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Abstract: We have investigated a polarization property of the (specularly) reflected light from an
aluminum grating, coated with a palladium (Pd) thin-film on its surface. The polarization property,
which is associated with surface plasmon resonance (SPR), and occurs in the Pd thin-film on the
aluminum grating in a conical mounting, is observed as a rapid change in the normalized Stokes
parameter s3, around the resonance angle, θsp, at which point, SPR occurs. The sensing technique
used the rapid change in s3 to allow us to successfully detect a small change in the complex refractive
index of the Pd thin-film layer upon exposure to hydrogen gas, with a concentration near the lower
explosion level. Experimental results showed that the sensing technique provided a sensitive and
stable response when the Pd thin-film layer was exposed to gas mixtures containing hydrogen at
concentrations of 1 to 4% (by volume) in nitrogen.

Keywords: hydrogen gas detection; palladium thin-film; surface plasmon resonance (SPR); aluminum
diffraction grating; conical mounting; Stokes parameters

1. Introduction

Hydrogen has attracted much attention as a clean, sustainable, and abundant energy
source. However, hydrogen is a flammable gas and becomes explosive when its concentration
exceeds 4% (in terms of volume) in air (the lower explosive limit, LEL). Therefore, the use of
hydrogen, including its production, storage, and transportation, involves the risk of explosion.
For this reason, sensors for monitoring hydrogen concentration, or detecting hydrogen leaks,
are indispensable, and various types of hydrogen sensors have been actively developed [1].

Among hydrogen sensors, optical approaches including fiber optics have promising
advantages, such as the ability to operate in explosive environments due to electrical iso-
lation and immunity from electromagnetic interference [2,3]. Surface plasmon resonance
(SPR) sensors, which are a type of optical hydrogen sensor, have been studied for a sig-
nificant period of time [4]. SPR sensors are associated with the excitation of propagating
surface plasmons, along a metal–dielectric interface, using an optical beam [5]. As the
occurrence conditions of SPR strongly depend on the refractive index of the dielectric and
the complex refractive index of the metal, SPR has been used for refractive index sensing
in various fields, including gas detection [6,7]. There have been a large number of reports
concerning the application of SPR sensors to hydrogen gas detection. The SPR sensors
are mainly classified into three types, based on couplers, to excite propagating surface
plasmons [7], prism couplers, optical waveguide couplers, and grating couplers. An SPR
sensor with a glass prism (Kretschmann–Raether configuration), upon which, a palladium
(Pd) layer is deposited, was for the first time proposed for the detection of hydrogen gas
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by Chadwick and Gal [8]. Then, a prism coupler type SPR sensor (Otto configuration)
was reported, within which, a glass prism was constructed with an intermediate layer
of silica and a sensing layer of Pd on top [9]. As SPR hydrogen sensors with a waveg-
uide coupler, a channel waveguide [10], and an optical fiber [11] were proposed, within
which, a thin Pd film was coated on a portion of the core, from which, the cladding was
then removed. Furthermore, various types of optical fiber hydrogen sensors [3], such as
multimode fibers [11,12], fiber gratings [13], and tapered fibers [14], have been actively de-
veloped, owing to their potential for remote and multiplex sensing [15]. A metal diffraction
grating, coated with a thin Pd film on its surface, has been proposed as a hydrogen SPR
sensor [16]. SPR hydrogen sensors are based on a technology that integrates refractive index
sensing with hydrogen sensitive materials such as Pd [3]. Hydrogen sensitive materials
that sensitively, selectively, and quickly convert the absorption or adsorption of hydrogen
into a change in their own refractive index have been extensively studied as transducers
in the following SPR hydrogen sensors [3,17]: Pd alloys [18,19], multilayers including a
Pd layer [12,20], Pd composite films [21], Pd nanofilms on photonic crystal [22], etc. Fur-
thermore, an accurate and simple technique for detecting the change in optical properties,
caused by the exposure of a hydrogen sensitive material to hydrogen gas, could be essential
for the practical application of SPR hydrogen sensors. This requires the development of a
measurement technique to accurately detect minute changes in the (complex) refractive
index of a hydrogen sensitive material with a straightforward optical configuration, based
on SPR sensing [16].

