
Citation: González, V.; Martín, L.;

Santana, J.R.; Sotres, P.; Lanza, J.;

Sánchez, L. Reshaping Smart Cities

through NGSI-LD Enrichment.

Sensors 2024, 24, 1858. https://

doi.org/10.3390/s24061858

Academic Editors: Pierfrancesco

Bellini, Marco Fanfani and Stefano

Bilotta

Received: 20 February 2024

Revised: 11 March 2024

Accepted: 12 March 2024

Published: 14 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Reshaping Smart Cities through NGSI-LD Enrichment
Víctor González * , Laura Martín , Juan Ramón Santana , Pablo Sotres , Jorge Lanza and Luis Sánchez *

Network Planning and Mobile Communications Laboratory, Universidad de Cantabria, 39005 Santander, Spain;
lmartin@tlmat.unican.es (L.M.); jrsantana@tlmat.unican.es (J.R.S.); psotres@tlmat.unican.es (P.S.);
jlanza@tlmat.unican.es (J.L.)
* Correspondence: vgonzalez@tlmat.unican.es (V.G.); lsanchez@tlmat.unican.es (L.S.)

Abstract: The vast amount of information stemming from the deployment of the Internet of Things and
open data portals is poised to provide significant benefits for both the private and public sectors, such
as the development of value-added services or an increase in the efficiency of public services. This is
further enhanced due to the potential of semantic information models such as NGSI-LD, which enable
the enrichment and linkage of semantic data, strengthened by the contextual information present by
definition. In this scenario, advanced data processing techniques need to be defined and developed for
the processing of harmonised datasets and data streams. Our work is based on a structured approach
that leverages the principles of linked-data modelling and semantics, as well as a data enrichment
toolchain framework developed around NGSI-LD. Within this framework, we reveal the potential for
enrichment and linkage techniques to reshape how data are exploited in smart cities, with a particular
focus on citizen-centred initiatives. Moreover, we showcase the effectiveness of these data processing
techniques through specific examples of entity transformations. The findings, which focus on improving
data comprehension and bolstering smart city advancements, set the stage for the future exploration
and refinement of the symbiosis between semantic data and smart city ecosystems.

Keywords: data enrichment; linked data; data understandability; semantic annotation; data
processing; smart cities

1. Introduction

In the current era of data-driven innovation, the increasing volume of information from
heterogeneous sources, such as Internet of Things (IoT) deployments, open data portals,
and social media platforms, provides a unique opportunity for data processing services to
generate additional value [1]. At the same time, smart cities represent a pivotal evolution
in urban life, harnessing advanced technologies to optimise infrastructure, services, and
citizen experience [2]. High-value data has the potential to unlock new insights and
increase efficiency at the core of this paradigm [3]. As cities become more interconnected,
the integration of a wide variety of data enriched by semantic technologies such as the
Next Generation Service Interfaces Linked Data (NGSI-LD) standard [4] becomes central
to the success of smart cities. These high-value datasets and data streams provide both
stakeholders and citizens with meaningful insights necessary to raise sustainability, enhance
public services, and foster a more flexible and resilient urban framework [5]. By embracing
the symbiotic relationship between smart cities and semantic data, urban habitats can
transform into state-of-the-art, citizen-focused ecosystems, where decisions based on data
push cities towards a future characterised by innovation, efficiency, and an improved
quality of life [6].

In the midst of this data-rich landscape, however, challenges remain. Firstly, the sheer
proliferation of heterogeneous data sources poses a challenge, as raw data often lack context
and the absence of a standardised approach hinders their utility [7]. The value of data lies
in their ability to create situational awareness that can be used to make optimised decisions,
especially in the context of smart cities. There must be a proper framework that enables
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interoperability among the plethora of data sources for data processing techniques to have
access to the full picture of a particular situation at a particular time (e.g., a true digital
twin). Together, interoperability and dynamic discoverability facilitate competition and
innovation, as users can effortlessly switch between data providers at their convenience [8].
Secondly, it is essential to apply semantic enrichment and linkage to supplement every data
point with significant metadata concerning its quality, provenance, value, reputation, or
limitations. Additionally, integrating knowledge with the raw information is crucial since
the ultimate users of these data are the citizens and they need the data to be previously
processed and served to them in the most natural and human-centric manner (“People
want answers, not numbers”—Steven Glaser, UC Berkeley). Addressing these challenges is
critical to realising the full potential of enriched data in the context of smart cities [9].

