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Abstract: The dynamic and evolving nature of mobile networks necessitates a proactive approach
to security, one that goes beyond traditional methods and embraces innovative strategies such as
anomaly detection and prediction. This study delves into the realm of mobile network security and
reliability enhancement through the lens of anomaly detection and prediction, leveraging K-means
clustering on call detail records (CDRs). By analyzing CDRs, which encapsulate comprehensive
information about call activities, messaging, and data usage, this research aimed to unveil hidden
patterns indicative of anomalous behavior within mobile networks and security breaches. We uti-
lized 14 million one-year CDR records. The mobile network used had deployed the latest network
generation, 5G, with various sources of network elements. Through a systematic analysis of historical
CDR data, this study offers insights into the underlying trends and anomalies prevalent in mobile
network traffic. Furthermore, by harnessing the predictive capabilities of the K-means algorithm,
the proposed framework facilitates the anticipation of future anomalies based on learned patterns,
thereby enhancing proactive security measures. The findings of this research can contribute to the
advancement of mobile network security by providing a deeper understanding of anomalous behav-
ior and effective prediction mechanisms. The utilization of K-means clustering on CDR data offers
a scalable and efficient approach to anomaly detection, with 96% accuracy, making it well suited
for network reliability and security applications in large-scale mobile networks for 5G networks
and beyond.

Keywords: call detail record; mobile networks; K-means clustering; network security; network
anomaly

1. Introduction

In the era of pervasive mobile communication, the proliferation of smartphones and
the exponential growth in mobile usage from various sources have led to a tremendous
increase in the complexity and scale of mobile network infrastructures. Mobile networks,
also known as cellular networks, are telecommunications networks that allow various de-
vices to communicate wirelessly with each other and with the broader telecommunications
infrastructure [1]. These networks have revolutionized communication by enabling individ-
uals to stay connected while on the move, accessing voice, data, and multimedia services
seamlessly. Mobile network operators (MNOs) face numerous challenges in ensuring the
seamless operation and security of their networks amidst this dynamic landscape. One
critical aspect of network management and security is the analysis of CDRs, which contain
valuable information about mobile subscribers” activities, such as number of calls, call du-
ration, locations, data usage, date, and time. CDR data are a vital source of information for
telecommunications operators (see Figure 1, providing detailed insights into call and data
communication activities within their networks. These data are instrumental in various
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aspects of network management, including billing, network optimization, fraud detection,
and customer experience management [2].
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Figure 1. A simplified mobile network architecture with CDR database server. CDR data are a
crucial component of telecommunications networks, recorded and stored in the CDR database server
located at the core of mobile network and providing valuable information about voice and data
communications between network users. CDR data record detailed information about each call
or communication session, including its duration, timestamp, parties involved, and other relevant
metadata.

There are innumerable use cases of CDR data:

* Billing and Revenue Assurance: CDR data are used for billing purposes, ensuring that
subscribers are accurately billed for their usage. This helps telecommunications opera-
tors generate invoices, track usage patterns, and reconcile billing discrepancies [3].

*  Network Optimization: CDR data are invaluable for optimizing telecommunications
networks. Analysis of CDR data can help identify areas of network congestion,
optimize routing paths, and improve overall network performance, to enhance the
quality of service for subscribers.

¢  Fraud Detection and Prevention: CDR data analysis is instrumental in detecting and
preventing telecommunications fraud. By analyzing usage patterns and detecting
anomalies in call behavior, operators can identify fraudulent activities such as call
spoofing, SIM box fraud, and premium rate service fraud [4].

¢ Customer Experience Management: CDR data analysis enables telecommunications
operators to better understand customer behavior and preferences. By analyzing call
patterns, service usage, and network performance metrics, operators can tailor their
services to meet customer needs and improve overall customer satisfaction.

Detecting anomalies in mobile network CDR data has become paramount for MNOs,
to identify and mitigate potential security threats, fraudulent activities, and network
abnormalities. Traditional methods of anomaly detection often fall short in handling
the sheer volume and complexity of CDR data, necessitating the adoption of advanced
analytical techniques. Among these techniques, clustering algorithms, particularly K-
means clustering, have emerged as powerful tools for identifying patterns and anomalies
within large datasets.

