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Abstract: Surface electromyography is a technique used to measure the electrical activity of mus-
cles. sEMG can be used to assess muscle function in various settings, including clinical, aca-
demic/industrial research, and sports medicine. The aim of this study is to develop a wearable
textile sensor for continuous sEMG monitoring. Here, we have developed an integrated biomedical
monitoring system that records sEMG signals through a textile electrode embroidered within a
smart sleeve bandage for telemetric assessment of muscle activities and fatigue. We have taken an
“Internet of Things”-based approach to acquire the sEMG, using a Myoware sensor and transmit
the signal wirelessly through a WiFi-enabled microcontroller unit (NodeMCU; ESP8266). Using a
wireless router as an access point, the data transmitted from ESP8266 was received and routed to the
webserver-cum-database (Xampp local server) installed on a mobile phone or PC for processing and
visualization. The textile electrode integrated with IoT enabled us to measure sEMG, whose quality
is similar to that of conventional methods. To verify the performance of our developed prototype, we
compared the sEMG signal recorded from the biceps, triceps, and tibialis muscles, using both the
smart textile electrode and the gelled electrode. The root mean square and average rectified values
of the sEMG measured using our prototype for the three muscle types were within the range of
1.001 ± 0.091 mV to 1.025 ± 0.060 mV and 0.291 ± 0.00 mV to 0.65 ± 0.09 mV, respectively. Further,
we also performed the principal component analysis for a total of 18 features (15 time domain and
3 frequency domain) for the same muscle position signals. On the basis on the hierarchical clustering
analysis of the PCA’s score, as well as the one-way MANOVA of the 18 features, we conclude that
the differences observed in the data for the different muscle types as well as the electrode types are
statistically insignificant.

Keywords: sEMG; electrode position; smart wearable; textile sensor; IoT-integrated textile sensor

1. Introduction

Surface electromyography (sEMG) is an important technique used to monitor the
muscle activities of volunteers or patients in sports, prosthesis control, neuro-muscular
diseases etc. [1–3]. The sEMG measures the sum of the motor unit action potentials (MUAPs)
resulting from the activation of the muscle fibers by the motor neuron [4,5]. Conventionally,
the sEMG is measured using two electrodes that are connected to a differential amplifier,
which basically subtracts these two signals and amplifies them. The ensuing signal is
referenced with respect to a third electrode to measure the sEMG signal as a potential
difference (volt) [6]. Generally, in hospitals Ag/AgCl electrodes are used, along with a
conductive gel applied at the skin–electrode interface. The gel reduces the impedance and
improves the signal to noise ratio (SNR) and other signal characteristics [7]. The main
disadvantages of the gelled electrode are its fixed form (rigid circular form), drying of its
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gel on prolonged usage, lower wearability while performing sports or outdoor activities,
and its disposal after a single use. In recent decades, dry electrodes have been proposed
to replace wet electrodes on the grounds of their wearability (embedded into fabric and
other accessories), reasonably good performance, and sustainability features (such as
washability and reusability) [8–12]. Unlike the conventional Ag/AgCl gelled electrodes,
the wearable dry electrodes can be designed in different shapes (circular, rectangular patch),
and require minimal power for functioning. [7,13]. Factors that reduce impedance at the
skin–electrode interface, such as sweat and reduced motion artifact, are given significant
consideration when designing and evaluating the wearable dry electrodes. The sEMG
varies significantly, even for a single muscle type, when electrodes are placed at different
loci of the muscle [13]. With no standard procedure in place, customization of electrode
positioning is recommended for both dry and gelled electrodes when studying diverse
individuals. One desirable feature of dry electrodes is that, since they are embedded into
a fabric or a sleeve, the electrode positions itself to the right location of the muscle of an
individual who wears it. In a clinical setting, wearable electrodes are more convenient
than wet electrodes for the long -term sEMG monitoring of patients [14–16]. Textile-based
dry electrodes are non-invasive and are comfortable for wearers [17]. Over the past few
decades, wearable textile-based “Internet of Things” devices have been demonstrated to be
powerful tools for connecting various medical equipment to built-in sensors. Use of IoT
in healthcare enables low-cost monitoring solutions by leveraging existing technologies,
such as smartphones and wearable devices [6,18], which allows healthcare professionals
to deliver superior health services across remote rural areas [19]. Incorporation of IoT
technologies to smart sleeves enable the development of sEMG devices with both analog
and digital processing capabilities that can undertake real-time monitoring of the muscle
activities. To address the motion artifact observed during sEMG monitoring, many studies
have suggested the use of smart or intelligent sleeve prototypes [20–24].