Here, we discuss an efficient technique that allowed us to detect small changes in the
complex refractive index of a Pd thin-film upon exposure to hydrogen gas by using SPR in a
metal gating. Given that we examined a hydrogen gas detector, we considered an aluminum
diffraction grating, coated with a Pd thin-film on its surface. The Pd thin-film layer serves two
purposes [10]: it provides a coupler to excite surface plasmons and a transducer to convert
hydrogen exposure into a change in its own complex refractive index. Thus, SPR occurring
in the Pd thin-film coated aluminum grating includes the information of a small change in
the complex refractive index of the Pd thin-film layer due to hydrogen gas exposure. To
accurately and efficiently detect the complex refractive index change in the Pd thin film
layer, we applied an SPR sensing technique that uses a polarization property of (specularly)
light reflected from a metal grating [23]. Regarding this sensing technique, a metal grating
is arranged in a conical mounting, where the plane of incidence is not perpendicular to its
grooves [24,25]; then, the normalized Stokes parameter, s3, of the reflected light (which means
that the intensity difference between the right- and left-circularly polarized components) is
measured. When a metal grating in a conical mounting is illuminated with TM (p)-polarized
light whose electric field is parallel to the plane of incidence, s3 rapidly changes with the
angle of incidence around the resonance angle θsp, at which point, SPR occurs. The rapid
change in s3 results in the following interesting features of refractive index sensing: θsp is
determined as the zero-crossing point on the s3 curve (incident angle dependence of s3), and
a small change in the refractive index of a sample is detected by measuring s3 under the
fixed angle of incidence, which is θsp. The effectiveness of the SPR sensing technique, using
the rapid change in s3, has been demonstrated by experiments comprising the following:
detection of the refractive index difference among gaseous samples, including H2, O2, N2,
and CO2 [23], and ethanol concentration measurements of ethanol–water solutions [26]. In
these experiments, the variations in a real refractive index were detected using an aluminum
grating in a conical mounting.

In this study, we deposited an approximately 50 nm thick Pd thin-film on the surface
of a commercially available aluminum grating, with a groove density of 2400 lines/mm.
Then, we investigated the polarization property of the reflected light from the Pd thin-
film coated aluminum grating in a conical mounting when TM-polarized light, with a
wavelength of 672 nm, illuminated it. As a result, we revealed a rapid change in s3, with
a steep slope of around θsp, which is associated with the sharp SPR occurring in the Pd
thin-film layer. Notably, the steep slope where the rapid change in s3 occurs makes a small
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change in the complex refractive index of the Pd thin-film layer significantly vary s3 in
the vicinity of θsp. Therefore, measuring the variation in s3 allowed us to detect hydrogen
gas near the LEL. We experimentally showed that the SPR sensing technique, measuring
the variation in s3, sensitively and stably, detected a gas mixture of hydrogen with a 4%
(by volume) concentration in nitrogen, and provided a good response to the change in
hydrogen concentration, with 1 to 4% of nitrogen.

2. Preparation for Experiments
2.1. Pd Thin-Film Coated Aluminum Grating

We examined a metal diffraction grating coated with a Pd thin-film which served as a
coupler to excite surface plasmons and a transducer to convert hydrogen exposure to a change
in its complex refractive index. We have observed that UV holographic aluminum gratings
from Edmund Optics, Inc., Tokyo, Japan which have a shallow groove depth of several tens of
nanometers, exhibit sharp SPR characteristics [23,26]. In this study, we used a UV holographic
aluminum grating, with a groove density of 2400 lines/mm (Edmund Optics, Inc., stock no.
43776), as a metal diffraction grating, and we coated its surface with a Pd thin-film. We carried
out a computer simulation to investigate the polarization property of the reflected light from
the holographic aluminum grating coated with a Pd thin-film layer (Figure A1 in Appendix A).
As a result, we estimated that the Pd thin-film thickness should be approximately 45 nm as it
provides a sharp SPR that can be used for hydrogen detection.