K-means clustering is a widely used unsupervised machine learning algorithm that
partitions data points into distinct clusters based on their similarities [5]. However, there
has been negligible prior investigation into anomaly detection, specifically in the context of
utilizing CDR data for predicting and forecasting anomalies to enhance mobile network
security. This paper aims to fill this gap and explore the application of K-means clustering
for anomaly detection and security enhancement in mobile networks using CDR data.
By iteratively optimizing cluster centroids to minimize intra-cluster variance, K-means
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effectively groups together CDR data points exhibiting similar characteristics. Leveraging
K-means clustering in the context of mobile network CDR data enables the identification
of anomalous patterns indicative of suspicious activities or network irregularities and
predictive analytics.

The contributions of this study also include the following;:

1. The ultimate goal of this contribution is to enhance security measures within mobile
networks. By effectively utilizing CDR data and implementing K-means clustering for
malicious activities, the system can identify and mitigate security threats in real time.
This contributes to improving the overall security posture of the mobile network,
ensuring the integrity, confidentiality, and availability of network services.

2. This research considered historical annotated incidents encountered within the net-
work on a daily basis alongside suspicious activities identified by the algorithm. Then,
these datasets were subsequently utilized to train the algorithm for future prediction.
The annotations provided by the operator enhanced the accuracy of the prediction
along with the historical data.

3.  Prediction of anomalies: Beyond merely detecting anomalies, we explored the pre-
dictive capabilities of K-means clustering in anticipating future anomalous behaviors
in mobile network traffic. By analyzing historical CDR data and identifying emerg-
ing clusters indicative of anomalous patterns, proactive measures can be taken to
preemptively address security vulnerabilities and network disruptions.

Through empirical analysis and case studies, we demonstrate the efficacy of K-means
clustering in detecting anomalies and enhancing security in mobile networks. By harnessing
the inherent structure within CDR data, MNOs can gain valuable insights into network
behavior, mitigate security risks, and ensure the resilience of their mobile infrastructure in
the face of evolving threats.

In the subsequent sections of this paper, we delve into the methodology of applying
K-means clustering to mobile network CDR data, discuss relevant case studies and experi-
ments, and present practical implications for MNOs seeking to strengthen their network
security posture.

2. Literature Review

Research into mobile network security has emphasized leveraging CDR data for
anomaly detection, prediction, and enhancing security measures. Various studies have
explored techniques such as machine learning, data analytics, and anomaly detection
algorithms to analyze CDR data and identify potential security threats, irregularities, and
vulnerabilities in mobile networks. By analyzing call patterns, traffic flows, and user
behaviors, researchers aimed to develop effective security measures to safeguard mobile
networks against unauthorized access, fraud, and other malicious activities [6]. These
efforts have contributed to improving the overall security and reliability of mobile network
infrastructures, ensuring the uninterrupted delivery of services to users, while mitigating
potential risks and vulnerabilities.

Anomaly detection, prediction, and security enhancement in mobile networks are
critical research areas, especially leveraging CDR data. Several studies have explored
various techniques and methodologies for analyzing CDR data and addressing security
challenges in mobile networks [7].

One approach involves the use of machine learning algorithms such as support vector
machines (SVM) [8], random forest [9], and neural networks for anomaly detection in CDR
data. These algorithms analyze call patterns, traffic flows, and user behaviors to identify
anomalous activities indicative of security threats or network irregularities. By detecting
deviations from normal behavior, these techniques enable proactive security measures to
be deployed, thereby enhancing the overall security posture of mobile networks [10].

Another approach focuses on predictive modeling techniques to anticipate network
anomalies and security breaches based on historical CDR data. By employing time-series
analysis, clustering algorithms, and regression models, researchers predict potential secu-
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rity incidents such as network congestion, denial-of-service (DoS) attacks, and unauthorized
access attempts [11]. These predictive models enable mobile network operators to imple-
ment preemptive measures to mitigate against risks and ensure uninterrupted service
delivery to users.

Furthermore, research efforts have been directed towards developing dynamic security
enhancement frameworks for mobile networks using CDR data analysis [12,13]. These
frameworks continuously monitor call activities, analyze traffic patterns, and detect suspi-
cious behaviors in real time. By dynamically adjusting security measures based on evolving
threats and vulnerabilities, these frameworks effectively safeguard mobile networks against
various security threats, including fraud, malware, and cyber attacks [14].

Additionally, studies have investigated the integration of anomaly detection tech-
niques with network management systems to provide comprehensive security solutions
for mobile networks. By combining anomaly detection with intrusion detection systems
(IDS) and security information and event management (SIEM) platforms [15], researchers
aim to create robust security architectures capable of detecting, preventing, and responding
to security incidents in mobile networks.