In this work, we have developed:

1. A smart sleeve that has a textile electrode for identifying muscle activation. This
sleeve is soft, stretchable, and washable, and can be easily incorporated into clothes.

2. IoT-based methodologies are utilized to assess the smart sleeve’s performance of daily
muscle activity recognition (MAR).

The dataset of the sEMG from various physical activities, taken from three different
muscle positions, is made available to the public.

2. Materials and Methods

The methodological approach of this research has two phases. The first phase deals
with the development and integration of embroidered textile electrode materials on ban-
dage sleeve garments. The second phase deals with the measurement of real-time sEMG
signals [25] transmitted wirelessly to a local application server.

2.1. Development of IoT Setup

The developed device consisted of a NodeMCU, which was the microcontroller, and a
Myoware sensor. The integration of the IoT with the myoware sensor and the design of the
textile electrode is as follows.

2.1.1. Integration of the IoT Device with the sEMG Sensor

The block diagram of the proposed low-cost portable sEMG textile electrode and
associated sensor device is shown in Figure 1. The NodeMCU unit designed by Espresso
Systems is equipped with an ESP8266 WiFi module as a wireless component (shown in
Figure 2b). The ESP8266 includes a self-contained Wi-Fi networking application, bridging
an existing microcontroller with WiFi. On the other hand, the Myoware Muscle Sensor
(AT-04-001) developed by Myoware™ (Figure 2a) both senses and processes the sEMG
signals. When upstream, it is connected to three electrodes; and when downstream, it is
connected to the NodeMCU for signal transmission. The muscular activity is amplified
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and processed (rectified and integrated) by this sensor on the surface of the skin. The
analog signal from the sensor is sent to the Arduino microcontroller with analog-to-digital
converter (ADC). The interfacing circuit is depicted in Figure 3, and the design of the textile
electrode is shown in Figure 4. Both the NodeMCU 8266 (by Espressif Systems, a public
multinational company) and sEMG sensor derive their power from a rechargeable Li-ion
polymer battery (3–5 V). The NodeMCU microcontroller, WiFi antenna and battery are
placed in a customized 3D-printed rectangular cuboid, as shown in Figure 5. The WiFi
antenna connects wirelessly to an access point in the neighborhood, which is typically a
mobile phone hotspot. The acquired signal is displayed on a PC or smartphone via the
IoT-based monitoring system connected to a locally hosted webserver.
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2.1.2. Design of sEMG Measurement Unit

The developed reusable textile-based embroidered electrode was attached to the sleeve,
which can be worn directly over the user’s muscle. The overall schematic diagram of the
monitoring system is provided in Figure 3. The outer side of the embroidered electrode
consists of three snap buttons that will be used to connect with the sEMG sensor. The
inner side contains the circular conductive area of the embroidered textrode (diameter
2 cm), which comes into close contact with the muscle. An interconnecting conductive
area of dimension, 1 cm × 1 cm, has a snap button stitched to it at one end, and a circular
conductive area of the textrode at the other end. The Myoware sensor is attached to the
textile electrode through these snap buttons. The inter-electrode distance between the two
active electrode patches is 25 mm [25]. The reference electrode is attached to the muscle
outside of the sleeve. The prototype of this electrode is shown in Figure 4. Figure 4a
presents the process of embroidery electrode on the inner side of the bandage substrate.
Figure 4b shows the electrode constituted by the circular region and the interconnecting
conductive area. Since the textrodes are used for long-term monitoring of sEMG outside
clinical or laboratory settings, their signal quality and reliability must be systematically
assessed before they are deployed for any applications [26].
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2.1.3. Sensor Interfacing, Data Transmission, and Storage

The acquired data was transmitted by the NodeMCU 8266 microcontroller to a mobile
phone or computer via the WiFi protocol with a sampling rate of 60 Hz. Alternatively, the
Coolterm (version 2.1.1.1288) software installed on a local system could be used to manage
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the sEMG signal acquired by the sensor. In our case, we stored the data by using the Xampp
application server, which was installed on a mobile phone. From this server, the data could
be sent to a cloud-based application server for further processing, using MATLAB (version
2019a) software.