We deposited a Pd thin-film on a half portion of the surface of the holographic alu-
minum grating with an Nd-YAG pulsed laser deposition (PLD) system (Pascal Co., Ltd.,
Osaka, Japan, PLD-system). The conditions of the PLD were as follows: lamp power of 29 J
and a pulsed laser energy density of 80 mJ/cm2; wavelength of 266nm; pulse width of less
than 2 ns; pulse repetition rate of 10 Hz; deposition rate of 15 Å/min; deposition time of
30 min. As shown in Figure 1a, the upper portion of the grating surface coated with the
Pd thin-film is referred to as the “Pd-deposited portion”. The lower portion, where a Pd
thin film was not deposited, owing to masking in the deposition process, is referred to as
the “bare Al portion”. We observed the surface of the holographic aluminum grating was
coated with the Pd thin-film. Figure 1b shows the SEM images of the Pd- deposited portion
and the bare Al portion, which were measured using a scanning electron microscope (JEOL,
Tokyo, Japan, JSM-7001F). The SEM images indicate that the periodic structures in the
Pd-deposited portion are almost the same as those in the bare Al portion. We then exam-
ined the distribution of Pd and Al (aluminum) elements in the Pd-deposited portion with
Energy Dispersive X-ray Spectroscopy (EDS) analysis. In the EDS maps shown in Figure 1c,
Pd is observed to be uniformly distributed in the Pd-deposited portion, whereas Al is
attributed to the aluminum grating under the Pd thin-film. We examined the top surface of
the Pd-deposited portion with an atomic force microscope (AFM) (SII Nano Technology
Inc., Chiba, Japan, NanoNavi E-sweep). As shown in Figure 1d, the AFM image illustrates
the periodic structures, with periods of around 400 nm and a corrugation depth of about
70 nm. Finally, we measured the step difference amount between the Pd-deposited portion
and the bare Al portion with a surface stylus profiler (Bruker, Yokohama, Japan, Dektak
XT). In Figure 1e, the difference between the average height measured in the Pd-deposited
region (xPd) and that of the bare Al region (xAl) was ∆z = 51.1 nm, and thus, we estimated
the (average) thickness of the Pd thin-film layer to be e = 50 nm. Prominent signals in the
measured data were considered to be due to cracks on the top surface of the Pd thin-film.
In light of the above, the periodic structures of the Pd thin-film were thus fabricated on the
holographic aluminum grating.

Here, we note that SPR occurs in the bare Al portion and in the Pd-deposited portion
of the aluminum grating. Figure 2 illustrates the cross-sections of the bare Al portion and
the Pd-deposited portion which were exposed to hydrogen gas in air. Surface plasmons in
the bare Al portion are excited along the surface of the aluminum grating, and the resultant
SPR depends on the refractive index of the upper region of the bare Al portion, n, and
the complex refractive index of Al, nAl. When the bare Al portion is exposed to hydrogen
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gas, a significant change in the behavior of the SPR does not appear because the refractive
index of hydrogen gas is close to that of air and the complex refractive index of Al is largely
unaffected due to hydrogen gas exposure. On the other hand, SPR in the Pd-deposited
portion is caused by the excitation of surface plasmons, supported by the Pd thin-film
layer, if its thickness e is thick (for instance, 50 nm). When exposed to hydrogen gas, the Pd
thin-film layer selectively absorbs hydrogen as a hydrogen sensitivity material, resulting in
a change in the complex refractive index of the Pd thin-film layer nPd [11,17]. Therefore,
SPR in the Pd-deposited portion is significantly affected by hydrogen gas exposure.
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Figure 1. Deposition of Pd thin-film on the upper half of the surface of the aluminum grating.
(a) Appearance of Pd thin-film coated aluminum grating; (b) top-view SEM images of Pd-deposited
portion and bare Al portion; (c) EDS maps of Pd and Al in the Pd-deposited portion; (d) AFM image
of the Pd-deposited portion; and (e) step difference measurement between the Pd-deposited portion
and bare Al portion.
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Figure 2. Cross sections of (a) the bare Al portion, (b) the Pd-deposited portion on the aluminum
grating, and the surface plasmons (SP) excited in each portion.

2.2. Optical Configuration and Experimental Setup

Figure 3 illustrates the optical configuration to investigate the polarization property
of the reflected light from the bare Al portion or the Pd-deposited portion described in
Section 2.1. The aluminum grating is periodic, with a period of d = 417 nm in the X
direction, its grooves are parallel to the Y direction, and the grating normal lies in the
Z direction. The aluminum grating is arranged in a conical mounting where the angle
between the plane of incidence and the X axis is denoted by the azimuthal angle, ϕ. The
front area of the grating surface is filled with the gas sample, with a refractive index of
n. As a light source, we used a laser diode (LD) module (Edmund Optics Inc., Stock
#38-922) with a continuous-wave beam, with a wavelength of λ = 672 nm, and power of
3 mW. The output light from the LD module becomes TM polarized after passing through
a linear polarizer (LP), the transmission axis of which is parallel to the plane of incidence.
The TM-polarized light illuminates d the surface of the aluminum grating at the angle
of incidence θi, which is measured from the Z axis. By moving the light-source part and
light-receiving part up and down simultaneously, the incident light illuminates either the
bare Al portion or the Pd-deposited portion, and the reflected light is then received by a
polarization analyzer.
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Figure 3. Pd thin-film coated aluminum grating in a conical mounting and optical configuration for
hydrogen gas detection.