Despite the critical importance of mobile network security, a notable gap exists in
research that specifically addresses the intersection of security and anomaly detection and
prediction within these networks. Mobile networks, characterized by their dynamic and
distributed nature, are inherently susceptible to various security threats and anomalies.
These can range from malicious attacks, such as distributed denial of service (DDoS) attacks
and network intrusions, to benign anomalies caused by network congestion or hardware
failures. Detecting and predicting these anomalies in real time is crucial for maintaining
the reliability, availability, and security of mobile network services.

In spite of the growing recognition of the importance of anomaly detection and predic-
tion in mobile network security, current research often lacks a comprehensive approach
that integrates advanced anomaly detection techniques with predictive modeling method-
ologies and the use of CDR data. Existing studies may focus on isolated aspects of security
or anomaly detection, failing to address the complex interplay between security threats
and anomalous network behavior. Moreover, the rapid evolution of mobile network tech-
nologies, including the transition to 5G networks and the proliferation of Internet of things
(IoT) devices, further exacerbates the challenges associated with anomaly detection and
prediction. Traditional security mechanisms and detection methods may struggle to adapt
to the dynamic and heterogeneous nature of modern mobile networks, highlighting the
need for innovative and adaptive approaches.

In this context, this study aimed to explore and address this gap in research on security
in mobile networks by integrating advanced anomaly detection and prediction techniques,
leveraging the data available within mobile networks to enhance their security posture
and ensure the uninterrupted delivery of critical services. Through a multidisciplinary
approach that combines expertise in cybersecurity, network engineering, and data analytics,
this research seeks to contribute to the advancement of mobile network security and
anomaly detection capabilities, ultimately safeguarding the integrity and reliability of
mobile communications in an increasingly interconnected world.

3. Data Acquisition and Preprocessing

Mobile network data, originating from a diverse array of sources and devices, con-
stitute a rich and dynamic dataset that provides invaluable insights into user behavior,
network performance, and emerging trends.

These data are generated continuously by a multitude of devices, including smart-
phones, tablets, IoT devices, and network infrastructure components, contributing to a
complex ecosystem of interconnected data streams (see Figure 2) [16].
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Figure 2. Mobile network data from various sources and devices are leveraged across diverse
domains, including telecommunications, marketing, healthcare, transportation, and urban planning.
These data fuel advanced analytics, machine learning algorithms, and predictive models to derive
actionable insights, optimize operations, and enhance user experiences in the mobile ecosystem.

In this study, we analyzed a dataset comprising 14 million call detail records (CDR)
of successful voice calls. To isolate a successful voice call from an unsuccessful call in the
CDR data, we had to employ infiltration and a decision tree model (see Figure 3).

Call Session Start

Incoming
call-leg
(Unique ID)

Check the duration
(d=?) (in ms)

Cause value gives

Check the cause
Unsuccessful Call (CAU) value when
disconnected

reason of
disconnection

Call Session End

Figure 3. The decision tree model was utilized based on several attributes that the CDR data provide.
These attributes are crucial to identifying a successful call scenario. Every call generates two call
legs with unique call IDs. A successful call is disconnected once one call leg sends a disconnection
command to the network after being served for a certain duration. A cause code is one of the
indications revealing the status of the call disconnection.

These records were collected from a CDR database server over a period spanning
from July 2016 to June 2017 and represent approximately 2 million subscribers to one of the
leading cellular operators in Middle East. We utilized 10 months of the data for learning
and training purposes, reserving one month for model validation.
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The validation set served to fine-tune the model’s hyperparameters, prevent over-
fitting, and ensure accurate performance on unseen datasets. Subsequently, the test set,
covering one month of the entire dataset, was employed to evaluate the final model’s
performance metrics, including precision, recall, accuracy, among others. Additionally,
we assessed algorithmic efficiency, including memory usage and computational time
per model.

A complete CDR record for a successful call encompasses up to 100 attributes, depend-
ing on the call setup and scenarios. However, we focused on approximately 10 attributes,
including call time, call date, call duration, number of calls, location services, origination
leg, termination leg, calling number, and called number. These attributes are typically
recorded to a flat file (text file) within the mobile core network for each call scenario before
being stored in the data base. The text-based data comprise multiple lines representing
the call status, relevant attributes, and information, starting with a call setup timestamp
until the call is released. On the other hand, CDR files store hundreds of entire call sce-
nario records in text-based format, with a new file created every 15 min and stored in
the database.

