives to the total of true positives and false positives.

F1Score = 2 ∗ (DR ∗ Precision)
(DR + Precision)

(16)

The F1 Score provides a balance between precision and DR by taking the harmonic
mean of these two criteria. This score is used when it is desirable to take into account false
positives and false negatives equally.

Table 7 and Figure 13 show the performance analysis of the proposed system. It has
been noted that practically every kind of attack is appropriately classified.

Table 7. Comparison of detection rates of routing attacks.

S.No Techniques Normal Gray Hole Black Hole

1 SVM 84 55.7 63.6
2 RF 85 59.1 65
3 DT 86 73 73.6
4 [32] 98.5 98 97.8
5 Proposed system 99.34 99.13 99.08
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Figure 13. Performance evaluation of the proposed system.

Feature selection results in the fewest incorrect classifications, yet the proposed system
performs better than other detection methods, as shown by the analysis in Figure 14.
This analysis compares the detection rate of different routing attacks by the proposed
system with that of a technique proposed in [32] and those of machine-learning techniques
like support-vector machines (SVM), DT, and RF. It is observed from the results that the
maximum detection performance is attained by the proposed approach. The average
detection rate of the proposed model is 99.21%, which is 1.38% greater than that of the
approach proposed in [32], i.e., 97.8%. With regard to other machine-learning approaches,
the average detection rate of our proposed system was 34.9%, 24.16%, and 31.26% better
than the detection rates of SVM, DT, and RF, respectively, as shown in Table 8 and Figure 15.
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Table 8. Performance comparison.

S.No Technique DR (%) Accuracy (%)

1. SVM 64.33 90.51
2. RF 68.02 92.42
3. DT 75.16 94.11
4. [32] 97.83 98.84
5 Proposed System 99.21 99.49
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The accuracy rate of the proposed system is also better than those of the other systems
described in Figure 15 and Table 8. The improved performance is achieved due to the
assortment of efficient features, the selection of initial values of the weights and bias values,
and the number of neurons in the hidden layer used to train the proposed model.

6. Conclusions

In this work, we proposed a feed-forward neural network for detection of the most
important routing attacks in the field of WSNs, with training and testing conducted using
the CICIDS2017 dataset. A confusion matrix was used for analysis of the proposed system.
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The system’s detection rate of 99.21%, with a 99.45% accuracy rate, as shown by the
confusion matrix, demonstrates its capacity to correctly detect and categorize the great
majority of routing attacks. The system’s dependability in reducing misclassifications
and guaranteeing that legitimate network activity is not tagged as harmful is further
highlighted by the low false-positive rate. Simulation and analysis results proved that
proposed system detected these attacks efficiently; as a result, quality of service and overall
network performance improved.

The results of this study not only confirm the efficacy of our approach, but also make
a valuable contribution to the development of secure communication in WSNs. In order to
further improve the system’s performance, we plan in the future to investigate additional
features and routing attacks by using advanced ANNs to extend our approach to real-world
deployments, aiming for increased performance and reduced computation time.
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