SPR in a metal grating, in a conical mounting, has been studied [27–32], and it has
interesting features for refractive index sensing [25,28,31,32]. In particular, the polarization
property of the reflected light associated with SPR is attractive [23]. When the TM-polarized
light is incidental on either the Pd-deposited portion or the bare Al portion on the aluminum
grating in the conical mounting, TM and TE components appear in the diffracted light.
Here, TM and TE mean that the relevant magnetic and electric fields are transverse to
the Z axis, respectively. The reflected light from the Pd-deposited portion or the bare Al
portion includes the TM- and TE-components; then, it becomes elliptically polarized in
general for the TM-polarized incidence. To examine the polarization state of the reflected
light, we measured its Stokes parameters S0 to S3 with a polarimeter (Thorlabs Inc., Tokyo,
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Japan, PAX1000VIS). As a quantity for detecting hydrogen gas, we employed the Stokes
parameter that was normalized by the intensity of the reflected light I(= S0):

s3 =
S3

I
= 2

ETE
r /ETM

r

1 + (ETE
r /ETM

r )
2 sin δ. (1)

Here, ETM
r and ETE

r are the amplitudes of the TM and TE components of the electric field of
the reflected light, respectively, and δ = δTE − δTM is the phase difference between them.
The normalized Stokes parameter s3, which indicates the difference in intensity between the
right- and left-circularly polarized components, varies from 1 (right-circular polarization)
to −1 (left-circular polarization) via 0 (linear polarization). We also evaluated the phase
difference δ and the amplitude ratio ETE

r /ETM
r from the measured Stokes parameters S0 to

S3 to examine the polarization property associated with SPR from the behavior of the TM
and TE components of the reflected light.

In this study, we examined SPR occurring in the Pd-deposited portion, or in the bare
Al portion, of the aluminum grating when the reflected light (or the zeroth-order diffracted
mode) only propagates, and when the TM component of the −1st-order evanescent mode
in the diffracted light couples with surface plasmons. In the optical configuration shown in
Figure 3, the zeroth-order diffracted mode is propagated, and all other diffracted modes
are evanescent when the following relation is satisfied for m = −1 [31]:

α̂2
m + β̂2 > n2, (2)

where α̂m = nsin θicos ϕ + m λ
d and β̂ = nsin θisin ϕ are the propagation constants in the

X and Y directions of the mth-order evanescent mode that are normalized by the wave
number of the incidental light, respectively. We chose the grating period, d = 417 nm,
and the wavelength of incidental light, λ = 672 nm, in the experimental setup so that
Equation (2) was satisfied.

SPR in a metal grating occurs when a phase matching condition for the coupling of
the TM component, of an evanescent mode, in diffracted light with surface plasmons, is
satisfied; that is, the wave vector of the evanescent mode coincides with that of the surface
plasmon wave [33]. The phase matching condition for the coupling of the −1st-order
evanescent mode with the surface plasmon wave is expressed as follows [31]:(

Re
[
k̂sp

])2
= α̂2

−1 + β̂2. (3)

Here, k̂sp is the propagation constant of the surface plasmon wave normalized by the
wave number of the incidental light, and Re[] denotes a real part of the complex number.
Equation (3) indicates that the occurrence of SPR is determined by k̂sp, the angle of incidence,
θ, and the azimuthal angle, ϕ, as the wavelength of the incidental light λ(= 672 nm) and
the grating period d(= 417 nm) are kept constant, as shown in the optical configuration in
Figure 3. When the thickness of the Pd thin-film is thick (for instance, 50 nm), k̂sp in the
Pd-deposited portion is approximated using the following equation [5]:

k̂sp =
nnPd√

n2 + n2
Pd

. (4)

Equations (3) and (4) estimate the effect of nPd on the behavior of SPR in the Pd thin-film
coated aluminum grating in a conical mounting.

Figure 4 shows an experimental setup which investigated the polarization property of
the reflected light from the bare Al portion or the Pd-deposited portion on the aluminum
grating. The aluminum grating was arranged in the chamber so that it could be rotated
about its central axis to set the azimuthal angle ϕ with a motorized rotation stage (ST1).
The incidental light illuminated either the bare Al portion or the Pd-deposited portion
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through a glass window of the chamber, and the reflected light was then received by the
polarimeter after passing through the glass window. We varied the angle of incidence on
the grating surface θi (illustrated in Figure 1) with the theta-2 theta scan. The chamber
and the incidental light, respectively, were rotated by θ and 2θ, and two of the motorized
rotation stages (ST2 and ST3) had the same rotation axis. The relationship between θi and θ
is given by Snell’s law as nairsin θ = nsin θi, with nair and n as refractive indices of an air
and gas sample, respectively. We therefore refer to θ as the angle of incidence hereinafter. A
gas sample was injected into the chamber through a tube from a gas cylinder, and the gas
on the chamber was dissipated into the atmosphere.
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3. Experimental Results and Discussion

