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Abstract: Aero engines are the key power source for aerospace vehicles. Cermet turbine blades are
the guarantee for the new-generation fighters to improve aero-engine overall performance. X-ray
non-destructive reconstruction can obtain the internal structure and morphology of cermet turbine
blades. However, the beam hardening effect causes artifacts in objects and affects the reconstruction
quality, which is an issue that needs to be solved urgently. This study proposes a hardening-correction
framework for industrial computed tomography (ICT) images based on iterative linear fitting. First,
an iterative binarization was performed to improve the penetration length accuracy of the forward
projection. Then, the proposed linear fitting technology combined with the Hermite function model
is derived and analyzed to obtain suitable parameters of blade data. Finally, the fitting curves of the
blade data, using the proposed method and the traditional polynomial fitting method, were analyzed
and compared and were used to correct the engine turbine blade projection data to reconstruct
different groups of tomographic images. Different groups of tomographic images were analyzed
using three quantitative image quality evaluation indicators. The results show that the root-mean-
square error (RMSE) of the tomographic image obtained by the proposed framework is 0.0133, which
is lower than that of the compared method. The peak signal-to-noise ratio (PSNR) is 37.7050 dB and
the feature structural similarity (FSIM) is 0.9881, which are both higher than that of the compared
method. The proposed method improves the hardening-artifact-correction capability and can obtain
higher-quality images, which provides new ideas for the development of imaging and detection of
new-generation aero-engine turbine blades.

Keywords: aero engines; iterative linear fitting; hardening correction; industrial computed
tomography; image artifact

1. Introduction

Aero engines are heat engines, which indicates that their thrust comes from the energy
generated by the heated expansion of air. If the temperature in front of the engine turbine is
increased by 100 ◦C, the engine thrust can be increased by about 20%. Research has found
that cermet turbine blades are the key to improving the performance of aero engines and
are suitable for the high-temperature extreme working environment of new-generation aero
engines [1–5]. When X-rays interact with matter, amplitude attenuation occurs. Industrial
computed tomography (ICT) based on amplitude attenuation was invented in the 1970s
and has been widely used in the aerospace and microelectronics industries. ICT serves as a
powerful analytical tool that enables the evaluation of internal structures and provides a
guarantee for the detection of cermet turbine blades of new-generation aero engines [6–8].

ICT image reconstruction algorithms generally assume that X-ray sources emit mo-
noenergetic rays. However, actual ray sources generally have a wide energy spectrum.
Since low-energy rays are more easily absorbed by blades than high-energy rays, when
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X-rays penetrate the blade, the average energy of its energy spectrum becomes higher,
which is called the beam hardening effect [9,10], which leads to hardening artifacts during
reconstruction. The hardening artifact is exacerbated due to the material properties of
cermet turbine blades. Therefore, hardening artifact correction has always been a hot topic
in the field of CT application research. There are many correction methods [11–15]. In terms
of implementation methods, they can be divided into two categories, i.e., the hardware
method and the software method.

A typical hardware method is the filter pre-filtering method [16,17]. Metal materials
with high attenuation characteristics are used as filters to reduce the proportion of low-
energy rays. Pre-hardening is used to reduce the impact of hardening effects during the
imaging process. This method is simple and easy to implement, but it leads to a reduction
in the ray intensity and the signal-to-noise ratio. Its correction is not complete because it
only changes the wide energy spectrum into a narrow energy spectrum.

Typical software-hardening-correction methods include the polynomial fitting method,
iterative correction method, and dual-energy correction method [18–20]. The polynomial
fitting method performs mapping correction based on the functional relationship between
the projections of single-material objects before and after hardening. Kyriakou et al. [21]
proposed an a priori hardening correction algorithm, i.e., Empirical Beam Hardening Cor-
rection (EBHC). The only prior knowledge of this method is to segment the reconstructed
image into water and bone. A linear combination of different CT-based images for recon-
struction is obtained. When the result is the flattest, it is the corrected result. The correction
accuracy of this method is also affected by the binarization accuracy. The iterative correction
method generally uses prior knowledge to establish a physical model and continuously
approaches the true value through iterative calculations. Brabant et al. [22] proposed a
beam hardening correction method based on the simultaneous algebraic reconstruction
technique (SART) reconstruction algorithm, which modeled beam hardening and combined
it into the forward projection of the SART reconstruction algorithm. This method can be
used without a ray source energy spectrum or material property information. However, it
has the disadvantages of large calculation amounts and low parallelism and is not widely
used in practice. Alvarez et al. [23] proposed the dual-energy method. Through two scans
of different energies, the linear attenuation coefficient distribution of the object under a
certain fixed energy is determined, and then the image is hardened and corrected. This
method can perform beam hardening correction on multi-material objects. The dual-energy
method has relatively high hardware requirements and requires prior knowledge of the
ray energy spectrum distribution.

