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Abstract: The effectiveness of the SAR object detection technique based on Convolutional Neural
Networks (CNNs) has been widely proven, and it is increasingly used in the recognition of ship
targets. Recently, efforts have been made to integrate transformer structures into SAR detectors
to achieve improved target localization. However, existing methods rarely design the transformer
itself as a detector, failing to fully leverage the long-range modeling advantages of self-attention.
Furthermore, there has been limited research into multi-class SAR target detection. To address
these limitations, this study proposes a SAR detector named CCDN-DETR, which builds upon the
framework of the detection transformer (DETR). To adapt to the multiscale characteristics of SAR
data, cross-scale encoders were introduced to facilitate comprehensive information modeling and
fusion across different scales. Simultaneously, we optimized the query selection scheme for the
input decoder layers, employing IOU loss to assist in initializing object queries more effectively.
Additionally, we introduced constrained contrastive denoising training at the decoder layers to
enhance the model’s convergence speed and improve the detection of different categories of SAR
targets. In the benchmark evaluation on a joint dataset composed of SSDD, HRSID, and SAR-
AIRcraft datasets, CCDN-DETR achieves a mean Average Precision (mAP) of 91.9%. Furthermore, it
demonstrates significant competitiveness with 83.7% mAP on the multi-class MSAR dataset compared
to CNN-based models.

Keywords: detection transformer; SAR; object detection; deep learning

1. Introduction

Synthetic aperture radar (SAR) is an active remote sensing technology that provides
high-resolution, all-weather and weather-independent ground imaging, achieved by attach-
ing a radar system to a mobile platform and utilizing the moving synthetic aperture method.
This technology is invaluable for Earth observation, aiding in the monitoring of surface
deformation, surveillance of geological hazards, and tracking changes in snow and ice
cover. The all-weather capability and high-resolution positioning of SAR are essential for
detecting significant surface changes. Beyond Earth observation, SAR is critical in military
reconnaissance, environmental monitoring, and numerous other fields. SAR images, which
are typically displayed in black and white, represent radar signal strength and offer a
contrast to color optical images. However, their strong reflections and indistinct edges
can make object detection challenging. Traditional methods, such as using Constant False
Alarm Rate (CFAR) to adapt detection thresholds based on background levels, may face
difficulties with complex SAR images due to their fixed settings [1].

In recent years, deep learning-based object detection methods have continuously made
progress, and researchers are increasingly exploring their applications in the SAR domain.
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SAR target detection algorithms based on CNNs can be divided into two-stage detectors
and single-stage detectors. Two-stage methods require feature extraction and classification
regression tasks to be performed on multiple candidate regions, with Faster R-CNN [2]
being a representative method. Single-stage detectors, on the other hand, do not generate
candidate regions but predict categories and bounding boxes directly in the image. Typical
methods include YOLO [3–5], RetinaNet [6], and SSD [7], among others. Researchers
have attempted to adapt and apply these methods to SAR target detection by making
specific improvements. These improvements mainly include using stronger backbone
networks [8,9], setting up multi-scale FPN layers [10,11], and designing loss functions more
suitable for SAR tasks [12,13]. Meanwhile, real-time SAR target detection schemes [14–16]
are also gradually developing, providing references for the practical application of SAR
detection and recognition. Moreover, the transformer [17] architecture has demonstrated
remarkable efficacy in optical image recognition by leveraging the global modeling ca-
pabilities of its self-attention mechanism. This success has prompted efforts to integrate
transformer structures into the SAR imaging domain. For instance, CRTransSar [18] adopts
the Swin Transformer [19] as the backbone network and introduces a cross-resolution
attention enhancement module to fuse multiscale features, achieving exceptionally high
detection accuracy. Sun et al. [20] enhanced the feature fusion layer of YOLO V5 [21] with
self-attention, establishing connections with global information, and thereby improving
the detection performance of small-scale SAR targets. Zha et al. [22] replaced the last
convolutional block of a backbone network with a transformer structure, enriching the
contextual semantic information and achieving successful benchmark results. Notably,
although certain approaches utilize a transformer structure to replace the CNN backbone,
this methodology is not end-to-end. The inference process of the model is still influenced by
nonmaximal inhibition, limiting the complete exploitation of the capacity of the transformer
for encoding and decoding global information. Additionally, as shown in Figure 1, SAR
targets of different categories exhibit differences in imaging characteristics, which pose
challenges for multi-class SAR object detection. To address these issues, our proposed
solution is to use the DETR framework for end-to-end multi-class SAR object detection.
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Figure 1. SAR imaging differences for objects of different categories. The red box shows the real
annotation information of the corresponding objects. SAR ship targets exhibit strong interference from
nearby coastal backgrounds, aircraft targets have discrete features and incomplete structures [23],
and oil tank targets are closely spaced, making them prone to omission or false detection. These
challenges underscore the complexities in multi-class SAR object detection. (a) Ship. (b) Aircraft.
(c) Tank. (d) Bridge.

The detection transformer [24] (DETR) redefines the object detection problem as a
sequence-to-sequence task consisting of three main components: a pretrained backbone
feature extraction network and encoders and decoders equipped with self-attention mecha-
nisms. The backbone network is used to extract features and transform them into vectors
that encode spatial information in the image through position coding. The encoder pro-
cesses feature vectors and position coding to extract deep-level features. In the decoder
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stage, the output of the encoder is decoded by N learnable queries, resulting in N feature
vectors that predict the class of the object and the location of the instance box. DETR’s
encoder and decoder of DETR typically include multiple corresponding coding and decod-
ing layers to improve the overall performance. Unlike CNN-based object detectors, DETR
eliminates the need to manually generate components such as ROI and post-processing
steps such as NMS. Instead, it directly predicts the location of the target in the image
through the transformer’s self-attention mechanism, enabling end-to-end inference. This
approach provides a new perspective on object detection in SAR imagery.

