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Abstract: Deep learning (DL) has been widely used to promote the development of intelligent fault
diagnosis, bringing significant performance improvement. However, most of the existing methods
cannot capture the temporal information and global features of mechanical equipment to collect
sufficient fault information, resulting in performance collapse. Meanwhile, due to the complex and
harsh operating environment, it is difficult to extract fault features stably and extensively using
single-source fault diagnosis methods. Therefore, a novel hierarchical vision transformer (NHVT)
and wavelet time–frequency architecture combined with a multi-source information fusion (MSIF)
strategy has been suggested in this paper to boost stable performance by extracting and integrating
rich features. The goal is to improve the end-to-end fault diagnosis performance of mechanical
components. First, multi-source signals are transformed into two-dimensional time and frequency
diagrams. Then, a novel hierarchical vision transformer is introduced to improve the nonlinear
representation of feature maps to enrich fault features. Next, multi-source information diagrams
are fused into the proposed NHVT to produce more comprehensive presentations. Finally, we
employed two different multi-source datasets to verify the superiority of the proposed NHVT. Then,
NHVT outperformed the state-of-the-art approach (SOTA) on the multi-source dataset of mechanical
components, and the experimental results show that it is able to extract useful features from multi-
source information.

Keywords: mechanical components; multi-source information fusion; DL; fault diagnosis; NHVT

1. Introduction

Mechanical components (i.e., bearings and gears) are increasingly important in many
heavy and oversized engineering fields (e.g., oil production, mining, and construction)
as a vital part of modern industrial society. Stable and efficient operation of mechanical
equipment is an essential prerequisite for economic progress and the security of life [1,2].
However, failures of mechanical components represent the great majority of mechanical
equipment failures. To assure the continuous, reliable, safe, and efficient functioning
of mechanical equipment and to promote the stable advancement of the manufacturing
industry, it is necessary to conduct research on sophisticated and effective mechanical
equipment fault diagnosis techniques [3–5].

The traditional machine learning (ML) methods mainly rely on expert knowledge and
prior experience to select signal processing techniques, and then use manual thresholds for
fault feature extraction and identification [6–8]. However, the diagnostic performance of
traditional diagnostic models cannot meet industrial demands due to limitations such as
human factors and the inability to handle large amounts of data. With the advent of DL and
Industry 4.0, more researchers are turning to intelligent diagnosis methods for extracting,
selecting, and classifying fault features in mechanical equipment. The prevailing DL fault
diagnosis methods mainly include convolutional neural networks (CNNs), deep belief
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networks (DBNs), autoencoders (AEs), graph neural networks (GNNs), long short-term
memory (LSTM), etc. For example, Shao et al. proposed unsupervised domain-share
CNNs (UDSCNNs) to achieve fault transfer diagnosis under time-varying speeds [9]. Tang
et al. constructed the novel adaptive CNNs to implement fault diagnosis by acoustic
images [10]. Zhang et al. adopted the salp swarm algorithm to optimize the parameters of
the DBNs for identifying bearing faults [11]. Wang et al. designed extended DBNs to exploit
useful information and detect defects in the chemical process [12]. Yang et al. combined the
improved sparse AEs and multilevel denoising strategy to achieve early fault diagnosis [13].
Liu et al. used GNNs to extract information from the constructed spatial–temporal diagrams
to obtain the diagnosis of rotating machinery [14]. Wang et al. designed the novel BERT-
BiLSTM-CRF model to extract information from the created fault knowledge graphs from
the electric power equipment [15]. In particular, CNNs have gained more attention and
recognition for their superior performance in diagnosing mechanical equipment failure
through convolution and pooling operations. However, due to the interference of various
noises in the real working environment, the periodic characteristics of multi-source signals
are likely to be masked, leading to difficulties in extracting useful local features by CNNs.
Additionally, the local nature of convolutional kernels makes it challenging to capture the
context of multi-source signals, leading to a shortage of adequate fault representation [16].
To address the limitations imposed by the local receptive field, some scholars implement the
global mining of fault information by combining recurrent neural networks. However, these
methods can make the model structure more complex and lower diagnostic performance.
The increase in the number of parameters not only increases the training time cost but also
leads to overfitting [17–19]. To thoroughly address the limitations of the methods above, a
new DL method called the Transformer [20] has been proposed to capture context-related
features using the self-attention mechanism in the token space. As a result, the Transformer
has encountered a new use in fault diagnosis research. Ding et al. combined an improved
time–frequency Transformer and self-attention mechanism to extract fault abstractions from
vibration signals [21]. Shao et al. designed an end-to-end Convformer-NSE framework
to diagnose faults of gearboxes by fusing general and detail abstractions beneath intense
noise [22]. Du et al. combined the denoising AEs and the Transformer to capture valuable
and rich features for diagnosing mechanical equipment [23]. Therefore, the global property
of the Transformer can enable it to obtain global characteristics to collect sufficient fault
information and improve fault diagnosis performance.