Consider the advantages of the polynomial fitting method among software correction
methods (simpleness, effectiveness, convenience, and wide usefulness). Therefore, this
study researches correction methods for hardening artifacts in tomographic images of
cermet turbine blades, which solves the problem of image quality degradation caused
by spectral polychromaticity. Given the hardening artifacts existing in ICT imaging, this
study implemented an iterative linear-fitting-based hardening artifact correction technology
framework. First, an iterative binarization process based on the initial reconstructed image
was conducted to improve segmentation accuracy. Second, an analysis of the selection of
the fitting function model in the proposed framework was conducted. A fitting method
based on the piecewise Hermite function model was derived to obtain the fitting method
and iteration hyperparameters suitable for cermet turbine blades. Finally, the proposed
iterative fitting method based on the Hermite function model and various polynomial fitting
methods was used to fit the blade data to obtain the fitting curve. The obtained curves
performed hardening correction on the blade data to obtain different groups of tomographic
images. Three image-evaluation indicators were used to quantitatively analyze different
groups of tomographic images. The results show that the root-mean-square error (RMSE)
of the image using the proposed method is 0.0133, which is lower than that of the compared
method. The peak signal-to-noise ratio (PSNR) is 37.7050 dB, and the feature structural
similarity (FSIM) is 0.9881, both of which are higher than those of the compared method.
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Therefore, the proposed iterative linear fitting hardening artifact correction framework
reduces the hardening artifacts of blade tomographic images, improves image quality,
and has strong robustness, which provides new ideas for the development of the new-
generation aero-engine turbine blade imaging.

2. Theoretical Basis and Methods

Commonly used CT reconstructions are based on monochromatic rays, i.e., the default
linear attenuation is constant for a given substance. In practical applications, X-ray sources
generally have a continuous energy spectrum. The same material has different attenuation
coefficients under different energy rays. The attenuation coefficient corresponding to high-
energy rays is smaller than that of low-energy rays, i.e., there is less attenuation across
the same distance. The proportion of the high-energy part of the energy spectrum of
polychromatic rays increases after penetrating the object. Therefore, this work proposes
an iterative linear fitting preprocessing method. In order to explore the feasibility of the
linear fitting method, this section will first explain the linear fitting principle of absorption
contrast and deduce and analyze the feasibility of the linear fitting correction framework.

2.1. Feasibility Analysis of Linear Fitting Correction

Hardening artifacts can cause inconsistencies between actual morphology and re-
constructed images. Comparing the ideal tomographic image of the metal disc shown
in Figure 1a, the tomographic image in Figure 1b is obtained by reconstructing the data
collected from the metal disc without hardening correction. Degraded tomographic images
are characterized by bright edges and dark centers. Since the hardening projection and
penetration length satisfy a one-to-one functional relationship, the linear fitting method can
be used to correct the hardening artifact. Therefore, linear fitting preprocessing based on
the collected aero-engine turbine blade data is performed, and then, high-quality images
can be obtained using the Feldkamp-Davis-Kress (FDK) reconstruction algorithm [24].
Figure 1d shows the configuration of the ICT system. The industrial sensor obtains data
information on cermet turbine blades through X-ray full scanning. The proposed iterative
fitting data preprocessing framework is performed on the sensor-collected data. The FDK
reconstruction algorithm is used to obtain high-quality tomographic images after correction,
which provide the basis for subsequent image post-processing.

The feasibility of linear fitting correction needs to be mathematically analyzed. Assume
that the ray source defaults to a monochromatic ray. In order to obtain the attenuation
coefficient distribution µ(x, y, z) of the object, the projection P of µ at each angle and
position needs to be obtained. The initial intensity of the monochromatic ray is I0, and the
intensity after penetrating the object through a straight line L(θ, s) at a certain angle is I. P
and µ satisfy the relationship shown in Equation (1).

P = ln
(

I0

I

)
=

∫
L

µ(x, y, z)dL (1)

According to Equation (1), P can be reconstructed to obtain the attenuation coefficient
distribution µ(x, y, z). However, for actual polychromatic ray sources, their polychromatic
projections Q and µ satisfy the relationship shown in Equation (2).

Q = ln
(

I0,q
Iq

)
= ln

( ∫
E S(E)dE∫

E S(E) exp(−
∫

L µ(x,y,z,E)dL)

)
=

∫
L µq(x, y, z)dL (2)

where S(E) represents the energy spectrum distribution, and µq(x, y, z) represents the equiv-
alent attenuation coefficient distribution obtained as a polychromatic reconstruction. Con-
sider that Q is not equal to the line integral of the attenuation coefficient µ(x, y, z, E) under a
certain energy. Reconstructing Q can only obtain the equivalent attenuation coefficient dis-
tribution µq(x, y, z) under the voltage energy spectrum. Since µ(E) ∼ E−3Z3(E < 40 keV),
the attenuation coefficient µ of the low-energy component of the ray is larger, and the
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average energy of the ray after penetrating the object will become higher. Take the cermet
turbine blade as an example, the thicker the ray passes through the blade, the more obvious
this hardening effect is. The µq tends to be generated by high-energy rays and becomes
smaller. Therefore, cupping artifacts are generated in thicker parts of the blade.
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blade imaging.

When the energy spectrum of the ray source and the material distribution are un-
known, it is not feasible to obtain the attenuation coefficient distribution µ(x, y, z, E). But
when the object to be inspected is of a single material, Equation (2) can be specialized into
Equation (3).