This study draws on the methodology of DINO-DETR, whose introduced denoising
mechanism significantly reduces the training difficulty of DETR models and markedly
improves the model’s performance in detecting small objects. Building on this approach,
we propose CCDN-DETR for performing end-to-end SAR object detection. Specifically,
we introduced a cross-scale coder to replace the original self-attention-based multilayer
coder. This novel coder extends the resolution scale by leveraging the inductive bias of
the convolution and the global modeling capability of the transformer. It aims to facilitate
intralayer information encoding and interlayer information fusion, thereby enhancing
localization capabilities in the presence of substantial differences in the target scale. To
address the limitations of SAR data, characterized by its finite nature and high signal-to-
noise ratio, and to enhance the effectiveness of multi-category SAR object detection, we
incorporated constrained contrastive denoising during the decoder training phase. This
involved leveraging both real data and noise data to improve the training process. Unlike
DION-DETR [25], we constrain the real data within a specific range to delineate a clear
boundary contour. Furthermore, we redefined the initialization scheme for instance queries
in the decoder layer. We introduced IoU loss to guide the model in selecting features with
high-precision predicted boxes and high classification scores. Additionally, we designed a
more potent decoder layer. To demonstrate the effectiveness of our approach, we conducted
experiments by consolidating the SSDD [26], HRSID [27], and SAR-AIRcraft datasets [28]
into a unified dataset. This amalgamated dataset comprises two target categories (ships
and aircraft) and 35,772 image samples. Furthermore, we report the performance of the
proposed method on a multi-class MSAR dataset [18].

The contributions of this study can be succinctly summarized as follows:

(1). We propose the adoption of a cross-scale coder instead of the original multilayer trans-
former coder. This innovative approach expands the information scale, facilitating
profound information modeling and fusion for the detection of SAR targets with
significant scale differences.

(2). The selection scheme for input DETR decoder queries is improved to guide the model
to select features with high classification and IoU scores. Additionally, we designed a
more potent decoder to further optimize the recognition efficiency.

(3). To address the finite nature of SAR data and their high signal-to-noise ratio, we
introduced constrained contrast denoising in the training phase. Real and noise
labels were integrated into the decoder layer for contrast training. The real labels
were confined within a controlled range, aiding the network to concentrate on clear
boundary contours.

(4). We present an end-to-end SAR object-detection solution called CCDN-DETR. This
novel multiclass detection transformer is specifically tailored to the SAR domain. The
effectiveness of DETR for SAR object detection was demonstrated through experi-
ments conducted on two extensive multi-category datasets.

2. Related Studies
2.1. SAR Object Detection Based on CNN

Advances in synthetic aperture radar (SAR) object detection often build upon the
developments in optical object detection technology. Current CNN-based methods focus on
innovative model structures, and on the basis of popular detectors such as Faster R-CNN [2],
YOLO [3–5], SSD [7], and RetinaNet [6], they achieve information fusion through the design
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of new network architectures to fully leverage the inductive bias capabilities of convolutions.
Representative methods include the integration of attention mechanisms (SE [29]) into the
feature extraction part of the backbone network by Hou et al. [18], providing additional
attention to the detection regions; L-YOLO [30] achieves a lightweight, efficient network
structure by simplifying convolution operations and proposes a k-means algorithm for
clustering anchor boxes; Miao T et al. [8] improved model accuracy by adjusting the
backbone network and applying channel and spatial attention. Additionally, integrating
SAR-based prior knowledge [31,32] with deep learning helps to provide more stable
detection results. Moreover, some specifically optimized loss functions [12,13] have also
gained attention and have been demonstrated to perform well in SAR object detection
tasks. Despite the good detection results achieved by existing CNN methods, they have
overlooked the advantages of self-attention in modeling long-distance information. Our
proposal is to treat the transformer itself as a detector, capturing global dependencies to
achieve better detection results.

2.2. Detection Transformer (DETR)

DETR [14], introduced in 2020, is an innovative end-to-end object detection framework
based on the transformer architecture. A typical DETR structure consists of three parts: the
backbone network, the encoder, and the decoder. The backbone network and the encoder
are used for feature extraction, while the decoder predicts the categories and bounding
boxes of the objects. DETR employs a set prediction mechanism, using the Hungarian
algorithm to match the predicted set of objects with the real set of labels, ensuring that
each predicted object is paired with a unique real object, rather than generating a large
number of candidate boxes for screening. Unlike traditional CNN-based object detection
methods, DETR does not require additional post-processing steps such as ROI pooling
and NMS. This marks a paradigm shift in object detection from a multi-step process to
an end-to-end solution. DETR simplifies the process of object detection and has achieved
significant results in optical object detection [33–35]. Additionally, researchers have also
explored the application of DETR in SAR object detection. Notable works include OEGR-
DETR [13], which proposes an OEM module and GRC loss for enhancing the localization
of rotated objects; Chao Ma [34] et al. propose cylinder IOU and incident angle priors for
end-to-end 3D SAR object detection; TSDet [35] uses an enhanced attention module for
precise identification of SAR ship targets. These works validate the effectiveness of DETR
for SAR object detection, and our method will further explore the performance of DETR in
multi-class SAR object detection.

2.3. Multiclass SAR Datasets

An abundant dataset for training is a crucial prerequisite for advancing computer
vision technology, and this holds true in the domain of SAR object detection. The release of
the first publicly available SAR object detection dataset, SSDD [26], in 2017 garnered signifi-
cant attention from researchers and set a benchmark for SAR object detection. Subsequently,
more and more high-quality SAR datasets became available to the public. Noteworthy
datasets include OpenSARship [36], a SAR ship detection dataset comprising 11,346 slices,
and the HRSID [27] dataset, which consists of 5604 high-resolution ship profile slices. Ad-
ditionally, datasets with subdivided instance categories have emerged, such as SRSDD [37],
which features six categories with 2884 hull instances. The recent MSAR [18] dataset con-
sists of 28,449 detection slices covering four target categories: aircraft, tanks, ships and
bridges. This dataset provides a reference for SAR multi-target detection efforts. OEGR-
DETR [13] proposed a SAR vehicle detection dataset, which provides researchers with new
detection categories. Notably, existing studies on SAR object detection primarily focus
on ships, potentially overlooking the significance of multi-category SAR object detection.
Unlike previous research proposals for single-category detection on a single dataset, we
amalgamated data from various open-source datasets to construct a large SAR object detec-
tion dataset for the experiments. The joint dataset encompassed two categories: ships and
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aircraft. Furthermore, we conduct experiments on a multi-class MSAR dataset to further
validate the effectiveness of the proposed method.