2.2. Experimental Set Up
Data Acquisition Protocol

This study was approved by the ethics committee of the Jimma Institute of Technology
at Jimma University, and also Jimma University’s institutional review board. Before agree-
ing to participate in the study, participants received information about its purpose and
training through the recording procedure. In this study, we aimed to classify three types of
muscle groups, namely, biceps, triceps, and tibialis, by using the prototype. Accordingly,
the sEMG signal for a healthy person was recorded from three muscles positions, of which
two were from the arm and one from the leg. The chosen subject was in the range of
somebody who is 28–34-years-of-age. Of the two electrodes with opposite polarity, one was
placed on the belly of the muscle and the other was placed away, towards the end of the
muscle. The reference was placed far from the target muscle altogether. Both the gel-based
electrode (Ag/AgCl 3M, Saint Paul, MN, USA) and the developed textile electrodes were
placed with an inter-electrode distance of 25 mm to prevent interference.

Using the tightly fitted sleeve (but comfortable enough for each participant), the
signals were measured 5 s after the beginning of the activity. This stabilization period
helps to minimize any initial artifacts or fluctuations in the signal that could occur at the
outset of the activity. By waiting for the signal to stabilize, researchers can obtain more
consistent and valid data for the analysis. Next, the participant was asked to repeat each
activity three times, followed by a 2 min rest. The sEMG recording for biceps and triceps
muscles were performed in a sitting position. In the tibialis measurement, the subject was
asked to walk on the flat floor at normal speed. During the biceps and triceps activities, the
participants were asked to flex and extend their forearm with a clenched fist. During the
tibialis activities, such as plantar and dorsal flexion, the participants fixed their legs and
raised or lowered them within the range of −90 to +90 degrees, depending on the tibialis
orientation. The recorded data was refined by removing 5–12%, both at the beginning and
the end of the signal. A total of 2 s of the sEMG recording was used in the analysis of each
muscle. Subsequently, the 2 s data was segmented into sub data of a 200 ms window period
with an overlap of 50 ms. All the experiments and the real-time data collection, for both the
textile and gelled electrode, were performed at room temperature.

2.3. Principal Component Analysis of Acquired sEMG Signal

A total of nine sEMG signals were recorded from the three muscle types, namely
biceps, triceps and tibialis anterior. Of the nine signal dataset, six of were recorded using
textile electrodes (one set for each muscle types with repetition), and three signals were
recorded using gel electrodes (one set for each muscle type). Time and frequency domain
features were extracted from the processed signal [27]. The 15 time domain parameters,
such as maximum amplitude value (MAX), mean amplitude value (MEAN), median
amplitude value (MED), standard deviation from the mean (SD), variance from the mean
(VAR), peak-to-peak distance range (PP), zero crossing (ZC), area under curve (AUC), root
mean square (entire segment) (RMS), mean (amplitude) power (MP), mean absolute value
(MAV), signal’s energy (EN), waveform length (WL), skewness (SK) and kurtosis (KUR),
were obtained. Three frequency domain parameters, namely mean frequency (in power
spectrum) (MNF), median frequency (in power spectrum) (MDF) and spectral centroid
(SPC), were obtained. The extracted features were subjected to principal component
analysis (PCA), in order to identify the significant features that contribute to the variance
observed among sEMG signals. The features were normalized using pareito-normal-scaling,(

xi−µ

σ2

)
; with each feature or data point (xi) being subtracted from its mean (µ) and divided

by its variance, (σ2). PCA yields the principal components (PC or Eigenvectors) that are
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used to calculate the score values. The features or data points are projected onto a principal
component to obtain the scores. In the ‘score plot’, the scores of one PC (say PC1) are
graphically plotted against the scores of another PC (say PC2). In the resulting plot, the
data points will, depending on their similarity, segregate into different clusters. In the
loading plot, the coefficients of one PC will be plotted against the coefficients of another
PC, to identify the significant factors responsible for the clustering observed in the score
plot. When the scores and coefficients of two different PCs are plotted together, we obtain
a ‘biplot’.

2.4. Hierarchical Clustering Analysis

To estimate the significance of the clustering visually observed in PCA plots, we
performed the hierarchical clustering based on the scores obtained for the PC1 and PC2 by
using the ‘pvclust’ [28] available in the R program [29]. The resulting dendrogram provides
p-values in %, calculated by either the ‘approximately unbiased’ (AU, shown in red font)
or ‘Bootstrap probability’ (BP, shown in green font) approaches. If AU > 95%, then those
scores/data are clustered and enclosed within a rectangle.