Q = −ln
(∫

E
ω(E)exp(−µ(E)Lt)dE

)
=

∫
Lt

µq(x, y, z)dLt (3)

In Equation (3), ω(E) = S(E)/
∫

E S(E)dE represents the energy proportion of each
energy spectrum. Lt represents the thickness of the ray penetrating the object. When
the energy spectrum of the X-ray source ω(E) is determined, Q and Lt form a functional
relationship f , as shown in Equation (4).

Q = f (Lt) (4)
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In order to observe the trend of the curve, the derivative f ′ of the function f is obtained
according to Equation (3), as shown in Equation (5).

f ′(Lt) = Q′(Lt) =

∫
E ω(E)µ(E)exp(−µ(E)Lt)dE∫

E ω(E)exp(−µ(E)Lt)dE
=

∫
E

ωq(E, Lt)µ(E)dE (5)

In Equation (5), ωq(E, Lt) = Iq,E(E, Lt)/Iq(Lt) represents the energy proportion of
each ray after penetrating the length Lt. It can be deduced that f ′(Lt) is the weighted
value of the attenuation coefficient of each energy penetrating the object. The larger the
penetration length Lt, the more obvious the hardening. In Equation (5), µ(E) tends to
the high energy. Therefore, f ′(Lt) is a monotonically decreasing function, and f (Lt) is a
concave function about Lt. The mapping relationship between the polychromatic projection
Q and penetration length Lt is shown in Figure 1c.

This is since the penetration length Lt and the projection Q have a one-to-one corre-
sponding functional relationship f . In engineering, the linear fitting method can be used to

obtain the functional relationship f , and then, Q(θ, s) is mapped to
∼
Lt(θ, s), as shown in

Equation (6).
∼
Lt(θ, s) = f−1(Q(θ, s)) =

∫
L

ρ(x, y, z)dL (6)

According to
∼
Lt, the object distribution ρ(x, y, z) can be reconstructed. The equivalent

attenuation coefficient of the object can be regarded as the attenuation coefficient µp,0 when
the penetration length Lt approaches 0. Equation (5) can be derived to obtain Equation (7).

µq,0 = lim
Lt→0

Q
Lt

=
∫

E
ω(E)µ(E)dE (7)

Therefore, the linear fitting correction feasibility analysis of the turbine blade is
completed.

2.2. Framework Overview

This section proposes a technical framework of the iterative linear fitting correction
suitable for turbine blade imaging and elaborates on the framework. The framework only
needs uncorrected tomographic images to establish the functional curve relationship of the
hardening correction model and map the original projection based on the functional curve
to achieve the correction of hardening artifacts.

The principle of the hardening correction technical framework and the flow chart are
shown in Figure 2, in which the rectangular box represents the image data and the solid
line with arrows represents the flow direction of the image data. The basic idea of the
framework is to obtain the original projection Q and penetration length Lt at each angle
under cone beam imaging. Then, Q and Lt are fitted to obtain the correction function model
g (g is the inverse function of f , i.e., g = f−1). The original projections are corrected based
on the correction function model and then are reconstructed to obtain the three-dimensional
(3D) object distribution coefficient ρ(x, y, z). Due to problems, such as binarization error,
fitting accuracy, and projection data noise, the correction is generally performed more than
once. During iteration, the original projection Q needs to be replaced by the projection
∼
Lt that has not been completely corrected. After several iterations, if the fitting curve
approximation is to a straight line, the iterative correction is completed.

The steps for the above iterative linear fitting framework to correct hardening artifacts
are below.

(1) The projection information from the line integral data of the industrial sensor
(detector) is obtained. Then, the projection Q after performing logarithmic demodulation is
obtained. They are shown in Equation (8).

Q =
∫

L
ρ(x, y, z)·dL (8)
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If Q is replaced by the corrected projection
∼
Lt in the subsequent iteration process, the

magnitude of the projection Q will change to represent the entire image pixel length.
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(2) FDK reconstruction is performed on the projection Q to obtain the initial uncor-
rected tomographic image δ(x, y, z). In the subsequent iteration process, the attenuation
coefficient distribution δ(x, y, z) is finally replaced by the object distribution coefficient
ρ(x, y, z). However, the distribution ρ and the binary image B are different. ρ can reflect
the details and noise of the real tomographic information of the object. It is the corrected
object attenuation coefficient distribution, rather than simple binarization.

(3) The OTSU threshold segmentation algorithm [25] on the uncorrected image δ(x, y, z)
is performed to obtain the B(x, y, z) binary image. Due to the noise in the original pro-
jections, the binary image may have noise, which can be eliminated through binarization
processing. Since hardening artifacts can lead to suboptimal segmentation, the binary map
results can be updated in iterations to the effective segmentation.

(4) After the effective segmentation result B(x, y, z) is obtained, forward projection is
performed on B(x, y, z) to obtain the penetration length Lt(θ, s).

(5) The projection data Q and the penetration length Lt are linearly fitted to obtain
the correction model g that satisfies Lt = g(Q). In the initial iteration, (Q, Lt) is directly
used as the data to perform the linear fit. As mentioned in step (1), during the second

iteration, the projection data Q are replaced by
∼
Lt. The data are updated to (

∼
Lt, Lt). If the

hardening artifact has been completely corrected during the iteration process, the fitting
curve satisfies g(x) ≈ x, i.e., the corrected projection is basically equal to the thickness of
the ray penetrating the object.