3. Algorithm Framework
3.1. Overall Framework

The structure of the CCDN-DETR algorithm is depicted in Figure 2, with the shaded
areas representing our proposed improvements. Our method comprises three essential
components: the main feature extraction network, the encoder, and the decoder. To
maximize the performance of the proposed method, we employed HGNetV2 [38] as the
backbone feature extraction network, utilizing the outputs of the last four stages (P3, P4, P5,
and P6) as inputs for the cross-scale encoder. Here, P6 represents the downsampled features
from the fourth stage of the backbone network. Unlike a traditional DETR encoder, a cross-
scale encoder executes a single multi-scale information encoding operation. Subsequently,
the denoising decoder selects the top N values with the maximum response from the
encoder output vector as the initial input for iterative query optimization. Throughout this
process, constrained contrastive denoising was employed for auxiliary training to aid the
model in identifying small-scale features. Notably, the output associated with the denoising
component in the decoder does not participate in the predictive inference of the model.
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3.2. Cross-Scale Encoder Design

The experimental findings from Efficient-DETR [39] reveal that increasing the number
of coding layers yields a limited improvement in model accuracy but incurs a substantial
computational cost. The feature extraction and information fusion process of the DETR
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encoder aligns with that of a multiscale pyramid (FPN). Building on this insight, RT-
DETR [40] proposed a single-layer hybrid encoder to expedite model inference, providing
inspiration for our approach.

As illustrated in Figure 2, the proposed cross-scale encoder receives feature informa-
tion from the four levels of the backbone network. In contrast to the classical FPN [41]
structure, the input features of the cross-scale encoder originate from a deeper layer of the
backbone network, specifically, the outputs of the second, third, and fourth stages, along
with the downsampled information from the fourth stage. This strategic choice contributes
to more stable predictions. The cross-scale encoder executes attention and convolution
operations separately for deep and shallow semantic features of the input. Utilizing multi-
head self-attention with location-coded information on deeper high-level features assists
the model in capturing long-range information dependencies between instances, enhancing
the accuracy of the localization information output. The lower-left portion of Figure 2
shows our Fusion and RepBlock modules designed for efficient feature fusion. For shallow
features, additional convolutional blocks continue the feature extraction process. The
upsampling layer sequentially fuses the semantic information from the deep layers to the
shallow layers, and the layers that have not performed feature fusion are used for the
convolution operation using a RepBlock. The fusion of the downsampling layer is similar,
and an additional convolution operation is performed at the P3 layer. The cross-scale coder
delivers stable and reliable instance features to the decoder layer. Figure 3 shows a heat
map of the region of interest of the cross-scale coder, demonstrating its effective focus on
objects at different scales.
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Figure 3. Visualization of the encoder’s area of interest. The upper half of the figure is the original
SAR image, and the lower half shows the region of interest of the encoder, the deeper the red region
the stronger the model’s attention to the location. Visualization results show that our proposed
cross-scale encoder can do a good job of localizing the initial screening of instance targets, helping
the decoder to better predict the position of each object.

3.3. Query Selection Mechanism Optimization

In the original DETR framework, object queries are initialized as learnable embedding
vectors with a value of zero and are iteratively optimized by the decoder. However, because
there is no direct correlation between the image features obtained by the encoder and the
value of the object query, this setup leads to redundant training time, and the decoder is
insufficient to find the optimal solution to the query. In Deformable DETR [42], the features
corresponding to the K highest classification scores from the encoder output serve as the
initialization reference points for the decoder. Anchor DETR [43] introduced the concept
of anchors from CNN detectors, providing explicit physical meaning to instance queries
and directing the attention of object queries around the anchor points to enhance perfor-
mance. DINO DETR [25] proposed a hybrid query approach that initializes the location
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query using only the top K features and maintains the initialization independence of the
content query, thereby filtering out irrelevant information. However, the straightforward
strategy of selecting features based on high classification scores for query initialization
has limitations. A high classification score for a given object does not guarantee accurate
detection, and instances in which high classification scores coexist with low IoU values may
exist. To address this concern, we imposed constraints on the queries of the decoder during
the model training phase. Specifically, integrating IoU scores into the classification loss
optimization process guides the model to prioritize features with both high classification
and IoU scores. The classification loss criterion function is defined as in Equation (1):

Loss = −∑i(α · (1 − Si)
γ · IoU(Pi, Gi) · CE(Si, yi)) (1)

In this formula, Si represents the classification confidence of the predicted bound-
ing box Pi, yi is the ground truth label, and CE(Si, yi) is the cross-entropy loss function.
IoU(Pi, Gi) is the Intersection over Union (IoU) value between the predicted box Pi and the
ground truth box Gi. α and γ are hyperparameters set to 0.25 and 2, respectively, used to
adjust the focus of the loss function. Overall, Formula (1) calculates the loss for all predicted
bounding boxes in a batch, taking into account both the accuracy of classification and the
IoU values between the predicted boxes and the ground truth boxes. The formula reduces
the loss contribution of easily classified samples through the focusing factor (1 − Si)

γ and
increases the loss weight for accurately localized predicted boxes through the IoU value,
thereby optimizing the model’s performance in object detection tasks.

3.4. Denoising Decoder

SAR images encounter challenges such as a high signal-to-noise ratio and blurred
object boundary contours, which complicate SAR object detection. To enhance object
localization and address these challenges, we introduced a denoising decoder aimed at
expediting model training and improving bounding box regression accuracy. The denoising
decoder consists of multiple decoding layers and introduces constrained contrast denoising
to assist in training.