The background of most mechanical equipment fault diagnosis methods is based
on experimental environments since collecting original data from a single sensor or a
signal source is sufficient to obtain satisfactory diagnostic performance. However, these
research results fail to achieve good performance under actual operating conditions of
mechanical equipment because they require attention to three key issues: (1) Poor anti-
interference capability. In real operating conditions, irregular noise can overlap with the
signal or data where the fault features are located, making it more difficult to extract and
mine the fault features, thereby reducing fault diagnosis accuracy. (2) Poor generalization
capability. More minor changes in operating conditions may lead to algorithm failure
or reduced accuracy. (3) Poor feature extraction capability. Complex real environments
may have multiple sources of interference and noise, which can affect sensor performance
and accuracy, resulting in localized information reflecting only specific locations or condi-
tions [24]. Regarding the above issues, multi-information fusion technology is gradually
applied to the research of fault diagnosis for intelligent monitoring of critical components
in mechanical equipment. For instance, Ribeiro et al. proposed multi-head 1D CNNs to
handle multi-source sensor data to increase feature extraction and achieve real faults of the
electric motors [25]. Yang et al. constructed multi-channel graphs through multi-sensor
data and then used improved GCNs for rotating machinery diagnosis [26]. Zhang et al.
introduced an improved AdaBoost algorithm to fuse vibration and acoustic signals to
obtain the fault diagnosis findings [27]. Li et al. offered an adaptive multi-source infor-
mation fusion strategy to describe the health status of mechanical equipment [28]. Chen
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et al. employed multiple DL methods to process original signals to obtain multi-source
information for gear fault diagnosis [29]. Xie et al. transformed multi-source sensor data
into RGB images and then adopted the improved CNN and the residual network to validate
the operating conditions of the mechanical equipment [30]. Hence, the multi-source fusion
method can be an excellent solution to the problems faced by traditional DL methods. In
essence, the multi-source information fusion method realizes the association, crossover,
and complementarity of multiple information sources to make the fault feature extraction
more comprehensive and improve the detection, characterization, and identification of
faults by the model [31].

In this research, we take ideas from the Transformer and existing multi-source informa-
tion fusion approaches and then apply them to create a new framework for monitoring and
diagnosing health states of mechanical equipment by using the NHVT to learn more valu-
able fault abstractions from multi-sensor information fusion. In the proposed NHVT, to fuse
data from multiple sources, we employ a time–frequency method to map one-dimensional
signals from various sources onto a time–frequency representation. Finally, our proposed
framework can simultaneously extract both comprehensive and discriminative abstractions
from multi-sensor information by combining NHVT and multi-sensor information and
produces more stable and accurate diagnostic results compared to SOTA methods when
dealing with different diagnostic tasks (i.e., different proportions of training samples). The
primary ideas of this paper can be summed up as follows:

(1) The novel hierarchical vision Transformer is proposed to enable end-to-end diagnosis
of the critical component in mechanical equipment by modeling the multi-source
information in a united deep network.

(2) The WT is used to transform the original signals to the time–frequency for rich and
comprehensive fault features. Then, the data-level fusion strategy is proposed to form
the input data for retaining more fault-based information.

(3) The novel SwinTransformer framework is established to realize fault diagnosis in
extracting context information of multi-source information under different training
sample ratios, including realization formulas and corresponding loss functions.

(4) Comprehensive tests are run on two multi-source information datasets of the me-
chanical equipment to demonstrate the superior performance of the proposed NHVT.
In addition, the key parameters and noise resistance in the proposed NHVT are
discussed to provide interpretability.

This paper is divided into the following sections: The fundamental knowledge and
theoretical framework are presented in Section 2. Then, the core procedure of the proposed
method is described in depth in Section 3. Two case studies and the diagnostic performance
of the proposed method across a variety of diagnosis tasks are presented in Section 4,
along with the descriptions of the multi-source information experimental platforms. The
subsequent explanation of this proposed methodology is detailed in Section 5. Section 6
concludes this paper and discusses directions for further research.

2. Theoretical Background
2.1. Wavelet Time–Frequency Transform

Wavelet time–frequency transform, also known as wavelet transform (WT), is a mathe-
matical technique to analyze signals in both the time and frequency domains [32,33]. Unlike
the classical Fast Fourier transform (FFT), which provides a fixed frequency resolution
throughout the signal, WT can provide variable time and frequency resolution, making it
suitable for analyzing non-stationary signals.