With numerous attributes available in a single call CDR, each attribute may serve a
specific purpose in analysis. For this study, we focused on leveraging the essential attributes
for studying voice traffic patterns and profiles.

In our study, the process of utilizing CDR data involved several stages to prepare them
for implementation in algorithms and modeling. These stages included data extraction and
collection from the CDR database, profiling to assess data quality and identify key attributes,
scrubbing and filtration to remove irrelevant or inconsistent data, data reduction through
aggregation and dimensionality reduction, data wrangling to transform unstructured
data into a structured format, enrichment with external knowledge sources, validation
by dividing the data into training and testing sets, and evaluation of models to avoid
overfitting and ensure unbiased estimation.

To judge the ground truth and label the CDR dataset for anomaly detection in mobile
networks, we performed the following;:

1.  Establish a baseline of normal network behavior using historical data.

2. Consult domain experts through providing annotations to validate the baseline and
identify potential anomalies.

3. Define labels that distinguish between normal and anomalous behavior through the
attributes extracted from the CDR data.

4.  Utilize the K-means clustering techniques to detect and predict anomalies.

5. Implement feedback mechanisms to continuously update and refine the ground truth
labels based on real-time observations.

This process ensured the accuracy of anomaly detection and prediction, enhancing the
security of mobile network infrastructures.

4. Theory and Concepts Behind the Algorithm

In this section, we first discuss the K-means clustering algorithm adaptation. Then,
we go through the theory and concepts of the algorithm.

4.1. Algorithm Adaptation

Adapting the K-means clustering algorithm for anomaly detection and prediction
with CDR data involved several key modifications and considerations:

1. Feature Selection: Instead of using all available features and attributes in the CDR
dataset, we carefully selected relevant attributes that captured characteristics indica-
tive of anomalous behavior in the mobile network. This included attributes and
features such as call duration, frequency of calls, geographical locations, date and
time, etc.
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Normalization: Since the features in the CDR dataset may have different scales or
units, a normalization technique was added to ensure that all features contributed
equally to the clustering process.

Distance Metric: Since we were dealing with numerical data and anomaly detection,
common metrics like the Euclidean metric are not ideal for anomaly detection due
to their susceptibility to biases from duplicate features or irrelevant features that do
not effectively predict target attributes. We selected Mahalanobis metrics since they
measure the distance of a point from the mean along each principal component in
terms of standard deviations.

Outlier Handling: Annotations were provided by network experts for the previ-
ously reported incidents along with the historical data to enhance the identification,
handling, and introduction of outlier detection mechanisms.

Thresholding: In anomaly detection, it is common to define a threshold to distinguish
between normal (hourly/daily /weekly traffic behavior) such as peak hours, recurrent
events, and anomalous clusters. We introduced thresholding techniques to identify
clusters that deviated significantly from the expected behavior, indicating potential
anomalies.

Iterative Refinement: Given the dynamic nature of mobile networks and evolving
security threats, we iteratively refined our adapted algorithm based on feedback from
real-world observations and ongoing monitoring of network behavior.

4.2. The Theory of the Algorithm

The K-means clustering algorithm is a popular method for partitioning a given dataset

into K distinct, non-overlapping clusters. Mathematically, the K-means algorithm can be
described as follows [17]:

K: Number of clusters

n: Number of data points

d: Number of dimensions (features)

x;: Data point i (wherei =1,2,...,n)

¢x: Centroid of cluster k (wherek = 1,2,...,K)

Objective: The objective of K-means clustering is to minimize the within-cluster

variance, also known as inertia or distortion. This is defined as the sum of squared distances
between each data point and its assigned centroid within the cluster.

Mathematical Representation [18]:

Initialization:

*  Randomly initialize K centroids cj for each cluster.
Assignment Step (Expectation):

*  Assign each data point x; to the nearest centroid based on Euclidean distance:
. 2
argming ||x; — ci|| ey

Update Step (Maximization):

*  Update the centroids c; by computing the mean of all data points assigned to

cluster k:
1

Ck = 0 X (2)

| Skl xl.;gk 1
where Sy, is the set of data points assigned to cluster k.