We report the experimental results obtained with the experimental setup stated above.
The experimental results show that the polarization property of the reflected light associated
with SPR in the Pd-deposited portion of the aluminum grating could be available when
detecting hydrogen gas of a concentration near the LEL. The experiment was performed in
a laboratory, at room temperature, and under atmospheric pressure conditions.

3.1. Polarization Property of SPR in Pd-Deposited Portion

We investigated the polarization property of the reflected light associated with SPR
occurring in the bare Al portion and in the Pd-deposited portion when a gas sample
comprised air. Figure 5a,b show the I and s3 of the reflected light from the bare Al portion
and the Pd-deposited portion of the aluminum grating, with the azimuthal angle set to
ϕ = 20◦, when θ varied between 30◦ and 44◦. The cut-off for the −1st-order diffracted
mode is denoted by θ−1 = 41.72◦ in Figure 5, and the zeroth-order diffracted mode only
propagates and the other diffracted modes are evanescent in the range of θ to less than θ−1.
The I and s3 curves of the reflected light from the bare Al portion show the occurrence of
SPR at θAl = 39.19◦, which is the zero-crossing point of s3. The I curve shows the partial
absorption of the incidental light as a dip in the vicinity of θAl, and s3 rapidly fluctuates
between a positive maximum value and a negative minimum value via zero at θAl. The
rapid change in s3, as well as the absorption dip of I, is caused by the occurrence of SPR [23].
The SPR of θAl = 39.10◦ in the bare Al portion is associated with the coupling of the TM
component in the −1st-order evanescent mode with the surface plasmon wave propagating
along the surface of the aluminum grating [33]. Next, we describe SPR occurring in the Pd-
deposited portion. The I and s3 curves of the reflected light from the Pd-deposited portion
show the occurrence of SPR at θPd = 38.80◦ as the rapid change in s3 and the absorption
dip of I occur. Note that s3 fluctuates more rapidly from 1 to −1 via 0 at θPd, and the rapid
change in s3 has a steeper slope around θPd. SPR in the Pd-deposited portion is caused
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by the coupling of the TM component of the −1st-order diffracted evanescent mode with
the surface plasmon wave, which is supported by the Pd thin-film layer. Therefore, the
occurrence of SPR in the Pd-deposited portion depends on the complex refractive index of
the Pd thin-film layer, as expected from Equation (4).
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The rapid change in s3, with the steep slope observed in the Pd-deposited portion,
has useful features for detecting a small change in the complex refractive index of the Pd
thin-film layer. First, θsp is determined as the zero-crossing point on the s3 curve. The zero-
crossing point detection of θsp can be accurately and easily implemented, regardless of the
sharpness of SPR, such as when the absorption dip in a reflectance curve is small or broad
and shallow. Next, the steep slope of the rapid change in s3, in the vicinity of θsp, causes a
large variation in s3, in response to a small change in the complex refractive index of the
Pd thin-film layer. Therefore, a small change in the refractive index of a sensing sample
can be detected by measuring s3 under a fixed angle of incidence at θsp. The measurement
of s3, which is the intensity difference between the right- and left-circularly polarized
components, may be implemented with a simple measuring device, as the reflected light is
a monochromatic light with a high degree of polarization.

Here, we describe the occurrence process of the rapid change in s3 through the behavior
of the TE- and TM-components of the reflected light when SPR occurs in the Pd-deposited
portion. This will facilitate a clear understanding of the effectiveness of the SPR sensing
technique using the rapid change in s3 with the steep slope. Figure 6 shows the δ and
ETE

r /ETM
r curves which correspond to SPR in Figure 5b. With SPR, regarding the bare Al

portion, δ varies from 90◦ to 270◦ via 180◦ at θAl; at the same time, ETE
r /ETM

r increases in
the vicinity of θAl. Both the phase shift of δ [34] and the increase in ETE

r /ETM
r [25] result in a

rapid change in s3 at around θAl [23]. With SPR in the Pd-deposited portion, δ very rapidly
fluctuates from 90◦ to 270◦ at θPd. In addition, ETE

r /ETM
r sharply increases in the vicinity of

θPd due to the elimination of ETM
r , which is caused by the almost total absorption of the