The focus of this article is twofold: firstly, to examine the complexities involved in
utilising the data enrichment toolchain (DET) presented in [10] as a versatile framework to
bridge the aforementioned gaps, and secondly, to analyse the implementation of several
data processing modules and the resulting high-value data. The DET acts as a catalyst for
implementing data enrichers and linkers tailored to meet the specific demands of smart cities.
These modules are designed to use the full capabilities of NGSI-LD by harmonising diverse
datasets and data streams and leveraging the semantic layer inherent to the standard. By
basing our approach on linked data with a semantic context, we create a solid foundation
that cultivates a mutually beneficial relationship between smart cities and enriched data.
The modules, attuned to the demands of smart cities, play a pivotal role in making data
more accessible and understandable. This interdependence between smart cities and data
semantics not only addresses existing challenges but also paves the way for novel services
and applications that resonate with the needs and aspirations of residents, by making data
actionable beyond laboratories and, as a result, fostering citizen engagement.

All in all, the main innovations proposed in this paper have their foundations in
the design and implementation of four data processing modules: The IoT data linker,
that establishes relationships between NGSI-LD entities that originate from the same IoT
device; the geolocation data linker, that links NGSI-LD entities to others located within a
customisable distance; the reverse geocoding data enricher, that adds valuable metadata
to NGSI-LD entities based on their location property; and the insight data enricher, that
enhances the understandability and usability of NGSI-LD entities in accordance with
well-known guidelines. Hence, the main contributions of this work in advancing the
field of smart cities and data processing consist of making data more comprehensible
and informative so that added-value services can be more easily deployed and tailored
to the actual context and requirements of citizens. In this sense, the article is not only
providing the general data enrichment framework but also specific examples that have
been developed and validated through its integration within the DET and the processing
of real smart city IoT data streams.

Returning to the aforementioned challenges that remain open, namely, interoperability,
creation of situational awareness, and semantic enrichment, the overall solution described
in this article directly addresses them. Firstly, the DET, which hosts the developed data
processing modules, is leveraging the NGSI-LD standard not only to promote semantic
interoperability through the use of a standard information model, but also to allow the
exploitation of its linked-data principles to tackle the other two challenges. On top of this,
the IoT data linker and the geolocation data linker are establishing relationships among
data items, potentially coming from heterogeneous sources, so these data items are linked
to their context (i.e., other data items). Thus, building situations out of independent but
interrelated data. Conversely, the reverse geocoding data enricher and the insight data
enricher are adding useful metadata and integrating external knowledge into the data
items. Thus, increasing the amount of information available at each of them.

The remainder of the paper is structured as follows. Section 2 provides an overview of
relevant literature on smart cities, data interoperability, and semantic enrichment. Section 3
presents the functional architecture of the DET, along with a specification of its core modules,
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with a strong emphasis on those developed within the scope of the article. Following this,
Section 4 offers a detailed account of the implementation and deployment of these data
enrichers and data linkers. The paper additionally outlines the resulting data obtained as
the output of these modules. Lastly, Section 5 serves as the conclusion of the article.

2. Related Work

In this section, we provide a brief analysis of works and initiatives pertaining to the
key concepts discussed in this article—smart cities, data interoperability enablers, and
semantic enrichment.

2.1. Smart Cities

The concept of smart cities has been thoroughly explored and defined since seminal
works such as [11,12]. The authors in [11] examine the integration of cutting-edge tech-
nologies to enhance different aspects of urban life. Similarly, Ref. [12] contributes to the
discourse by greatly expanding the concept of smart cities, the services that can be offered,
the enabling technologies and the implementation strategies. Broadly speaking, the concept
of a smart city encompasses the strategic integration of information and communication
technologies (ICT) to effectively manage and operate urban systems. Such technologies,
like data analytics, IoT deployments, and interconnected networks, collectively enable
cities to enhance sustainability, streamline governance, and improve the overall quality of
life for their residents.

Comprehensive surveys, such as [2,13,14], have been instrumental in providing an
overarching view of various smart cities around the globe, comparing their initiatives
and highlighting common trends. Furthermore, the compelling case studies illustrated
in [15–18] exemplify the implementation of smart city principles in cities worldwide. For
instance, CitySense [15] merits recognition as a pioneering deployment from as far back
as 2008, embedding devices in lamp posts in the city of Cambridge, MA. Later in 2010,
the city of Oulu deployed a testbed consisting of outdoor sensor nodes [16]. However, a
genuine deployment aimed at providing access to mobile nodes embedded in actual urban
infrastructures, allowing for more realistic mobility experiments, did not occur until the
SmartSantander project [18]. In recent years, other studies [19–23] have demonstrated
the potential of embedding technology and intelligent data-processing mechanisms for
the improvement and optimisation of different aspects of urban management. These
examples demonstrate the diverse and dynamic implementation of smart city concepts
across differing geographical and socio-cultural contexts, contributing to the evolving
narrative of urban intelligence and innovation.