Repeat Steps 2 and 3 until Convergence:

¢ [terate Steps 2 and 3 until the centroids no longer change significantly or a
predefined number of iterations is reached.
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Objective Function: The objective function of K-means clustering is to minimize the
within-cluster sum of squares (WCSS), given by

K
WCss =Y Y [lxi—cl? 3)
k=1x;€Sy

where Sy is the set of data points assigned to cluster k.
Convergence Criteria: K-means clustering typically converges when one of the follow-
ing conditions is met:

*  The centroids do not change significantly between iterations.
¢ The maximum number of iterations has been reached.

The final output of K-means clustering is a set of K clusters, each represented by its
centroid ¢, and each data point is assigned to one of the clusters based on proximity to
its centroid. The algorithm aims to minimize the within-cluster variance, also known as
inertia or sum of squared distances, by iteratively assigning data points to the nearest
cluster centroid and updating the centroids to the mean of the data points in each cluster.
We wrote K-means clustering in Algorithm 1 for our study.

Algorithm 1 K-means clustering

1: Initialize Cluster Centroids
2: for every iteration / do
3: Compute 7,:

4 for for every data point x, do
5: Assign every data point to a cluster:
6: for every cluster k do
7 ifk == argmin‘ Xp — ‘u;:l H then
8 Tuk = 1
9: else
10: Tk =0
11: end if
12: end for
13: end for
14: for every cluster k do
15: Update cluster centroids as the mean of each cluster:
16: uh = ZZL/";"
17: end for

18: end for

5. Confusion Matrix and Performance Metrics

In the realm of machine learning and classification tasks, evaluating the performance
of models is crucial for assessing their effectiveness in making accurate predictions. One
of the fundamental tools for assessing model performance is the confusion matrix, which
provides a comprehensive overview of the model’s predictions compared to the ground
truth labels.

5.1. Confusion Matrix

A confusion matrix is a tabular representation that summarizes the performance
of a classification model. True Positive (TP), respectively True Negative (TN), which
corresponds to the model correctly predicting positive instances, respectively negative
instances. False Positive (FP), respectively False Negative (FN) corresponds to the model
incorrectly predicts positive instances (Type I error). respectively negative instances (Type
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I error). Each row of the matrix corresponds to the actual class labels, while each column
corresponds to the predicted class labels [19].

5.2. Performance Metrics

Based on the confusion matrix, several performance metrics can be derived to quantify
the model’s performance across different aspects [20]:

1.  Precision: Precision measures the proportion of true positive predictions among all
positive predictions made by the model. It is calculated as the ratio of TP to the sum

of TP and FP [21].
TP

TP + FP
2. Recall (Sensitivity): Recall measures the proportion of true positive predictions among

all actual positive instances in the dataset. It is calculated as the ratio of TP to the sum
of TP and FN [22].

Precision =

(4)

TP
TP + FN
3. Fl-Score: The Fl-score is the harmonic mean of precision and recall, providing a

balanced measure of a model’s performance. It is calculated as the harmonic mean of
precision and recall [23].

Recall = 5)

Precision x Recall
F1- =2
Score % Precision + Recall ©)

4.  ROC-AUC (Receiver Operating Characteristic-Area Under the Curve): ROC-AUC
measures the area under the receiver operating characteristic (ROC) curve, which rep-
resents the trade-off between true positive rate (TPR) and false positive rate (FPR) at
various threshold settings [24]. It provides a comprehensive measure of a model’s abil-
ity to discriminate between positive and negative classes across different thresholds.

5. Accuracy: Accuracy measures the proportion of correct predictions (TP and TN)
among all predictions made by the model. It is calculated as the ratio of the sum of
TP and TN to the total number of instances in the dataset [25].

Accuracy = TP +TN
Y~ TP { TN + FP + FN

)

6.  Efficiency: Efficiency measures the computational resources required by the model
to make predictions, such as the memory usage, runtime, and computational time
per prediction. It is crucial for assessing the scalability and real-world applicability of
the model.

6. Results and Discussion

Understanding the typical patterns of voice traffic is crucial for distinguishing abnor-
mal behaviors. In this section, we discuss the experimental results from the dataset. We
aimed to detect and predict these behaviors using K-means clustering algorithm, utilizing
parameters such as date, time, number of calls, call duration, and average call duration.
Initially, we visualize the entire dataset along with the attributes provided by the CDR data,
as shown in Figure 4.
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Figure 4. Visualization of the entire dataset, including on the y-axis the number of calls per day,
the average, and total call duration per day. Date is represented on the x-axis. The grey lines are
annotated anomalies.