(6) The correction model g is used to correct Q to obtain the corrected projection
∼
Lt = g(Q). In the first iteration, due to problems, such as binarization accuracy and fitting
accuracy, only the preliminary correction function g0 can be obtained. If it is a subsequent
iterative process, assuming that the fitting function at the i-th iteration is gi, the number
of termination iterations is ite. The corrected projection obtained according to the final
correction model is Equation (9).

∼
Lt, f inal = g f inal(Q) = gite(gite−1(. . . g1(g0(Q)) . . .)) (9)
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It can be deduced that based on the idea of fitting residuals, the final correction
function g f inal is the nesting of all iterative fitting functions gi. Projections under the same
experimental conditions can be corrected using this model.

(7) It can be deduced from step (5) that if gite(x) ≈ x, the iteration is terminated.

The FDK reconstruction algorithm is performed on projection
∼
Lt to obtain the 3D object

distribution coefficient distribution ρ(x, y, z). Otherwise, Q is replaced by
∼
Lt in step (2) to

proceed to the next iteration.
In the traditional linear fitting framework, only a single binarization is performed, and

the ideal binary result cannot be obtained due to severe hardening. However, the above
framework in this work uses an iterative method to re-threshold the tomographic image so
as to obtain better segmentation. The relevant analysis is conducted below.

3. Results and Discussion
3.1. Iterative Binarization Processing

When performing threshold segmentation on the image δ(x, y, z), as shown in
Figure 3a, due to the noise in the original projection, the binary image may have noise. Two
operations can be carried out to remove it: ① binarization pre-processing, i.e., performing
smoothing filtering on the projections before reconstruction and the tomographic images
after reconstruction. The reconstruction results are only used for binarization, otherwise it
will affect the subsequent fitting model. ② Binarization post-processing, i.e., after obtaining
the preliminary binary image B(x, y, z), two morphological operations are performed on
B(x, y, z). As shown in Figure 3c, the open operation is used to remove white noise outside
the blade in B(x, y, z). As shown in Figure 3d, the closed operation is used to remove black
noise inside the blade in B(x, y, z). It can be deduced that the noise in Figure 3b and the
sharp edges and corners caused by segmentation have been better eliminated, which is
more consistent with the original characteristics of the blade imaging.

Since the hardening artifacts of the blade are severe, the initial segmentation result
is not ideal. Therefore, in each iteration, binary segmentation is performed on the recon-
structed image corrected in the previous step, and the existing binary image B(x, y, z) is
replaced. Set up the pixel similarity threshold TB. When the number of different pixels
between the binary image B(i) generated by the i-th iteration and the previous binary
image B(i − 1) is less than TB, as shown in Equation (10), it can be considered that the
segmentation effect has reached the optimal level.

∑
m,n

|B(i)− B(i − 1)| < TB (10)

where (m, n) are the 2D coordinates of the image pixels. Subsequent iterations will no
longer update the binary image B(x, y, z).

As shown in Figure 3e–h, the binary segmentation results gradually approach the
profile of the turbine blade as the number of iterations increases. It can be seen that the
difference in results decreases with the iterations. As shown in Figure 3i, curves of the
number of the binary difference pixels, the number of added and reduced pixels, and the
total pixels of the binary image with respect to the number of iterations are drawn. It can
be deduced that as the number of iterations increases, the binary difference area steadily
decreases, the quality of the reconstructed image gradually becomes stable, and the total
area of the binary image converges to a constant value, i.e., the final binary result.
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3.2. Fitting Function Selection

In the proposed linear fitting technology framework, the selection of the fitting function
model is crucial, which directly influences the accuracy of the fitting curve and the final
correction effect. This section summarizes the polynomial function model of traditional
linear fitting and analyzes its disadvantages. Therefore, this section proposes a new
fitting model combined with the Hermite curve [26] to improve the shortcomings of the
polynomial function to achieve better correction effects.

When the projection data Q and the penetration length Lt are linearly fitted, the
existing linear correction method generally uses the polynomial fitting method, which
assumes that the correction function g is a polynomial, as shown in Equation (11).

g(Q, ω) = ωnQn + ωn−1Qn−1 + · · ·+ ω1Q + ω0 =
n

∑
i=0

ωiQi (11)

where n is the polynomial order, the vector ω represents (ω0, ω1, . . . , ωn), and the maxi-
mum likelihood ωML is Equation (12).
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ωML = argmin
ω

∑
(Q,Lt)

(g(Q, ω)− Lt)
2 (12)

Substituting this ωML into Equation (11), the polynomial function relationship g(Q, ωML)
satisfied by the data (Q, Lt) is obtained.