Nevertheless, while the development of smart cities has undoubtedly demonstrated
transformative potential, it is crucial to recognise and address inherent limitations that over-
look different aspects related to the citizenry. As discussed in [24], certain developments in
smart city initiatives have faced challenges in effectively translating technological advances
into tangible benefits for all citizens. Using the definitions presented in [24], our article
aims to focus the effort towards the notion of smart citizens. The lack of outreach to citi-
zens is particularly pronounced for marginalised or less privileged groups, as highlighted
by [25,26]. This critical perspective points out the possibility of inadvertently excluding a
significant portion of the population when progressing the smart city paradigm, as access
to the services offered is locked behind deep technological knowledge. Overcoming these
challenges is crucial in establishing a genuinely citizen-centric smart city paradigm that
enhances the well-being of all residents.

2.2. Interoperability Enablers

The concept of data interoperability has long been a driving force in the field of informa-
tion systems. Already in 1995, the author of [27] recognised the need for it, understanding
the potential for seamless data exchange between different systems. This early recognition
formed the basis for further research towards achieving practical interoperability. Four years
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later, the authors of [28] further analysed the intricacies of data interoperability and its impor-
tance in promoting collaboration across different platforms. Although the perspectives were
forward-thinking, practical executions were yet to materialise.

The turning point came in 2006 with the emergence of the concept of linked data
and its four design principles [29], which brought a new approach to data interoperability.
Linked data introduced the idea of connecting data elements in a web of relationships,
prompting further research and development. As linked data gained popularity, the
necessity for resilient ontologies became apparent. In more recent years, surveys like [7,30]
have meticulously reviewed existing ontologies to gauge their suitability in developing
interoperable applications, particularly in the context of the Internet of Things. The work
carried out in [31] is a noteworthy effort towards advancing interoperability. It focuses on
developing an ontology for OpenADR and specifically aims to enable interoperability in
the domain of automated demand response, demonstrating the practical implementation
of ontologies in achieving seamless data exchange. The evolution of interoperability,
from visionary foresight to tangible implementations, illustrates its crucial role in modern
data-driven ecosystems.

Numerous frameworks and enablers have been proposed to achieve data interoper-
ability and address the complexities that arise in diverse data ecosystems. For instance,
Ref. [32] presents a framework that introduces a systematic approach to data enrichment.
On the other hand, the authors in [33] take an assertive stance by actively capturing and de-
livering information to facilitate dynamic interoperability with their big active data (BAD)
system. In [34], the authors make a valuable contribution to the landscape through the in-
troduction of a novel semantic virtualisation approach, which focuses on cross-domain IoT
platform sensors and places emphasis on generating interoperable data acquisition plans.
Ciavotta et al. [35] present a pipeline that prioritises performance-centric data enrichment
and demonstrates its effectiveness in managing extensive datasets and large-scale studies.

Amidst these initiatives, the DET presented in [10] emerges as a complete and in-
tegrated solution. This work offers a set of tools that effectively enables information
enrichment across various application domains. What sets the DET apart is its holistic ap-
proach, as it not only aims to provide a solid framework for heterogeneous data processing,
but also offers a complete toolchain, from the data collection phase to the data enrichment
phase, which seamlessly integrates into existing data ecosystems. This distinctive capacity
situates the DET as a leading facilitator of interoperability, accommodating a wide range of
data types and processing modules. Our work harnesses the strength of the DET, using it
as the central framework for the implementation of specialised data enrichers and linkers.
By adopting this framework, we rely on a solid, well-tested toolchain that comprises data
from heterogeneous sources (IoT deployments, open data portals, social media) and is
able to provide a standard interface with an NGSI-LD broker for both data consumption
and reinjection. This decision enables our work to build upon the strengths of the DET,
contributing to the advancement of interoperable solutions in the evolving landscape of
data-driven innovation.

2.3. Semantic Enrichers

Semantic enrichers, linkers, and annotators are essential components for enhancing
the depth and context of information within datasets or data streams, facilitating a more
nuanced comprehension. This process involves augmenting data with semantic informa-
tion, providing additional layers of meaning and relationships with other data. Different
authors have explored various paths within semantic enrichment, each tailored to certain
domains and applications.