2.5. One-Way MANOVA Analysis

One-way MANOVA (as available in the R package, version 4.3.3) was used to check
if there is significant variation among the muscle types or electrode types (independent
variable) for the extracted time and frequency domain features (dependent variables).
Firstly, we carried out the one-way MANOVA, with muscle type as an independent variable
(or a factor with three categories, i.e., triceps, biceps and tibialis) and the 15 TD & 3 FD as
the dependent variables. Our observation only contained nine data, and there were twice
as many dependent variables (18) meaning, the one-way MANOVA will fail by default. The
degree of freedom for the residual is nine (observation or data)—three (groups or muscle
type) = six, which is three times less than the dependent variables (18). So we performed
the one-way MNOVA analysis with a maximum of five dependent variable (i.e., <6). The
resulting Pillai trace statistic was used to obtain an approximate value for the F-statistics. In
the analysis, the assumed null hypothesis is that the variance observed for the dependent
variables across different groups or factors is not significant. When interpreting the results,
if we find the p value for the calculated or approximated F-statistics is less than 0.05, we
reject the null hypothesis and accept the alternate hypothesis. The alternate hypothesis
states that the variance observed for the dependent variables across different groups or
factors is significant. In other words, the factors are found to have a significant affect or
influence on the dependent variables. Secondly, we also carried out the one-way MANOVA
with the electrode type as an independent variable (i.e., a factor with two categories, i.e.,
Ag/AgCl, textrode) with 15 TD and 3 FD as the dependent variables.

3. Results and Discussion

The sEMG signals acquired by using our developed device for three different muscle
locations of a single subject are depicted in Figures 6–8. The sampling frequency was
960 Hz and the data was preprocessed with a digital filter with a lower ( fL) and upper
cutoff frequency ( fH) of 30 Hz and 450 Hz, respectively. These cutoff frequencies were
applied to both the textile electrode and the gelled electrode. To verify the consistency of
the textile electrode, we repeated the experiment twice at each muscle location. In each
experiment, we calculated the average rectified value (ARV), and root mean square (RMS).
The mean and standard deviation (SD) of RMS and ARV, for the textile electrode and the
gelled electrode, are presented in Table 1.
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Table 1. Mean and standard deviation (SD) of RMS and ARV of sEMG signal for each muscle,
obtained from repeated experiments.

Muscle Group RMS (mV) ARV (mV) Electrode Type

Biceps 1.015 ± 0.001 0.480 ± 0.280 Textile
1.001 ± 0.091 0.650 ± 0.090 Ag/AgCl

Triceps 1.023 ± 0.001 0.500 ± 0.025 Textile
1.025 ± 0.060 0.291 ± 0.001 Ag/AgCl

Tibialis 1.010 ± 0.001 0.600 ± 0.110 Textile
1.016 ± 0.220 0.513 ± 0.270 Ag/AgCl

In Figure 6, we observe that the denoised signal acquired by using textrode for the
biceps appears visually smoother than when the gelled electrode is used. This is also in the
SD of RMS values of the textile electrode, which are seen to be close to zero when compared
to the gelled electrode. A similar profile was also observed for triceps muscles, as shown
in Figure 7. After considering the average RMS and ARV and the signal morphology, we
conclude that the embroidered textile electrode is seen to have similar or better signal
characteristics, compared to the gelled electrode. The acquired profiles of the tibialis muscle
were also similar to those of the other two muscle types (see Figure 8). The power spectrum
calculated from the sEMG signal appears similar for all muscle types.