The core idea of the WT is to decompose the target signal into a set of wavelet functions,
including the so-called mother wavelet function and its dilated and translational functions.
Most importantly, it can provide information about the energy distribution of the signal
across time and frequency scales, revealing details about its transient behavior, frequency
content, and time-localized features. Hence, WT can offer a powerful tool for analyzing non-
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stationary signals and capturing both temporal and spectral characteristics simultaneously,
making it a valuable technique in many scientific and engineering applications.

2.2. Multi-Source Information Fusion Strategy

Multi-source information fusion combines information from multiple sources or sen-
sors to obtain more accurate, robust, and comprehensive representations [34,35]. Re-
searchers develop the idea of multi-source information fusion to get beyond the shortcom-
ings of data from a single source or a single sensor. Each source or sensor may provide
partial, noisy, or incomplete information, but combining them makes it possible to improve
the overall quality of the information and make wiser decisions [36].

There are three distinct categories of multi-source information fusion strategy:

a. Data-level fusion: This involves combining data from various sources directly to save
all useful information, as represented in Figure 1a.

b. Feature-level fusion: This involves combining features extracted from different sources
or sensors to create a unified feature representation, as shown in Figure 1b.

c. Decision-level fusion: This involves decisions or predictions made by individual
sources or sensors to make a final decision, as displayed in Figure 1c.
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Figure 1. Multi-source information fusion methods. (a) Data-level fusion; (b) Feature-level fusion;
(c) Decision-level fusion.

2.3. Transformer

The Transformer architecture can enable the model to measure different parts of the
input data differently, depending on their correlation with the corresponding task. The
traditional Transformer consists of several encoders and decoders with the same structure.
The proposed method can extract the compressed representation information from the
original signals using a stack of N identical encoders, as shown in Figure 2.
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Figure 3. Overview of the SwinTransformer architecture. 

Figure 2. Basic structure of Transformer.

As displayed in Figure 2, the Transformer mainly includes the multi-head self-attention
module for the former and the multi-layer perceptron module for the latter. In addition, the
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layer normalization technique (LN) is implemented both before and after the multi-head
self-attention module to reduce the likelihood of gradient explosion and disappearance
and further improve the precision and training efficacy of the proposed method. Then, the
residual connections are incorporated into the Transformer to achieve higher performance.
Hence, the training process of the Transformer can be written as

x′ = x + Multihead(LN(x)) (1)

where x denotes the input of the Transformer.

3. Proposed Method
3.1. SwinTransformer

The traditional Transformer needs to compute the relationships between all tokens to
create global adaptation. However, it tends to produce significant computational complexity.
Hence, the SwinTransformer is adopted in this paper to address this issue and boost the
performance of this proposed method. Figure 3 shows the overview of the SwinTransformer
architecture [37]. The patch partition module splits input WT diagrams of vibration and
acoustic signals to several non-overlapping patches. Then, these patches are applied by
modified self-attention computation (i.e., SwinTransformer modules). Hence, the Linear
embedding module and SwinTransformer module are known as Stage 1. The regular and
shifted windowing multi-head self-attention modules (R-MSA and SW-MSA, respectively)
are adopted for more effective modeling. Given the dimension of the input data m × n, the
computational complexity can be written as follows:

Ω(R − MSA) = 4hwC2 + 2(hw)2C (2)

Ω(SW − MSA) = 4hwC2 + 2M2hwC (3)

where C denotes the output dimension; h and w mean the height and width of the input
data; and M is the constant.
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To further generate rich feature representations, the patch merging module can be used
to decrease the number of tokens as the network layers of the proposed NHVT deepen. The
role of the patch merging module is to concatenate the features of the adjacent patches and
then output deeper elements through the linear layer. Next, the SwinTransformer module
is applied after the patch merging module for further feature extraction and transformation,
referred to as Stage 2. At the same time, the above process is repeated twice, referred to
as Stage 3 and Stage 4, respectively. By stacking these processes, hierarchical features are
extracted for fault diagnosis of mechanical equipment.

Meanwhile, the shifted window partitioning strategy is applied to the successive Swin-
Transformer modules to further enhance the feature mining performance of the proposed
NHVT, as shown in Figure 4.