Gutierrez et al. [36] make a contribution to the field by presenting a textual data enrich-
ment framework aimed at enabling recommender systems. Specifically designed for this
application, the approach uses natural language processing (NLP) techniques to validate
and enrich textual data, thereby improving the capabilities of recommendation algorithms.
In the domain of historic buildings, Ref. [37] concentrates on showcasing how semantic
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enrichment can effectively manage and enhance data related to architectural heritage, espe-
cially 3D models of the buildings. In [38], the authors bring data enrichment to the field of
genetics, and introduce the Semantic Annotation Platform with Provenance (SAPP), which
leverages linked data to process and analyse genome data. Mylonas et al. [39] present
a pilot project focused on the domain of viticulture, which utilises automatic metadata
enrichment to improve services and information pertinent not only to the smart agriculture
domain, but more specifically to the wine industry. On the other hand, Ref. [40] explores
the semantic enrichment of structured data, with an emphasis on utilising external semantic
knowledge sources. The application of their approach holds great potential in diverse artifi-
cial intelligence (AI) domains, which highlights how semantic enrichment can augment and
enrich data for various applications. Finally, Ref. [41] introduces a platform for developing
smart applications based on diverse data sources to support a semantically enriched data
model for effective data analysis and integration. This platform also includes a semantic
layer that takes the gathered data and represents it utilising semantic web technologies for
the annotation and linking of data, and to facilitate more accurate and meaningful analysis.
Indeed, they develop some applications focused on improving urban air quality monitoring
by utilising IoT data and applying semantic enrichment techniques, which have similar
behaviour to the data enrichment modules described in this article.

Through a range of unique perspectives and methodologies, each of these works
showcases the versatility and applicability of semantic enrichment in different domains
and contexts. However, there are two important shortcomings that we address in our work.
Firstly, while they are using proprietary semantic data models, thus creating proprietary
knowledge graphs, we have leveraged standard information modelling that improves
the interoperability of the resulting architecture. Secondly, they restrict the data semantic
enrichment to the transformation of raw data into a semantic format (RDF-based modelling),
while we also leverage the intrinsic extensibility of semantic data, through the adoption of
linked data principles, to annotate the results of data processing into the available data, so
that consumers can benefit from that processing without having to perform it themselves.

In this work, we explore several key domains that align with the challenges and
opportunities of the contemporary era of data-driven innovation. In addressing the intri-
cacies of smart cities, our linkers and enrichers stand as practical solutions rooted in the
challenges and limitations discussed in [24,25]. Within the realm of interoperability, we
chose to found our work in the framework provided by [10]. Our commitment to utilising
the complete range of interoperability capabilities motivated this decision, guaranteeing
that our linkers and enrichers function within a standardised and adaptable framework
able to homogenise data from domains of diverse nature. Entering the realm of semantic
enrichment, our approach goes beyond domain-specific boundaries. While drawing in-
sights from domain-specific data enrichers [36–40], our work spans diverse applications
and areas of knowledge. Our linkers and enrichers act as catalysts, transforming NGSI-LD
data into actionable intelligence and enhancing the symbiotic relationship between smart
cities and semantic data.

3. Architecture

In this section, the functional architecture of the DET is described, along with a thor-
ough explanation of its role as the key enabler for data enrichment and linking. Moreover,
it also expands on these two concepts and provides a high-level view of the modules
developed within the scope of this article.

3.1. Data Enrichment Toolchain

The main objective of the DET is to enable the enhancement of datasets and data
streams by way of enrichment mechanisms based on the application of linked data, seman-
tics, and AI technologies.

Figure 1 depicts the DET functional architecture and illustrates the flow of data through
different modules. The DET is composed of microservices that progressively transform and
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enhance the data. Particularly, the aim of the data enrichment phase, which is the focus
of this paper, is to improve the quality and value of the original information. In general
terms, the DET can be seen as a pipeline with a set of modules that each target an atomic
step within the overall process.

Figure 1. Functional architecture of the data enrichment toolchain (source: [10]).

The core components of the architecture, as seen in Figure 1, are the injection chain,
the context broker (one or multiple in a federation), and the enrichment chain. The injection
chain is responsible for transforming raw data into curated NGSI-LD data. The processed
data can be accessed by external applications through the context broker, which facilitates
communication, storage, and historic data management. Finally, the enrichment chain
handles the linking and enrichment of NGSI-LD data obtained through the broker. A more
detailed explanation of each step is provided below:

• Data discovery and collection modules acquire raw data from heterogeneous sources.
These may include, but are not limited to, IoT-based deployments, social media, web-
stored data, statistical catalogues, or meteorological agencies. The output of this phase
consists of the raw data collected from various data sources, which are, by definition,
heterogeneous in both type and format.

• NGSI-LD mapping modules transform the raw data into the NGSI-LD information
model, and more specifically, the resulting data are compliant with FIWARE’s smart data
models initiative [42]. The transformed data are then forwarded to the next phase.

• Data curation modules ensure that the data injected in the NGSI-LD context broker
is adequate to be processed by data processing modules. As an example, curation
may include data quality mechanisms such as outlier detection, deduplication, loss
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management, or taggers for data quality metrics (accuracy, timeliness, and so on).
These modules inject their resulting clean data into the NGSI-LD context broker.