Figure 9 shows the 3D plot of the normalized values of the extracted features that
were used as inputs for the PCA analysis. The score plot of the PCA exhibits the grouping
or clustering of data sets with similar characteristics. In Figure 10, the three label colors,
namely the red, green and blue, represent the tricep, bicep and tibialis anterior muscles,
respectively. Within the single color code, the sEMG recordings by different electrodes
are presented with differing numerical labels. For example, the annotation of the data
sets using indices 1, 4 and 7 correspond to the tricep (red), bicep (green) and tibialis (blue)
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muscles, respectively, and are measured using the gelled electrode. Whereas indices (2, 3),
(5, 6) and (8, 9), corresponding to the tricep (red), bicep (green) and tibialis (blue) muscles,
respectively, which are measured (with repetition) using the textile electrode.
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Figure 10 shows the biplot of the loading vectors alongside the score plot of the
PCA analysis for 18 features, with 15 TD (time domain) and 3 FD (frequency domain)
features derived from the sEMG data. On the basis of the score values, we observe a weak
clustering pattern for the tricep, bicep and tibialis muscles. To check for the significance
of the observed clusters, we performed hierarchical clustering analysis on the PCA scores
that correspond to the PC1 and PC2. Even though two significant clusters were identified
(Figure 11), each one contained elements from either two or three different muscle types,
which suggests that visually observed variations (Figure 10) among the three muscles were
not significant. Furthermore, in referring to the one-way MANOVA performed with muscle
type as an independent variable and 18 dependent variables, we obtained a p-value of
~0.45, which is greater than 0.05, suggesting that the muscle type did not significantly
influence the variance observed for the TD and FD features (Table 2). Likewise, the one-way
MANOVA with the electrode type as an independent variable also yielded a p value of
~0.73, which is greater than 0.05, suggesting that the electrode types did not significantly
influence the observed variance for the TD and FD features (Table 2).
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tricep (•), bicep (•), and tibialis (•) muscles. The score of the data measured by gelled (functional)
and textrode (and its duplicate), which are shown as solid circles; component features corresponding
to the first two loading vectors are shown as a line ending with a dot.
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device, such as a mobile phone or personal computer. Additionally, it also performs pre-
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Figure 11. The hierarchical clustering is based on the PC1 & PC2 scores of the nine data: X1, X2, X3
(Triceps), X4, X5, X6 (Biceps), X7, X8, X9 (Tibialis). The analysis has identified two significant clusters
bounded by two rectangles, at the significance level of 95% or α = 0.05. We observe that X1–3, which
belongs to triceps is, as expected, grouped together (right cluster). But we also observe that the X2
and X9, which belonged to bicep and tibialis data, respectively, are also grouped with triceps. This
implies that the variance observed among data (score values) is not very significant and the clustering
algorithm could not differentiate each muscle type as separate clusters. Both the AU and BP based
p-values for each cluster is shown in red and green fonts.
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Table 2. The p-values obtained for the one-way MANOVA, using either the muscle type or electrode
type as an independent variable (factor) and 18 features as dependent variables. Since the observation
data is less than the dependent variables, the MNOVA was done in batches. A p-value less than
0.05 was considered to be significant.

Independent
Variable

Dependent
Variables

Pillai Trace
Statistics

Aprroximated F
Value p-Value

Muscle Types
(Tricep, Bicep,

Tibialis)

MAX, MEAN,
MED, SD, VAR 1.3529 1.2545 0.4068

PP, ZC, AUC,
RMS, MP 1.3141 1.1495 0.4515

MAV, EN, WL,
SK, KUR 1.2655 1.0338 0.5071

MNF, MDF, SPC 0.7766 1.0579 0.4456

Electrode Types
(Ag/AgCl

Gelled, Textrode)

MAX, MEAN,
MED, SD, VAR 0.4671 0.5259 0.7526

PP, ZC, AUC
,RMS, MP 0.3326 0.2990 0.8866

MAV, EN, WL,
SK, KUR 0.4848 0.5646 0.7312

MNF, MDF, SPC 0.3161 0.7703 0.5581

In Figure 10, the bicep scores of the gelled electrode appear separated, as a result of
minor displacement of the gelled electrode from its position during flexion and extension
exercises. This is one of the reasons why smart sleeves containing textile electrodes are
recommended over gelled electrodes, as this will prevent the artifact from being moved,
whether due to displacement or slippage effect, during sEMG measurements involving
exercises. For continuous long-term monitoring of patients from remote rural areas that
uses IoT devices, smart sleeves will be advantageous and more convenient than gelled
electrodes, for the aforementioned reasons. The ease in the use of smart sleeves, coupled
with the use of IoT devices, significantly improves comfort (soft fabric), adaption (less
bulky) and other human factors required for health monitoring devices [31].

A significant part of the spread/variance of scores or clusters (Figure 10) can be
explained by referring to the PC1. In particular, parameters such as SK and KUR appear to
be higher for triceps, whereas the rest of the features (excluding feature domain parameters:
MNF, MDF, SPC) are higher for the triceps and tibialis. The remnant variance present in the
data along PC2 can be explained by referring to the frequency domain features (MNF, MDF,
SPC). The distinctly separated cluster of triceps from the biceps, as shown in the biplot, can
be attributed to the dynamic structural variation (i.e., movement of muscle belly) observed
during the experiment, and also to its anatomical differences. A similar observation is
reported in a study that compared the maximum voluntary contraction (MVC) of biceps
and triceps in normal subjects and patients suffering from spinal cord injury (SCI). It was
shown that the MVC of biceps is relatively higher than that of triceps, both for control
subjects and SCI cases [32]. This is an indication of the relatively higher muscle activity
that the biceps (compared to the triceps) show during flexions and extensions. In another
study based on hybrid assistive limb, the sEMG of triceps was shown to be an order of
10 less than the biceps, highlighting the amplitude differences (between these muscle types)
observed in the sEMG [33].