ẑl = R − MSA
(

LN
(

zl−1
))

+ zl−1 (4)
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zl = MLP
(

LN
(

ẑl
))

+ ẑl (5)

ẑl+1 = SW − MSA
(

LN
(

zl
))

+ zl (6)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (7)

where ẑl means the output of the R-MSA module; ẑl+1 denotes the outcome of the SW-
MSA module; and zl and zl+1 represent the output of the linear layer. The shift window
partitioning approach can provide links between neighboring non-overlapping windows
in the preceding layer, which can be proven effective in fault diagnosis.
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3.2. Multi-Source Information Fusion Strategy

In this proposed NHVT, we use the data-level method strategy to retain the original
information from multi-source data without significant loss or modification. This allows
for the direct combination of raw or pre-processed data, ensuring every crucial detail is
noticed and discarded. This can be particularly advantageous when the specific features or
characteristics of the individual data sources are essential for the analysis. Most importantly,
the data-level fusion method offers advantages in preserving information, enhancing
feature representation, reducing dimensionality, facilitating early integration, improving
robustness, and simplifying the analysis pipeline. Specifically, the multi-source information
data-level fusion strategy of the NHVT is described in Figure 5.

3.3. Overall Framework

This section introduces the overview procedure of the proposed NHVT for identifying
the health conditions of mechanical components in the mechanical equipment under
multi-source information datasets. Figure 6 provides a detailed explanation of the overall
structure, followed by a rundown of the individual steps.

(1) Step I: Collect multi-source original signals (i.e., vibration signals, current signals, and
acoustic signals) from mechanical equipment experimental rigs.

(2) Step II: Standardize the gathered multi-source original data and add white Gaussian
noise with different signal-to-noise ratios in the Section 5.

(3) Step III: Transform the normalized multi-source data into WT diagrams, randomly
sample time–frequency diagrams, and finally, partition them into training and test-
ing datasets.

(4) Step IV: Implement the multi-source training samples in two case studies with differ-
ent proportions to train the proposed NHVT.

(5) Step V: Use the multi-source testing samples in two case studies to validate the
diagnostic performance of the proposed method.
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4. Case Validation

In this section, two multi-source datasets are used to train and test the proposed
method to detect and diagnose faults. Meanwhile, several SOTA models are also provided
for the sake of comparison to further demonstrate the precision and efficiency of the
proposed NHVT.

4.1. Case Study I: Fault Diagnosis of Paderborn Multi-Source Information Dataset
4.1.1. Multi-Source Information Dataset Overview

The Paderborn University introduces the Paderborn multi-source information dataset
to evaluate fault diagnosis of bearings, and then the laboratory bench is introduced in
Figure 7.
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The multi-source information in this case study means the vibration and current
signals, where the piezoelectric accelerometer and current sensor acquire them. Meanwhile,
the sampling frequency of multi-source sensors is set at 64,000 Hz. This bearing dataset
contains measurements of four bearings, each of which experienced different types and
levels of damage involving inner race, outer race, and ball defects, as seen in Figure 8. The
bearings were run at various speeds and loads, and the multi-source signals were recorded
and collected using sensors mounted on the bearings.
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Figure 8. The diagram of the laboratory bench. (a) Fatigue pitting; (b) Drilling holes; (c) Electrical
discharge trenches; (d) Electric engraver pitting.

It is worth noting that the operating conditions in this case study include rotational
speed (1000 Rpm), load (0.7 Nm), and force (1000 N). A detailed description of the dataset
is listed in Table 1.

Table 1. Descriptions of the Paderborn multi-source information dataset.

Speed Load Force
Health States Tasks (Training/Testing Datasets)

Label
Fault Types Location Dataset A Dataset B Dataset C

1500 Rpm 0.7 Nm 1000 N

Electrical discharge trenches Inner Race 450/50 350/150 250/250 0
Electrical discharge trenches Outer Race 450/50 350/150 250/250 1
Fatigue pitting Inner Race 450/50 350/150 250/250 2
Fatigue pitting Outer Race 450/50 350/150 250/250 3
Drilling holes Outer Race 450/50 350/150 250/250 4
Electric engraver pitting Inner Race 450/50 350/150 250/250 5
Electric engraver pitting Outer Race 450/50 350/150 250/250 6
Normal \ 450/50 350/150 250/250 7

Meanwhile, Figures 9 and 10 display the time-domain and WT illustrations of the
vibration and current signals, respectively.
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Figure 9. Time-domain illustrations of the vibration signals and corresponding WT diagrams.
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4.1.2. Experimental Details

Meanwhile, four different faulty types in different locations of the bearings (i.e., fa-
tigue pitting, drilling holes, electrical discharge trenches, and electric engraver pitting)
are designed so that each health state is viewed as the working condition. The gathered
vibration and current signals are standardized through the utilization of the Z-score nor-
malization technique. Subsequently, the standard multi-source signals are partitioned into
sub-samples using a 2048 window size. There is a total of 500 samples available for every
health state. Ninety percent are selected randomly for the training dataset, while the rest are
used for the testing dataset. In conclusion, there are 3600 multi-source information samples
in the training dataset and 400 multi-source information samples in the testing dataset.
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4.1.3. Comparison Methods and Implementation Details

To illustrate the advantages of fault diagnosis in the proposed NHVT, the STOA
methods have been implemented on identical diagnostic cases to achieve fair comparisons.