3.4.1. Constrained Contrastive Denoising Training

DN-DETR considers the randomness of Hungarian matching as an important factor
affecting the convergence speed of DETR. The variability in ground-truth assignments by
Hungarian matching during different training epochs may introduce information pertur-
bations, hindering the convergence speed. To mitigate this issue, DN-DETR introduces
denoising operations during the training process. This involves adding noise to the ground-
truth values, with the expectation that the decoder can denoise during the output process
and accurately query the true values of the input. It is noteworthy that the denoising
training of DN-DETR [35] lacks the ability to discern whether objects exist around anchor
points. To address this limitation, DION-DETR [25] introduced contrastive denoising
training. This approach employs hyperparameters to control the amount of noise variation,
constraining both the true values and noise signals within a defined range. Each set of
contrastive denoising includes both positive and negative samples, effectively suppressing
redundant queries and facilitating the selection of accurate anchor points for bounding
box regression. However, in DINO-DETR, there is a potential confusion between positive
and negative samples. This is due to the fact that the range of positive sample bounding
boxes is restricted to between 0 and λ. As a result, very small positive samples that do not
correspond to the real values at specific anchor points may be activated during training,
causing interference.

Our method involves simultaneously constraining the maximum and minimum vari-
ations of both positive and negative samples. The noisy positive and negative samples
used for training are derived from variations of the real samples to a certain extent. For
the width and height of positive sample bounding boxes, we aim for variations within 50%
of the width and height of the real samples. For the width and height of negative sample
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bounding boxes, we want the variation to be between 50% and 100% of the width and
height of the real samples, while ensuring that the smallest bounding box of the negative
samples is not less than 10% of the real sample size. We want the noisy positive and
negative samples to have no significant variation from the real samples, which will help
the network better restore the original coordinates of the instance boxes [15]. For positive
samples, the decoder learns the corresponding real sample boxes, while negative samples
represent “non-existent objects”.

The training process of contrastive denoising with constraints is divided into several
groups: For each group of inputs, n real values are noisified into n positive samples and
n negative samples, and then the DINO-DETR training strategy is used. For the positive
samples of real values during training, IoU loss and focal loss are used for refinement,
while negative samples are categorized as background and optimized using focal loss.
The definition of positive and negative samples during the constrained contrast denoising
training process is shown in Figure 4.
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Figure 4. In this figure, the rectangles are defined as a to e based on their size, from largest to
smallest. For ease of understanding, let us assume that the true bounding box of an object is a square,
represented by rectangle c in this figure. The range of variation for the positive sample bounding
boxes is then constrained between rectangles b and d, while the range for negative sample boxes
extends from rectangle a to b and from rectangle d to e. That is, the white area represents the range of
variation for positive sample boxes, the red area is the range for negative samples, and the gray area
is not selected. We further restrict the range of negative samples to encourage the network to learn
more accurate positional information.

3.4.2. Decoder Layers

As illustrated in Figure 5, the decoder of CCDN-DETR comprised six layers. Each
layer consists of multihead self-attention, deformable attention, and regular FeedForward
Network (FFN) modules. In the last layer of the decoder, an AcrossAttention [44] module
is incorporated to enhance the query selection. The input to the multihead self-attention is
derived from the query selected via top-K and localized to the region of interest through
position encoding. Deformable attention continues to perform object query operations
using key information from the output features of the encoder guiding the query. During
the training period, the model underwent constrained contrast denoising operations. Both
the positive and negative samples were fed into successive attention modules along with
a learnable query. The decoder endeavors to adjust positive samples to their true values
while recognizing negative samples as lacking object-related information. Two variants of
multihead self-attention were employed in the decoder. Q, K, and V in the AcrossAttention
module originate from the query itself, prompting the model to focus on more precise
regions. Simultaneously, the deformable attention effectively handles the multi-scale
features introduced by the convolutional structure. The attention module concentrates
on a subset of sampled points around the reference point and assigns a fixed number of
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key-assisted queries to each query. This expedites model convergence and mitigates the
computational costs associated with a high feature resolution. Deformable attention is
expressed as follows:

Amlqk = softmax
(
AttentionWeights

(
zq
))

(2)
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Figure 5. Proposed decoder architecture. The proposed decoder structure, as depicted in Figure 6,
comprises attention components, including multihead self-attention and deformable attention. Po-
sition encoding is employed to encourage the model to focus on selected spatial positions, and the
Memory Flatten operation denotes the flattening of vectors from the encoder output. In CCDN-DETR,
a total of M (M = 6) decoding layers have been configured.
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bridges is notably high. (a) Joint dataset. (b) MSAR.
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Equation (2) represents the attention weight calculation, where Amlqk represents the
attention weight of the mth head, lth level, query position q, and sampling position k, and
AttentionWeights represents the application of the attention weight calculation to the query
tensor zq.

ϕl

(
p̂q

)
+ ∆ pmlqk = SamplingLocations

(
p̂q, SamplingOffsets

(
zq
))

(3)

Equation (3) represents the sampling location calculation, ϕl

(
p̂q

)
+ ∆ pmlqk represents

the sampling location at the lth level, normalized reference point p and sampling offset k,
while SamplingLocations denotes the calculation of the sampling location based on the
normalized reference point and sampling offset.

W′
m = ValueWeights

(
zq
)

(4)

In Formula (4), w represents the weight of the mth head.

xsampled = GridSampleValues
(

xl, ϕl

(
p̂q

)
+ ∆pmlqk

)
(5)

Equation (5) represents grid sampling of the value tensor to obtain sampled values.

Deformable Attention = ∑M
m=1 Wm

[
∑L

l=1 ∑K
k=1 Amlqk · Wm′ xsampled

]
(6)

Deformable attention produces the final output by linearly combining values from
various levels, heads, and sampling positions using attention and value weights within a
multihead self-deformable attention mechanism.

4. Experiments and Results
4.1. Experimental Setup
4.1.1. Dataset

An increasing number of open-source SAR object detection datasets have been pro-
posed, which have significantly contributed to the progress in this field. However, the
existing SAR datasets suffer from the problems of single type and small data volume, which
are not conducive to the research work. Our scheme unites several available datasets,
assembles them into a large SAR object detection benchmark, and conducts experiments
in the hope that our approach can provide new ideas for subsequent work. The dataset
used as an experiment in this paper consists of SSDD, HRSID, and SAR-AIRcraft, and is
called the joint dataset, which consists of two types of objects (boat and aircraft), a total of
11,130 images, and 35,772 instance annotations. We set the ratio of the training, validation,
and test sets to 7:1:2. A brief description of the dataset is provided below.