A summarized comparison of our work with similar IoT systems for measuring bio
potentials that use dry electrodes is provided in Table 3. In general, an IoT system [31]
connects (through Bluetooth or a WiFi access point) several sensors to an edge computing
device, such as a mobile phone or personal computer. Additionally, it also performs pre-
processing, compression or encryption of the data before transmitting it to edge devices.
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The edge device will in turn transmit the data to a cloud computing system through
the internet. Two important factors to consider in IoT design is the acquisition of the
source signal (SNR that determines the quality; sampling rate; bit size that determines the
quantity) and its reliable transmission (Baud rate) to edge devices. In our study, sEMG
acquisition was performed using a single sensor, (i.e., myoware sensor attached to a textile
electrode) that was connected to an Aurdino-based IoT system, which in turn reliably
captured, processed and transmitted the signal to an edge device, such as mobile phone
for visualization that was enabled through a Xampp application server. In its current
form, the IoT system can be easily extended to accommodate multiple myoware sensors,
and therefore enable simultaneous acquisition of sEMG signals from different parts of the
patient’s body.

Table 3. Comparison of the current study to similar reported studies of on the usage of the dry
electrodes when integrated with the IoT system.

Application Materials Method of Application and
Limitation Method of Evaluation Reference

Smart textile for
measuring trunk

orientation

Embroidered-based
conductive threads,

HC-40 and C-70

Development and integration of
sensor materials into textile

garment, when full integration of
IoT was not implemented

Electrode comparison [33]

Electromyography
(sEMG) recording

Graphene based textile
electrode

Ozturk et al. utilized dip coating
and sewing techniques to integrate
electrodes into the bandage sleeve

during the development of a
sEMG device. However, when dip
coating and sewing methods are

compared to embroidery
electrodes, the latter are often

preferred for their comfort,
durability, flexibility,

customization options, and
potential for better signal quality,
especially when integrated into

the IoT system

Performance
evaluation [34]

Electrocardiography
(ECG)

Conductive
fabric-based wearable
device integrated with

the IoT,

Sewn electrodes may be prone to
loose contact with the skin during

movement, leading to signal
quality issues. In contrast,

embroidered electrodes are
seamlessly integrated into the

fabric, reducing the risk of contact
loss and improving signal quality,

especially when used in IoT
applications for continuous

monitoring. The flexibility and
customization options of

embroidery also make it a
preferred choice for wearable

technology that requires reliable
and high-quality sensor data.

Electrode comparison [35]

sEMG Conductive Hybrid
threads

Textrode embroidered onto the
sleeve and integrated with the

IoT system

Muscle type
comparison

Current
work
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4. Conclusions and Future Work

In this work, we have developed a washable textile electrode for sEMG measurement
by embroidering the conductive thread material onto a fabric substrate. The washable
electrode was placed in the sleeve and worn on three different muscle types, namely
biceps, triceps, and tibialis, to measure the sEMG during various physical activities, such
as contraction, relaxation and walking on a flat floor. The experimental results validate that
this device is able to detect all the sEMG signals precisely and attain a level of performance
comparable to the conventional gelled electrode. Detailed PCA analysis of the features
extracted from the sEMG also suggests that the variance of the gelled and textile electrodes
is not significant for different muscle types. The current study is limited to a few muscle
types and regions, and so future research efforts should be directed towards assessing more
muscle position and electrode designs that can be used to monitor the whole human body.
Finally, the integration of wearable textile sensors and IoT technology has paved the way
for revolutionary advancements in continuous electromyography (EMG) monitoring. IoT
seamlessly integrates the flexibility and comfort of wearable textile sensors with robust
connectivity. As a result, healthcare professionals and researchers are now equipped
with invaluable insights into muscle activity patterns that will facilitate personalized,
data-driven interventions, revolutionize approaches to healthcare and drive substantial
improvements in patient care.
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