Single-source information methods:

(1) CNNs. The basic method without a multi-source information strategy.
(2) DBNs. The basic method without a multi-source information strategy.
(3) SAEs. The basic method without a multi-source information strategy.

Multi-source information methods:

(4) SDPVGG. By combining multi-source information symmetry dot pattern and a Visual
Geometry Group 16 network, the decision-level fusion strategy is employed to achieve
fault diagnosis of mechanical components [38].

(5) MH1DCNNs. These employ the multi-head 1D CNNs to extract valuable features
from multi-source original signals for practical motor fault diagnosis [25].
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(6) 2DCNN-Adaboost. This uses the improved 2DCNNs and a novel Adaboost with
a dynamic deletion mechanism to achieve more comprehensive fault diagnosis of
bearings [27].

(7) MSICNNs. By using the improved 1DCNNs and 2DCNNs, the multi-source sensing
information can be fused to achieve the health status of the rolling mill [39].

(8) MSIDBNs. These embed the improved single-sensor DBNs into the framework to
extract the rich and complementary multi-source information from multi-source
signals [40].

The initial weights are randomly selected, resulting in different initial states of the
network at the beginning of each training. Consequently, this phenomenon may lead
to different diagnostic results. To reduce the effects of randomness, it is noted that each
procedure is executed ten times, and then the number of iteration epochs is set to 100. All
methods are intended to have a learning rate of 0.001. The Adam optimization algorithm
was then used to minimize the cross-entropy loss function, which was used during training.
The Adam optimizer shows powerful generalization capability, and it is suitable for numer-
ous diagnostic tasks in different case studies, which are more applicable to real engineering
environments [41]. Meanwhile, the Adam optimizer is less affected by the learning rate;
thus, it can acquire the optimal result during the training process [42,43]. Finally, these
methods are realized using the 1.8.0 Pytorch and 3.8.13 Python Framework, tested on an
AMD Ryzen 5800H with a GeForce RTX Nvidia 3060 GPU.

4.1.4. Diagnosis Results

It was compared to the SOTA methods through various indicators to further demon-
strate the strength and competency of the proposed NHVT. The diagnostic histogram of all
the SOTA methods and the radar chart of the average diagnostic results with multi-source
information fusion methods are displayed in Table 2 and Figures 11 and 12, respectively.
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Table 2. Diagnostic accuracy of different methods.

Tasks (%)

Setting Model Dataset A Dataset B Dataset C

Single-source information
(only vibration signals)

SAEs 90.82 84.97 63.08
DBNs 92.38 86.38 65.37
CNNs 93.84 88.71 68.14

Multi-source information

SDPVGG 97.53 94.28 82.97
MH1DCNNs 98.15 94.73 83.83
2DCNN-AdaBoost 98.27 95.62 85.31
MSICNNs 99.09 96.92 87.50
MSIDBNs 99.32 97.56 89.77
NHVT 100 100 100

Table 2 shows that all the methods obtain the optimal diagnosis results under Dataset
A because of sufficient training data. Significantly, as the complexity of the task increases
(i.e., the amount of training data decreases), the diagnostic performance of the proposed
NHVT is still being approved compared to other methods because of robust nonlinear
feature extraction capability. In detail, the proposed method improves by 0.68% and 0.91%
compared to the best-performing method (i.e., MSIDBNs) and the second best-performing
method (i.e., MSICNNs) in Dataset A. Then, the NHVT can still achieve 100% accuracy
in Dataset B, which is significantly better than other methods. Next, the proposed NHVT
can obtain the best accuracy among all the methods in Dataset C. Most importantly, all the
multi-source information fusion methods (i.e., SDPVGG, MH1DCNNs, 2DCNN-AdaBoost,
MSICNNs, MSIDBNs, NHVT) outperform the single-source information methods (i.e.,
SAEs, DBNs, CNNs) because the former methods enable access to the more comprehensive
fault representations of mechanical equipment components. In conclusion, our proposed
NHVT has the best diagnostic accuracy and the minor standard deviation among the
three datasets.

To showcase the effectiveness of fault diagnosis in the proposed NHVT and to directly
experience the advantages of a multi-source information fusion strategy in the feature
extraction process, t-Distributed Stochastic Neighbor Embedding (t-SNE) is employed to
present features taken from the final hidden layer of the proposed method, as illustrated in
Figure 13.
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Figure 13. Feature visualization via the t-SNE of the proposed method. (a) Dataset A; (b) Dataset B;
(c) Dataset C.