SSDD: SSDD is a SAR ship detection dataset consisting of 1160 annotated images with
2358 ship instances. The images were derived from RadarSat-2, TerraSAR-X, and Sentinel-1
satellites, with each slice image having a size of 500 × 500 pixels.

HRSID: HRSID was derived from Sentinel-1B, TerraSAR-X, and TanDEM-X satellite
imagery. Originally consisting of 136 panoramic SAR images, they were divided into
5604 image slices of 800 × 800 pixels each. This dataset contained 16951 MS COCO-type
ship annotations.

SAR-AIRcraft: SAR-AIRcraft is a SAR aircraft object detection dataset with a single
polarized cluster beam imaging mode. There were 4368 images and 16,463 aircraft annota-
tions, including common carriers such as the A320 and Boeing737, with an image resolution
of up to 1500 × 1500.

In addition, we report the performance of CCDN-DETR on the MSAR dataset, which
is a challenging large-scale benchmark. The MSAR dataset uses data from both the Haisi-1
and Gaofen-3 satellites, covering a variety of complex scenarios, such as airports, harbors,
coasts, islands, and urban areas, and includes four categories, namely aircraft, tanks,
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bridges, and ships, with 28,449 data slices and 60,396 labelled instances. We also set the
ratio of training, validation, and test data to 7:1:2.

4.1.2. Training Settings

The CCDN-DETR was trained on a single RTX3090 using CUDA 11.6, CUDNN 8.5,
and PyTorch 1.13.1. The training batch size was set to 8, with a total of 72 training epochs.
Optimization was performed using the Adam optimizer with an initial learning rate of
1 × 10−4. The backbone network had an initial learning rate of 1 × 10−5, with the learning
rate diminishing to 1/10 of the original rate at the 36th epoch. The input image size was
uniformly set to 640 × 640, and standard data augmentations were applied, including
random rotation (−45◦ to 45◦), random scale scaling (0.75 to 1.25), random cropping,
and color distortion, following the practices outlined in PP-YOLOE [45]. The initialization
involved 100 vector features from the encoder outputs, and the decoder was configured with
six layers. The experimental setup described above also applies to ablation experiments
unless otherwise stated.

4.2. Evaluation Metrics

To fully demonstrate the performance of the proposed CCDN-DETR, we used pre-
cision, recall, mAP50, and mAP50-95 as evaluation metrics. Precision is the ratio of the
number of samples correctly identified as positive to the total number of samples identified
as positive by the model, and recall is the ratio of the number of samples correctly identified
as positive to the total number of samples in the positive class. The formulas for precision
and recall are as follows:

Precision =
True Positives

True Positives + False Positives
(7)

Recall =
True Positives

True Positives + False Negatives
(8)

where True Positives represent the number of samples correctly identified as positive classes,
False Positives represent the number of samples incorrectly identified as positive classes
(misclassifying the negative class samples as positive), and False Negatives represent the
number of samples incorrectly identified as positive classes.

In object detection, the mean Average Precision (mAP) was used to evaluate the
performance of the detection model. The calculation of mAP involves precision–recall
curves (PR curves) and the computation of the area under these curves (AUC). mAP50
specifically refers to the calculation of the mAP using an IoU threshold of 0.5. The steps for
computing mAP50 are as follows:

mAP50 =
1
N ∑N

i=1

(
∑n(Rn − Rn−1)× Pn

)
(9)

where N is the total number of target categories, and Rn and Pn denote the points on the
interpolated precision–recall curve for recall and precision, respectively.

4.3. Experiment Results

To demonstrate the effectiveness of our methodology, we provide a performance
comparison between our approach and benchmark methods for both the test and validation
sets. The benchmark models include YOLO V5 [21], YOLO V8, RetinaNet [6], RTMDet [46],
and Faster R-CNN [2] and transformer-based models such as DINO-DETR [25], Deformable
DETR [30], RT-DETR [36], and CO-DETR [47].

4.3.1. Comparison on the Joint Dataset

Tables 1 and 2 present the comparative experimental results for the joint dataset’s
validation and test sets, respectively. For the validation set, CCDN-DETR exhibits superior
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performance when compared to existing DETR models. Our method achieves an 11.4-point
increase in the mAP50-95 metric compared to Deformable DETR, with only a 0.1 M increase
in the number of parameters. Versus DINO-DETR, it gains a higher recall rate (an increase
of 4.8) and a 5.3-point improvement in the mAP-95 metric, further demonstrating the
effectiveness of our proposed constrained contrastive denoising. Additionally, CCDN-
DETR achieves performance that is on par with advanced CNN models. With 2.2 M
fewer parameters than YOLO V8, it manages to improve mAP50-95 by 1.2 points, further
illustrating the advantages of self-attention in long-distance modeling.

Table 1. Comparison on the joint dataset val set.

Method Inference Backbone Parameters (M) Precision Recall mAP50 mAP50-95

YOLO V5 [21] ultralytics CspDarkNet 25.1 0.849 0.827 0.893 0.606
YOLO V8 ultralytics CspDarkNet 25.8 0.873 0.849 0.918 0.623

RetinaNet [6] ICCV2017 ResNet-FPN 19.8 0.786 0.757 0.879 0.418
RTMDet [46] MMDetection CspNext 24.7 0.871 0.850 0.926 0.606

Faster R-CNN [2] NeurIPS2015 ResNet-FPN 28.3 0.744 0.739 0.879 0.435
Deformable DETR [42] ICLR2021 ResNet [48] 23.5 0.835 0.809 0.867 0.521

DINO-DETR [25] ICLR2023 ResNet [48] 24.6 0.837 0.808 0.913 0.582
RT-DETR [40] PaddlePaddle HGNetV2 31.9 0.864 0.848 0.911 0.619
CO-DETR [47] ICCV2023 ResNet 30.1 0.870 0.837 0.905 0.622

CCDN-DETR (ours) / HGNetV2 23.6 0.891 0.856 0.919 0.635

Table 2. Comparison on the joint dataset test set.