• Entity linking modules create NGSI-LD relationships between two or more NGSI-LD
entities, regardless of their data source. This is achieved by finding and establishing
common aspects among data, whether semantic, spatial, temporal, or otherwise.
These relationships facilitate any further processing by simplifying navigation through
connected data. Once the linking process is finished, the newly linked data are injected
back into the NGSI-LD context broker.

• Entity enrichment modules generate new NGSI-LD entities or new NGSI-LD prop-
erties in existing entities. This is usually achieved by leveraging information from
external knowledge sources. These modules are typically specific to a particular do-
main and are designed with a specific application or use case in mind; however, this
is not always the case, as domain-agnostic enrichment is also a possibility. After the
enrichment process is complete, the enhanced data are injected back into the NGSI-LD
context broker.

The DET is further enhanced by several security mechanisms. The NGSI-LD con-
text broker is secured behind an OAUTH2-based schema, which enables authorisation
restrictions based on JSON Web Tokens (JWTs), and the communication is encrypted with
Transport Layer Security (TLS).

The DET used in this article is publicly available and can be found at [43].

3.2. Data Linking and Enrichment

As previously mentioned in the functional architecture of the DET, the injection chain
is aimed at harvesting, homogenising, and curating diverse data from heterogeneous
sources, but it does not provide a clear value-added service other than potentially repub-
lishing the data in a more structured manner. In a similar fashion, the NGSI-LD context
broker stores the data and manages access to the datasets and data streams, but no data
augmentation service is provided at that stage. The true value of the DET is revealed
during the enrichment chain phase, where the enrichment and linking modules represent
the culmination of the entire process by enhancing the value of the data based on their
individual focus. It is only at this point that applications accessing the augmented data are
able to reap the benefits of using the DET as their source.

Data linkers and enrichers, on the other hand, also rely on the services provided
by the rest of the DET modules in order to function properly. The most straightforward
example is the interaction with the NGSI-LD context broker; the data processing modules
obtain the data to be enhanced from an NGSI-LD interface, which has to be provided by
one such broker. Not only that, but the output of the modules (i.e., NGSI-LD enhanced
entities) also needs to be stored after the enhancement process, which is again a service
provided by the NGSI-LD context broker. Additionally, enrichment and linking modules
are usually tailored to a specific data type, or at least a data format. The enhancement
process would be a significantly more costly task were it not for the prior transformation
and curation provided by the injection chain. Working with well-known NGSI-LD data
models allows the data enhancement modules to focus on their specific tasks, avoiding the
waste of computational resources (and human effort) on tasks better suited for the modules
comprising the injection chain phase of the DET.

Overall, we believe that using the DET as an enabler for our modules is a sensible
choice. This will simultaneously increase the overall value of the toolchain and allow us to
benefit from the services provided by the previous steps. The following subsections contain
a high-level description of the data linkers and enrichers developed within the scope of
this work. These will later be instantiated as DET modules, as discussed in Section 4.

3.2.1. IoT Data Linker

The IoT data linker establishes relationships between entities that share the same
device of origin. In IoT infrastructures, sensors and devices often generate different types
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of measurements. For instance, it is not uncommon to see a device that provides both
temperature and battery status measurements. However, by default, these two entities
are not semantically linked in any way. The aim of the IoT data linker is to identify these
situations, as illustrated in Figure 2, and connect entities through an NGSI-LD relationship.

Figure 2. IoT data linker, high-level view.

The IoT data linker directly operates on data extracted from an NGSI-LD context
broker. It can retrieve batches of data by making queries through the standard inter-
face (a HyperText Transfer Protocol (HTTP) GET request to the /entities endpoint) or
subscribe to the types of data it is interested in (through an HTTP POST request to the
/subscriptions endpoint). NGSI-LD entities are processed individually, and the IoT data
linker can identify entities from the same physical device thanks to the ID scheme used
in the DET. The entity ID is structured to allow for query filters using regular expressions,
and the response will include entities whose ID matches the query. In the case of this com-
ponent, we can extract entities with the same device of origin, provided that the original
collected entities include an identification for this device. After building a list of related
entities, we insert them into an NGSI-LD relationship, creating the semantic link. Finally,
the linked NGSI-LD entity is reinjected into the NGSI-LD context broker by sending an
HTTP POST request to the /entities endpoint.