As shown in the left half of Figure 13, the two-dimensional features based on the
multi-source signals are not well aligned. On the contrary, the two-dimensional features
based on the final features are well divided into eight parts. Most importantly, the proposed
method can cluster samples of the same category under different datasets. Then, features
of the different categories are nicely differentiated, which indicates the higher quality of
the extracted features of the proposed method.
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Meanwhile, the confusion matrix is utilized to assess the diagnosis effect of a clas-
sification model by comparing the predicted and actual labels of three datasets. This is
a technique for summarizing the performance of a classification algorithm. The horizon-
tal axis represents the predicted label, while the vertical axis represents the actual label.
Figure 14 describes the results of the proposed NHVT through the confusion matrix in
Dataset A, Dataset B, and Dataset C, respectively.
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Figure 14. Confusion matrix of the proposed method. (a) Dataset A; (b) Dataset B; (c) Dataset C.

Based on its powerful feature extraction capability, the messages contained in the
individual confusion matrices for recognizing eight health conditions of the mechanical
equipment in three datasets are accurate. As a result, the proposed NHVT is shown to have
satisfactory diagnostic accuracy (each condition reaches 100%).

Finally, the Receiver Operating Characteristic (ROC) plotted by the actual positive rate
(TPR) on the y-axis against the false positive rate (FPR) on the x-axis is used to illustrate the
efficacy of the proposed NHVT to discriminate between positive and negative instances
across various threshold settings visually, as shown in Figure 15.
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Figure 15. ROC curve of the proposed method. (a) Dataset A; (b) Dataset B; (c) Dataset C.

As shown in Figure 15, the micro-average and macro-average ROC curves for all three
datasets reach 100%. Meanwhile, all categories in all three datasets have an area under
the curve of 1. Therefore, the proposed NHVT shows positive characteristics with three
datasets, including low false positive levels, high flexibility, and poor wrong classification.

4.2. Case Study II: Fault Diagnosis of Cylindrical Multi-Source Information Dataset
4.2.1. Multi-Source Information Dataset Overview

The Mechanical Engineering Department develops the cylindrical test rig to diagnose
the roller bearings, and then multi-source information containing vibration and acoustic
signals is collected by the specialized data acquisition device. Figure 16a,b introduce the
actual working situation and schematic diagram of the test rig, which mainly includes a
motor, two pulleys, a load, and a test-bearing housing.

To record the vibration and acoustic signals of the bearings in varying health states,
a triaxial accelerometer and an acoustic emission sensor are mounted on the top of the
bearing housing and then sample data at a rate of 70,000 Hz. The fault diagnosis dataset
consists of two working conditions and three fault types with different defect widths
generated by an electrical discharge machining process.

The dataset is outlined in great depth in Table 3, and then the typical faulty forms with
different defect widths in this case study can be seen in Figures 17–19. The defective sizes
of various fault types and the allocation strategies for the different datasets are described
in detail.
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Figure 16. Cylindrical roller bearing test rig. (a) Actual working environment; (b) Schematic diagram.

Table 3. The details of the Paderborn bearing dataset.

Shaft Speed
(Rpm) Load (N)

Health States Tasks (Training/Testing Datasets)
Label

Fault Location Fault Width Dataset A Dataset B Dataset C

2050 200

Inner Race 0.43 1170/130 910/390 650/650 0
Inner Race 1.01 1170/130 910/390 650/650 1
Inner Race 1.56 1170/130 910/390 650/650 2
Inner Race 2.03 1170/130 910/390 650/650 3
Outer Race 0.42 1170/130 910/390 650/650 4
Outer Race 0.86 1170/130 910/390 650/650 5
Outer Race 1.55 1170/130 910/390 650/650 6
Outer Race 1.97 1170/130 910/390 650/650 7
Roller 0.49 1170/130 910/390 650/650 8
Roller 1.16 1170/130 910/390 650/650 9
Roller 1.73 1170/130 910/390 650/650 10
Roller 2.12 1170/130 910/390 650/650 11
Normal \ 1170/130 910/390 650/650 12
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Figure 18. Fault width of outer race: (a) 0.42; (b) 1.16; (c) 1.73; (d) 2.12.
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4.2.2. Experimental Details

For the collected vibration and current signals, they are normalized through the use of
the Z-score normalization technique. Subsequently, the standard multi-source signals are
divided into sub-samples using a window size of 1024. Each health condition has a total
of 100 samples available. Among them, 90% of the samples are randomly selected as the
training dataset, and the remaining samples are allocated to the test dataset. Finally, the
training dataset consists of 1170 samples, while the test dataset includes 130 samples.