The mathematical characteristics of polynomials determine that when the order n is
high, it is easy to overfit in functions. When the order n is reduced, local details cannot
be well fitted. An example can be used to explain the characteristics of polynomial fitting.
As shown in Figure 4a, seven sampling points equally spaced in the (−3 ≤ x ≤ 3) are
fitted in different ways. It can be observed that polynomial 5 fittings can pass through all
sampling points (equivalent to interpolation), but its fitting curve is too steep at the corner
of the sampling point of x = 1, resulting in an over-fitting phenomenon of up and down
fluctuations. The polynomial 4 fitting can better reflect the overall trend of the sampling
points, but it cannot reflect the details at x = 1. Piecewise Akima interpolation [27] and
piecewise Hermite interpolation have similar fitting effects. It can avoid “overshooting”
the curve at the corners and accurately connect the platform areas, making up for the
shortcomings of the polynomial fitting. To further observe the difference in characteristics
between the two piecewise interpolation functions, the sampling points to be fitted in
Figure 4b are generated by the oscillation sampling function. Akima interpolation can
better capture the fluctuations between points, while Hermite interpolation sharply flattens
at local extrema.
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Based on the above analysis, this work proposes a fitting framework based on Hermite
interpolation to improve the accuracy of curve fitting. The iterative fitting framework
adopted in this work has higher requirements for precision than traditional single fitting.
The correction of the initial curve to be fitted is the same as the traditional single linear
correction, the curve that needs to be fitted later is the residual curve that was not fully
corrected in the previous time. The residual curve is getting closer to the target straight
line y = x as the number of iterations increases. The use of Hermite interpolation can
avoid the disadvantages of polynomial fitting, i.e., a sharp inflection point at the end of
the fitting curve that does not meet the expectations, and the subsequent correction will
use the wrong fitting curve, resulting in serious over calibrated artifacts of the mapping
projection, which will affect the reprojection and fitting of subsequent iterations and make
the curve unable to converge to get the best correction curve.

To make Hermite interpolation more suitable to the iterative fitting framework, the
Hermite interpolation is optimized. The Hermite interpolation function satisfies the re-
quirement that the function at the node and the first derivative of the function are equal to
the relevant value. If there are (n + 1) mutually different nodes a ≤ x0, x1, x2, . . . , xn ≤ b,
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and their corresponding function values are y0, y1, y2, . . . , yn, then, there can be a Hermite
function H(x) that satisfies Equations (13) and (14).

H(xi) = yi, i = 0, 1, . . . , n (13)

H′(xi) = y′i, i = 0, 1, . . . , n (14)

Based on this, the expression H(x, xr, yr) of H(x) can be solved, where the vector
xr = (x0, x1, . . . , xn) and the vector yr = (y0, y1, . . . , yn). If this function is used to repre-
sent the functional relationship of the correction model, the correction function g can be
expressed as Equation (15).

g(Q, xr, yr) = H(Q, xr, yr) (15)

Theoretically, the least squares method can be used directly to obtain the maximum
likelihood xr,ML and yr,ML, as shown in Equation (16).

(xr,ML, yr,ML) = arg min
(xr ,yr)

∑
(Q,Lt)

(g(Q, xr, yr)− Lt)
2

(16)

However, in the actual process of iteratively calculating the minimum value, since
(xr,ML, yr,ML) has a total of (2n + 2) variables that need to be solved, the optimal solution
cannot be obtained within a limited time. As shown in Figure 5a, blue area are points to be
fitted, red line is the fitted curve. xr is set to a fixed value xr,0 uniformly distributed in the
horizontal axis direction under this condition. Its expression is Equation (17).

xr,0(i) = xi = Qmin +
(Qmax − Qmin)

n
·i (17)

where Qmin and Qmax are the maximum value and minimum value of the projection
respectively. Therefore, Equation (16) is transformed into Equation (18).

yr,ML = argmin
yr

∑
(Q,Lt)

(g(Q, xr,0, yr)− Lt)
2 (18)

Substituting yr,ML into Equation (15) to get the functional relationship g(Q, xr,0, yr,ML)
of the data (Q, Lt) is satisfied. In the same way, yr can also be set to a fixed value yr,0
uniformly distributed in the vertical axis direction, so that Equation (16) can be converted
into Equation (19).

xr,ML = argmin
xr

∑
(Q,Lt)

(
g
(

Q, xr, yr,0

)
− Lt

)2
(19)

When xr,ML is substituted into Equation (15) to obtain the functional relationship
g(Q, xr,ML, yr,0) which is satisfied by data (Q, Lt).

To verify the feasibility of the above derivation, the experimental data were fitted. Due
to the presence of noise and the fact that the binary map is not accurate enough without
iteration, its projection data are affected, resulting in a “bifurcation” at the right end of the
points to be fitted. This situation is common and tests the selection of the fitting algorithm.
Once the robustness of the fitting algorithm is not strong enough, it is easy to overfit
or underfit, which may cause the consequences of residual fit failure during subsequent
iterations. The default Hermite interpolation fitting, fixed yr,0 and fixed xr,0 were used
for fitting respectively, and the effects are shown in Figure 5b,c. It can be deduced that
selecting a fixed xr,0 or yr,0 before using the optimization to obtain the maximum likelihood
value of (xr, yr) can greatly improve the accuracy of the fitting. It will be more accurate in
the horizontal axis direction.

The above shows that it is easier to converge to the best fitting node by uniformly
fixing the horizontal axis node than the vertical axis. This is because the target curve to be
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fitted is a function g0(x) about the horizontal axis. Let the target term in Equation (16) be L,
which is Equation (20).