Method Inference Backbone Parameters (M) Precision Recall mAP50 mAP50-95

YOLO V5 [21] ultralytics CspDarkNet 25.1 0.834 0.812 0.881 0.612
YOLO V8 ultralytics CspDarkNet 25.8 0.870 0.852 0.925 0.629

RetinaNet [6] ICCV2017 ResNet-FPN 19.8 0.776 0.752 0.878 0.414
RTMDet [46] MMDetection CspNext 24.7 0.871 0.849 0.925 0.605

Faster R-CNN [2] NeurIPS2015 ResNet-FPN 28.3 0.743 0.738 0.878 0.431
Deformable DETR [42] ICLR2021 ResNet [48] 23.5 0.830 0.808 0.865 0.517

DINO-DETR [25] ICLR2023 ResNet [48] 24.6 0.836 0.806 0.912 0.580
RT-DETR [40] PaddlePaddle HGNetV2 31.9 0.856 0.825 0.904 0.611
CO-DETR [47] ICCV2023 ResNet 30.1 0.846 0.828 0.900 0.608

CCDN-DETR (ours) / HGNetV2 23.6 0.887 0.874 0.922 0.631

In the comparative experimental results on the validation set with more data, CCDN-
DETR still maintains excellent performance. With 8.3 M fewer parameters than RT-DETR, it
improves mAP50-95 by 2.0 points; compared to CO-DETR, it increases the recall rate by 4.6
and mAP by 2.2, demonstrating the stability of the framework we proposed. Compared to
the CNN-based model RTMDet, mAP50-95 improves by 2.6, with only a 0.3-point decrease
in mAP50, indicating that CCDN-DETR performs better in scenarios with higher precision
(IoU threshold) requirements. Figure 6a shows the confusion matrix of CCDN-DETR on
the joint dataset validation set, from which it can be seen that our method has a good effect
on recognizing ships, especially airplanes.

4.3.2. Comparison on the MSAR Dataset

The MSAR dataset consists of four categories and has a larger amount of data with
denser samples, which presents a significant challenge for object detection tasks. Tables 3
and 4, respectively, present the comparative experimental results on the MSAR dataset’s
validation and test sets. On the validation set, CCDN-DETR still maintains a high level of
detection performance. With 6.7 M fewer parameters than CO-DETR, it increases mAP50
by 2.6, indicating that our method performs better in dense scenes; similarly, compared
to RT-DETR, CCDN-DETR has 8.5 M fewer parameters and increases mAP50-95 by 2.2,



Sensors 2024, 24, 1793 13 of 25

demonstrating that our proposed constrained contrastive denoising module performs well
in detecting small SAR objects. Compared to the state-of-the-art CNN model YOLO v8,
CCDN-DETR has 2.2 M fewer parameters and increases mAP50-95 by 0.3, with only a
0.6-point decrease in mAP50, suggesting that our method can more accurately localize
object coordinates. Figure 6b shows the confusion matrix of our method on the validation
set, indicating that CCDN-DETR has good classification performance in aircraft and bridges,
especially in the ship category, and only slightly worse in dense tank scenes.

Table 3. Comparison on MSAR dataset val set.

Method Inference Backbone Parameters (M) Precision Recall mAP50 mAP50-95

YOLO V5 [21] ultralytics CspDarkNet 25.1 0.835 0.783 0.839 0.571
YOLO V8 ultralytics CspDarkNet 25.8 0.837 0.788 0.843 0.579

RetinaNet [6] ICCV2017 ResNet-FPN 19.8 0.665 0.592 0.570 0.345
RTMDet [46] MMDetection CspNext 24.7 0.835 0.780 0.835 0.564

Faster R-CNN [2] NeurIPS2015 ResNet-FPN 28.3 0.741 0.656 0.708 0.435
Deformable DETR [42] ICLR2021 ResNet [48] 23.5 0.756 0.643 0.682 0.437

DINO-DETR [25] ICLR2023 ResNet [48] 24.6 0.835 0.712 0.808 0.493
RT-DETR [40] PaddlePaddle HGNetV2 31.9 0.838 0.772 0.832 0.559
CO-DETR [47] ICCV2023 ResNet 30.1 0.831 0.745 0.811 0.527

CCDN-DETR (ours) / HGNetV2 23.6 0.834 0.788 0.837 0.581

Table 4. Comparison on MSAR dataset test set.

Method Inference Backbone Parameters (M) Precision Recall mAP50 mAP50-95

YOLO V5 [21] ultralytics CspDarkNet 25.1 0.819 0.772 0.829 0.573
YOLO V8 ultralytics CspDarkNet 25.8 0.825 0.784 0.841 0.577

RetinaNet [6] ICCV2017 ResNet-FPN 19.8 0.648 0.602 0.563 0.342
RTMDet [46] MMDetection CspNext 24.7 0.825 0.789 0.832 0.568

Faster R-CNN [2] NeurIPS2015 ResNet-FPN 28.3 0.742 0.665 0.702 0.427
Deformable DETR [42] ICLR2021 ResNet [48] 23.5 0.760 0.655 0.679 0.441

DINO-DETR [25] ICLR2023 ResNet [48] 24.6 0.830 0.718 0.805 0.511
RT-DETR [40] PaddlePaddle HGNetV2 31.9 0.837 0.769 0.832 0.559
CO-DETR [47] ICCV2023 ResNet 30.1 0.820 0.757 0.804 0.529

CCDN-DETR (ours) / HGNetV2 23.6 0.845 0.775 0.829 0.584

In the test set with more data and more instances, CCDN-DETR still maintains good
performance. Its parameter count is 1 M less than DINO-DETR, and the mAP50-95 metric
increases by 7.3, indicating that our method has higher accuracy under stringent testing con-
ditions and demonstrating the significant gains of the cross-scale encoder and constrained
contrastive denoising in complex scenarios. Compared to the latest CNN model RTMDet,
although our method lags behind by 1.4 in recall rate, it improves by 1.6 in the mAP50-95
metric, which requires higher precision, showcasing the advantage of the transformer in
long-distance modeling. Additionally, some methods like Deformable DETR, RetinaNet,
and Faster R-CNN perform slightly worse, and even Deformable DETR lags behind Faster
R-CNN by 2.3 in mAP50. This may be due to the lack of relevant denoising training in
Deformable DETR, leading to poorer performance in the more challenging dataset.