To reduce the impact of randomness, each method is subjected to 10 repetitions,
and then the number of iteration epochs is set to 100. All the methods are designed to
have a learning rate of 0.001. The Adam optimization algorithm was then applied to the
cross-entropy loss function during the training process to minimize it.
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4.2.3. Diagnosis Results

The proposed NHVT was developed for the purpose of higher performance of fault
diagnosis via multi-sensor information fusion. It was compared to the above SOTA models
to further establish its superiority. Table 4 and Figure 22 show the standard experimental
results and histogram distributions of these methods in this case study.

Table 4. Average diagnosis results of different methods.

Setting Model
Tasks

Dataset A Dataset B Dataset C

Single-source
SAEs 90.52% ± 0.712 81.08% ± 0.957 60.79% ± 1.208
DBNs 91.48% ± 0.664 83.62% ± 0.827 61.31% ± 0.993
CNNs 93.58% ± 0.528 85.54% ± 0.715 65.12% ± 0.953

Multi-source

SDPVGG 96.36% ± 0.304 91.95% ± 0.394 90.26% ± 0.428
MH1DCNNs 97.26% ± 0.266 93.27% ± 0.375 91.57% ± 0.387
2DCNN-
AdaBoost 98.53% ± 0.258 95.23% ± 0.364 92.54% ± 0.401

MSICNNs 99.18% ± 0.241 96.81% ± 0.327 93.81% ± 0.322
MSIDBNs 99.79% ± 0.197 97.43% ± 0.274 94.72% ± 0.318
NHVT 100% 99.48% ± 0.213 99.38% ± 0.259
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Figure 22. Fault diagnosis accuracy of all the methods.

Figure 22 summarizes the diagnosis results and shows that all methods can achieve
their best diagnostic effect and lowest standard deviation in Dataset A with a significant
enough training dataset. Compared to the worst-performing method (SAEs) in Dataset C,
the proposed method has a diagnostic accuracy of 99.38%. The diagnostic accuracy and
stability of the multi-source information fusion methods are enhanced in comparison to
the single-source information methods across three diagnosis tasks. Then, the diagnostic
performance of the NHVT can be improved by 4.66%, 5.57%, 6.84%, and 7.81% when
compared to that achieved by using multi-source information methods in Dataset C. Es-
pecially, the average diagnostic performance of multi-source information fusion methods
is better than those of single-source information methods. It is worth noting that the pro-
posed method can still manage to outperform SOTA methods on the most challenging task
possible (Dataset C).

The t-SNE technique is utilized to display the features obtained from the final hidden
layer of the proposed method, demonstrating the superior performance of the proposed
NHVT and then allowing for an intuitive evaluation of the feature extraction ability based
on multi-source information fusion, as illustrated in Figure 23.
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states. It can be observed from the above figure that the proposed method exhibits higher 
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Figure 23. Feature visualization via the t-SNE of the proposed NHVT. (a) Dataset A; (b) Dataset B;
(c) Dataset C.

It is clear that the original multi-source data represented by the t-SNE technique cannot
differentiate between the various health conditions on the left half of the diagrams. In
contrast, the health categories of the mechanical components may be easily detected after
visualizing the features retrieved from the proposed NHVT. In summary, the t-SNE is a
dimensionality reduction technique used for visualizing high-dimensional multi-source
data that can help us better understand the structure and patterns of the multi-source
information. By adjusting parameters and understanding the t-SNE technique, we can
correctly appreciate its results and then apply the proposed NHVT to diagnose the health
states. It can be observed from the above figure that the proposed method exhibits higher
separability between categories, even in the face of the most challenging diagnostic task
(Dataset C). Therefore, the proposed method can effectively extract valuable features from
multi-source information.
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After that, to demonstrate the stability of the proposed NHVT, the diagnostic results
of multi-source information fusion methods based on ten experiments in Dataset C of Case
II are described in the form of violin and scatter diagrams in Figure 24.
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Therefore, as shown in Figure 24, the proposed NHVT can not only achieve a more
centralized and reliable data distribution, but it can also have the maximum classification
performance.

To further demonstrate the fault diagnostic classification outcomes of the proposed
NHVT combined with multi-source information fusion, the confusion matrix is offered to
gain insights into its strengths and weaknesses, as illustrated in Figure 25.
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For 13 different health conditions of mechanical equipment, the proposed method has
an observed diagnostic accuracy of more than 90%. It can be observed that the proposed
method has a diagnostic accuracy of over 90% for 13 health states of the mechanical
equipment. As shown in Figure 25a, all health states of the NHVT can achieve 100%.
Meanwhile, the lowest fault diagnosis performance of Label 11 is 93% in Dataset B, as
depicted in Figure 25b. Finally, the minimum diagnosis effect of Label 10 in Dataset C
is 95%, as described in Figure 25c. The confusion matrix is beneficial for understanding
the diagnostic impact of the proposed NHVT and identifying the types of errors made by
this method. By analyzing the confusion matrix, we can determine the weaknesses of the
NHVT and then make targeted improvements and optimizations.