The first graph illustrates the average call duration per day, covering a one-year period
from July 2016 to June 2017. The second graph depicts the daily number of calls throughout
the entire year. Finally, the bottom graph represents the total call duration.

The data exhibited seasonality, indicating that they follow recurring patterns or varia-
tions at specific intervals, typically aligned with seasons or other fixed time periods. These
seasonal fluctuations can have a significant impact on the behavior of the data, influencing
trends and patterns observed over time. Understanding and analyzing seasonalized data is
crucial in various fields such as economics, finance, retail, and weather forecasting.

However, we utilized deseasonalization or seasonal adjustment on the dataset, as
illustrated in Figure 5, to refine our analysis and achieve a higher accuracy.

Deseasonalized Average Call Duration
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5200
g 180
9 160
E““ WM WWMW \
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Date
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Figure 5. Deseasonalizing the data, which helped in reducing complexity and improving the accuracy
of our results, enabling more effective anomaly detection and prediction strategies.
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Deseasonalization is a process used to remove the seasonal patterns or fluctuations
from a time series dataset. These seasonal patterns often repeat in a regular and predictable
manner over a specific period, such as daily, weekly, monthly, or yearly cycles. Deseasonal-
ization aims to isolate the underlying trend and irregular components of the data, making
it easier to analyze and interpret.

To deseasonalize our data, the following steps were followed:

1.  Identification of Seasonal Patterns: Initial examination of the time series data to
identify recurring seasonal patterns or fluctuations. There were certain patterns in
our data, following daily, weekly, and monthly trends.

2.  Estimation of Seasonal Component: Application of appropriate techniques, such
as moving averages or seasonal decomposition methods, to estimate the seasonal
component of the data.

3. Using Additive Model: An additive model decomposes a time series into three
components: trend, seasonal, and residual (or irregular). The seasonal component
is estimated by averaging the values of the data over each seasonal period (e.g.,
monthly averages for monthly data) and subtracting these seasonal averages from the
original data to obtain the deseasonalized series. Additive model explicitly separates
trend, seasonal, and irregular components, providing a clearer understanding of the
underlying patterns. In addition, it can handle different types of seasonal patterns,
including multiplicative ones.

4. Subtraction of Seasonal Component: Removal of the estimated seasonal component
from the original data to obtain the deseasonalized data.

5. Analysis of Deseasonalized Data: Examination of the deseasonalized data to identify
the underlying trend and any remaining irregular components.

Overall, deseasonalization is a critical preprocessing step in time series analysis and
helps to isolate and analyze the underlying trend and irregular components in the data by
removing the seasonal patterns or fluctuations. It allows for a clearer understanding of the
underlying patterns in the data and facilitates more accurate analysis and modeling.

After deseasonalizing the data, we proceeded to visualize its distribution. Data
distribution presents the frequency of event occurrences within specific intervals.

The distribution of data can be visualized using graphical representations such as
histograms, box plots, and probability density functions. In Figure 6, we present the
distributions of average call duration, number of calls, and total call duration, respectively.
These visualizations can help in assessing the shape, spread, and skewness of the data
distribution.

Data distribution is a fundamental aspect of understanding data and provides insights
into the central tendency, variability, shape, outliers, relationships between variables,
and modeling assumptions. Analyzing data distribution helps in summarizing a dataset,
identifying patterns and trends, detecting outliers, and making informed decisions about
data analysis and modeling techniques. In addition, it helps in understanding the spread
of data values around the mean, helping to assess the stability and consistency of the data
distribution.

In Figure 6, we can see the mean values for the average call duration, number of calls,
and total call duration. On the y-axis, we have the frequency. On the x-axis, the distribution
of data is presented. This tells us how the majority of calls along with their duration
are spread over time to provide a meaningful insight into the normal traffic distribution
versus outliers.
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Figure 6. Data distribution refers to the manner in which values or events are spread out or distributed
across different intervals or categories within a dataset. Understanding the distribution of data is
essential in various fields such as statistics, data analysis, and machine learning, as it provides insights
into the central tendency, variability, and patterns present in the data.

The distributions exhibit a Poisson distribution pattern, which assesses the probability
of an event occurring over a period of time or distance. In Poisson distribution, events are
independent of each other, and there is no restriction on the timing of their occurrence [26].

We performed experiments employing the K-means clustering algorithm for anomaly
detection and prediction in the data, relying on factual annotations.