L = ∑
(Q,Lt)

(g(Q, xr, yr)− Lt)
2 (20)

Mathematically, it is easy to find that small changes in any component of yr after fixing
xr,0 will only cause continuous changes in g(x). The same is true for L, so L is continuously
differentiable concerning yr. After fixing yr,0, the continuous change in a certain component
of xr may cause the function L to mutate. As shown in Figure 5d, the ordinates of the
four nodes A, B, C, D uniformly fixed in the y-axis direction are yr,0 = (y0, y1, y2, y3). At a
certain position xr, the fitting curve is g(x) = S. It is assumed that C is infinitely close to
B in the horizontal axis direction, i.e., x2 → x1

+ . If the abscissa of C changes slightly and
moves in the negative direction of the horizontal axis to C′, i.e., x2 → x1

− , the new fitting
curve S′ changes suddenly relative to the original curve S. According to Equation (20), it
can be deduced that the corresponding objective function L will also mutate. Therefore,
L is discontinuous concerning xr. When the objective function has discontinuous regions,
it will have a greater impact on the optimization results, so the fixed xr,0 horizontal axis
coordinate is finally selected to obtain higher fitting accuracy.
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Similar to polynomial fitting, the proposed Hermite fitting method in this work also
has a unique hyperparameter n, which is used to control the number of nodes (n + 1) in
H(x). The more nodes there are, the higher the precision of the fitting, but it is also easier to
overfit. Different n values are selected for fitting the same set of experimental data points,
and the fitting effect is shown in Figure 6. As shown in Figure 6a, when n = 3, due to the
small number of fitting nodes (red points), the interval x =0.2∼0.8 close to the origin is
not fully fitted. As shown in Figure 6b–d, when the n value is increased, i.e., n ≥ 5, the
problem has been solved. However, Figure 6c,d cause overfitting due to the large n value.
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Its derivative is non-monotonous and fluctuates up and down, which does not conform to
the original overall characteristics of the curve. If iterative fitting is performed using this
result, it will inevitably have adverse results.
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MSE represents the residual deviation between the fitting curve and the points to be
fitted. As shown in Figure 6e, since the Hermite curve degenerates into a linear function,
the MSE is extremely large when n = 1. As the value n increases, the MSE of the fitted
curve gradually decreases, but the calculation time also increases. Since the optimization
problem itself does not guarantee convergence to the optimal solution in a stable time, MSE
has an upward reverse trend when n = 3 and n = 10, and the calculation time when n = 7
is also smaller than when n = 6. When n = 4 ∼ 5, the MSE after fitting is already small.
Therefore, it will not cause over-fitting to the experimental data at the same time, which
can better reflect the overall trend in the data points. Therefore, n = 5 is selected as the
ideal hyperparameter in subsequent Hermite fittings.

3.3. Fitting Effect Verification

To verify the superiority of the proposed Hermite fitting pre-processing method
compared with the other methods, the polynomial 6 fitting, polynomial 5 fitting, the
polynomial 4 fitting, polynomial 3 fitting, and the Akima fitting were used to perform
linear correction on the experimental data of aero-engine blades, and the final results were
compared with those of Hermite fitting method. First, we need to analyze the fitting curves
of the blade data and observe that the curves reach the optimal iterations applicable to the
blade data. Finally, we used the above methods to preprocess the uncorrected projections
to get the final tomographic images.

3.3.1. Analysis of Different Iterative Fitting Curves

As shown in Figure 7, we use the blade data to analyze the iterative fitting curve of the
commonly used polynomial 6 and obtain the optimal number of iterations when the curve
reaches convergence. We observe the relevant fitting curve of different iterations. As shown
in Figure 7a, when the polynomial 6 completes the initial fitting, it can be observed that the
curve is smooth and can better reflect the trend of data. As shown in Figure 7b, when the
polynomial 6 is fitted for the second time, the horizontal axis data Q in the second iteration

is replaced with the corrected projection length
∼
Lt, so that the fitting curve can be used

for the subsequent correction of residuals (the green dashed line represents the iteration
termination line y = x, and the pink solid line represents the current uncorrected residual
∆ = g(x)− x). It can be deduced that the polynomial fitting effect of this iteration is also
better, but the curve is far from y = x. As shown in Figure 7c, when the polynomial 6 is
fitted for the sixth time, the fitting curve continues to approximate y = x and is well fitted
with the data points. As shown in Figure 7d, when the polynomial 6 is fitted for the 10th
time, the fitting curve fits the data points well and is close to y = x, but overfitting occurs at
the right endpoint of the fitting curve. As shown in Figure 7e, if the iteration continues, the
overfitting reverse deviation of the right endpoint of the fitting curve becomes more serious
when the polynomial 6 is fitted for the 12th time. This is the disadvantage of polynomial
fitting mentioned above, i.e., overfitting is easy to occur when the order is too high. In
summary, for the blade data, the polynomial 6 can obtain relatively good results at the
10th iteration.