4.4. Ablation Experiments

In this section, we conducted a detailed analysis of the modules and configurations
influencing the performance of CCDN-DETR. Specifically, we explored the impact of the
denoising training module, query selection method in the input decoder, and the number of
layers in the decoder. Additionally, we report a comparison between the performance gains
of cross-scale encoders and multi-layer encoders, as well as a comparison between CCDN-
DETR and classical object detection algorithms in terms of inference speed. Comparative
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experiments were conducted using the validation set of the joint dataset, maintaining
consistency with the experimental settings outlined in Section 4.1.2.

4.4.1. Denoising Training Module Ablation Experiments

This section discusses the impact of denoising training modules. Initially, we estab-
lished a baseline by removing the denoising module from CCDN-DETR. Subsequently, we
introduced and evaluated three denoising modules: the DN denoising module, DINO de-
noising module (CDN), and our proposed constrained contrast denoising module. Table 5
illustrates the effect of the denoising modules on the model performance. The accuracy of
the baseline without denoising training was reduced compared to CCDN-DETR, with a
4.8-point reduction in the mAP50 metric and a 5.3-point reduction in the more stringent
mAP50-95 metric. This shows that denoising training can significantly improve model
performance. Additionally, CCDN-DETR exhibits a slight performance advantage over
DINO, which is attributed to the more precise restrictions on noise addition in our approach,
facilitating a more efficient localization of complex targets. By incorporating contrastive
denoising during training, CCDN-DETR constrains noise to an appropriate range, allowing
the decoder to intuitively capture potential true samples and enhance the focus of the
model on small objects.

Table 5. Effect of denoising training module on model performance.

Method Precision Recall mAP50 mAP50-95

BaseLine 0.839 0.818 0.871 0.582
BaseLine (+DN) 0.865 0.819 0.894 0.594

BaseLine (+CDN) 0.884 0.832 0.912 0.622
CCDN-DETR (ours) 0.891 0.856 0.919 0.635

4.4.2. Impact of Query Initialization and Quantity

The choice of initialization method and quantity of queries significantly influence
DETR’s performance of DETR. We compared the fundamental approach of selecting the
top K-class maximum values for initialization with the CCDN-DETR method, which
incorporates an IOU score constraint during initialization. Additionally, we varied the
value of K, setting it to 100 or 300, to examine the effect of the number of queries on
model accuracy. The results, as presented in Table 6, demonstrate that the proposed query
initialization scheme achieves a greater improvement in accuracy. However, the use of
more queries did not significantly enhance the CCDN-DETR. This was attributed to the
limited occurrence of multiple objects in the same image within the training data, rendering
100 queries sufficient to cover most of the SAR test scenarios. Figure 7 illustrates the
disparities between the initial position queries selected using the proposed method and
the basic query initialization approach. The proposal to use IoU thresholds as weights can
effectively guide the model to select features with both high classification scores and high
IoU scores, thereby enhancing the model’s localization capability.

Table 6. Impact of query’s selection scheme on model performance.

Query Selection Precision Recall mAP50 mAP50-95

Top-K (K = 100) 0.877 0.843 0.905 0.625

Top-K (K = 300) 0.874 0.845 0.903 0.626

IOU Top-K (K = 100) 0.891 0.856 0.919 0.635

IOU Top-K (K = 300) 0.894 0.851 0.922 0.638
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Figure 7. Differences in the initial position features selected by different query initialization ap-
proaches. The basic query initialization approach focuses only on features with high classification
scores and does not necessarily select features with high IOU scores well, which may cause some
interference to the subsequent decoder in finding the optimal solution to the query. Our approach
guides the model to select both coder features with high classification scores and high IOU scores,
which helps the model to further localize the object.

4.4.3. Decoder Layer Quantity Selection

In most DETR studies, the decoder is usually set to six layers, which is considered to
satisfy the requirement of model accuracy and ensure that the scale of the model is not too
large. In this section, we set CCDN-DETR to different numbers of decoder layers to observe
its effect on the results; the results are shown in Table 7. We find that for decoder layers up
to six, the model performance gradually increases with the number of decoders, and the
inference time consumption increases in parallel. A higher number of decoder layers has
extremely limited gain for the model, but instead brings huge inference time consumption as
well as larger memory overhead, which is inappropriate for the application level. Therefore,
we chose six layers of decoders as the solution for the CCDN-DETR scheme.

Table 7. Impact of decoder layer quantity on model performance and inference speed.

Number of
Decoder
Layers

Precision Recall mAP50 mAP50-95 Parameters
(M)

Latency
(ms)

1 0.833 0.818 0.794 0.600 17.8 27.4
3 0.878 0.846 0.901 0.621 20.1 29.9
6 0.891 0.856 0.919 0.635 23.6 34.3

4.4.4. Encoder Selection

In this section, we delve into the performance gains achieved by varying encoder
configurations while keeping the rest of the model’s architecture constant. We focus
on reporting the impact of changes solely in the encoder configuration on the model’s
performance. We used traditional multi-layer encoders and our proposed cross-scale
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encoder as comparison benchmarks. For the traditional encoder, we selected 3-layer and
6-layer encoding setups for comparative analysis. Table 8 shows the influence of different
encoder configurations on model performance. It can be seen that our proposed cross-scale
encoder has a significant performance improvement over the classic multi-layer encoder,
achieving a 2.4-point increase in the mAP50-95 metric compared to the 6-layer encoder
and a 3.4-point increase compared to the 3-layer encoder. Additionally, even though the
multi-layer encoder significantly reduces the number of parameters (by 5.6 M), it results
in an additional 5.8 ms of inference time. We attribute this efficiency improvement to the
cross-scale encoder’s adoption of fewer self-attention modules, while the cross-scale feature
fusion promotes information interaction and enhances model performance. The cross-scale
fusion coding strategy employed in CCDN-DETR facilitates feature fusion across different
scales, striking a balance between the inductive bias of convolution and the long-range
modeling capability of self-attention.

Table 8. Impact of encoder on model performance.