TM component of the incidental light by SPR. Thus, the steep slope of the rapid change in
s3, in the Pd-deposited portion, is caused by the rapid phase shift of δ and a sharp increase
in ETE

r /ETM
r ; these are largely affected by a change in the occurrence conditions of SPR in

the Pd-deposited portion layer.
The azimuthal angle in a conical mounting ϕ has an effect on the behavior of the rapid

change in s3. Figure 7 shows the s3 curves of the reflected light from the Pd-deposited
portion for ϕ = 0◦, 10◦, 15◦, and 25◦, in addition to that for ϕ = 20◦, as shown in Figure 5b.
We set the azimuthal angle ϕ as 0◦, at which point, the s3 curve becomes zero, except for
a slight variation in the vicinity of the resonance angle. Then, we chose the ϕ that gave
the steeper slope for the rapid change in s3, and which, at the same time, caused s3 to
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vary over a wider range. The slope of the s3 curve in the vicinity of the resonance angle
is related to the sharpness of SPR [23], which affects the sensitivity of the refractive index
measurement. In Figure 7, the rapid change in s3 for ϕ = 20◦ produces a steep slope around
the resonance angle, and the s3 fluctuates across a whole range from +1 to −1. Therefore,
we used ϕ = 20◦ as the azimuthal angle in the following experiments.
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3.2. Hydrogen Gas Detection Using Rapid Change in s3

We applied a rapid change in s3 with the steep slope, which was observed in the Pd
deposited portion of the aluminum grating in the conical mounting, at ϕ = 20◦, to the
detection of hydrogen gas. Sample gases comprised mixtures of hydrogen and nitrogen,
and they are denoted by H2(C); the concentrations of hydrogen in nitrogen were C = 1, 2, 3,
or 4% (in accordance with volume). Each sample gas H2(C) was injected into the chamber
with a flow rate of 2 L/min, through a tube, from a gas cylinder regulator. The volume of
the chamber was approximately 2 mL. The experiment was performed at a temperature of
15.6 ◦C, the humidity was 40%, and the atmospheric pressure was 1009.3 hPa.

3.2.1. Effect of Hydrogen Gas Exposure on Rapid Change in s3

We examine the polarization property of the reflected light associated with SPR when
the Pd-deposited portion, or the bare Al portion, is exposed to H2(4%). Figure 8 shows
the s3 curves for air and H2(4%) in the bare Al portion. The s3 curve for H2(4%) is
almost identical to that for air, with a very slight difference around their resonance angles.
Therefore, it was difficult to detect hydrogen gas with a concentration near the LEL (for
instance, H2(4%)) using the rapid change in s3 in the bare Al portion. Next, we describe
the effect of the exposure of the Pd thin-film layer to H2(4%) on the polarization property
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associated with SPR. Figure 9a shows the shift in the s3 curve near the resonance angle
due to H2(4%) exposure, and Figure 9b clearly illustrates the difference between the rapid
change in s3 for H2(4%) and air. The difference between the rapid change in s3, which
was caused by the change in the complex refractive index of the Pd thin-film layer upon
exposure to H2(4%), is explained with the resonance properties of δ and ETE

r /ETM
r , which

are associated with SPR. As shown in Figure 9c,d, δ for H2(4%) fluctuates from 90◦ to
−90◦ via 0◦, whereas δ for air fluctuates from 90◦ to 270◦ via 180◦, and the peak value of
ETE

r /ETM
r for H2(4%) is larger than that for air. Thus, the exposure of the Pd thin-film layer

to H2(4%) has a significant effect on the 180◦ phase shift of δ and the increase in ETE
r /ETM

r ,
resulting in the significant shift in the rapid change in s3.
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Here, we describe an efficient technique to detect hydrogen gas using the rapid change
in s3, as observed in the Pd-deposited portion. With SPR sensing, the resonance angle
is typically measured to detect a change in the refractive index of a sample. However,
as estimated in Figure 9b, the variation in θPd is small for a change in hydrogen gas
concentration near the LEL. This required a precise angle measurement to detect a variation
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in θPd. An alternative technique for measuring such a small variation in θPd has been
proposed [23], which utilizes the approximate linearity of the rapid change in s3 around
θair

Pd. If a gas sample changes from air to H2(4%) under the angle of incidence fixed at θair
Pd,

s3 then fluctuates from 0 to sH2
3 , as illustrated by the arrow in Figure 9b. Therefore, we

can detect hydrogen gas with concentrations within the range of 0 to 4% in nitrogen by
measuring s3 at θ = θair

Pd.