Then, we use the blade data to analyze the iterative fitting curve of the polynomial
3 and obtain the optimal number of iterations when the curve reaches convergence. We
observe the relevant fitting curve of different iterations. As shown in Figure 8a, when
the polynomial 3 completes the initial fitting, it can be observed that the curve is smooth
overall, but the data trend is abnormal at the right endpoint. As shown in Figure 7b, when
the polynomial 3 is fitted for the second time, it can be observed that the fitting effect of
the iterative polynomial is better, but is far from y = x. As shown in Figure 7c,d, when the
polynomial 3 is fitted to the 6th and 9th degrees, the corresponding data trend is poor even
though the fitting curve is close to the right endpoint of y = x. This is the disadvantage of
polynomial 3 fitting because underfitting easily occurs when the order is low. As shown
in Figure 7e, when the polynomial 3 is fitted for the 10th time, the fitting curve is close
to y = x and the fitting effect of the right endpoint is better than that of Figure 7c,d. In
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summary, for the blade data, the polynomial 3 can obtain relatively good results at the
10th iteration.
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Through the above iterative optimization analysis of fitting curves for the polynomial
6 and the polynomial 3, it can be deduced that the optimal number of iterations can be
obtained only when overfitting and underfitting phenomena do not occur and the fitting
curve approximates y = x in the fitting process of the blade data. Therefore, on this basis,
we used the polynomial 5 and the polynomial 4, respectively, to analyze the fitting curve
for the blade data to determine that the optimal number of iterations is 10. As shown
in Figure 9, by comparing the fitting curves of polynomial 6, polynomial 5, polynomial
4, polynomial 3, Akima 5, and Hermite 5, it can be observed that the fitting effect of
polynomial 5 (Figure 9b) is similar to that of polynomial 6 (Figure 9a), i.e., the serious
overfitting phenomenon exists in polynomial 5. Overfitting in polynomial 4 is relatively
mild. Although polynomial 3 has no overfitting phenomenon, if polynomial 3 is used in the
initial iteration, the iteration will be prematurely terminated due to its insufficient fitting
accuracy. At the end of the iteration, the end of the fitted curve has an underfitting effect,
which will still cause the residual hardening of the final image. Akima 5 and Hermite 5
fitting curve analyses are performed to observe the same optimal number of iterations. The
fitting effect of Akima 5 and the proposed Hermite 5 in this work is shown in Figure 9d–f,
which can inherit the advantages of polynomial fitting and make up for the disadvantages
of overfitting. In the final iteration, the uncorrected residual curve approaches 0.
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As for the disadvantages of polynomial fitting, there are two prospects for optimization
in the future. For example 1, setting a threshold N and using polynomial 6 to fit in the
first N iterations and then using polynomial 3 can be considered. However, it introduces a
new threshold N. Due to the fact that the number of iterations required to obtain the final
correction model is different for different data, the effect of using the same threshold cannot
perfectly balance the fitting accuracy and convergence of various experimental data. For
example 2, it is also considered to add regular terms to polynomial 6 to avoid overfitting,
i.e., to add λ∥ω∥2 terms (λ is the regular coefficient) to Equation (12). This will introduce
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new challenges: ① it is difficult to determine the proper regular coefficient λ; ② although
ωML has a unique solution, due to the matrix inversion operation involved, when the data
scale is large, the matrix inversion speed is slow. However, for the experimental data with a
large number of points and nonuniform distribution in the direction of the horizontal axis,
the use of high-order polynomials and gradient-based optimization methods sometimes
leads to solution failure. Therefore, the proposed Hermite 5 fitting method has good
applicability at present.

Akima 5 and the proposed Hermite 5 in this work have been relatively applicable
to the present experimental data. The fitting effect can not only inherit the advantages
of polynomial fitting, but also make up for the disadvantages of overfitting, and the
uncorrected residual curve approaches 0 in the final iteration. As for the quality evaluation
of the final tomographic image, we discuss it in Section 3.3.2.