Finally, the ROC curves for the three datasets are charts that display the performance
of the NHVT on all fault type thresholds, as shown in Figure 26. The ROC curves for
Dataset A show a micro-average value of 100% and a macro-average value of 100%. The
ROC curves for Dataset B show the micro-average and macro-average values of 99.97% and
99.96%, respectively. The ROC curves for Dataset C show the micro-average and macro-
average values of 99.93% and 99.94%, respectively. Measured by the extent of the ROC
curve in Dataset C, health states 3, 7, 9, 10, 11, and 12 diagnosed by the proposed method
show weak performance, and the other health states reach 100% of the ROC curve area.
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5. Discussion
5.1. Training Epoch Time

Figure 27 depicts a training time chart that compares the epoch training time of the
proposed NHVT to those of the SOTA methods (i.e., SDPVGG, MH1DCNNs, 2DCNNs-
AdaBoost, MSICNNs, and MSIDBNs) using Dataset A from case study II.
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5.2. The Influence of the Training Dataset

For further illustration of the tolerance of the proposed NHVT towards different
training dataset proportions, we set the training dataset proportion from 0.1 to 0.9; the
diagnosis performance diagram is depicted in Figure 28.
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As shown in Figure 28, we can conclude that as the proportion of the training dataset
decreases, the diagnostic performance of the proposed method continues to decline. Specif-
ically, there is a slight fluctuation in diagnostic accuracy when the ratio drops from 0.9 to
0.5. Even when faced with the most challenging tasks (i.e., the proportion of the training
dataset is 0.1), the diagnostic accuracy of this method can still reach 91.36%. Thus, it can be
demonstrated that the NHVT can fully assess and utilize the complementary and rich fault
features of the multi-source information to obtain more comprehensive abstractions.

5.3. The Performance of NHVT under Heavy Noise in Case Study II

To further investigate the viability and validity of the proposed NHVT under different
signal-to-noise ratio conditions, we decided to add Gaussian white noise with signal-to-
noise ratios of 0 dB, −5 dB, and −10 dB. With the SNR increases, fault information is more
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likely to be fluctuated by strong noise. Therefore, it is difficult for all methods to extract
effective features from noisy signals under strong interference. The diagnostic results of
multi-source information fusion methods (i.e., SDPVGG, MH1DCNNs, 2DCNNs-AdaBoost,
MSICNNs, and MSIDBNs) are shown in Figure 29.
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Through the diagnostic results, it can be seen that the diagnostic performance of
all methods decreases with the increase in signal-to-noise ratio. In detail, the diagnostic
accuracy and standard deviation of the NHVT is 99.1% and ±0.15 when the signal-to-noise
ratio is 0 dB. And then, the diagnostic accuracy and standard deviation of the proposed
method are 96.5% and ±0.32 when the signal-to-noise ratio is −5 dB. Compared with other
methods, the diagnostic performance fluctuation of the proposed NHVT is more minor
under noise interference, which indicates that the influence of Gaussian white noise on the
NHVT is limited. Especially when facing the most demanding working conditions, the
diagnostic accuracy of all compared methods is below 80%, but the proposed method still
has a diagnostic performance of 89%. It is worth noting that the performance degradation
of the proposed method is significantly smaller than for other methods, mainly because
it can extract context information of fault signals to extract compelling features under
substantial interference.

6. Conclusions

In this paper, we introduce a multi-source information fusion framework for the
proposed NHVT to overcome the existing drawbacks of insufficient extraction of contextual
features and failure information from a single-source signal to realize better fault diagnosis
of the mechanical equipment. First, the multi-source information is transformed into
time–frequency images to enrich spatial–temporal abstractions by the WT technique. Then,
the SwinTransformer and data-level fusion strategy are introduced to fully improve data
utilization and diagnostic accuracy. Finally, two case studies display the superiority of the
proposed NHVT compared with the SOTA methods.

First, we will develop an online monitoring platform. Then, we will initially train
the proposed method with the existing offline data. After that, we will use the proposed
NHVT for online monitoring on the online monitoring platform. Most importantly, we
will introduce online learning into the proposed framework to endow it with flexibility
and generality. In future work, further exploration is needed to alleviate the information
redundancy associated with information fusion. In addition, mechanical equipment often
operates under variable working conditions, so it is necessary to introduce transfer learning
(TL). Finally, we hope to apply experimental theories to practical environments.
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