3.2.2. Variation in s3 Due to Hydrogen Gas Exposure

Using the SPR sensing technique measuring s3, as stated above, we carried out experi-
ments to detect gas mixtures containing 1 to 4% hydrogen in nitrogen. We first determined
the resonance angle θair

Pd from the s3 curve for air, and then fixed the angle of incidence θ at
θair

Pd. The state where the chamber is filled with air, and θ is fixed at θair
Pd, is referred to as the

initial state.
Figure 10 shows the time response of s3 when the injection of H2(4%) into the chamber

started at t = 13 s (point A on the figure) in the initial state and stopped at t = 83 s (point B).
In Figure 10, the response value reaches −0.5, which is close to sH2

3 (see Figure 9b), and the
response time is TA = 5.5 s. We used the response time, TA, which was defined as the time
necessary for the response to vary from the initial state to 90% of the total change [14]. After
the shutdown of B, the H2(4%) remaining in the chamber dissipated into the atmosphere,
and s3 returned to its initial state (air) in 75 s. If the H2(4%) in the chamber is removed
more quickly, s3 returns to the initial state more quickly. Figure 11 shows that s3 returned
to its initial state in 12 s from the shutdown (point C on the figure), when H2(4%) was
exhausted with a pump. Figure 12 shows the time response of s3 when the injection and
dissipation of H2(4%) was repeated four times in succession. H2(4%) was injected into
the chamber at A1 to A4 (shown in the figure) and H2(4%) in the chamber dissipated into
the atmosphere after the shutdown of B1 to B4. The time response of s3 indicates good
repeatability for the successive exposure of the Pd-deposited portion to H2(4%).
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Figure 10. Time response of s3 in the Pd-deposition portion for H2(4%) exposure when θ is fixed at
θair

Pd. Injection of H2(4%) into chamber started at t = 13 s (point A) in its initial state and it stopped at
t = 83 s (point B). After the shutdown of B, H2(4%) in the chamber dissipated into atmosphere.

We examined the response of s3 to four hydrogen gases, with different concentrations
in nitrogen, H2(C) C = 1, 2, 3, and 4%. Figure 13 shows the time responses of s3 when
each H2(C) was injected into the chamber at point A in the initial state, and the inset plots
the value of s3 at t = 65 s, as a time response, as a function of C. The response value
fluctuates significantly, reaching up to nearly 2%, but it fluctuates slowly above that level.
This behavior, caused by the response to hydrogen gas concentration, which has been
reported in the literature [9,11,14,35,36], is explained by the crystallographic phases of
the palladium–hydrogen system in references [11,35]. Moreover, the time taken for s3 to
stabilize increases as C decreases [11].
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Figure 11. Recovery of s3 to its initial state when the injection of H2(4%) stopped at t = 80 s (point C);
immediately, the H2(4%) in chamber was exhausted with the pump. It took 12 s from C to the
stabilization of s3.
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3.2.3. Discussion

As stated above, the SPR sensing technique, using the rapid change in s3, in the
Pd-deposited portion, provides a sensitive and stable response to the exposure of the Pd
thin-film layer to gas mixtures containing hydrogen, at concentrations from 1 to 4%, in
nitrogen. This demonstrates that the SPR sensing technique enables the detection of a
small change in the complex refractive index of the Pd thin-film layer, which is caused by
exposure to hydrogen gas. Therefore, the SPR sensing technique can be used to investigate
the optical properties of a Pd thin-film layer exposed to hydrogen gas, with a concentration
near the LEL.

However, there are some issues regarding the application of the SPR sensing technique,
using the rapid change in s3, to hydrogen sensors. The reduction in the recovery time,
observed in Figure 11, is necessary for its application to hydrogen SPR sensors, in addition
to improving the response time delay with a reduction in hydrogen gas concentration. Al-
loying Pd with gold [19], or creating multilayered structures such as Au/SiO2/Pd [12], may
be effective in improving reaction and recovery times. Moreover, we observed a reduction
in the response value of s3, and a delay in response time regarding the experiments that
were conducted after the Pd-deposited portion was repeatedly exposed to hydrogen gas.
This suggests the degradation of the hydrogen detection performance of the Pd thin-film
layer due to the mechanical damage of Pd upon exposure to hydrogen. Pd is susceptible to
cracking, blistering, and delamination upon repeated exposure to hydrogen [17,37], and
countermeasures to prevent mechanical damage (e.g., alloying of Pd with nickel [18] and
gold [19] and capping of Pd with a gold layer [36]) have been reported. The SPR sensing
technique, using the rapid change in s3, may be available for hydrogen sensitive materials
other than a Pd thin-film, such as Pd alloy/composite films [18,19,21] and multilayer films,
including a Pd thin-film [12,36], which improve the performance of hydrogen gas detection.