3.3.2. Tomographic Images of Different Iteratively Fitting Methods and Their Evaluations

After obtaining the fitted curve of different methods, in order to verify the consis-
tency of the curve-fitting effect and their corresponding final reconstructed tomographic
images, we reconstructed the uncorrected projections and the corrected projections using
the above algorithms, respectively, as shown in Figure 10. It can be deduced that the
tomographic images of the uncorrected projection in Figure 10a have severe hardening
artifacts, with shadows on the inside of the object’s ellipse-like structure and dark strip
artifacts at the corners. Figure 10h shows the high-quality tomographic image (reference)
obtained via complex processing. Figure 10b–g shows the tomographic images obtained
using the corrected projection reconstruction of several algorithms. Compared with the
uncorrected tomographic image in Figure 10a, visual observation showed that other cor-
rected images were successively improved and gradually approached the reference shown
in Figure 10h. However, through an analysis of the advantages and disadvantages of the
above polynomial algorithm, the tomographic images reconstructed using the polyno-
mial 6, 5, and 4 correction, as shown in Figure 10b–d, result in the residual hardening
artifacts due to the overfitting effect. In Figure 10e, the tomographic image reconstructed
based on the polynomial 3 correction projection makes some details in the image unclear
due to the overcoincidence effect. Akima 5 and Hermite 5 algorithms in Figure 10f,g
corrected projection-reconstructed tomographic images with high quality, which is close to
the reference image.
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For a more detailed analysis, gray-value curves were drawn on lines of different colors
at the same position in Figure 10a–h to further compare the correction quality of various
fitting methods. Figure 11 shows the gray-value curve of the uncorrected tomographic
image, polynomial 6-corrected tomographic reconstruction, polynomial 5-corrected tomo-
graphic reconstruction, polynomial 4-corrected tomographic reconstruction, polynomial
3-corrected tomographic reconstruction, Akima 5-corrected tomographic reconstruction,
and the proposed Hermite 5-corrected tomographic reconstruction. It can be observed
that due to the phenomenon of overfitting or underfitting, the polynomial correction will
always have a distortion on some peaks or double peaks showing high on both sides
and low in the middle, which leads to the phenomenon of profile blurring or incomplete
corrected hardening artifacts of the images. The gray-value curves of Hermite 5 and Akima
5 have better correction effects than other methods and are close to the reference image.
In order to quantitatively evaluate image quality, the RMSE (obtain relevant information
in Equation (A1) in Appendix A), PSNR (obtain relevant information in Equation (A2) in
Appendix A), and FSIM (obtain relevant information in Equation (A3) in Appendix A) are
calculated for the correction results of these six different fitting methods, respectively, as
shown in Table 2 and Figures 12 and 13. The RMSE 0.0133 calculated using Hermite 5 is
the smallest among the other correction methods, which reflects the smallest difference
between the tomographic reconstruction corrected by Hermite 5 and the reference image.
The calculated PSNR 37.7050 dB and FSIM 0.9881 of Hermite 5 are the largest among all
correction methods, which shows that the tomographic reconstruction of the Hermite 5
correction is the closest to the reference image. By observing the bar chart of PSNR shown in
Figure 12 and the line chart of FSIM shown in Figure 13, we can see that the Hermite 5 cor-
rection method has strong robustness and will not show the imbalance of the quantitative
evaluation results of the other methods. Therefore, through three quantitative evaluation
indicators of image quality, we concluded that the quantitative analysis is consistent with
the visual observation. The Hermite 5 fitting method can promote the image quality of
blade tomographic images and provide a new idea for next-generation aero-engine turbine
blade imaging.
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4. Conclusions

Based on the research background of high-quality imaging of new-generation aero-
engine turbine blades, to solve the problem of ICT image quality degradation caused by
the energy spectrum polychromism of cermet turbine blades, an ICT hardening artifact
correction technical framework based on iterative linear fitting is proposed in this work.
First, the proposed framework uses a continuous iterative binarization method to improve
the penetration length accuracy of the forward projection. Then, the fitting methods
and parameters suitable for the blades were derived and analyzed using the proposed
framework, and the fitting model of the Hermite function was used to improve the fitting
accuracy. Finally, the iterative fitting method based on the Hermite function model and
polynomial fitting method were used to fit the blade data to obtain the optimal fitting
curves. The obtained curves were used to correct the aero-engine turbine blade projections
to reconstruct several sets of tomographic images. The results of the quantitative analysis
of several groups of tomographic images with three image evaluation indicators show
that the RMSE 0.0133 of the corrected tomographic images with the proposed method is
lower than that of the compared methods, and PSNR 37.7050 dB and FSIM 0.9881 of the
proposed method are higher than that of the compared methods. This proves that the
iterative linear fitting correction technical framework can reduce the hardening artifacts of
ICT images, improve image quality, and have strong robustness, which is consistent with
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visual observation. This work provides a new idea for imaging and detecting the cermet
blades of new-generation aero engines.
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Appendix A. Image Quantitative Evaluation Indicators

RMSE is one of the indicators used to evaluate image quality [28]. The calculated
value of RMSE represents the difference between the reference image and the reconstructed
image. The smaller the RMSE value, the closer the reconstructed image is to the reference
image. Equation (A1) is the calculation formula of RMSE.

RMSE =

√√√√ 1
M × N

M

∑
i=1

N

∑
j=1

(ρ′(i, j)− ρ(i, j))2 (A1)

where ρ′ is the reference image, and ρ is the reconstructed image.
PSNR is one of the indicators to evaluate image quality [29]. It is based on the

pixel error of the whole image to express the quality of the reconstructed image and the
comparison of the reference image. As shown in Equation (A2), the larger the PSNR, the
better the image quality.

PSNR = 10lg
[

MAX2

MSE(ρ′, ρ)

]
(A2)

where MAX is the maximum pixel gray value (for example, 255 for an 8-bit image), and
MSE is the mean square error.

FSIM is one of the indicators to evaluate image quality [30]. FSIM summarizes three
factors, including the brightness, contrast, and structure of the image, to evaluate the image
quality by calculating the similarity of these factors. The larger the FSIM, the closer the re-
constructed image is to the reference image. Equation (A3) is the FSIM calculation formula.

FSIM =
∑x∈Ω SL(ρ)PCm(ρ)

∑x∈Ω PCm(ρ)
(A3)

where SL(x) is the local quality mapping in the reconstructed image ρ, and PCm(x) is the
phase consistency of the reconstructed image ρ.
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