Encoder Selection Precision Recall mAP50 mAP50-95 Parameters (M) Latency (ms)

Multi-layer encoder (3 layers) 0.849 0.816 0.899 0.601 15.5 32.2
Multi-layer encoder (6 layers) 0.875 0.840 0.907 0.611 17.9 40.1

Cross-scale encoder 0.891 0.856 0.919 0.635 23.6 34.3

4.4.5. Comparison of Inference Speed

In this section, we will conduct a comparative analysis of the inference speeds among
different models, including CCDN-DETR, Deformable DETR, DION-DETR, as well as
YOLO V8 and Faster-RCNN based on CNN models. We randomly selected 500 images
from the validation set of the joint dataset for speed testing and calculated the average.
The batch size of the inference phase is set to 1, and the measured time includes data
preprocessing and model inference time.

Table 9 illustrates the time consumed by different models for inference on a single
image. It can be observed that CCDN-DETR exhibits significant advantages in terms of
inference speed and accuracy compared to the DETR family of models. Compared to
Deformable DETR, CCDN-DETR achieves an 11.4-point improvement in mAP50-95 with
only a 2 ms increase in inference latency. Versus DION-DETR, it improves by 5.3 points in
mAP50-95 and reduces latency by 5.6 ms, thanks to the efficient structural design of the
proposed cross-scale encoder. Additionally, compared to CNN-based models, CCDN-DETR
does not have an advantage in terms of inference speed due to its complex structure and
the frequent memory access required by multihead self-attention operations. Although it
achieves a 20-point improvement in mAP50-95 compared to Faster R-CNN, the latency
nearly doubles. Compared to the state-of-the-art YOLO V8, CCDN-DETR’s inference
latency increases by 19.4 ms. For the entire DETR series of models, how to accelerate
inference is a question worth researching.

Table 9. Inference time test.

Method Precision Recall mAP50 mAP50-95 Parameters (M) Latency (ms)

Faster-RCNN 0.744 0.739 0.879 0.435 28.3 17.5
YOLO V8 0.873 0.849 0.918 0.623 25.8 14.9

Deformable DETR 0.835 0.809 0.867 0.521 23.5 32.4
DION-DETR 0.837 0.808 0.913 0.582 24.6 39.9
CCDN-DETR 0.891 0.856 0.919 0.635 23.6 34.3

4.5. Visualization

In this section, we present the visual results of CCDN-DETR for the detection of four
classes: ships, aircraft, bridges, and tanks. To demonstrate the effectiveness of our method,
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we provide visual comparisons with ground truth (GT) annotations, as well as detection
results from Faster R-CNN for reference.

Figures 8–11 shows the visualization results for a scenario involving ships, aircraft,
bridges, and tanks. The red box represents the real annotation box, the yellow box repre-
sents the prediction result of Faster R-CNN, and the green box represents the prediction
result of CCDN-DETR. It is evident that CCDN-DETR performs well in most scenarios. In
the ship detection scenario, CCDN-DETR exhibits higher precision in the predicted bound-
ing boxes, whereas the Faster R-CNN results show greater perturbations. The airplane
detection scenario is particularly complex, with smaller target areas and multiple instances
within a single image. The compared methods all exhibit some degree of incomplete
recognition. However, CCDN-DETR ensures that the detected boxes have higher accuracy
while identifying more objects. The bridge recognition scenario is relatively simple, with all
selected methods guaranteeing efficient identification. In the tank detection scenario, which
is slightly different due to a larger number of instances and individual targets, CCDN-
DETR demonstrates outstanding detection performance, while Faster R-CNN occasionally
misses targets.
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Overall, CCDN-DETR achieved a detection accuracy comparable to that of advanced
CNN detectors, owing to the effectiveness of our proposed approach.

5. Discussion

In fact, the idea of merging datasets adopted in this paper is not the first time it has
been implemented. There have been some works [49–51] that proposed merging multiple
SAR datasets for experiments and achieved good results. It is well known that deep
learning training requires a substantial amount of data. Using only a small amount of
data for experiments may lead to overfitting, where the model performs well only on the
small dataset but poorly in a new real-world scenario. Additionally, due to the lack of
convolutional inductive bias in transformers, their training requires more high-quality data
compared to CNN models, which is also one of the reasons for merging datasets. Using a
large amount of training data not only effectively addresses overfitting but also enhances
the model’s generalization ability, allowing it to perform better in completely new SAR
detection scenarios. However, it is important to note that not all SAR data are suitable for
merging in experiments. We need to consider the imaging conditions between different
datasets and the degree of resolution difference between images, as shown in Figure 12,
where (a) shows the aircraft model in the SAR-AIRcraft dataset, while (b) shows the aircraft
model in the MSAR dataset. There is a significant difference in imaging conditions and a
large disparity in image resolution (the resolution of SAR-AIRcraft images is 1500 × 1500,
while the MSAR images are only 256 × 256), making them unsuitable for merging datasets
for experimentation. It is hoped that some of our discussions can provide insights for
future work.
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6. Conclusions

This paper introduces CCDN-DETR, an end-to-end framework designed for synthetic
aperture radar (SAR) multi-class object detection. The method replaces the original multi-
layer transformer encoder with a cross-scale encoder and proposes an IoU loss for query
selection optimization. A more powerful decoder layer is designed, and the noise box gen-
eration scheme for constrained contrastive denoising is optimized, significantly improving
the performance of the DETR model in the field of SAR target detection. Experimental
results on two different datasets show that the performance of CCDN-DETR can rival pop-
ular CNN frameworks. This highlights the tremendous potential of the DETR framework
in the challenging field of SAR object detection.

Our experimental results indicate that the encoder structure of the DETR framework
can perform feature extraction using a hybrid of CNNs and transformers, and the intro-
duction of CNN’s inductive bias ability helps the model accurately locate SAR targets.
For the inherent crowded scene characteristics of SAR images, selecting queries entering
the decoder reasonably can further enhance model performance. The proposed scheme
incorporating IoU loss helps the decoder select queries with more precise localization and
performs optimization. Additionally, due to the small size and concentration of SAR targets,
introducing denoising training is crucial for improving DETR’s detection of SAR targets. It
is necessary to adopt constrained contrastive denoising to strengthen the model’s ability to
handle small objects.
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