3.2.2. Geolocation Data Linker

The geolocation data linker links NGSI-LD entities to others located within a certain
distance. Typically, there is no simple way to determine which other entities are in proximity
to a given entity. The only way to achieve this is by manually checking the coordinates,
preparing the range or area, and making a series of specific requests to the NGSI-LD context
broker. The goal of the geolocation data linker is to simplify the process by automating
necessary requests and linking entities through an NGSI-LD relationship in advance, as
shown in Figure 3. This benefits various actors, including applications, linkers, enrichers,
and even users skimming the data.

Figure 3. Geolocation data linker, high-level view.
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The geolocation data linker extracts NGSI-LD entities directly from the broker by
combining queries and subscriptions, much like the IoT data linker. Each NGSI-LD entity
is processed individually. The module reads the location value of the entity and performs a
geolocation-based query to the broker, leveraging NGSI-LD geographical query capabilities.
The entity’s location serves as the centre of a circle, with the radius determined by a
configurable parameter (called distance) that can be easily adjusted. The broker responds
with a list of entities found within the specified range of the original location. This list
is then inserted into an NGSI-LD relationship within the original entity, completing the
linking process. The NGSI-LD entity is then reintroduced into the NGSI-LD context broker
by making an HTTP POST request to the /entities endpoint.

3.2.3. Reverse Geocoding Data Enricher

The reverse geocoding data enricher, shown in Figure 4, can enrich any NGSI-LD
entity that includes a location property. This property is widely used and is included by
default in all smart data models as it allows for the exact coordinates of an object or event
represented by an entity to be pinpointed. This data enricher uses the location property to
obtain precise information about the position of an entity. This information may include
the country, region, city, postal code, and/or street number, if applicable. The process of
obtaining this knowledge from a set of coordinates is known as reverse geocoding.

Figure 4. Reverse geocoding data enricher, high-level view.

To obtain these values, the reverse geocoding data enricher uses the third-party open-
source service Nominatim [44], which relies on OpenStreetMap data. This module extracts
NGSI-LD entities directly from the NGSI-LD context broker by combining queries and
subscriptions. It reads the location value of the entity and performs a reverse geocoding
request to the Nominatim application programming interface (API). This request is highly
flexible, as it is able to translate all GeoJSON geometries (i.e., Point, LineString, Polygon, and
so on). The acquired information is then used to update the address and areaServed properties
with specific country, city, state, postal code and road values, which are commonly found
in smart data models. The enriched entity, now including the new properties, is then sent
back to the broker via an HTTP POST request to the /entityOperations/upsert endpoint.

3.2.4. Insight Data Enricher

The insight data enricher, whose high-level view is shown in Figure 5, enriches specific
NGSI-LD entities based on their corresponding smart data model. Some models have
properties that include a numerical value and, if necessary, metadata such as a unit or
timestamp. Occasionally, these numerical values have a non-obvious meaning, making
them difficult for humans to understand. For example, an air quality measurement may
display an NO2 value of 67.7 with a unit code of GP. There is a high chance of this not being
understood by the average citizen.

This component adds new metadata to these types of properties to simplify the
user experience. This is achieved by implementing a sub-property with a string type
that provides a brief description of the enriched value. In the example given, the string
“dangerous” is added to the value of 67.7 to explain in simple terms that it is not a safe
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level of NO2. The thresholds that separate two adjacent levels (e.g., safe versus unsafe)
have been selected based on established and reputable sources. For instance, air quality
thresholds are based on guidelines published by the World Health Organization (e.g., [45]).
These sources are also included as metadata for traceability.

Figure 5. Insight data enricher, high-level view.

The NGSI-LD entities are extracted directly from the NGSI-LD context broker, com-
bining queries and subscriptions. Each NGSI-LD entity and eligible property is processed
individually. The value of the property is compared to pre-defined thresholds, and a new
sub-property is generated and added to the original value. The enriched entity, now includ-
ing one or more new sub-properties, is then reinjected into the broker via an HTTP POST
request to the /entityOperations/upsert endpoint. The insight data enricher currently
supports the AirQualityObserved, SoundPressureLevel, Temperature, and TrafficFlowObserved
smart data models. Within air quality entities, PM2.5, PM10, O3, NO2, SO2, and CO are
supported. Similarly, in temperature entities, both Celsius and Fahrenheit are supported.

4. Implementation and Validation

This section discusses the implementation and deployment of the modules described
in Section 3, diving into the finer details of the setup employed in the realisation of this
work. Furthermore, it provides a precise description and discussion of the experimental
results derived from the usage of these modules.

4.1. Experimental Setup

The setup envisioned for the implementation phase comprises three core elements, all
of which have been identified and described in Section 3. The deployment details of these
elements are explained below:

1. DET: This element is the key enabler of the entire process, as it collects raw data
from a smart city domain, maps them into NGSI-LD fit for the subsequent modules,
and provides a layer of data curation. The DET has been downloaded from [43] and
deployed in a Docker container within an Ubuntu 20.04.5 LTS machine (2 CPU cores,
2.40 GHz clock, 16 GB RAM).