4. Conclusions

We have investigated an efficient technique for detecting a small change in the complex
refractive index of the Pd thin-film layer coated on the surface of an aluminum grating
in a conical mounting. As a result, we revealed a rapid change in s3, with a steep slope
around the resonance angle, θsp, at which point, SPR occurs in the Pd thin-film layer.
The rapid change in s3 results from both a variation in the phase and amplitude of the
reflected light, which are strongly affected by SPR (i.e., a rapid phase shift in δ and a sharp
increase in ETE

r / ETM
r

)
. Therefore, the SPR sensing technique, using a rapid change in s3,

successfully detects hydrogen gas with a concentration near the LEL; s3 in the vicinity of
θPd fluctuates significantly in response to a small change in the complex refractive index of
the Pd thin-film layer upon exposure to the hydrogen gas.

As the polarization property associated with SPR occurs in the Pd thin-film coated alu-
minum grating, we investigated the rapid change in s3 when the angle of incidence is varied
at the fixed wavelength. Similarly, we predict that s3 will change rapidly at the resonance
wavelength at which SPR occurs, when the wavelength is varied at the fixed angle of incidence.
The rapid change in s3 around the resonance wavelength is a topic for future research.
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Appendix A

SPR in a metal grating, in a conical mounting, is numerically analyzed by solving the
problem of plane–wave diffraction in a metal grating [31]. Using the numerical algorithm
described in [31], we can simulate the polarization states of the reflected light from the
Pd thin-film coated aluminum grating, as formulated in Section 2.2. The parameters
required for the computer simulation concern information about the incidental light, the
complex refractive indices of aluminum and Pd comprising the Pd-coated aluminum
grating, and the profile of the Pd thin-film. For simplicity, we approximated the profiles
of the upper and lower boundaries of the Pd thin-film using the same sinusoid with a
corrugation depth of H = 70 nm, and a period of d = 417 nm, which is calculated using
the groove density, at 2400 lines/mm. The incidental light used was a TM-polarized
plane–wave with a wavelength of λ = 672 nm. We used nAl = 1.7116 − j7.9108 [38,39] and
nPd = 1.9007 − j4.3864 [38,40], respectively, as the complex refractive indices of aluminum
and Pd at λ = 672 nm.

Figure A1 shows the reflectance r and normalized Stokes parameter s3 of the reflected
light from the Pd thin-film coated aluminum grating, with different Pd thin-film thicknesses
e when the angle of incidence θ fluctuated under the azimuthal angle, which was fixed
at ϕ = 20◦. The r and s3 curves for e = 0 nm corresponded with the bare aluminum
grating; this highlights that the occurrence of SPR is associated with the excitation of
surface plasmons along the surface of the aluminum grating in the conical mounting, due
to the absorption dip in r and the rapid change in s3 [23]. As e increases, SPR shifts to
a lower incident angle side, with an increase in the peak-to-peak value of the s3 curve,
but above 45 nm (approximately), the SPR property becomes almost the same as that of
the bare Pd grating. The increase in the peak-to-peak value suggests that the coupling
between the incidental light and surface plasmons becomes stronger. The rapid change in
s3 for e = 45 nm has a steep slope associated with sharp SPR, which can be available in
hydrogen gas detection. Therefore, we numerically estimated 45 nm (approximately) as the
Pd thin-film thickness to be coated on the aluminum grating.

To confirm the validity of the computer simulation, we compared the numerical result
for the Pd thin-film coated aluminum grating with the experimental result in Figure A2.
The experimental result is the s3 curve for the Pd-deposited portion, shown in Figure 5b,
and the numerical result was calculated from the same parameters as in Figure A1, except
for e = 50 nm and D = 420 nm. We used D as 420 nm to match the cutoff of the −1st-
order diffracted mode between the experimental and the numerical results. The numerical
result shows the characteristics of the rapid change in s3 well, which were obtained by the
experiment, except for the slight deviation in the resonance angle.
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Figure A1. Numerical results concerning the effect of the Pd thin-film thickness on SPR properties.
(a) Reflectance r and (b) Stokes parameter s3 of the reflected light on the Pd thin-film coated aluminum
grating with different thicknesses, e = 0 (bareAlgrating), 10, 20, 30, 40, or 45 nm.
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