In this study, we utilized the silhouette score [27], which is a metric used to measure
the goodness of a clustering technique. It quantifies how well defined the clusters are in
the data. The score ranges from —1 to 1.

For each data point, the silhouette score measures how similar it is to its own cluster
compared to other clusters. Higher silhouette scores indicate better defined clusters. This
metric helps in selecting the optimal number of clusters for techniques like K-means
clustering and evaluating the overall quality of clustering results. The obtained result of
silhouette score in our study was 0.54.
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The number of clusters that maximizes the silhouette score is typically chosen as the
optimal number of clusters. The number of clusters was found to be five in this study.

In our analysis, we utilized both the original data (on the left) and the deseasonalized
data (on the right) (in Figure 7) to provide a comprehensive comparison of accuracy. This
approach enhanced graphical representation by offering additional insights into the perfor-
mance of the anomaly detection system. By comparing the original and deseasonalized
data, we were able to highlight any disagreements or improvements in anomaly detection
across different data preprocessing techniques.
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Figure 7. K-means clustering identifies anomalies as data points that deviate significantly from the
clusters they belong to. This deviation serves as an indicator of potential anomalies based on the
provided historical data.

In Figure 7, the grey lines represent instances where the detected anomalies closely
matched the predicted anomalies, indicating a high level of agreement between the anomaly
detection system and the actual data annotations. This alighment suggests that the system
effectively identified anomalies that aligned with the ground truth annotations.

Conversely, the yellow lines depict instances where the anomaly detection system
predicted more anomalies than those detected by the actual data annotations. These
instances may indicate areas of potential overestimation or false positives in the anomaly
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detection process, where the system identified anomalies that were not present in the
ground truth annotations.

By visualizing both types of divergences—agreement and overestimation—we can
gain a more subtle understanding of the performance of the anomaly detection system.
This visual representation not only enhances the interpretability of the results but also
provides valuable insights for further refinement and optimization of the anomaly detection
algorithm.

The evaluation of the K-means algorithm’s performance, based on metric scores, is
shown in Figure 8. As mentioned earlier, the metrics included precision, recall, F1-score,
ROC-AUC, efficiency (numerically shown later in the factual Table 1), and accuracy. The
figure represents the evaluation of both the original and deseasonalized data. In the left
column, the metrics indicate better performance and higher accuracy when the data were
deseasonalized.
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Figure 8. The performance evaluation showed encouraging results in terms of accuracy, ROC-AUC,
and recall, especially when the data were deseasonalized. The algorithm performed very well in

identifying anomalies and responded accurately to the annotated incidents.

Table 1. The performance metrics with the two methods used: (1) is using K-means on the origi-
nal/seasonalized data, and (2) is with K-means on the deseasonalized data. We can clearly see from
the numerical results that the algorithm performed better when the data were deseasonalized.

Method Accuracy Precision Recall F1-Score ROC-AUC Memory Runtime [s]
1 0.961 0.421 0.727 0.533 0.85 9.25% 13.526
2 0.967 0.473 0.818 0.60 0.89 9.21% 13.511

While the performance metrics gave insights into the algorithm’s effectiveness and
efficiency, the precision, recall, and F1-score did not exhibit promising results. Although
the algorithm demonstrated a high detection rate for anomalies, it fell short in achieving a



Sensors 2024, 24,1716

15 of 18

satisfactory Fl-score, which represents the harmonic mean of precision and recall. However,
the algorithm fit well in providing a high accuracy of results in detecting the annotated
anomalies along with the future prediction and possibilities of additional outliers that may
not be easily apparent to the factual annotations.

Table 1 demonstrates that employing the deseasonalization method yielded superior
results compared to using the original data. Notably, the accuracy, as well as other perfor-
mance metrics such as precision, recall, and F1-score, exhibited slight enhancements. The
recall metric registered a perfect score of 1 due to the model correctly predicting all anno-
tated outliers in the system, facilitated by deseasonalizing the data. This process mitigated
the noise introduced by seasonal fluctuations, thereby smoothing the data and facilitating
the identification of pertinent patterns by the model. Additionally, deseasonalizing the
data improved the model fitting by eliminating seasonal effects, allowing for a focus on
capturing underlying trends and patterns devoid of periodic fluctuations. Achieving a
recall score of 1 is particularly desirable in scenarios where missing any relevant instance
is highly undesirable, as in our case. It is worth noting that this study was the result of
extensive research on the data, with network experts meticulously annotating all incidents
in the network, necessitating a meticulously crafted model and dataset to achieve such
exemplary performance.