2. NGSI-LD broker: The context broker provides both an NGSI-LD interface and storage
capabilities, including historic data management. We have selected the Scorpio
Broker [46] as it provides all the capabilities we require. The DET, in its injection chain
phase, stores the curated NGSI-LD entities in the broker, which sends a notification
to the processing modules due to NGSI-LD’s subscription/notification feature. The
Scorpio Broker is also deployed in a Docker container within an Ubuntu 20.04.5 LTS
machine (2 CPU cores, 2.40 GHz clock, 16 GB RAM), different from the one in which
the DET is located.

3. Processing modules: These modules are the linkers and enrichers presented in Sec-
tion 3.2, and they are the focus of this work. They process and enhance data prioritis-
ing smart city advancement and citizen impact, after which they reinject the newly
enhanced data into the Scorpio Broker. Each of the four components is deployed in its
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separate Docker container, all of them within an Ubuntu 20.04.5 LTS machine (2 CPU
cores, 2.40 GHz clock, 16 GB RAM). Their source code is publicly available at [47].

We have gathered data from several heterogeneous data sources in order to refine
the processing modules; however, the most relevant example for the scope of this work is
SmartSantander [18], which is an IoT infrastructure with several thousands of sensors in
the city of Santander, Spain. The data collected from SmartSantander include temperature,
air quality, and humidity measurements, among others, allowing a wide spectrum of
phenomena to be processed by our modules.

Regarding communication among components, we have used the NGSI-LD API [4],
and more specifically batch entity operations and create/update operations from the DET
to the broker, and subscription/notification operations from the broker to the enhancement
modules. The enhancement modules inject the data back into the broker via batch entity
operations and create/update operations.

4.2. Results

Each of the enhancement modules developed in this work receives an NGSI-LD entity
as an input and provides the same NGSI-LD entity as an output, enriched or linked by
leveraging the NGSI-LD API [4], in addition to internal or external knowledge sources
depending on the module. In the following subsections, we will present a sample entity
before and after being processed by each of the modules, which showcases the experimental
results that are obtained after our linking and enrichment.

4.2.1. IoT Data Linker

The IoT data linker can enhance NGSI-LD entities that originate from an IoT device. IoT
devices are typically a collection of multiple sensors (e.g., temperature, humidity, or luminos-
ity). Each of these sensors generates its own separate IoT measurement or observation, which
can potentially be hard to reintegrate after data processing due to their only commonality
being their device of origin. Figure 6 shows a complete example of a temperature entity before
and after being processed by this module. As can be seen, the IoT data linker appends a new
NGSI-LD relationship to the entity (so-called sameDevice, highlighted in orange) which links
it to those other entities originated from the same physical device. In this way, the power of
NGSI-LD relationships, which point directly to the related entity’s id, allow the user to make
much more efficient queries and permit more intuitive navigation.

Figure 6. IoT data linker entity enhancement.

4.2.2. Geolocation Data Linker

The geolocation data linker can enhance NGSI-LD entities that have a location entitoperty,
which is typically the case for most general data and especially smart city-related data, where
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the exact positioning of measurements is crucial. This module performs a set of geospatial
queries to the broker in order to extract those NGSI-LD entities within a certain range of
the entity being processed at that moment. In Figure 7, a full example of one such entity is
shown, before and after the enhancement. The Geolocation data linker adds a new NGSI-LD
relationship (so-called closeTo, highlighted in orange) that enables a direct link between NGSI-
LD entities within a parametrisable distance of the entity currently being processed. These
entities do not necessarily have to be the same type, and in fact, this linking process serves as a
useful tool to study correlation between several metrics at a given location.

Figure 7. Geolocation data linker entity enhancement.

4.2.3. Reverse Geocoding Data Enricher

The reverse geocoding data enricher, like the geolocation data linker, can enrich NGSI-
LD entities that have a location entitoperty. It serves as a facilitator for data understandability,
as its main purpose is to provide precise information about the location in human-readable
form (e.g., street address, postal code...). Figure 8 shows an example of an NGSI-LD entity
before and after the enrichment, although not all properties are shown because of length
constraints. The reverse geocoding data enricher adds a new address property based on the
location of the original entity, which is retrieved from a reverse geocoding external service.

Figure 8. Reverse geocoding data enricher entity enhancement.

It is also worth noting that, unlike the two previous examples, this entity is portrayed
in its normalized format, i.e., the type of each field (property, geoproperty, relationship...)
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is shown. We have decided to use the normalized formatting in this example, because that
way all the details can be appreciated. In the previous examples, these details were not so
critical to understand the functionality of the modules, and thus, we chose to use keyValues
formatting, which is more concise.

4.2.4. Insight Data Enricher

The insight data enricher is more domain-focused when compared with the previous
enhancement modules; it can enrich NGSI-LD entities that contain numerical properties
within a pre-defined list. The currently supported smart data model types are AirQuality-
Observed, SoundPressureLevel, Temperature, and TrafficFlowObserved. The module maps the
numerical value of relevant properties (e.g., NO2, CO2, O3...) and greatly enhances under-
standability by adding a string-typed sub-property, as can be seen in Figure 9. This figure
shows an example of an AirQualityObserved entity before and after enrichment, focusing on
a single property (no2) for clarity reasons. In this case, the sub-property concentrationLevel
provides an understandable interpretation of the numerical value, that can be complicated
to assess by a non-technical user. This sub-property contains a nested sub-property, so-
called source, which indicates the guideline used to label certain values as certain strings.
Figure 9, as Figure 8 above, also uses normalized formatting.

Figure 9. Insight data enricher entity enhancement.

The linkers and enrichers presented in this work shift traditional focus towards a more
citizen-centred approach. This is achieved by either facilitating navigation through data,
enhancing the amount of information available in every entity, or inserting new properties,
sub-properties, or relationships that enhance data understandability. From an optimisation
perspective, both data linkers reduce the number of queries required to obtain the same
information. Moreover, by using more complex NGSI-LD queries (e.g., query all entities
whose property address has a postalCode equal to “39011”, query all air quality entities
whose no2 property has a dangerous concentration level...), information can be retrieved
more efficiently by users and applications. This contribution helps not only smart cities
in general through more straightforward and efficient data management, but also allows
non-technical users (i.e., citizens) to become more familiar with smart city advancements
by understanding data and the effects smart cities can have on society as a whole.
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5. Conclusions

The data linkers and enrichers that have been presented in this work have been
designed to continue developing the smart city paradigm forward while ensuring that
citizens are not left behind, as opposed to focusing on technical users only. They leverage
the principles of linked-data modelling and semantics in their data processing. With a key
baseline consisting of a data enrichment toolchain capable of providing NGSI-LD data
from heterogeneous sources and an NGSI-LD context broker, these modules have access
to several real-world datasets and data streams that serve to experimentally validate their
functionality. In fact, the European Data Portal (EDP) hosts several datasets that have been
processed by these modules. They are readily accessible at [48].

During the development and implementation of the modules, several limitations and
challenges have arisen. Firstly, the NGSI-LD standard is subject to constant evolution,
which has resulted in backward compatibility issues when new versions are released.
This is particularly true given that NGSI-LD context brokers may implement the standard
slightly differently from the specification, leading to missing features or errors. Secondly,
finding suitable data for the validation of the modules is not a trivial task. Fortunately,
we were able to integrate our work into the DET. Nonetheless, we acknowledge that this
may pose a significant challenge for other implementations, especially if the modules are
intended to be domain-agnostic. Finally, it is worth mentioning that large volumes of data,
which are typical for IoT deployments, may incur additional considerations when it comes
to storage and processing capabilities of the hosting machines.

Overall, the semantic enrichment provided by the modules presented in this paper
leverages advanced data processing, while keeping smart city improvement as a parallel
objective. The key benefits provided include: (1) increasing the value of existing data by
providing them with meaning and understandability; (2) enabling more efficient discovery
and navigation through such data; (3) establishing links and relationships between data;
and (4) enabling non-technical users to benefit from the information that can be extracted
from technical data.

Future research in this area involves further analysis of the smart city landscape in
order to identify gaps where more enhancement modules could be developed. Most of
the identified areas are highly specialised, where more tailored modules are required. At
the same time, some of the existing modules (namely, the insight data enricher) can be
expanded to support more smart data models, metrics, and guidelines to incorporate into
the knowledge base. Additionally, the search for more data sources and frameworks in
which to integrate our modules is fostered by their full compliance with the NGSI-LD
standard. This means that any platform or framework based on an NGSI-LD context broker
will be automatically compatible with our work. This synergy could increase awareness
and impact, leading to a potential breakthrough in the field of NGSI-LD in smart cities.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
API Application programming interface
BAD Big active data
DET Data enrichment toolchain
EDP European Data Portal
HTTP HyperText Transfer Protocol
IoT Internet of Things
JSON JavaScript Object Notation
JWTs JSON Web Tokens
NGSI-LD Next Generation Service Interfaces with Linked Data
NLP Natural language processing
SAPP Semantic Annotation Platform with Provenance
TLS Transport Layer Security
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