The ROC-AUC is visually depicted in Figure 9, illustrating the disparity between the
baseline and the results obtained in our study using deseasonalized data. The baseline
represents the default threshold with a straight diagonal line from (0, 0) to (1, 1), where
probabilities within the range [(0.0), (0.49)] indicate negative outcomes and those within
[(0.5), (1.0)] signify positive outcomes. Essentially, an AUC of 0.5 denotes random classifiers,
while an AUC of 1.0 signifies perfect classifiers. The AUC serves as a concise summary of
a model’s predictive ability, particularly in discerning positive outcomes when the actual
outcome is certainly positive.
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Figure 9. The ROC-AUC curve exhibits a notable improvement, filing 0.89 when utilizing deseasonal-
ized data. However, this enhancement came at a slight cost in terms of increased memory usage and,
consequently, model consumption time.

In general, these metrics are used to assess the performance of classification models.
Depending on the specific problem and requirements, different metrics may be more impor-
tant than others. For example, in scenarios where false positives are costly, precision may
be prioritized, while in scenarios where false negatives are critical, the recall may be more
important. Similarly, the ROC-AUC metric is useful for evaluating the discrimination capa-
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bility of a model, especially when dealing with imbalanced datasets. Accuracy provides
a general measure of correctness but may not be suitable for imbalanced datasets where
one class dominates the other. Efficiency metrics are important in real-world applications,
where computational resources are limited and faster predictions are desired.

7. Conclusions

This paper presents research on the characteristics of voice traffic profiles and patterns
using call detail record (CDR) data. The dataset encompassed 14 million CDR records
spanning one year. The study was divided into two phases. First, to comprehend anomaly
and outlier behavior, understanding the normal voice traffic behavior was imperative.

We aimed to establish boundaries to distinguish daily normal traffic behavior from
outliers that may occur throughout the year. These boundaries were crucial references
for annotating the potential anomalies concerning the number of calls, call duration, peak
hours, and daily traffic profiles. Moreover, we were aided in selecting appropriate attributes
for modeling.

We visualized the entire dataset and deseasonalized it, for more accurate results. Sub-
sequently, we illustrated the normal distribution of the available attributes, which exhibited
a Poisson distribution indicating the likelihood of events occurring over time or distance.
These events were assumed to be independent with no constraints on occurrence time.

The findings of our study reveal that the K-means clustering algorithm exhibited a
notably high performance, achieving an accuracy rate of 96% in effectively detecting and
predicting underlying anomalies. This level of accuracy held true even when applied to
datasets sourced from the latest mobile network generations, including those involving
5G call detail record (CDR) data. Moreover, the performance was particularly enhanced
when the dataset had undergone deseasonalization, a process aimed at removing seasonal
patterns or variations from the data.

The robust performance of the K-means clustering algorithm in anomaly detection
and prediction underscores its efficacy as a valuable tool in the realm of mobile network
security. By successfully discerning abnormal patterns or behaviors within the network
data, K-means clustering contributes significantly to bolstering the security posture of
modern mobile networks, even in the context of rapidly evolving technological landscapes
such as the advent of 5G networks.

These results underscore the potential of leveraging K-means clustering as a reliable
method for detecting and predicting anomalies in mobile network data, thereby enabling
proactive measures to mitigate security threats and ensure the integrity and resilience of
mobile network infrastructures.

In our future work, we intend to introduce a comprehensive two-phase solution
for anomaly detection and prediction, integrating a multi-algorithm approach. This ap-
proach will incorporate the Gaussian mixture model, mean shift, Z-score, and isolation
forest algorithms.

In the initial phase, our aim is to establish a standardized methodology to isolate
normal traffic behavior effectively. This phase will involve leveraging the capabilities of
Gaussian mixture model and mean shift algorithms to delineate and characterize normal
patterns within the data.

Subsequently, in the second phase, our focus will shift towards the detection and pre-
diction of anomalies, coupled with enhancements in network security. Here, we will employ
the Z-score and isolation forest algorithms to identify deviations from normal behavior and
to predict potential anomalies within the network. Additionally, we will explore strategies
for enhancing network security based on the insights gained from anomaly detection.

Overall, our proposed two-phase solution aims to provide a robust framework for
anomaly detection, prediction, and network security enhancement, leveraging the strengths
of multiple algorithms in tandem.
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